Reinforcement Learning: Dynamic Programming

Csaba Szepesvári University of Alberta

Kioloa, MLSS'08

Slides: http://www.cs.ualberta.ca/~szepesva/MLSS08/

Reinforcement Learning

RL =

"Sampling based methods to solve optimal control problems"

(Rich Sutton)

- □ Contents
 - Defining AI
 - Markovian Decision Problems
 - Dynamic Programming
 - Approximate Dynamic Programming
 - Generalizations

Literature

□ Books

- Richard S. Sutton, Andrew G. Barto:
 Reinforcement Learning: An Introduction,
 MIT Press, 1998
- Dimitri P. Bertsekas, John Tsitsiklis: Neuro-Dynamic Programming, Athena Scientific, 1996

□ Journals

- JMLR, MLJ, JAIR, AI
- □ Conferences
 - NIPS, ICML, UAI, AAAI, COLT, ECML, IJCAI

Reinforcement

Some More Books

- ☐ Martin L. Puterman. *Markov Decision Processes*. Wiley, 1994.
- □ Dimitri P. Bertsekas: *Dynamic Programming and Optimal Control. Athena Scientific*. Vol. I (2005), Vol. II (2007).
- ☐ James S. Spall: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, Wiley, 2003.

Resources

□ RL-Glue http://rlai.cs.ualberta.ca/RLBB/top.html RL-Library http://rlai.cs.ualberta.ca/RLR/index.html The RL Toolbox 2.0 http://www.igi.tugraz.at/riltoolbox/general/overview.html □ OpenDP http://opendp.sourceforge.net RL-Competition (2008)! http://rl-competition.org/ June 1st, 2008: Test runs begin! □ Related fields: Operations research (MOR, OR) Control theory (IEEE TAC, Automatica, IEEE CDC, ECC) Simulation optimization (Winter Simulation Conference)

Abstract Control Model

"Perception-action loop"

Zooming in...

memory reward external sensations agent state internal sensations actions

A Mathematical Model

- □ Plant (controlled object):

 $x_{t+1} = f(x_t, a_t, v_t)$ x_t : state, v_t : noise

 $z_t = g(x_t, w_t)$ z_t : sens/obs, w_t : noise

 □ State: Sufficient statistics for the future
 - Independently of what we measure ..or..
 - Relative to measurements
- □ Controller

 - => PERCEPTION-ACTION LOOP

"CLOSED-LOOP CONTROL"

- \square Design problem: F = ?
- \square Goal: $\sum_{t=1}^{T} r(z_t, a_t) \rightarrow max$

"Subjective State"

A Classification of Controllers

- ☐ Feedforward:
 - \blacksquare $a_1, a_2, ...$ is designed ahead in time
 - **■** ???
- ☐ Feedback:
 - Purely reactive systems: $a_t = F(z_t)$
 - Why is this bad?
 - Feedback with memory:

$$m_t = M(m_{t-1}, z_t, a_{t-1})$$

~interpreting sensations

$$a_t = F(m_t)$$

decision making: deliberative vs. reactive

Feedback controllers

- □ Plant:
- ☐ Controller:
 - \blacksquare $m_t = M(m_{t-1}, z_t, a_{t-1})$
 - \blacksquare $a_t = F(m_t)$
- \square $m_t \approx x_t$: state estimation, "filtering" difficulties: noise, unmodelled parts
- \square How do we compute a_t ?
 - With a model (f'): model-based control □ ..assumes (some kind of) state estimation
 - Without a model: model-free control

Markovian Decision Problems

Markovian Decision Problems

```
\square (X,A,p,r)
\square X – set of states
\square A – set of actions (controls)
□ p - transition probabilities
      p(y|x,a)
\square r – rewards
      r(x,a,y), or r(x,a), or r(x)
\square \gamma – discount factor
     0 < \gamma < 1
```

The Process View

- $\square (X_t,A_t,R_t)$
- $\square X_{t}$ state at time t
- \square A₊ action at time t
- \square R₊ reward at time t
- □ Laws:
 - $\blacksquare X_{t+1} \sim p(.|X_t,A_t)$
 - \blacksquare $A_t \sim \pi(.|H_t)$
 - \blacksquare π : policy
 - \blacksquare $H_t = (X_t, A_{t-1}, R_{t-1}, ..., A_1, R_1, X_0) history$
 - $\blacksquare R_t = r(X_t, A_t, X_{t+1})$

The Control Problem

□ Value functions:

$$V_{\pi}(x) = E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R_{t} | X_{0} = x \right]$$

☐ Optimal value function:

$$V^*(x) = \max_{\pi} V_{\pi}(x)$$

□ Optimal policy:

$$V_{\pi^*}(x) = V^*(x)$$

Applications of MDPs

Operations research		Control, statistics
Econometrics		Games, AI
Optimal investments		Bioreactor control
Replacement problems		Robotics (Robocup
Option pricing		Soccer)
Logistics, inventory		Driving
management		Real-time load
Active vision		balancing
Production scheduling		Design of experiments (Medical tests)
Dialogue control		

Variants of MDPs

- □ Discounted
- ☐ Undiscounted: Stochastic Shortest Path
- □ Average reward
- ☐ Multiple criteria
- □ Minimax
- ☐ Games

MDP Problems

- □ Planning
 - The MDP (X,A,P,r, γ) is known. Find an optimal policy π^* !
- □ Learning
 - The MDP is unknown. You are allowed to interact with it. Find an optimal policy π^* !
- □ Optimal learning
 - While interacting with the MDP, minimize the loss due to not using an optimal policy from the beginning

Solving MDPs – Dimensions

Which problem? (Planning, learning, optimal learning) Exact or approximate? Uses samples? □ Incremental? ☐ Uses value functions? ■ Yes: Value-function based methods ☐ Planning: DP, Random Discretization Method, FVI, ... ☐ Learning: Q-learning, Actor-critic, ... No: Policy search methods Planning: Monte-Carlo tree search, Likelihood ratio methods (policy gradient), Sample-path optimization (Pegasus), Representation Structured state: ☐ Factored states, logical representation, ... Structured policy space: □ Hierarchical methods

Dynamic Programming

Richard Bellman (1920-1984)

- ☐ Control theory
- □ Systems Analysis
- ☐ Dynamic Programming: RAND Corporation, 1949-1955

- □ Bellman equation
- □ Bellman-Ford algorithm
- □ Hamilton-Jacobi-Bellman equation
- ☐ "Curse of dimensionality"
- □ invariant imbeddings
- ☐ Grönwall-Bellman inequality

Bellman Operators

- \square Let $\pi:X\to A$ be a stationary policy
- \square B(X) = { V | V:X \rightarrow R, $||V||_{\infty} < \infty$ }
- $\Box T_{\pi}:B(X)\rightarrow B(X)$
- $\Box (T_{\pi} V)(x) = \sum_{y} p(y|x,\pi(x)) [r(x,\pi(x),y) + \gamma V(y)]$
- ☐ Theorem:

$$T_{\pi} V_{\pi} = V_{\pi}$$

□ Note: This is a linear system of

equations:
$$r_{\pi} + \gamma P_{\pi} V_{\pi} = V_{\pi}$$

$$\rightarrow$$
 $V_{\pi} = (I - \gamma P_{\pi})^{-1} r_{\pi}$

Proof of $T_{\pi} V_{\pi} = V_{\pi}$

What you need to know: Linearity of expectation: E[A+B] = E[A]+E[B]Law of total expectation: $E[Z] = \sum_{x} P(X=x) E[Z \mid X=x]$, and $E[Z \mid U=u] = \sum_{x} P(X=x|U=u) E[Z|U=u,X=x].$ Markov property: $E[f(X_1,X_2,...) \mid X_1=y,X_0=x] = E[f(X_1,X_2,...) \mid X_1=y]$ $= \sum_{v} P(X_1 = y | X_0 = x) E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t R_t | X_0 = x, X_1 = y \right]$ (by the law of total expectation) $= \sum_{v} p(y|x,\pi(x)) E_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} R_{t}|X_{0} = x,X_{1}=y]$ (since $X_1 \sim p(.|X_0,\pi(X_0))$) $=\sum_{v} p(y|x,\pi(x))$ $\{E_{\pi}[R_0|X_0=x,X_1=y]+\gamma E_{\pi}[\sum_{t=0}^{\infty}\gamma^t R_{t+1}|X_0=x,X_1=y]\}$ (by the linearity of expectation) $= \sum_{y} p(y|x,\pi(x)) \left\{ r(x,\pi(x),y) + \gamma V_{\pi}(y) \right\}$ (using the definition of r, V_{π}) = $(T_{\pi} V_{\pi})(x)$. (using the definition of T_{π})

The Banach Fixed-Point Theorem

- \square B = (B,||.||) Banach space
- \square T: $B_1 \rightarrow B_2$ is L-Lipschitz (L>0) if for any U,V, || T U - T V || \leq L || U-V||.
- \Box T is contraction if $B_1=B_2$, L<1; L is a contraction coefficient of T
- □ **Theorem [Banach]**: Let T:B→ B be a γ -contraction. Then T has a unique fixed point V and \forall V₀ \in B, V_{k+1}=T V_k, V_k \rightarrow V and $||V_k-V||=O(\gamma^k)$

An Algebra for Contractions

 \square **Prop**: If $T_1: B_1 \rightarrow B_2$ is L_1 -Lipschitz, $T_2: B_2 \rightarrow B_3$ is L_2 -Lipschitz then $T_2: T_1$ is $L_1: L_2$ Lipschitz. □ **Def**: If T is 1-Lipschitz, T is called a non-expansion \square Prop: M: B(X× A) \rightarrow B(X), $M(Q)(x) = max_a Q(x,a)$ is a non-expansion \square **Prop**: Mul_c: B \rightarrow B, Mul_c V = c V is |c|-Lipschitz \square **Prop**: Add_r: B \rightarrow B, Add V = r + V is a non-expansion. \square Prop: K: B(X) \rightarrow B(X), $(K V)(x)=\sum_{y} K(x,y) V(y)$ is a non-expansion if $K(x,y)\geq 0$, $\sum_{y} K(x,y)=1$.

Policy Evaluations are Contractions

- □ **Def:** $||V||_{\infty} = \max_{x} |V(x)|$, supremum norm; here ||.||
- □ **Theorem**: Let T_{π} the policy evaluation operator of some policy π . Then T_{π} is a γ -contraction.
- □ **Corollary**: V_{π} is the unique fixed point of T_{π} . $V_{k+1} = T_{\pi} V_k \rightarrow V_{\pi}$, $\forall V_0 \in B(X)$ and $||V_k V_{\pi}|| = O(\gamma^k)$.

The Bellman Optimality Operator

 \square Let T:B(X) \rightarrow B(X) be defined by (TV)(x) = $\max_{a} \sum_{v} p(y|x,a) \{ r(x,a,y) + \gamma V(y) \}$ \square **Def**: π is greedy w.r.t. V if $T_{\pi}V = T V$. \square **Prop**: T is a γ -contraction. \square Theorem (BOE): $\top V^* = V^*$. □ **Proof**: Let V be the fixed point of T. $T_{\pi} \leq T \rightarrow V^* \leq V$. Let π be greedy w.r.t. V. Then $T_{\pi} V = T V$. Hence $V_{\pi} = V \rightarrow V \leq V^{\hat{*}} \rightarrow V = V^{*}$.

Value Iteration

 \square **Theorem**: For any $V_0 \in B(X)$, $V_{k+1} = T V_k$, $V_{\nu} \rightarrow V^*$ and in particular $||V_{\nu} - V^*|| = O(\gamma^k)$. ☐ What happens when we stop "early"? \square **Theorem**: Let π be greedy w.r.t. V. Then $||V_{\pi} - V^*|| \le 2||TV-V||/(1-\gamma).$ \square **Proof**: $||V_{\pi}-V^*|| \le ||V_{\pi}-V|| + ||V-V^*|| ...$ ☐ Corollary: In a finite MDP, the number of policies is finite. We can stop when $||V_{k}-TV_{k}|| \leq \Delta(1-\gamma)/2$, where $\Delta = \min\{ ||V^*-V_{\pi}|| : V_{\pi} \neq V^* \}$ → Pseudo-polynomial complexity

Policy Improvement [Howard '60]

- □ **Def**: U,V∈ B(X), V ≥ U if V(x) ≥ U(x) holds for all $x \in X$.
- □ **Def**: $U,V \in B(X), V > U$ if $V \ge U$ and $\exists x \in X$ s.t. V(x) > U(x).
- □ Theorem (Policy Improvement): Let π' be greedy w.r.t. V_{π} . Then $V_{\pi'} \geq V_{\pi}$. If T $V_{\pi} > V_{\pi}$ then $V_{\pi'} > V_{\pi}$.

Policy Iteration

 \square Policy Iteration(π) $\square \lor \leftarrow \lor_{\pi}$ □ Do {improvement} \blacksquare \lor' \leftarrow \lor ■ Let π : $T_{\pi} V = T V$ \blacksquare \lor \leftarrow \lor_{π} □ While (V>V') \square Return π

Policy Iteration Theorem

- □ Theorem: In a finite, discounted MDP policy iteration stops after a finite number of steps and returns an optimal policy.
- ☐ **Proof**: Follows from the Policy Improvement Theorem.

Linear Programming

- $\square V \ge TV \rightarrow V \ge V^* = TV^*$.
- \square Hence, V* is the "largest" V that satisfies V > T V.

$$V \geq T V \Leftrightarrow$$

(*)
$$V(x) \ge \sum_{y} p(y|x,a) \{r(x,a,y) + \gamma V(y)\},\ \forall x,a$$

- □ LinProg(V):
 - $\sum_{x} V(x) \rightarrow \min \text{ s.t. } V \text{ satisfies (*).}$
- \square **Theorem**: LinProg(V) returns the optimal value function, V^* .
- ☐ **Corollary**: Pseudo-polynomial complexity

Variations of a Theme

Approximate Value Iteration

- \square **AVI**: $V_{k+1} = T V_k + \epsilon_k$
- **□ AVI Theorem**:

```
Let \epsilon = \max_{k} ||\epsilon_k||. Then \limsup_{k\to\infty} ||V_k-V^*|| \le 2\gamma \epsilon / (1-\gamma).
```

□ **Proof**: Let $a_k = ||V_k - V^*||$. Then $a_{k+1} = ||V_{k+1} - V^*|| = ||T V_k - T V^* + \epsilon_k || \le \gamma ||V_k - V^*|| + \epsilon = \gamma a_k + \epsilon$. Hence, a_k is bounded. Take "limsup" of both sides: $a \le \gamma$ a + ϵ ; reorder.//

(e.g., [BT96])

Fitted Value Iteration

Non-expansion Operators

- □ **FVI**: Let A be a non-expansion, $V_{k+1} = A T V_k$. Where does this converge to?
- □ **Theorem**: Let U,V be such that A T U = U and T V = V. Then $||V-U|| \le ||AV-V||/(1-\gamma)$.
- □ **Proof**: Let U' be the fixed point of TA. Then $||U'-V|| \le \gamma ||AV-V||/(1-\gamma)$. Since A U' = A T (AU'), U=AU'. Hence, ||U-V|| = ||AU'-V|| $\le ||AU'-AV||+||AV-V||$...

[Gordon '95]

Application to Aggregation

- \square Let Π be a partition of X, S(x) be the unique cell that x belongs to.
- □ Let A: B(X) \rightarrow B(X) be (A V)(x) = $\sum_{z} \mu(z;S(x))$ V(z), where μ is a distribution over S(x).
- $\Box p'(C|B,a) =$ $\sum_{x \in \mathcal{B}} \mu(x;B) \sum_{y \in \mathcal{C}} p(y|x,a),$ r'(B,a,C) = $\sum_{x \in \mathcal{B}} \mu(x;B) \sum_{y \in \mathcal{C}} p(y|x,a) r(x,a,y).$
- □ **Theorem**: Take (Π ,A,p',r'), let V' be its optimal value function, $V'_{E}(x) = V'(S(x))$. Then $||V'_{E} V^{*}|| \le ||AV^{*}-V^{*}||/(1-\gamma)$.

Action-Value Functions

```
\square L: B(X)\rightarrow B(X\times A),
   (L V)(x,a) = \sum_{y} p(y|x,a) \{r(x,a,y) + \gamma V(y)\}.
   "One-step lookahead".
\square Note: \pi is greedy w.r.t. V if
           (LV)(x,\pi(x)) = \max_{a} (LV)(x,a).
\square Def: Q^* = L V^*.
\square Def: Let Max: B(X× A)\rightarrow B(X),
   (Max Q)(x) = max_a Q(x,a).
\square Note: Max L = T.
\square Corollary: Q^* = L \operatorname{Max} Q^*.
          ■ Proof: Q^* = L V^* = L T V^* = L Max L V^* = L Max Q^*.
\Box T = L Max is a \gamma-contraction
☐ Value iteration, policy iteration, ...
```

Changing Granularity

Asynchronous Value Iteration: Every time-step update only a few states **AsyncVI Theorem**: If all states are updated infinitely often, the algorithm converges to V*. How to use? Prioritized Sweeping IPS [MacMahan & Gordon '05]: Instead of an update, put state on the priority queue When picking a state from the queue, update it Put predecessors on the queue ☐ Theorem: Equivalent to Dijkstra on shortest path problems, provided that rewards are non-positive LRTA* [Korf '90] ~ RTDP [Barto, Bradtke, Singh '95] Focussing on parts of the state that matter Constraints: Same problem solved from several initial positions □ Decisions have to be fast Idea: Update values along the paths

Changing Granularity

- ☐ Generalized Policy Iteration:
 - Partial evaluation and partial improvement of policies
 - Multi-step lookahead improvement

□ **AsyncPI Theorem**: If both evaluation and improvement happens at every state infinitely often then the process converges to an optimal policy. [Williams & Baird '93]

Variations of a theme

[SzeLi99]

- ☐ Game against nature [Heger '94]: inf_w $\sum_{t} \gamma^{t} R_{t}(w)$ with $X_{0} = x$
- □ Risk-sensitive criterion: log (E[$\exp(\sum_t \gamma^t R_t) \mid X_0 = x$])
- □ Stochastic Shortest Path
- □ Average Reward
- □ Markov games
 - Simultaneous action choices (Rock-paper-scissor)
 - Sequential action choices
 - Zero-sum (or not)

References

Reinforcement Learning: Approximate Planning

Csaba Szepesvári University of Alberta

Kioloa, MLSS'08

Slides: http://www.cs.ualberta.ca/~szepesva/MLSS08/

Planning Problem

☐ The MDP ■ .. is given (p,r can be queried) ... can be sampled from □ at any state □ Trajectories "Simulation Optimization" ☐ Goal: Find an optimal policy □ Constraints: Computational efficiency □ Polynomial complexity \square O(1) \equiv real-time decisions ■ Sample efficiency ~ computational efficiency

Methods for planning

- ☐ Exact solutions (DP)
- ☐ Approximate solutions
 - Rollouts (≡ search)
 - ☐ Sparse lookahead trees, UCT
 - Approximate value functions
 - □ RDM, FVI, LP
 - Policy search
 - □ Policy gradient (Likelihood Ratio Method), Pegasus [Ng & Jordan '00]
 - Hybrid
 - □ Actor-critic

Bellman's Curse of Dimensionality

- ☐ The state space in many problems is...
 - Continuous
 - High-dimensional
- ☐ "Curse of Dimensionality" (Bellman, 57)
 - Running time of algorithms scales exponentially with the dimension of the state space.
- ☐ Transition probabilities
 - \blacksquare Kernel: P(dy|x,a)
 - Density: p(y|x,a) ←!!
 - \Box e.g. p(y|x,a) ~ exp(-||y-f(x,a)||²/(2 σ ²))

A Lower Bound

- ☐ **Theorem** (Chow, Tsitsiklis '89)
 - Markovian Decision Problems
 - d dimensional state space
 - Bounded transition probabilities, rewards
 - Lipschitz-continuous transition probabilities and rewards
 - \Rightarrow Any algorithm computing an ϵ -approximation of the optimal value function needs $\Omega(\epsilon^{-d})$ values of p and r.
- □ What's next then??

Monte-Carlo Search Methods

Problem:

☐ Can generate trajectories from an initial state

☐ Find a good action at the initial state

Sparse lookahead trees

- ☐ [Kearns et al., '02]: Sparse lookahead trees
- □ Effective horizon: $H(\epsilon) = K_r/(\epsilon(1-\gamma))$
- ☐ Size of the tree: $S = c |A|^{H(\epsilon)}$ (unavoidable)
- ☐ Good news: S is independent of d!
- \square ..but is exponential in $H(\epsilon)$
- ☐ Still attractive: Generic, easy to implement
- ☐ Would you use it?

Idea..

- □ Need to propagate values from good branches as early as possible
- ☐ Why sample suboptimal actions at all?
- □ Breadth-first
 - → Depth-first!
- ☐ Bandit algorithms → <u>Upper Confidence</u> Bounds

[KoSze '06]

UCB [Auer et al. '02]

- □ Bandit with a finite number of actions(a) called arms here
- \square Q_t(a): Estimated payoff of action a
- \Box T_t(a): Number of pulls of arm a
- ☐ Action choice by UCB:

$$A_t = \operatorname{argmax}_a \left\{ Q_t(a) + \sqrt{\frac{p \log(t)}{2T_t(a)}} \right\}$$

- □ Theorem: The expected loss is bounded by O(log n)
- □ Optimal rate

UCT Algorithm

[KoSze '06]

- □ To decide which way to go play a bandit in each node of the tree
- ☐ Extend tree one by one
- ☐ Similar ideas:
 - [Peret and Garcia, '04]
 - [Chang et al., '05]

Results: Sailing

☐ 'Sailing': Stochastic shortest path

- \square State-space size = 24*problem-size
- ☐ Extension to two-player, full information games
- □ Major advances in go!

Results: 9x9 Go

- □ Mogo
 - A: Y. Wang, S. Gelly,
 R. Munos, O.
 Teytaud, and P-A.
 Coquelin, D. Silver
 - 100-230K simulations/move
 - Around since 2006 aug.
- □ CrazyStone
 - A: Rémi Coulom
 - Switched to UCT in 2006
- ☐ Steenvreter
 - A: Erik van der Werf
 - Introduced in 2007

- ☐ Computer Olympiad (2007 December)
 - 19x19
 - 1. MoGo
 - 2. CrazyStone
 - 3. GnuGo
 - 9x9
 - 1. Steenvreter
 - 2. Mogo
 - 3. CrazyStone
- ☐ Guo Jan (5 dan), 9x9 board
 - ☐ Mogo black: 75% win
 - ☐ Mogo white: 33% win

CGOS: 1800 ELO → 2600 ELO

Random Discretization Method

- Problem:
- □ Continuous state-space
- ☐ Given p,r, find a good policy!
- ☐ Be efficient!

Value Iteration in Continuous Spaces

□ Value Iteration:

$$V_{k+1}(x) = \max_{a \in A} \{r(x,a) + \gamma \int_{\mathcal{X}} p(y|x,a) V_k(y) dy\}$$

- ☐ How to compute the integral?
- □ How to represent value functions?

Discretization

Discretization

Can this work?

- □ No!
- ☐ The result of [Chow and Tsitsiklis, 1989] says that methods like this can not scale well with the dimensionality

Random Discretization [Rust '97]

Weighted Importance Sampling

 \square How to compute $\int p(y|x,a) V(y) dy?$

$$Y_i \sim U_X(\cdot) \Rightarrow$$

$$\frac{\sum_{i=1}^{N} p(Y_i|x,a)V(Y_i)}{\sum_{i=1}^{N} p(Y_i|x,a)} \rightarrow \int p(y|x,a)V(y)dy \text{ w.p.1}$$

The Strength of Monte-Carlo

- \square Goal: Compute $I(f) = \int f(x) p(x) dx$
- \square Draw $X_1,...,X_N \sim p(.)$
- \square Compute $I_N(f) = 1/N \sum_i f(X_i)$
- □ Theorem:
 - $\blacksquare E[I_N(f)] = I(f)$
 - $Var[I_N(f)] = Var[f(X_1)]/N$
 - Rate of convergence is independent of the dimensionality of x!

The Random Discretization Method

1: **function** RDM-prepare(p, r, γ)
2: **draw** X_1, \ldots, X_N randomly, uniformly over \mathcal{X} 3: $\hat{p}(i|j,a) \leftarrow \frac{p(X_i|X_j,a)}{\sum_{k=1}^N p(X_k|X_j,a)}$, $\hat{r}(i,a) \leftarrow r(X_i,a)$ 4: $v \leftarrow VI(K; \hat{p}, \hat{r}, \gamma)$ // call value iteration
5: **return** V

1: **function** RDM-estimate(x, v, p, r, γ) // $x \in \mathcal{X}$ 2: **return** $\max_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \sum_{j=1}^{n} \frac{p(X_j | x, a)}{\sum_{k=1}^{N} p(X_k | x, a)} v(j) \right\}$

Guarantees

- \square State space: $[0,1]^d$
- ☐ Action space: finite
- \Box p(y|x,a), r(x,a) Lipschitz continuous, bounded
- ☐ **Theorem** [Rust '97]:

$$E[||V_N(x) - V^*(x)||_{\infty}] \le \frac{Cd|A|^{5/4}}{(1-\gamma)^2 N^{1/4}}$$

- □ No curse of dimensionality!
- □ Why??
- ☐ Can we have a result for planning??

☐ Replace max_a with argmax_a in procedure RDM-estimate:

```
1: function plan0(x, v, p, r, \gamma)

2: return \ argmax_{a \in \mathcal{A}} \left\{ r(x, a) + \gamma \sum_{j=1}^{n} \frac{p(X_j | x, a)}{\sum_{k=1}^{N} p(X_k | x, a)} v(j) \right\}
```

□ Reduce the effect of unlucky samples by using a fresh set:

```
1: function plan1(x, p, r, \gamma)

2: v \leftarrow prepare(p, r, \gamma)

3: return plan0(x, v, p, r, \gamma)
```

Results for Planning

```
\square p(y|x,a):
    ■ Lipschitz continuous (L_p) and bounded (K_p)
\Box r(x,a):
    \blacksquare bounded (K_r)
\Box \ \mathsf{H}(\epsilon) = \mathsf{K}_{\mathsf{r}}/(\epsilon(1-\gamma))
□ Theorem [Sze '01]: If
    N = poly(d, log(|A|), H(\epsilon), K_p, log(L_p), log(1/\delta)),
    then
        with probability 1-\delta, the policy implemented by
        plano is \epsilon-optimal.
        with probability 1, the policy implemented by
        plan1 is \epsilon-optimal.
☐ Improvements:
       Dependence on log(L_p) not L_p; log(|A|) not |A|, no dependence on L_r!
```

A multiple-choice test...

- ☐ Why is not there a curse of dimensionality for RDM?
 - A. Randomization is the cure to everything
 - B. Class of MDPs is too small
 - C. Expected error is small, variance is huge
 - D. The result does not hold for control
 - E. The hidden constants blow up anyway
 - F. Something else

Why no curse of dimensionality??

- □ RDM uses a computational model different than that of Chow and Tsitsiklis!
 - One is allowed to use p,r at the time of answering "V*(x) = ?, π *(x) = ?"
- ☐ Why does this help?

 - Also explains why smoothness of the reward function is not required

Possible Improvements

- ☐ Reduce distribution mismatch
 - Once a good policy is computed, follow it to generate new points
 - ☐ How to do weighted importance sampling then??
 - ☐ Fit distribution & generate samples from the fitted distribution(?)
 - Repeat Z times
- ☐ Decide adaptively when to stop adding new points

Planning with a Generative Model

Problem:

☐ Can generate transitions from anywhere
☐ Find a good policy!
☐ Be efficient!

Sampling based fitted value iteration

- □ Generative model
 - Cannot query p(y|x,a)
 - Can generate $Y \sim p(.|x,a)$
- ☐ Can we generalize RDM?
- □ Option A: Build model
- ☐ Option B: Use function approximation to propagate values
- ☐ [Samuel, 1959], [Bellman and Dreyfus, 1959], [Reetz,1977], [Keane and Wolpin, 1994],...

Single-sample version

Sampling based fitted value iteration – single sample

```
1: function SFVI-SINGLE(N, M, K, \mu, \mathcal{F}, P, S)
 2: for i = 1 to N do
3: Draw X_i \sim \mu, Y_i^{X_i,a} \sim P(\cdot|X_i,a), R_i^{X_i,a} \sim S(\cdot|X_i,a),
         (j=1,\ldots,M,\,a\in\mathcal{A})
 4: end for
 5: V \leftarrow 0 // approximate value function
 6: for k = 1 to K do
7: \hat{V}_i \leftarrow \max_{a \in \mathcal{A}} \left\{ \frac{1}{M} \sum_{j=1}^{M} \left( R_j^{X_i, a} + \gamma V(Y_j^{X_i, a}) \right) \right\}
 8: V \leftarrow \operatorname{argmin}_{f \in \mathcal{F}} \sum_{i=1}^{N} (f(X_i) - \hat{V}_i)^2 // \text{fitting}
 9: end for
10: return V
```

Multi-sample version

Sampling based fitted value iteration – multi-sample variant

```
1: function SFVI-MULTI(N, M, K, \mu, \mathcal{F}, P, S)
 2: V \leftarrow 0 // approximate value function
 3: for k = 1 to K do
 4: for i = 1 to N do
 5: Draw X_i \sim \mu, Y_i^{X_i,a} \sim P(\cdot|X_i,a), R_i^{X_i,a} \sim S(\cdot|X_i,a),
             (j=1,\ldots,M,a\in\mathcal{A})
 6: end for
7: \hat{V}_i \leftarrow \max_{a \in \mathcal{A}} \left\{ \frac{1}{M} \sum_{j=1}^{M} \left( R_j^{X_i, a} + \gamma V(Y_j^{X_i, a}) \right) \right\}
     V \leftarrow \operatorname{argmin}_{f \in \mathcal{F}} \sum_{i=1}^{N} (f(X_i) - \hat{V}_i)^2 // \text{ fitting}
 9: end for
10: return V
```

Assumptions

- $\Box C(\mu) = ||dP(.|x,a)/d\mu||_{\infty} < +\infty$
 - μ uniform: dP/d μ = p(.|x,a); density kernel
 - This was used by the previous results
 - Rules out deterministic systems and systems with jumps

Loss bound

$$\|V^* - V^{\pi_K}\|_{p,\rho} \le \frac{2\gamma}{(1-\gamma)^2} \left\{ C(\mu)^{1/p} \left[d(T\mathcal{F}, \mathcal{F}) + c_1 \left(\frac{\mathcal{E}}{N} \left(\log(N) + \log(K/\delta) \right) \right)^{1/2p} + c_2 \left(\frac{1}{M} \left(\log(N|A|) + \log(K/\delta) \right) \right)^{1/2} \right] + c_3 \gamma^K K_{\text{max}} \right\}$$

[SzeMu '05]

The Bellman error of function sets

- \square Bound is in temrs of the "distance of the functions sets \mathcal{F} and $\mathsf{T}\mathcal{F}$:
 - $d(T\mathcal{F}, \mathcal{F}) = \inf_{f \in \mathcal{F}} \sup_{V \in \mathcal{F}} ||TV f||_{p,\mu}$
- \square "Bellman error on \mathcal{F}''
- $\square \mathcal{F}$ should be large to make $d(T\mathcal{F}, \mathcal{F})$ small
- □ If MDP is "smooth", TV is smooth for any bounded(!) V
- □ Smooth functions can be wellapproximated
- □ → Assume MDP is smooth

Metric Entropy

- \square The bound depends on the metric entropy, $\mathcal{E}=\mathcal{E}(\mathcal{F})$.
 - Metric entropy: 'capacity measure', similar to VC-dimension
- \square Metric entropy increases with $\mathcal{F}!$
- \Box Previously we concluded that \mathcal{F} should be big
- □ ????
 - Smoothness
 - RKHS

RKHS Bounds

☐ Linear models (~RKHS): $\mathcal{F} = \{ w^T \phi : ||w||_1 \le A \}$ \square [Zhang, '02]: $\mathcal{E}(\mathcal{F}) = O(\log N)$ \square This is independent of dim(ϕ)! ☐ **Corollary**: Sample complexity of FVI is polynomial for "sparse" MDPs ■ Cf. [Chow and Tsitsiklis '89] ☐ Extension to control? Yes

Improvements

- □ Model selection
 - How to choose \mathcal{F} ?
 - Choose as large an \mathcal{F} as needed!
 - □ Regularization
 - □ Model-selection
 - □ Aggregation
 - \square ..
- ☐ Place base-points better
 - Follow policies
 - No need to fit densities to them!

References

Reinforcement Learning: Learning Algorithms

Csaba Szepesvári University of Alberta

Kioloa, MLSS'08

Slides: http://www.cs.ualberta.ca/~szepesva/MLSS08/

Contents

- ☐ Defining the problem(s)
- ☐ Learning optimally
- ☐ Learning a good policy
 - Monte-Carlo
 - Temporal Difference (bootstrapping)
 - Batch fitted value iteration and relatives

The Learning Problem

- ☐ The MDP is unknown but the agent can interact with the system
- ☐ Goals:
 - Learn an optimal policy
 - ☐ Where do the samples come from?
 - Samples are generated externally
 - The agent interacts with the system to get the samples ("active learning")
 - ☐ Performance measure: What is the performance of the policy obtained?
 - Learn optimally: Minimize regret while interacting with the system
 - ☐ Performance measure: loss in rewards due to not using the optimal policy from the beginning
 - ☐ Exploration vs. exploitation

Learning from Feedback

- ☐ A protocol for prediction problems: \blacksquare x_t – situation (observed by the agent) $y_t \in Y$ – value to be predicted $p_t \in Y$ – predicted value (can depend on all past values \Rightarrow learning!) $r_t(x_t, y_t, y)$ – value of predicting y loss of learner: $\lambda_t = r_t(x_t, y_t, y) - r_t(x_t, y_t, p_t)$ ☐ Supervised learning: agent is told y_t , $r_t(x_t, y_t, .)$ Regression: $r_t(x_t, y_t, y) = -(y - y_t)^2 \rightarrow \lambda_t = (y_t - p_t)^2$ ☐ Full information prediction problem: $\forall y \in Y, r_t(x_t, y)$ is communicated to the agent, but
- \square Bandit (partial information) problem: $r_t(x_t, p_t)$ is communicated to the agent only

not y_t

Learning Optimally

- ☐ Explore or exploit?
- ☐ Bandit problems
 - Simple schemes
 - Optimism in the face of uncertainty (OFU) → UCB
- ☐ Learning optimally in MDPs with the OFU principle

Learning Optimally: Exploration vs. Exploitation

- □ Two treatments
- ☐ Unknown success probabilities
- ☐ Goal:
 - find the best treatment while loosing few patients
- ☐ Explore or exploit?

Exploration vs. Exploitation: Some Applications

- ☐ Simple processes:
 - Clinical trials
 - Job shop scheduling (random jobs)
 - What ad to put on a web-page
- ☐ More complex processes (memory):
 - Optimizing production
 - Controlling an inventory
 - Optimal investment
 - Poker
 - .,

Bernoulli Bandits

```
□ Payoff is 0 or 1
□ Arm 1:
0 , 1 , 0 , 0 , ...
□ Arm 2:
1 , 1 , 0 , 1 , ...
```

Some definitions

- □ Payoff is 0 or 1
- □ Arm 1:

Now: t=9

$$T_1(t-1) = 4$$

$$T_{2}(t-1) = 4$$

$$T_2(t-1) = 4$$

 $A_1 = 1, A_2 = 2, ...$

- □ Arm 2:

$$\hat{L}_T \stackrel{\text{def}}{=} \sum_{t=1}^T R_t(k^*) - \sum_{t=1}^T R_{T_{A_t}(t)}(A_t)$$

The Exploration/Exploitation Dilemma

- \square Action values: $Q^*(a) = E[R_t(a)]$
- ☐ Suppose you form estimates

$$Q_t(a) \approx Q^*(a)$$

 \Box The greedy action at t is:

$$A_t^* = \operatorname{argmax}_a Q_t(a)$$

- \square Exploitation: When the agent chooses to follow A_t^*
- ☐ Exploration: When the agent chooses to do something else

Action-Value Methods

- Methods that adapt action-value estimates and nothing else
- ☐ How to estimate action-values?
- ☐ Sample average:

$$Q_t(a) = \frac{R_1(a) + \dots + R_{T_t(a)}(a)}{T_t(a)}$$

- \square Claim: $\lim_{t\to\infty}Q_t(a)=Q^*(a)$, if $n_t(a)\to\infty$
- □ Why??

ε -Greedy Action Selection

☐ Greedy action selection:

$$A_t = A_t^* = \operatorname{argmax}_a Q_t(a)$$

 \square ε -Greedy:

$$A_t = \begin{cases} A_t^* & \text{with probability } 1 - \varepsilon \\ \text{random action} & \text{with probability } \varepsilon \end{cases}$$

... the simplest way to "balance" exploration and exploitation

10-Armed Testbed

- \square *n* = 10 possible actions
- ☐ Repeat 2000 times:
 - $= Q^*(a) \sim N(0,1)$
 - Play 1000 rounds
 - \square $R_t(a) \sim N(Q^*(a), 1)$

ε -Greedy Methods on the 10-Armed Testbed

Softmax Action Selection

- \square Problem with ϵ -greedy: Neglects action values
- ☐ Softmax idea: grade action probs. by estimated values.
- ☐ Gibbs, or Boltzmann action selection, or exponential weights:

$$\mathbb{P}\left(A_t = a \middle| H_t\right) = \frac{e^{Q_t(a)/\tau_t}}{\sum_b e^{Q_t(b)/\tau_t}}$$

 $= \tau = \tau_t$ is the "computational temperature"

Incremental Implementation

☐ Sample average:

$$Q_t(a) = \frac{R_1(a) + \dots + R_{T_t(a)}(a)}{T_t(a)}$$

☐ Incremental computation:

$$Q_{t+1}(A_t) = Q_t(A_t) + \frac{1}{t+1}(R_{t+1} - Q_t(A_t))$$

☐ Common update rule form:

NewEstimate = OldEstimate
+ StepSize[Target - OldEstimate]

UCB: Upper Confidence Bounds

- ☐ Principle: Optimism in the face of uncertainty
- ☐ Works when the environment is not adversary
- \square Assume rewards are in [0,1]. Let

$$A_t = \operatorname{argmax}_a \left\{ Q_t(a) + \sqrt{\frac{p \log(t)}{2T_t(a)}} \right\}_{(p>2)}$$

- ☐ For a stationary environment, with iid rewards this algorithm is hard to beat!
- \square Formally: regret in T steps is $O(\log T)$
- □ Improvement: Estimate variance, use it in place of p [AuSzeMu '07]
- ☐ This principle can be used for achieving small regret in the full RL problem!

UCRL2: UCB Applied to RL

- □ [Auer, Jaksch & Ortner '07]
- \square Algorithm UCRL2(δ):
 - Phase initialization:
 - \square Estimate mean model p_0 using maximum likelihood (counts)
 - \square C := { p | ||p(.|x,a)-p₀(.|x,a) \leq c |X| log(|A|T/delta) / N(x,a) }
 - \square p' :=argmax_p $\rho^*(p)$, $\pi := \pi^*(p')$
 - \square $N_0(x,a) := N(x,a), \forall (x,a) \in X \times A$
 - Execution
 - \square Execute π until some (x,a) have been visited at least N₀(x,a) times in this phase

UCRL2 Results

```
□ Def: Diameter of an MDP M:
   D(M) = \max_{x,y} \min_{\pi} E[T(x \rightarrow y; \pi)]
□ Regret bounds
    Lower bound:
         E[L_n] = \Omega( (D|X|A|T)^{1/2})
   ■ Upper bounds:
      \square w.p. 1-\delta/T,
         L_{T} \leq O(D|X| (|A| T log(|A|T/\delta)^{1/2})
      \square w.p. 1-\delta,
         L_T \leq O(D^2 |X|^2 |A| \log(|A|T/\delta)/\Delta)
         \Delta = performance gap between best and
         second best policy
```

Learning a Good Policy

- ☐ Monte-Carlo methods
- ☐ Temporal Difference methods
 - Tabular case
 - Function approximation
- □ Batch learning

Learning a good policy

- □ Model-based learning
 - Learn p,r
 - "Solve" the resulting MDP
- □ Model-free learning
 - Learn the optimal action-value function and (then) act greedily
 - Actor-critic learning
 - Policy gradient methods
- ☐ Hybrid
 - Learn a model and mix planning and a model-free method; e.g. Dyna

Monte-Carlo Methods

- ☐ Episodic MDPs!
- \square Goal: Learn $V^{\pi}(.)$
- \square (X_t,A_t,R_t): -- trajectory of π
- □ Visits to a state
 - $f(x) = min \{t | X_t = x\}$ □ First visit
 - E(x) = { t | X_t = x }
 □ Every visit
- ☐ Return:

$$S(t) = \gamma^0 R_t + \gamma^1 R_{t+1} + ...$$

- I K independent trajectories →
 S^(k), E^(k), f^(k), k=1..K
- ☐ First-visit MC:
 - Average over $\{ S^{(k)}(f^{(k)}(x)) : k=1..K \}$
- □ Every-visit MC:
 - Average over $\{S^{(k)}(t): k=1..K, t\in E^{(k)}(x)\}$
- □ **Claim**: Both converge to $V^{\pi}(.)$
- \square From now on $S_t = S(t)$

Learning to Control with MC

Goal: Learn to behave optimally Method: Learn $Q^{\pi}(x,a)$..to be used in an approximate policy iteration (PI) algorithm □ Idea/algorithm: Add randomness ☐ Goal: all actions are sampled eventually infinitely often \square e.g., ϵ -greedy or exploring starts Use the first-visit or the every-visit method to estimate $Q^{\pi}(x,a)$ Update policy □ Once values converged .. or .. ☐ Always at the states visited

Monte-Carlo: Evaluation

- \square Convergence rate: Var(S(0)|X=x)/N
- ☐ Advantages over DP:
 - Learn from interaction with environment
 - No need for full models
 - No need to learn about ALL states
 - Less harm by Markovian violations (no bootstrapping)
- ☐ Issue: maintaining sufficient exploration
 - exploring starts, soft policies

Temporal Difference Methods

- ☐ Every-visit Monte-Carlo:
 - \blacksquare $V(X_t) \leftarrow V(X_t) + \alpha_t(X_t) (S_t V(X_t))$
- □ Bootstrapping
 - $\blacksquare S_t = R_t + \gamma S_{t+1}$
 - $\blacksquare S_t' = R_t + \gamma V(X_{t+1})$
- \square TD(0):
 - $V(X_t) \leftarrow V(X_t) + \alpha_t(X_t) (S_t' V(X_t))$
- □ Value iteration:
 - $V(X_t) \leftarrow E[S_t' | X_t]$
- **Theorem:** Let V_t be the sequence of functions generated by TD(0). Assume $\forall x, w.p.1$ $\sum_t \alpha_t(x) = \infty$, $\sum_t \alpha_t^2(x) < +\infty$. Then $V_t \rightarrow V_{\pi} w.p.1$
- □ **Proof:** Stochastic approximations: $V_{t+1}=T_t(V_t,V_t), U_{t+1}=T_t(U_t,V_\pi) \rightarrow TV_\pi.$ [Jaakkola et al., '94, Tsitsiklis '94, SzeLi99]

TD or MC?

- ☐ TD advantages:
 - can be fully incremental, i.e., learn before knowing the final outcome
 - ☐ Less memory
 - ☐ Less peak computation
 - learn without the final outcome
 - ☐ From incomplete sequences
- ☐ MC advantage:
 - Less harm by Markovian violations
- ☐ Convergence rate?
 - \blacksquare Var(S(0)|X=x) decides!

Learning to Control with TD

```
□ Q-learning [Watkins '90]:
    Q(X_t,A_t) \leftarrow Q(X_t,A_t) +
       \alpha_t(X_t,A_t) \{R_t+\gamma \max_a Q(X_{t+1},a)-Q(X_t,A_t)\}
☐ Theorem: Converges to Q* [JJS'94, Tsi'94, SzeLi99]
☐ SARSA [Rummery & Niranjan '94]:
    \blacksquare A<sub>+</sub> ~ Greedy<sub>e</sub>(Q,X<sub>+</sub>)
    = Q(X_t, A_t) \leftarrow Q(X_t, A_t) +
          \alpha_t(X_t, A_t) \{R_t + \gamma Q(X_{t+1}, A_{t+1}) - Q(X_t, A_t)\}
☐ Off-policy (Q-learning) vs. on-policy (SARSA)
☐ Expecti-SARSA
☐ Actor-Critic
                        [Witten '77, Barto, Sutton & Anderson '83, Sutton '84]
```

Cliffwalking

N-step TD Prediction

☐ Idea: Look farther into the future when you do TD backup (1, 2, 3, ..., n steps)

N-step TD Prediction

- □ Monte Carlo:
 - $\blacksquare S_{t} = R_{t} + \gamma R_{t+1} + ... \gamma^{T-t} R_{T}$
- $\square \text{ TD: } S_t^{(1)} = R_t + \gamma V(X_{t+1})$
 - Use V to estimate remaining return
- □ n-step TD:
 - 2 step return:

$$\square S_{t}^{(2)} = R_{t} + \gamma R_{t+1} + \gamma^{2} V(X_{t+2})$$

■ n-step return:

$$\square S_{t}^{(n)} = R_{t} + \gamma R_{t+1} + ... + \gamma^{n} V(X_{t+n})$$

Learning with n-step Backups

- ☐ Learning with n-step backups:
 - $V(X_t) \leftarrow V(X_t) + \alpha_t (S_t^{(n)} V(X_t))$
- ☐ n: controls how much to bootstrap

Random Walk Examples

- ☐ How does 2-step TD work here?
- ☐ How about 3-step TD?

A Larger Example

□ Task: 19 state random walk

☐ Do you think there is an optimal n? for everything?

Averaging N-step Returns

- ☐ Idea: backup an average of several returns
 - e.g. backup half of 2-step and half of 4-step:

$$\overline{R}_t = \frac{1}{2}R_t^{(2)} + \frac{1}{2}R_t^{(4)}$$

□ "complex backup"

Forward View of $TD(\lambda)$

- ☐ Idea: Average over multiple backups
- \square λ -return:

$$S_t^{(\lambda)} = (1-\lambda) \sum_{n=0..\infty} \lambda^n S_t^{(n+1)}$$

 \square TD(λ):

$$\Delta V(X_t) = \alpha_t(S_t^{(\lambda)} - V(X_t))$$

- ☐ Relation to TD(0) and MC

 - $\lambda = 1$ → MC

λ-return on the Random Walk

- ☐ Same 19 state random walk as before
- \square Why intermediate values of λ are best?

Backward View of $TD(\lambda)$

$$\delta_t = R_t + \gamma V(X_{t+1}) - V(X_t)$$

$$V(x) \leftarrow V(x) + \alpha_t \delta_t e(x)$$

$$e(x) \leftarrow \gamma \lambda e(x) + I(x=X_t)$$

- \square Off-line updates \rightarrow Same as FW TD(λ)
- \Box e(x): eligibility trace
 - Accumulating trace
 - Replacing traces speed up convergence:
 - \square e(x) \leftarrow max($\gamma\lambda$ e(x), I(x=X_t))

Function Approximation with TD

Gradient Descent Methods

$$\theta_t = (\theta_t(1), \dots, \theta_t(n))^T$$
 transpose

 \square Assume V_t is a differentiable function of θ :

$$V_t(x) = V(x;\theta).$$

□ Assume, for now, training examples of the form:

$$\{ (X_t, V^{\pi}(X_t)) \}$$

Performance Measures

- ☐ Many are applicable but...
- □ a common and simple one is the mean-squared error (MSE) over a distribution P:

$$L(\theta) = \sum_{x \in X} P(x) \left(V^{\pi}(x) - V(x; \theta) \right)^{2}$$

- □ Why *P*?
- ☐ Why minimize MSE?
- \square Let us assume that P is always the distribution of states at which backups are done.
- ☐ The **on-policy distribution**: the distribution created while following the policy being evaluated. Stronger results are available for this distribution.

Gradient Descent

 \Box Let L be any function of the parameters. Its gradient at any point θ in this space is:

$$\nabla_{\theta} L = \left(\frac{\partial L}{\partial \theta(1)}, \frac{\partial L}{\partial \theta(2)}, \dots, \frac{\partial L}{\partial \theta(n)}\right)^{T}$$

☐ Iteratively move down the gradient:

$$\theta_{t+1} = \theta_t - \alpha_t \left(\nabla_{\theta} L \right) |_{\theta = \theta_t}$$

Gradient Descent in RL

☐ Function to descent on:

$$L(\theta) = \sum_{x \in X} P(x) \left(V^{\pi}(x) - V(x; \theta) \right)^{2}$$

☐ Gradient:

$$\nabla_{\theta} L(\theta) = -2 \sum_{x \in X} P(x) \left(V^{\pi}(x) - V(x; \theta) \right) \nabla_{\theta} V(x; \theta)$$

☐ Gradient descent procedure:

$$\theta_{t+1} = \theta_t + \alpha_t \left(V^{\pi}(X_t) - V(X_t; \theta_t) \right) \nabla_{\theta} V(X_t; \theta_t)$$

 \square Bootstrapping with S_t'

$$\theta_{t+1} = \theta_t + \alpha_t \left(S'_t - V(X_t; \theta_t) \right) \nabla_{\theta} V(X_t; \theta_t)$$

 \square TD(λ) (forward view):

$$\theta_{t+1} = \theta_t + \alpha_t \left(S_t^{\lambda} - V(X_t; \theta_t) \right) \nabla_{\theta} V(X_t; \theta_t)$$

Linear Methods

 \square Linear FAPP: $V(x;\theta) = \theta^{\top} \phi(x)$ $\square \nabla_{\theta} V(x;\theta) = \phi(x)$ ☐ Tabular representation: $\phi(x)_{v} = I(x=y)$ ☐ Backward view: $\delta_t = R_t + \gamma V(X_{t+1}) - V(X_t)$ $\theta \leftarrow \theta + \alpha_t \delta_t e$ $e \leftarrow \gamma \lambda e + \nabla_{\theta} V(X_t; \theta)$ □ Theorem [TsiVaR'97]: V₊ converges to $V \text{ s.t. } ||V-V_{\pi}||_{D,2} \leq ||V_{\pi}-\Pi V_{\pi}||_{D,2}/(1-\gamma).$

Control with FA

- ☐ Learning state-action values
 - Training examples:

$$\{((X_t, A_t), Q^*(X_t, A_t) + \text{noise}_t)\}$$

☐ The general gradient-descent rule:

$$\theta_{t+1} = \theta_t + \alpha_t \left(S_t - Q(X_t, A_t; \theta_t) \right) \nabla_{\theta} Q(X_t, A_t; \theta_t)$$

 \square Gradient-descent Sarsa(λ)

$$\theta_{t+1} = \theta_t + \alpha_t \delta_t e_t$$
where
$$\delta_t = R_t + \gamma Q(X_{t+1}, A_{t+1}; \theta_t) - Q_t(X_t, A_t; \theta_t)$$

$$e_t = \gamma \lambda e_{t-1} + \nabla_{\theta} Q(X_t, A_t; \theta)$$

Mountain-Car Task

Mountain-Car Results

Steps per episode averaged over first 20 trials and 30 runs

[Baird '95]

Baird's Counterexample: Off-policy Updates Can Diverge

Baird's Counterexample Cont.

Should We Bootstrap?

Batch Reinforcement Learning

Batch RL

- Goal: Given the trajectory of the behavior policy π_b $X_1,A_1,R_1,...,X_t,A_t,R_t,...,X_N$ compute a good policy!
- □ "Batch learning"
- ☐ Properties:
 - Data collection is not influenced
 - Emphasis is on the quality of the solution
 - Computational complexity plays a secondary role
- ☐ Performance measures:
 - $||V^*(x) V_{\pi}(x)||_{\infty} = \sup_{x} |V^*(x) V_{\pi}(x)|$ $= \sup_{x} V^*(x) V_{\pi}(x)$
 - $||V^*(x) V_{\pi}(x)||^2 = \int (V^*(x) V_{\pi}(x))^2 d\mu(x)$

Solution methods

- ☐ Build a model
- □ Do not build a model, but find an approximation to Q*
 - using value iteration => fitted Qiteration
 - using policy iteration =>
 - □ Policy evaluated by approximate value iteration Policy evaluated by Bellmanresidual minimization (BRM)
 - □ Policy evaluated by least-squares temporal difference learning (LSTD) => LSPI
- □ Policy search

Evaluating a policy: Fitted value iteration

- \square Choose a function space F.
- \square Solve for i=1,2,...,M the LS (regression) problems:

$$Q_{i+1} = \operatorname{argmin}_{Q \in F} \sum_{t=1}^{T} (R_t + \gamma Q_i(X_{t+1}, \pi(X_{t+1})) - Q(X_t, A_t))^2$$

☐ Counterexamples?!?!?

[Baird '95, Tsitsiklis and van Roy '96]

- □ When does this work??
- \square Requirement: If M is big enough and the number of samples is big enough Q_M should be close to Q^{π}
- \square We have to make some assumptions on F

Least-squares vs. gradient

Linear least squares (ordinary regression): $y_t = W_*^T X_t + \epsilon_t$ (x_t, y_t) jointly distributed r.v.s., iid, $E[\epsilon_t | x_t] = 0$. Seeing (x_t, y_t) , t=1,...,T, find out w_* . Loss function: $L(w) = E[(y_1 - w^T x_1)^2]$. ☐ Least-squares approach: $\mathbf{W}_T = \operatorname{argmin}_{w} \sum_{t=1}^{T} (y_t - w^T x_t)^2$ ☐ Stochastic gradient method: □ Tradeoffs Sample complexity: How good is the estimate Computational complexity: How expensive is the computation?

Fitted value iteration: Analysis

$$U_{m+1} = Q_{m+1} - Q_{\pi}$$

$$= T^{\pi}Q_m - Q_{\pi} + \epsilon_m$$

$$= T^{\pi}Q_m - T^{\pi}Q_{\pi} + \epsilon_m$$

$$= \gamma P_{\pi}U_m + \epsilon_m.$$

$$U_M = \sum_{m=0}^{M} (\gamma P_{\pi})^{M-m} \epsilon_{m-1}.$$

Analysis/2

Jensen applied to operators, $\mu \leq C_1 \nu$ and:

$$|\forall \rho: \, \rho P_{\pi} \leq C_1 \nu$$

$$U_{M} = \sum_{m=0}^{M} (\gamma P_{\pi})^{M-m} \epsilon_{m-1}.$$

$$\downarrow \rho f = \int f(x) \rho(dx)$$

$$\downarrow (Pf)(x) = \int f(y) P(dy|x)$$

$$\downarrow$$

Summary

- If the regression errors are all small and the system is noisy ($\forall \pi, \rho, \rho \ P^{\pi} \leq C_1 \ \nu$) then the final error will be small.
- □ How to make the regression errors small?
- ☐ Regression error decomposition:

☐ Assume smoothness! $Lip_{m{lpha}}(L)$ $T\left(B(X, \frac{R_{\max}}{1-\gamma})\right)$ $B(X, \frac{R_{\max}}{1-\gamma})$

Learning with (lots of) historical data

- □ Data: A long trajectory of some exploration policy
- ☐ Goal: Efficient algorithm to learn a policy
- ☐ Idea: Use fitted action-values
- ☐ Algorithms:
 - Bellman residual minimization, FQI [AnSzeMu '07]
 - LSPI [Lagoudakis, Parr '03]
- ☐ Bounds:
 - Oracle inequalities (BRM, FQI and LSPI)
 - ⇒ consistency

BRM insight

- $\square \text{ TD error: } \Delta_t = R_t + \gamma \ Q(X_{t+1}, \pi(X_{t+1})) Q(X_t, A_t)$
- \square Bellman error: $E[E[\Delta_t \mid X_t, A_t]^2]$
- \square What we can compute/estimate: $E[E[\Delta_t^2 \mid X_t, A_t]]$
- ☐ They are different!
- ☐ However:

$$\mathbb{E}[\Delta_t | X_t, A_t]^2 = \mathbb{E}[\Delta_t^2 | X_t, A_t] - \text{Var}[\Delta_t | X_t, A_t]$$

$$\mathbb{E}[\Delta_t | X_t, A_t]^2 = \mathbb{E}[\Delta_t^2 | X_t, A_t] - \text{Var}[\Delta_t | X_t, A_t]$$

Loss function

$$L_{N,\pi}(Q,h) = \frac{1}{N} \sum_{t=1}^{N} w_t \left\{ (R_t + \gamma Q(X_{t+1}, \pi(X_{t+1})) - Q(X_t, A_t))^2 - (R_t + \gamma Q(X_{t+1}, \pi(X_{t+1})) - h(X_t, A_t))^2 \right\}$$

$$w_t = 1/\mu(A_t|X_t)$$

Algorithm (BRM++)

- 1. Choose $\pi_0, i := 0$
- 2. While $(i \leq K)$ do:
- 3. Let $Q_{i+1} = \operatorname{argmin}_{Q \in \mathcal{F}^{\mathcal{A}}} \sup_{h \in \mathcal{F}^{\mathcal{A}}} L_{N,\pi_i}(Q,h)$
- 4. Let $\pi_{i+1}(x) = \operatorname{argmax}_{a \in \mathcal{A}} Q_{i+1}(x, a)$
- 5. i := i + 1

Do we need to reweight or throw away data?

- □ NO!
- □ WHY?
- ☐ Intuition from regression:
 - m(x) = E[Y|X=x] can be learnt no matter what p(x) is!
 - \blacksquare $\pi^*(a|x)$: the same should be possible!
- □ BUT..
 - Performance might be poor! => YES!
 - Like in supervised learning when training and test distributions are different

Bound

$$||Q^* - Q_{\pi_K}||_{2,\rho} \le \frac{2\gamma}{(1-\gamma)^2} C_{\rho,\nu}^{1/2} \left(\tilde{E}(\mathcal{F}) + E(\mathcal{F}) + S_{N,x}^{1/2} \right) + (2\gamma^K)^{1/2} R_{\max},$$

$$S_{N,x} = c_2 \frac{\left(\left(\frac{V}{2} + 1 \right) \ln(N) + \ln(c_1) + \frac{1}{1+\kappa} \ln\left(\frac{bc_2^2}{4} \right) + x \right)^{\frac{1+\kappa}{2\kappa}}}{(b^{1/\kappa}N)^{1/2}}$$

The concentration coefficients

□ Lyapunov exponents

$$y_{t+1} = P_t y_t$$

$$\hat{\gamma}_{top} = \limsup_{t \to \infty} \frac{1}{t} \log^+(\|y_t\|_{\infty})$$

- □ Our case:
 - y_t is infinite dimensional
 - \blacksquare P_t depends on the policy chosen
 - If top-Lyap exp. \leq 0, we are good \otimes

Open question

□ Abstraction:

$$f(i_1,\ldots,i_m) = \log(||P_{i_1}P_{i_2}\ldots P_{i_m}||), i_k \in \{0,1\}.$$

□ Let

$$f: \{0,1\}^* \to \mathbb{R}^+, f(x+y) \le f(x) + f(y),$$

 $\limsup_{m \to \infty} \frac{1}{m} f([x]_m) \le \beta.$

☐ True?

$$\forall \{y_m\}_m, y_m \in \{0,1\}^m,$$

$$\limsup_{m\to\infty} \frac{1}{m} \log f(y_m) \leq \beta$$

Relation to LSTD

□ LSTD:

- Linear function space
- Bootstrap the "normal equation"

Open issues

- Adaptive algorithms to take advantage of regularity when present to address the "curse of dimensionality"
 - □ Penalized least-squares/aggregation?
 - ☐ Feature relevance
 - □ Factorization
 - □ Manifold estimation
- Abstraction build automatically
- Active learning
- Optimal on-line learning for infinite problems

References

