
1

Reinforcement Learning:
Dynamic Programming

Csaba Szepesvári

University of Alberta

Kioloa, MLSS’08

Slides: http://www.cs.ualberta.ca/~szepesva/MLSS08/

2

Reinforcement Learning

RL =
“Sampling based methods to solve
optimal control problems”

� Contents
� Defining AI

� Markovian Decision Problems

� Dynamic Programming

� Approximate Dynamic Programming

� Generalizations

(Rich Sutton)

3

Literature

� Books
� Richard S. Sutton, Andrew G. Barto:
Reinforcement Learning: An Introduction,
MIT Press, 1998

� Dimitri P. Bertsekas, John Tsitsiklis:
Neuro-Dynamic Programming, Athena
Scientific, 1996

� Journals
� JMLR, MLJ, JAIR, AI

� Conferences
� NIPS, ICML, UAI, AAAI, COLT, ECML, IJCAI

4

Some More Books

� Martin L. Puterman. Markov Decision
Processes. Wiley, 1994.

� Dimitri P. Bertsekas: Dynamic
Programming and Optimal Control.
Athena Scientific. Vol. I (2005), Vol.
II (2007).

� James S. Spall: Introduction to
Stochastic Search and Optimization:
Estimation, Simulation, and Control,
Wiley, 2003.

5

Resources

� RL-Glue
� http://rlai.cs.ualberta.ca/RLBB/top.html

� RL-Library
� http://rlai.cs.ualberta.ca/RLR/index.html

� The RL Toolbox 2.0
� http://www.igi.tugraz.at/ril-

toolbox/general/overview.html

� OpenDP
� http://opendp.sourceforge.net

� RL-Competition (2008)!
� http://rl-competition.org/
� June 1st, 2008: Test runs begin!

� Related fields:
� Operations research (MOR, OR)
� Control theory (IEEE TAC, Automatica, IEEE CDC, ECC)
� Simulation optimization (Winter Simulation Conference)

6

Abstract Control Model

Environment

actions

Sensations
(and reward)

Controller
= agent

“Perception-action loop”

7

external sensations

memory

state

reward

actions

internal

sensations

agent

Zooming in..

8

A Mathematical Model

� Plant (controlled object):

� xt+1 = f(xt,at,vt) xt : state, vt : noise

� zt = g(xt,wt) zt : sens/obs, wt : noise

� State: Sufficient statistics for the future

� Independently of what we measure
..or..

� Relative to measurements

� Controller

� at = F(z1,z2,…,zt) at: action/control

=> PERCEPTION-ACTION LOOP

“CLOSED-LOOP CONTROL”

� Design problem: F = ?

� Goal: ∑τ=1
Τ r(zt,at)→ max “Objective State”“Subjective State”

9

A Classification of Controllers

� Feedforward:
� a1,a2,… is designed ahead in time

� ???

� Feedback:
� Purely reactive systems: at = F(zt)

� Why is this bad?

� Feedback with memory:

mt = M(mt-1,zt,at-1)

~interpreting sensations

at = F(mt)

decision making: deliberative vs. reactive

10

Feedback controllers

� Plant:
� xt+1 = f(xt,at,vt)

� zt+1 = g(xt,wt)

� Controller:
� mt = M(mt-1,zt,at-1)

� at = F(mt)

� mt ≈ xt: state estimation, “filtering”

difficulties: noise,unmodelled parts

� How do we compute at?
� With a model (f’): model-based control

� ..assumes (some kind of) state estimation
� Without a model: model-free control

11

Markovian Decision Problems

12

Markovian Decision Problems

� (X,A,p,r)

� X – set of states

� A – set of actions (controls)

� p – transition probabilities
p(y|x,a)

� r – rewards
r(x,a,y), or r(x,a), or r(x)

� γ – discount factor
0 ≤ γ < 1

13

The Process View

� (Xt,At,Rt)

� Xt – state at time t

� At – action at time t

� Rt – reward at time t

� Laws:
� Xt+1~p(.|Xt,At)

� At ~ π(.|Ht)

� π: policy

� Ht = (Xt,At-1,Rt-1, .., A1,R1,X0) – history

� Rt = r(Xt,At,Xt+1)

14

The Control Problem

� Value functions:

� Optimal value function:

� Optimal policy:

Vπ(x) = Eπ[
∞
t=0 γ

tRt|X0 = x]

V ∗(x) = maxπ Vπ(x)

Vπ∗(x) = V
∗(x)

15

Applications of MDPs

� Operations research

� Econometrics

� Optimal investments

� Replacement problems

� Option pricing

� Logistics, inventory
management

� Active vision

� Production scheduling

� Dialogue control

� Control, statistics

� Games, AI

� Bioreactor control

� Robotics (Robocup
Soccer)

� Driving

� Real-time load
balancing

� Design of experiments
(Medical tests)

16

Variants of MDPs

� Discounted

� Undiscounted: Stochastic Shortest
Path

� Average reward

� Multiple criteria

� Minimax

� Games

17

MDP Problems

� Planning
The MDP (X,A,P,r,γ) is known.
Find an optimal policy π*!

� Learning
The MDP is unknown.
You are allowed to interact with it.
Find an optimal policy π*!

� Optimal learning
While interacting with the MDP,
minimize the loss due to not using an
optimal policy from the beginning

18

Solving MDPs – Dimensions

� Which problem? (Planning, learning, optimal learning)
� Exact or approximate?
� Uses samples?
� Incremental?
� Uses value functions?

� Yes: Value-function based methods
� Planning: DP, Random Discretization Method, FVI, …
� Learning: Q-learning, Actor-critic, …

� No: Policy search methods
� Planning: Monte-Carlo tree search, Likelihood ratio

methods (policy gradient), Sample-path optimization
(Pegasus),

� Representation
� Structured state:

� Factored states, logical representation, …

� Structured policy space:
� Hierarchical methods

19

Dynamic Programming

20

Richard Bellman (1920-1984)

� Control theory
� Systems Analysis
� Dynamic Programming:

RAND Corporation, 1949-1955

� Bellman equation
� Bellman-Ford algorithm
� Hamilton-Jacobi-Bellman equation
� “Curse of dimensionality”
� invariant imbeddings
� Grönwall-Bellman inequality

21

Bellman Operators

� Let π:X → A be a stationary policy

� B(X) = { V | V:X→ R, ||V||∞<∞ }

� Tπ:B(X)→ B(X)

� (Tπ V)(x) =
∑yp(y|x,π(x)) [r(x,π(x),y)+γ V(y)]

� Theorem:
Tπ Vπ = Vπ

� Note: This is a linear system of
equations: rπ + γ Pπ Vπ = Vπ

� Vπ = (I-γ Pπ)
-1 rπ

22

Proof of Tπ Vπ = Vπ
� What you need to know:

� Linearity of expectation: E[A+B] = E[A]+E[B]

� Law of total expectation:
E[Z] = ∑x P(X=x) E[Z | X=x], and
E[Z | U=u] = ∑x P(X=x|U=u) E[Z|U=u,X=x].

� Markov property:

E[f(X1,X2,..) | X1=y,X0=x] = E[f(X1,X2,..) | X1=y]

� Vπ(x) = Eπ [∑t=0
∞ γt Rt|X0 = x]

= ∑y P(X1=y|X0=x) Eπ[∑t=0
∞ γt Rt|X0 = x,X1=y]

(by the law of total expectation)
= ∑y p(y|x,π(x)) Eπ[∑t=0

∞ γt Rt|X0 = x,X1=y]
(since X1~p(.|X0,π(X0)))

= ∑y p(y|x,π(x))
{Eπ[R0|X0=x,X1=y]+γ Eπ [∑t=0

∞γt Rt+1|X0=x,X1=y]}
(by the linearity of expectation)

= ∑y p(y|x,π(x)) {r(x,π(x),y) + γ Vπ(y)}
(using the definition of r, Vπ)

= (Tπ Vπ)(x). (using the definition of Tπ)

23

The Banach Fixed-Point Theorem

� B = (B,||.||) Banach space

� T: B1→ B2 is L-Lipschitz (L>0) if for
any U,V,

|| T U – T V || ≤ L ||U-V||.

� T is contraction if B1=B2, L<1; L is a
contraction coefficient of T

� Theorem [Banach]: Let T:B→ B be
a γ-contraction. Then T has a unique
fixed point V and ∀ V0∈ B, Vk+1=T Vk,
Vk → V and ||Vk-V||=O(γk)

24

An Algebra for Contractions

� Prop: If T1:B1→ B2 is L1-Lipschitz,
T2: B2 → B3 is L2-Lipschitz then T2 T1 is L1 L2
Lipschitz.

� Def: If T is 1-Lipschitz, T is called a
non-expansion

� Prop: M: B(X× A) → B(X),
M(Q)(x) = maxa Q(x,a) is a non-expansion

� Prop: Mulc: B→ B, Mulc V = c V is
|c|-Lipschitz

� Prop: Addr: B → B, Add V = r + V is a
non-expansion.

� Prop: K: B(X) → B(X),
(K V)(x)=∑y K(x,y) V(y) is a non-expansion
if K(x,y)≥ 0, ∑y K(x,y) =1.

25

Policy Evaluations are Contractions

� Def: ||V||∞ = maxx |V(x)|,
supremum norm; here ||.||

� Theorem: Let Tπ the policy
evaluation operator of some policy π.
Then Tπ is a γ-contraction.

� Corollary: Vπ is the unique fixed
point of Tπ. Vk+1 = Tπ Vk → Vπ,
∀ V0 ∈ B(X) and ||Vk-Vπ|| = O(γk).

26

The Bellman Optimality Operator

� Let T:B(X)→ B(X) be defined by
(TV)(x) =
maxa ∑y p(y|x,a) { r(x,a,y) + γ V(y) }

� Def: π is greedy w.r.t. V if TπV =T V.

� Prop: T is a γ-contraction.

� Theorem (BOE): T V* = V*.

� Proof: Let V be the fixed point of T.
Tπ ≤ T � V* ≤ V. Let π be greedy
w.r.t. V. Then Tπ V = T V. Hence
Vπ = V � V ≤ V* � V = V*.

27

Value Iteration

� Theorem: For any V0 ∈ B(X), Vk+1 = T Vk,
Vk → V* and in particular ||Vk – V*||=O(γk).

� What happens when we stop “early”?

� Theorem: Let π be greedy w.r.t. V. Then
||Vπ – V*|| ≤ 2||TV-V||/(1-γ).

� Proof: ||Vπ-V
||≤ ||Vπ-V||+||V-V|| …

� Corollary: In a finite MDP, the number of
policies is finite. We can stop when
||Vk-TVk|| ≤ ∆(1-γ)/2, where
∆ = min{ ||V*-Vπ|| : Vπ ≠ V* }

�Pseudo-polynomial complexity

28

Policy Improvement [Howard ’60]

� Def: U,V∈ B(X), V ≥ U if V(x) ≥ U(x)
holds for all x∈ X.

� Def: U,V∈ B(X), V > U if V ≥ U and
∃ x∈ X s.t. V(x)>U(x).

� Theorem (Policy Improvement):
Let π’ be greedy w.r.t. Vπ. Then
Vπ’ ≥ Vπ. If T Vπ>Vπ then Vπ’>Vπ.

29

Policy Iteration

� Policy Iteration(π)

� V � Vπ
� Do {improvement}

� V’ � V

� Let π: Tπ V = T V

� V � Vπ

� While (V>V’)

� Return π

30

Policy Iteration Theorem

� Theorem: In a finite, discounted
MDP policy iteration stops after a
finite number of steps and returns an
optimal policy.

� Proof: Follows from the Policy
Improvement Theorem.

31

Linear Programming

� V ≥ T V � V ≥ V* = T V*.

� Hence, V* is the “largest” V that satisfies
V ≥ T V.

V ≥ T V ⇔

(*) V(x) ≥ ∑yp(y|x,a){r(x,a,y)+γ V(y)},
∀x,a

� LinProg(V):
� ∑ x V(x) → min s.t. V satisfies (*).

� Theorem: LinProg(V) returns the optimal
value function, V*.

� Corollary: Pseudo-polynomial complexity

32

Variations of a Theme

33

Approximate Value Iteration

� AVI: Vk+1 = T Vk + εk
� AVI Theorem:

Let ε = maxk ||εk||. Then
limsupk→∞ ||Vk-V

*|| ≤ 2γ ε / (1-γ).

� Proof: Let ak = ||Vk –V*||.
Then ak+1 = ||Vk+1 – V*|| = ||T Vk – T
V* + εk || ≤ γ ||Vk-V

*|| + ε = γ ak + ε.
Hence, ak is bounded. Take “limsup”
of both sides: a≤ γ a + ε; reorder.//

(e.g., [BT96])

34

Fitted Value Iteration
– Non-expansion Operators

� FVI: Let A be a non-expansion,
Vk+1 = A T Vk. Where does this
converge to?

� Theorem: Let U,V be such that A T U
= U and T V = V. Then
||V-U|| ≤ ||AV –V||/(1-γ).

� Proof: Let U’ be the fixed point of TA.
Then ||U’-V|| ≤ γ ||AV-V||/(1-γ).
Since A U’ = A T (AU’), U=AU’.
Hence, ||U-V|| =||AU’-V||

≤ ||AU’-AV||+||AV-V|| …
[Gordon ’95]

35

Application to Aggregation

� Let Π be a partition of X, S(x) be the
unique cell that x belongs to.

� Let A: B(X)→ B(X) be
(A V)(x) = ∑ z µ(z;S(x)) V(z), where µ is a
distribution over S(x).

� p’(C|B,a) =
∑ x∈ B µ(x;B) ∑ y∈ C p(y|x,a),
r’(B,a,C) =
∑ x∈ B µ(x;B) ∑ y∈ C p(y|x,a) r(x,a,y).

� Theorem: Take (Π,A,p’,r’), let V’ be its
optimal value function, V’E(x) = V’(S(x)).
Then ||V’E – V*|| ≤ ||AV*-V*||/(1-γ).

36

Action-Value Functions

� L: B(X)→ B(X× A),
(L V)(x,a) = ∑ y p(y|x,a) {r(x,a,y) + γ V(y)}.
“One-step lookahead”.

� Note: π is greedy w.r.t. V if
(LV)(x,π(x)) = max a (LV)(x,a).

� Def: Q* = L V*.

� Def: Let Max: B(X× A)→ B(X),
(Max Q)(x) = max a Q(x,a).

� Note: Max L = T.

� Corollary: Q* = L Max Q*.
� Proof: Q* = L V* = L T V* = L Max L V* = L Max Q*.

� T = L Max is a γ-contraction

� Value iteration, policy iteration, …

37

Changing Granularity
� Asynchronous Value Iteration:

� Every time-step update only a few states
� AsyncVI Theorem: If all states are updated infinitely often,

the algorithm converges to V*.
� How to use?

� Prioritized Sweeping
� IPS [MacMahan & Gordon ’05]:

� Instead of an update, put state on the priority queue
� When picking a state from the queue, update it
� Put predecessors on the queue

� Theorem: Equivalent to Dijkstra on shortest path problems,
provided that rewards are non-positive

� LRTA* [Korf ’90] ~ RTDP [Barto, Bradtke, Singh ’95]
� Focussing on parts of the state that matter
� Constraints:

� Same problem solved from several initial positions
� Decisions have to be fast

� Idea: Update values along the paths

38

Changing Granularity

� Generalized Policy Iteration:
� Partial evaluation

and partial
improvement
of policies

� Multi-step lookahead
improvement

� AsyncPI Theorem: If both evaluation and
improvement happens at every state
infinitely often then the process converges to
an optimal policy. [Williams & Baird ’93]

39

Variations of a theme [SzeLi99]

� Game against nature [Heger ’94]:
infw ∑tγ

t Rt(w) with X0 = x

� Risk-sensitive criterion:
log (E[exp(∑tγ

t Rt) | X_0 = x])

� Stochastic Shortest Path

� Average Reward

� Markov games
� Simultaneous action choices (Rock-

paper-scissor)

� Sequential action choices

� Zero-sum (or not)

40

References
� [Howard ’60] R.A. Howard: Dynamic Programming and Markov

Processes, The MIT Press, Cambridge, MA, 1960.
� [Gordon ’95] G.J. Gordon: Stable function approximation in

dynamic programming. ICML, pp. 261—268, 1995.
� [Watkins ’90] C.J.C.H. Watkins: Learning from Delayed Rewards,

PhD Thesis, 1990.
� [McMahan, Gordon ’05] H. B. McMahan and Geoffrey J.

Gordon: Fast Exact Planning in Markov Decision Processes. ICAPS.
� [Korf ’90] R. Korf: Real-Time Heuristic Search. Artificial

Intelligence 42, 189–211, 1990.
� [Barto, Bradtke & Singh, ’95] A.G. Barto, S.J. Bradtke & S. Singh:

Learning to act using real-time dynamic programming, Artificial
Intelligence 72, 81—138, 1995.

� [Williams & Baird, ’93] R.J. Williams & L.C. Baird: Tight
Performance Bounds on Greedy Policies Based on Imperfect Value
Functions. Northeastern University Technical Report NU-CCS-93-
14, November, 1993.

� [SzeLi99] Cs. Szepesvári and M.L. Littman: A Unified Analysis of
Value-Function-Based Reinforcement-Learning Algorithms, Neural
Computation, 11, 2017—2059, 1999.

� [Heger ’94] M. Heger: Consideration of risk in reinforcement
learning, ICML, 105—111, 1994.

1

Reinforcement Learning:
Approximate Planning

Csaba Szepesvári

University of Alberta

Kioloa, MLSS’08

Slides: http://www.cs.ualberta.ca/~szepesva/MLSS08/

2

Planning Problem

� The MDP
� .. is given (p,r can be queried)

� .. can be sampled from

� at any state

� Trajectories

“Simulation Optimization”

� Goal: Find an optimal policy

� Constraints:
� Computational efficiency

� Polynomial complexity

� O(1) ≡ real-time decisions

� Sample efficiency ~ computational efficiency

3

Methods for planning

� Exact solutions (DP)

� Approximate solutions
� Rollouts (≡ search)

� Sparse lookahead trees, UCT

� Approximate value functions

� RDM, FVI, LP

� Policy search

� Policy gradient (Likelihood Ratio Method),
Pegasus [Ng & Jordan ’00]

� Hybrid

� Actor-critic

4

Bellman’s Curse of Dimensionality

� The state space in many problems is..
� Continuous

� High-dimensional

� “Curse of Dimensionality” (Bellman, 57)

� Running time of algorithms scales
exponentially with the dimension of the
state space.

� Transition probabilities
� Kernel: P(dy|x,a)

� Density: p(y|x,a) !!
� e.g. p(y|x,a) ~ exp(-||y-f(x,a)||2/(2σ2))

5

A Lower Bound

� Theorem (Chow, Tsitsiklis ’89)
� Markovian Decision Problems

� d dimensional state space

� Bounded transition probabilities, rewards

� Lipschitz-continuous transition
probabilities and rewards

� Any algorithm computing an ε-
approximation of the optimal value
function needs Ω(ε-d) values of
p and r.

� What’s next then??

6

Monte-Carlo Search Methods

Problem:

� Can generate trajectories from an initial
state

� Find a good action at the initial state

7

Sparse lookahead trees

� [Kearns et al., ’02]: Sparse
lookahead trees

� Effective horizon:
H(ε) = Kr/(ε(1-γ))

� Size of the tree:
S = c |A|H (ε) (unavoidable)

� Good news: S is independent
of d!

� ..but is exponential in H(ε)

� Still attractive: Generic, easy
to implement

� Would you use it?

8

Idea..

� Need to propagate
values from good
branches as early as
possible

� Why sample suboptimal
actions at all?

� Breadth-first
� Depth-first!

� Bandit algorithms �

Upper Confidence
Bounds

� UCT� UCT [KoSze ’06]

9

UCB [Auer et al. ’02]

� Bandit with a finite number of actions
(a) – called arms here

� Qt(a): Estimated payoff of action a

� Tt(a): Number of pulls of arm a

� Action choice by UCB:

� Theorem: The expected loss is
bounded by O(log n)

� Optimal rate

At = argmaxa Qt(a) +
p log(t)
2Tt(a)

10

UCT Algorithm [KoSze ’06]

� To decide which way to go play a
bandit in each node of the tree

� Extend tree one by one

� Similar ideas:
� [Peret and Garcia, ’04]

� [Chang et al., ’05]

11

Results: Sailing

� ‘Sailing’: Stochastic shortest path

� State-space size = 24*problem-size

� Extension to two-player, full information games

� Major advances in go!

12

Results: 9x9 Go

� Mogo
� A: Y. Wang, S. Gelly,

R. Munos, O.
Teytaud, and P-A.
Coquelin, D. Silver

� 100-230K
simulations/move

� Around since 2006
aug.

� CrazyStone
� A: Rémi Coulom

� Switched to UCT in
2006

� Steenvreter
� A: Erik van der Werf

� Introduced in 2007

� Computer Olympiad
(2007 December)
� 19x19

1. MoGo

2. CrazyStone

3. GnuGo

� 9x9
1. Steenvreter

2. Mogo

3. CrazyStone

� Guo Jan (5 dan), 9x9
board

� Mogo black: 75% win

� Mogo white: 33% win

CGOS: 1800 ELO � 2600 ELO

13

Random Discretization
Method

Problem:

� Continuous state-space

� Given p,r, find a good policy!

� Be efficient!

14

Value Iteration in Continuous Spaces

� Value Iteration:

Vk+1(x) =

maxa∈ A {r(x,a)+γ ∫X p(y|x,a) Vk(y) dy}

� How to compute the integral?

� How to represent value functions?

15

Discretization

16

Discretization

17

Can this work?

� No!

� The result of [Chow and Tsitsiklis,
1989] says that methods like this can
not scale well with the dimensionality

18

Random Discretization [Rust ’97]

19

Weighted Importance Sampling

� How to compute ∫ p(y|x,a) V(y) dy?

Yi ∼ UX(·)⇒
N
i=1 p(Yi|x, a)V (Yi)

N
i=1 p(Yi|x, a)

→ p(y|x, a)V (y)dy w.p.1

20

The Strength of Monte-Carlo

� Goal: Compute I(f) = ∫ f(x) p(x) dx

� Draw X1,…,XN ~ p(.)

� Compute IN(f) = 1/N ∑i f(Xi)

� Theorem:

� E[IN(f)] = I(f)

� Var[IN(f)] = Var[f(X1)]/N

� Rate of convergence is independent of
the dimensionality of x!

21

The Random Discretization Method

22

Guarantees

� State space: [0,1]d

� Action space: finite

� p(y|x,a), r(x,a) Lipschitz continuous,
bounded

� Theorem [Rust ’97]:

� No curse of dimensionality!

� Why??

� Can we have a result for planning??

E [‖VN (x)− V ∗(x)‖∞] ≤ Cd|A|5/4

(1−γ)2N1/4

23

Planning [Sze ’01]

� Replace maxa with argmaxa in
procedure RDM-estimate:

� Reduce the effect of unlucky samples
by using a fresh set:

24

Results for Planning

� p(y|x,a):
� Lipschitz continuous (Lp) and bounded (Kp)

� r(x,a) :
� bounded (Kr)

� H(ε) = Kr/(ε(1-γ))
� Theorem [Sze ’01]: If

N=poly(d,log(|A|),H(ε),Kp,log(Lp),log(1/δ)),
then
� with probability 1-δ, the policy implemented by
plan0 is ε-optimal.

� with probability 1, the policy implemented by
plan1 is ε-optimal.

� Improvements:
� Dependence on log(Lp) not Lp; log(|A|) not |A|,

no dependence on Lr!

25

A multiple-choice test..

� Why is not there a curse of
dimensionality for RDM?

A. Randomization is the cure to everything

B. Class of MDPs is too small

C. Expected error is small, variance is huge

D. The result does not hold for control

E. The hidden constants blow up anyway

F. Something else

26

Why no curse of dimensionality??

� RDM uses a computational model
different than that of
Chow and Tsitsiklis!
� One is allowed to use p,r at the time of

answering “V*(x) = ?, π*(x) = ?”

� Why does this help?
� Vπ = rπ + γ Pπ ∑t γ

t Pπ
t rπ = rπ + γ Pπ Vπ

� Also explains why smoothness of the
reward function is not required

27

Possible Improvements

� Reduce distribution mismatch
� Once a good policy is computed, follow it

to generate new points

� How to do weighted importance sampling
then??

� Fit distribution & generate samples from
the fitted distribution(?)

� Repeat Z times

� Decide adaptively when to stop
adding new points

28

Planning with a Generative
Model

Problem:
� Can generate transitions from anywhere
� Find a good policy!
� Be efficient!

29

Sampling based fitted value
iteration

� Generative model
� Cannot query p(y|x,a)

� Can generate Y~p(.|x,a)

� Can we generalize RDM?

� Option A: Build model

� Option B: Use function
approximation to
propagate values

� [Samuel, 1959], [Bellman and
Dreyfus, 1959], [Reetz,1977],
[Keane and Wolpin, 1994],..

30

Single-sample version

[SzeMu ’05]

31

Multi-sample version

[SzeMu ’05]

32

Assumptions

� C(µ) = ||dP(.|x,a)/dµ||∞<+∞
� µ uniform: dP/dµ = p(.|x,a); density

kernel

� This was used by the previous results

� Rules out deterministic systems and
systems with jumps

33

Loss bound

‖V ∗ − V πK‖p,ρ ≤

2γ
(1−γ)2

{

C(µ)1/p
[
d(TF ,F) +

c1

(
E

N
(log(N) + log(K/δ))

)1/2p
+

c2

(
1

M
(log(N |A|) + log(K/δ))

)1/2]
+

c3γ
KKmax

}

[SzeMu ’05]

34

The Bellman error of function sets

� Bound is in temrs of the “distance of
the functions sets F and TF:
� d(TF, F) = inff∈ F supV∈ F ||TV-f||p,µ

� “Bellman error on F”

� F should be large to make d(TF, F)
small

� If MDP is “smooth”, TV is smooth for
any bounded(!) V

� Smooth functions can be well-
approximated

� � Assume MDP is smooth

35

Metric Entropy

� The bound depends on the metric
entropy, E=E(F).

� Metric entropy: ‘capacity measure’,
similar to VC-dimension

� Metric entropy increases with F!

� Previously we concluded that F
should be big

� ???
� Smoothness

� RKHS

36

RKHS Bounds

� Linear models (~RKHS):
F = { wT φ : ||w||1 ≤ A }

� [Zhang, ’02]: E(F)=O(log N)

� This is independent of dim(φ)!

� Corollary: Sample complexity of FVI
is polynomial for “sparse” MDPs
� Cf. [Chow and Tsitsiklis ’89]

� Extension to control? Yes

37

Improvements

� Model selection
� How to choose F?

� Choose as large an F as needed!

� Regularization

� Model-selection

� Aggregation

� ..

� Place base-points better
� Follow policies

� No need to fit densities to them!

38

References
� [Ng & Jordan ’00] A.Y. Ng and M. Jordan: PEGASUS: A policy search method for large

MDPs and POMDPs, UAI 2000.
� [R. Bellman ’57] R. Bellman: Dynamic Programming. Princeton Univ. Press, 1957.
� [Chow & Tsitsiklis ’89] C.S. Chow and J.N. Tsitsiklis: The complexity of dynamic

programming, Journal of Complexity, 5:466—488, 1989.
� [Kearns et al. ’02] M.J. Kearns, Y. Mansour, A.Y. Ng: A sparse sampling algorithm for

near-optimal planning in large Markov decision processes. Machine Learning 49: 193—
208, 2002.

� [KoSze ’06] L. Kocsis and Cs. Szepesvári: Bandit based Monte-Carlo planning. ECML,
2006.

� [Auer et al. ’02] P. Auer, N. Cesa-Bianchi and P. Fischer: Finite time analysis of the
multiarmed bandit problem, Machine Learning, 47:235—256, 2002.

� [Peret and Garcia ’04] L. Peret & F. Garcia: On-line search for solving Markov decision
processes via heuristic sampling. ECAI, 2004.

� [Chang et al. ’05] H.S. Chang, M. Fu, J. Hu, and S.I. Marcus: An adaptive sampling
algorithm for solving Markov decision processes. Operations Research, 53:126—139,
2005.

� [Rust ’97] J. Rust, 1997, Using randomization to break the curse of dimensionality,
Econometrica, 65:487—516, 1997.

� [Sze ’01] Cs. Szepesvári: Efficient approximate planning in continuous space Markovian
decision problems, AI Communications, 13:163 - 176, 2001.

� [SzeMu ’05] Cs. Szepesvári and R. Munos: Finite time bounds for sampling based fitted
value iteration, ICML, 2005.

� [Zhang ’02] T. Zhang: Covering number bounds of certain regularized linear function
classes. Journal of Machine Learning Research, 2:527–550, 2002.

1

Reinforcement Learning:
Learning Algorithms

Csaba Szepesvári

University of Alberta

Kioloa, MLSS’08

Slides: http://www.cs.ualberta.ca/~szepesva/MLSS08/

2

Contents

� Defining the problem(s)

� Learning optimally

� Learning a good policy
� Monte-Carlo

� Temporal Difference (bootstrapping)

� Batch – fitted value iteration and
relatives

3

The Learning Problem

� The MDP is unknown but the agent can
interact with the system

� Goals:
� Learn an optimal policy

� Where do the samples come from?
� Samples are generated externally

� The agent interacts with the system to get the
samples (“active learning”)

� Performance measure: What is the performance
of the policy obtained?

� Learn optimally: Minimize regret while
interacting with the system
� Performance measure: loss in rewards due to

not using the optimal policy from the beginning

� Exploration vs. exploitation

4

Learning from Feedback

� A protocol for prediction problems:
� xt – situation (observed by the agent)

� yt ∈ Y – value to be predicted

� pt ∈ Y – predicted value (can depend on all past
values ⇒ learning!)

� rt(xt,yt,y) – value of predicting y
loss of learner: λt= rt(xt,yt,y)-rt(xt, yt,pt)

� Supervised learning:
agent is told yt, rt(xt,yt,.)
� Regression: rt(xt,yt,y)=-(y-yt)

2� λt=(yt-pt)
2

� Full information prediction problem:
∀ y∈ Y, rt(xt,y) is communicated to the agent, but
not yt

� Bandit (partial information) problem:
rt(xt,pt) is communicated to the agent only

5

Learning Optimally

� Explore or exploit?
� Bandit problems

� Simple schemes
� Optimism in the face of uncertainty (OFU) � UCB

� Learning optimally in MDPs with the OFU principle

6

Learning Optimally:
Exploration vs. Exploitation

� Two treatments

� Unknown success
probabilities

� Goal:
� find the best

treatment while
loosing few patients

� Explore or exploit?

7

Exploration vs. Exploitation:
Some Applications

� Simple processes:
� Clinical trials

� Job shop scheduling (random jobs)

� What ad to put on a web-page

� More complex processes (memory):
� Optimizing production

� Controlling an inventory

� Optimal investment

� Poker

� ..

8

Bernoulli Bandits

� Payoff is 0 or 1

� Arm 1:

R
1
(1), R

2
(1), R

3
(1), R

4
(1), …

� Arm 2:

R
1
(2), R

2
(2), R

3
(2), R

4
(2), …

0

1 1 0

1 0

1

0

9

Some definitions

� Payoff is 0 or 1

� Arm 1:

R
1
(1), R

2
(1), R

3
(1), R

4
(1), …

� Arm 2:

R
1
(2), R

2
(2), R

3
(2), R

4
(2), …

Now: t=9
T1(t-1) = 4
T2(t-1) = 4
A1 = 1, A2 = 2, …

L̂T
def
=

T
t=1Rt(k

∗)−
T
t=1RTAt (t)(At)

0

1 1 0

1 0

1

0

10

The Exploration/Exploitation
Dilemma

� Action values: Q*(a) = E[Rt(a)]

� Suppose you form estimates

� The greedy action at t is:

� Exploitation: When the agent chooses to
follow At

*

� Exploration: When the agent chooses to do
something else

Qt(a) ≈ Q
∗(a)

A∗t = argmaxaQt(a)

11

Action-Value Methods

� Methods that adapt action-value estimates
and nothing else

� How to estimate action-values?

� Sample average:

� Claim: if
nt(a)→∞

� Why??

limt→∞Qt(a) = Q
∗(a),

Qt(a) =
R1(a)+...+RTt(a)

(a)

Tt(a)

12

ε-Greedy Action Selection

� Greedy action selection:

� ε-Greedy:

. . . the simplest way to “balance” exploration and exploitation

At = A
∗
t = argmaxaQt(a)

At =
A∗t with probability 1− ε

random action with probability ε

13

10-Armed Testbed

� n = 10 possible actions

� Repeat 2000 times:
� Q*(a) ~ N(0,1)

� Play 1000 rounds

� Rt(a)~ N(Q
*(a),1)

14

ε-Greedy Methods on the 10-
Armed Testbed

15

Softmax Action Selection

� Problem with ε-greedy: Neglects
action values

� Softmax idea: grade action probs. by
estimated values.

� Gibbs, or Boltzmann action selection,
or exponential weights:

� τ =τt is the “computational temperature”

P (At = a|Ht) =
eQt(a)/τt

b e
Qt(b)/τt

16

Incremental Implementation

Qt+1(At) = Qt(At) +
1
t+1 (Rt+1 −Qt(At))

� Sample average:

� Incremental computation:

� Common update rule form:

NewEstimate = OldEstimate
+ StepSize[Target – OldEstimate]

Qt(a) =
R1(a)+...+RTt(a)

(a)

Tt(a)

17

UCB: Upper Confidence Bounds

� Principle: Optimism in the face of uncertainty

� Works when the environment is not adversary

� Assume rewards are in [0,1]. Let

(p>2)

� For a stationary environment, with iid rewards
this algorithm is hard to beat!

� Formally: regret in T steps is O(log T)

� Improvement: Estimate variance, use it in place
of p [AuSzeMu ’07]

� This principle can be used for achieving small
regret in the full RL problem!

At = argmaxa Qt(a) +
p log(t)
2Tt(a)

[Auer et al. ’02]

18

UCRL2: UCB Applied to RL

� [Auer, Jaksch & Ortner ’07]

� Algorithm UCRL2(δ):
� Phase initialization:

� Estimate mean model p0 using maximum
likelihood (counts)

� C := { p | ||p(.|x,a)-p0(.|x,a)
≤ c |X| log(|A|T/delta) / N(x,a) }

� p’ :=argmaxp ρ
(p), π :=π(p’)

� N0(x,a) := N(x,a), ∀ (x,a)∈ X× A

� Execution
� Execute π until some (x,a) have been visited

at least N0(x,a) times in this phase

19

UCRL2 Results

� Def: Diameter of an MDP M:
D(M) = maxx,y minπ E[T(x�y; π)]

� Regret bounds
� Lower bound:

E[Ln] = Ω((D |X| |A| T)1/2)

� Upper bounds:
� w.p. 1-δ/T,

LT ≤ O(D |X| (|A| T log(|A|T/δ)1/2)

� w.p. 1-δ,
LT ≤ O(D2 |X|2 |A| log(|A|T/δ)/∆)

∆ =performance gap between best and
second best policy

20

Learning a Good Policy

� Monte-Carlo methods
� Temporal Difference methods

� Tabular case
� Function approximation

� Batch learning

21

Learning a good policy

� Model-based learning
� Learn p,r

� “Solve” the resulting MDP

� Model-free learning
� Learn the optimal action-value function

and (then) act greedily

� Actor-critic learning

� Policy gradient methods

� Hybrid
� Learn a model and mix planning and a

model-free method; e.g. Dyna

22

Monte-Carlo Methods

� Episodic MDPs!

� Goal: Learn Vπ(.)

� Vπ(x)
= Eπ[∑tγ

t Rt|X0=x]

� (Xt,At,Rt):
-- trajectory of π

� Visits to a state
� f(x) = min {t|Xt = x}

� First visit

� E(x) = { t | Xt = x }
� Every visit

� Return:

S(t) = γ0Rt + γ
1 Rt+1 + …

� K independent
trajectories �

S(k), E(k), f(k), k=1..K

� First-visit MC:
� Average over

{ S(k)(f(k)(x)) : k=1..K }

� Every-visit MC:
� Average over

{ S(k)(t) : k=1..K
, t∈ E(k)(x) }

� Claim: Both converge to
Vπ(.)

� From now on St = S(t)

1 2 3 4 5

[Singh & Sutton ’96]

23

Learning to Control with MC

� Goal: Learn to behave optimally

� Method:
� Learn Qπ(x,a)

� ..to be used in an approximate policy iteration (PI)
algorithm

� Idea/algorithm:
� Add randomness

� Goal: all actions are sampled eventually infinitely often

� e.g., ε-greedy or exploring starts

� Use the first-visit or the every-visit method to
estimate Qπ(x,a)

� Update policy
� Once values converged

.. or ..

� Always at the states visited

24

Monte-Carlo: Evaluation

� Convergence rate: Var(S(0)|X=x)/N

� Advantages over DP:
� Learn from interaction with environment

� No need for full models

� No need to learn about ALL states

� Less harm by Markovian violations (no
bootstrapping)

� Issue: maintaining sufficient
exploration
� exploring starts, soft policies

25

Temporal Difference Methods

� Every-visit Monte-Carlo:

� V(Xt) � V(Xt) + αt(Xt) (St – V(Xt))
� Bootstrapping

� St = Rt + γ St+1

� St’ = Rt + γ V(Xt+1)
� TD(0):

� V(Xt) � V(Xt) + αt(Xt) (St’– V(Xt))
� Value iteration:

� V(Xt) � E[St’ | Xt]
� Theorem: Let Vt be the sequence of functions generated

by TD(0). Assume ∀ x, w.p.1
∑t αt(x)=∞, ∑t αt

2(x)<+∞. Then Vt � Vπw.p.1

� Proof: Stochastic approximations:
Vt+1=Tt(Vt,Vt), Ut+1=Tt(Ut,Vπ) � TVπ.
[Jaakkola et al., ’94, Tsitsiklis ’94, SzeLi99]

[Samuel, ’59], [Holland ’75], [Sutton ’88]

26

TD or MC?

� TD advantages:
� can be fully incremental, i.e.,

learn before knowing the final outcome
� Less memory

� Less peak computation

� learn without the final outcome
� From incomplete sequences

� MC advantage:
� Less harm by Markovian violations

� Convergence rate?
� Var(S(0)|X=x) decides!

27

Learning to Control with TD

� Q-learning [Watkins ’90]:
Q(Xt,At) � Q(Xt,At) +
αt(Xt,At) {Rt+γmaxaQ (Xt+1,a)–Q(Xt,At)}

� Theorem: Converges to Q*
[JJS’94, Tsi’94,SzeLi99]

� SARSA [Rummery & Niranjan ’94]:
� At ~ Greedyε(Q,Xt)

� Q(Xt,At) � Q(Xt,At) +
αt(Xt,At) {Rt+γQ (Xt+1,At+1)–Q(Xt,At)}

� Off-policy (Q-learning) vs. on-policy (SARSA)

� Expecti-SARSA

� Actor-Critic [Witten ’77, Barto, Sutton & Anderson ’83, Sutton ’84]

28

Cliffwalking

ε−greedy, ε = 0.1

29

N-step TD Prediction

� Idea: Look farther into the future when you
do TD backup (1, 2, 3, …, n steps)

30

� Monte Carlo:
� St = Rt+γ Rt+1 + .. γT-t RT

� TD: St
(1) = Rt + γ V(Xt+1)

� Use V to estimate remaining return

� n-step TD:
� 2 step return:

� St
(2) = Rt + γ Rt+1 + γ2 V(Xt+2)

� n-step return:
� St

(n) = Rt + γ Rt+1 + … + γn V(Xt+n)

N-step TD Prediction

31

Learning with n-step Backups

� Learning with n-step backups:
� V(Xt) � V(Xt) + αt(St

(n) - V(Xt))

� n: controls how much to bootstrap

32

Random Walk Examples

� How does 2-step TD work here?

� How about 3-step TD?

33

A Larger Example

� Task: 19
state random
walk

� Do you think
there is an
optimal n?
for
everything?

34

Averaging N-step Returns

� Idea: backup an average of
several returns
� e.g. backup half of 2-step and

half of 4-step:

� “complex backup”

One backup

Rt =
1
2R

(2)
t + 1

2R
(4)
t

35

Forward View of TD(λ)

� Idea: Average over
multiple backups

� λ-return:

St
(λ) = (1-λ) ∑n=0..∞ λ

n St
(n+1)

� TD(λ):

∆V(Xt) = αt(St
(λ) -V(Xt))

� Relation to TD(0) and MC
� λ=0 � TD(0)

� λ=1 � MC

[Sutton ’88]

36

λ-return on the Random Walk

� Same 19 state random walk as before

� Why intermediate values of λ are
best?

37

Backward View of TD(λ)

δt = Rt + γ V(Xt+1) – V(Xt)

V(x) � V(x) + αt δt e(x)

e(x) � γ λ e(x) + I(x=Xt)

� Off-line updates �Same as FW TD(λ)

� e(x): eligibility trace
� Accumulating trace

� Replacing traces speed up convergence:
� e(x) � max(γλ e(x), I(x=Xt))

[Sutton ’88, Singh & Sutton ’96]

38

Function Approximation
with TD

39

Gradient Descent Methods

transpose

θt = (θt(1), . . . , θt(n))
T

� Assume Vt is a differentiable function of θ:

Vt(x) = V(x;θ).

� Assume, for now, training examples of the
form:

{ (Xt, Vπ(Xt)) }

40

Performance Measures

� Many are applicable but…

� a common and simple one is the mean-squared
error (MSE) over a distribution P:

� Why P?

� Why minimize MSE?

� Let us assume that P is always the distribution of
states at which backups are done.

� The on-policy distribution: the distribution
created while following the policy being evaluated.
Stronger results are available for this distribution.

L(θ) = x∈X P (x) (V
π(x)− V (x; θ))2

41

Gradient Descent

� Let L be any function of the parameters.
Its gradient at any point θ in this space is:

� Iteratively move down the gradient:

θ (1)

θ (2)

θ

t
= θ

t
(1),θ

t
(2)()

T

∇θL = ∂L
∂θ(1) ,

∂L
∂θ(2) , . . . ,

∂L
∂θ(n)

T

θt+1 = θt − αt (∇θL) |θ=θt

42

Gradient Descent in RL

� Function to descent on:

� Gradient:

� Gradient descent procedure:

� Bootstrapping with St’

� TD(λ) (forward view):

L(θ) =
∑

x∈X P (x) (V
π(x)− V (x; θ))2

θt+1 = θt + αt (V
π(Xt)− V (Xt; θt))∇θV (Xt; θt)

θt+1 = θt + αt (S
′
t − V (Xt; θt))∇θV (Xt; θt)

θt+1 = θt + αt
(
Sλt − V (Xt; θt)

)
∇θV (Xt; θt)

∇θL(θ) = −2
∑

x∈X P (x) (V
π(x)− V (x; θ))∇θV (x; θ)

43

Linear Methods

� Linear FAPP: V(x;θ) =θ T φ(x)

� ∇θ V(x;θ) = φ(x)

� Tabular representation:
φ(x)y = I(x=y)

� Backward view:

δt = Rt + γ V(Xt+1) – V(Xt)

θ � θ + αt δt e

e � γ λ e + ∇θ V(Xt;θ)

� Theorem [TsiVaR’97]: Vt converges to
V s.t. ||V-Vπ||D,2 ≤ ||Vπ-Π Vπ||D,2/(1-γ).

[Sutton ’84, ’88, Tsitsiklis & Van Roy ’97]

44

� Learning state-action values
Training examples:

� The general gradient-descent rule:

� Gradient-descent Sarsa(λ)

Control with FA

{((Xt, At), Q
∗(Xt, At) + noiset)}

θt+1 = θt + αt (St −Q(Xt, At; θt))∇θQ(Xt, At; θt)

θt+1 = θt + αtδtet

where

δt = Rt + γQ(Xt+1, At+1; θt)−Qt(Xt, At; θt)

et = γλet−1 +∇θQ(Xt, At; θ)

[Rummery & Niranjan ’94]

45

Mountain-Car Task

[Sutton ’96], [Singh & Sutton ’96]

46

Mountain-Car Results

47

Baird’s Counterexample:
Off-policy Updates Can Diverge

[Baird ’95]

48

Baird’s Counterexample Cont.

50

Batch Reinforcement
Learning

51

Batch RL

� Goal: Given the trajectory of the behavior policy πb
X1,A1,R1, …, Xt, At, Rt, …, XN

compute a good policy!

� “Batch learning”

� Properties:

� Data collection is not influenced

� Emphasis is on the quality of the solution

� Computational complexity plays a secondary role

� Performance measures:

� ||V*(x) – Vπ(x)||∞ = supx |V*(x) - Vπ(x)|
= supx V

*(x) - Vπ(x)

� ||V*(x) - Vπ(x)||
2 = ∫ (V*(x)-Vπ(x))

2 dµ(x)

52

Solution methods

� Build a model

� Do not build a model, but find an
approximation to Q*

� using value iteration => fitted Q-
iteration

� using policy iteration =>

� Policy evaluated by approximate value
iteration Policy evaluated by Bellman-
residual minimization (BRM)

� Policy evaluated by least-squares temporal
difference learning (LSTD) => LSPI

� Policy search

[Bradtke, Barto ’96], [Lagoudakis, Parr ’03], [AnSzeMu ’07]

53

Evaluating a policy:
Fitted value iteration

� Choose a function space F.

� Solve for i=1,2,…,M the LS (regression) problems:

� Counterexamples?!?!?
[Baird ’95, Tsitsiklis and van Roy ’96]

� When does this work??

� Requirement: If M is big enough and the number of
samples is big enough QM should be close to Qπ

� We have to make some assumptions on F

Qi+1 = argminQ∈F

T∑

t=1

(Rt + γQi(Xt+1, π(Xt+1))−Q(Xt, At))
2

54

Least-squares vs. gradient

� Linear least squares (ordinary regression):
yt = w*

T xt + εt
(xt,yt) jointly distributed r.v.s., iid, E[εt|xt]=0.

� Seeing (xt,yt), t=1,…,T, find out w*.

� Loss function: L(w) = E[(y1 – w
T x1)2].

� Least-squares approach:

� wT = argminw ∑t=1
T (yt – w

T xt)
2

� Stochastic gradient method:
� wt+1 = wt + αt (yt-wt

T xt) xt
� Tradeoffs

� Sample complexity: How good is the estimate

� Computational complexity: How expensive is
the computation?

55

Fitted value iteration: Analysis

� Goal: Bound ||QM - Qπ||µ
2 in terms of

maxm ||εm||ν

, ||εm||ν


= ∫ εm

2(x,a) ν(dx,da),

where Qm+1 = TπQm+ εm , ε-1= Q0-Qπ

� Um = Qm – Qπ

Um+1 = Qm+1 −Qπ

= TπQm −Qπ + εm

= TπQm − T
πQπ + εm

= γPπUm + εm.

UM =
M∑

m=0

(γPπ)
M−m εm−1.

After [AnSzeMu ’07]

56

Analysis/2

UM =
M∑

m=0

(γPπ)
M−m εm−1.

µ|UM |
2 ≤

(
1

1− γ

)2
1− γ

1− γM+1

M∑

m=0

γmµ ((Pπ)
mεM−m−1)

2

≤ C1

(
1

1− γ

)2
1− γ

1− γM+1

M∑

m=0

γmν|εM−m−1|
2

≤ C1

(
1

1− γ

)2
1− γ

1− γM+1

(

γMν|ε−1|
2 +

M∑

m=0

γmε2

)

= C1

(
1

1− γ

)2
ε2 + C1

γMν|ε−1|
2

1− γM+1
.

Legend:

• ρf =
∫
f(x)ρ(dx)

• (Pf)(x) =
∫
f(y)P (dy|x)

Jensen applied to operators,
µ ≤ C1ν and:
∀ρ : ρPπ ≤ C1ν

Jensen

57

Summary

� If the regression errors are all small and the system
is noisy (∀ π,ρ, ρ Pπ ≤ C1 ν) then the final error will
be small.

� How to make the regression errors small?

� Regression error decomposition:

‖Qm+1 − TπQm‖2 ≤ ‖Qm+1 −ΠFTπQm‖2

+‖ΠFTπQm − TπQm‖2

Approximation error

Estimation error

58

Controlling the approximation
error

F

TF

F

f

Tf

59

Controlling the approximation
error

F

TF

F
dp,µ(TF ,F)

60

Controlling the approximation
error

F

TF

F

F

TF

61

Controlling the approximation
error

B(X, Rmax

1−γ)

� Assume smoothness!
Lipα(L)

T B(X, Rmax

1−γ)

62

Learning with (lots of) historical
data

� Data: A long trajectory of some exploration
policy

� Goal: Efficient algorithm to learn a policy

� Idea: Use fitted action-values

� Algorithms:
� Bellman residual minimization, FQI [AnSzeMu ’07]

� LSPI [Lagoudakis, Parr ’03]

� Bounds:
� Oracle inequalities (BRM, FQI and LSPI)

� ⇒ consistency

63

BRM insight

� TD error: ∆t=Rt+γ Q(Xt+1,π(Xt+1))-Q(Xt,At)

� Bellman error: E[E[∆t | Xt,At]
2]

� What we can compute/estimate: E[E[∆t
2 | Xt,At]]

� They are different!

� However:

E[∆t|Xt, At]
2 = E[∆2

t |Xt, At]− Var[∆t|Xt, At]

[AnSzeMu ’07]

64

Loss function

LN,π(Q, h) =

1

N

N

t=1

wt (Rt + γQ(Xt+1, π(Xt+1))−Q(Xt, At))
2

−(Rt + γQ(Xt+1, π(Xt+1))− h(Xt, At))
2

wt = 1/µ(At|Xt)

E[∆t|Xt, At]
2 = E[∆2

t |Xt, At]− Var[∆t|Xt, At]

65

Algorithm (BRM++)

1. Choose π0, i := 0

2. While (i ≤ K) do:

3. Let Qi+1 = argminQ∈FA suph∈FA LN,πi(Q, h)

4. Let πi+1(x) = argmaxa∈AQi+1(x, a)

5. i := i+ 1

66

Do we need to reweight or
throw away data?

� NO!

� WHY?

� Intuition from regression:
� m(x) = E[Y|X=x] can be learnt no matter what

p(x) is!

� π*(a|x): the same should be possible!

� BUT..
� Performance might be poor! => YES!

� Like in supervised learning when training and
test distributions are different

67

Bound

‖Q∗ −QπK‖2,ρ ≤

2γ

(1− γ)2
C1/2ρ,ν

(
Ẽ(F) + E(F) + S

1/2
N,x

)
+ (2γK)1/2Rmax,

SN,x = c2

(
(V
2
+ 1) ln(N) + ln(c1) +

1
1+κ

ln(bc
2
2

4
) + x

) 1+κ
2κ

(b1/κN)1/2

68

The concentration coefficients

� Lyapunov exponents

� Our case:
� yt is infinite dimensional

� Pt depends on the policy chosen

� If top-Lyap exp.≤ 0, we are good☺

yt+1 = Ptyt

γ̂top = lim sup
t→∞

1

t
log+(‖yt‖∞)

69

Open question

� Abstraction:

� Let

� True?

f(i1, . . . , im) = log(||Pi1Pi2 . . . Pim ||), ik ∈ {0, 1}.

f : {0, 1}∗ → R
+, f(x+ y) ≤ f(x) + f(y),

lim supm→∞
1
m
f([x]m) ≤ β.

∀{ym}m, ym ∈ {0, 1}
m,

lim supm→∞
1
m log f(ym) ≤ β

70

Relation to LSTD

� LSTD:
� Linear function space

� Bootstrap the “normal equation”

h∗(f) = inf
h∈F

‖h−Qf‖
2
n

QLSTD = inf
f∈F

‖f − h∗(f)‖2n

QBRM = inf
f∈F

‖f −Qf‖
2
n − ‖h

∗(f)−Qf‖
2
n

‖Q−Qf‖
2
n = ‖Q− h∗(Q)‖2n + ‖h∗(Q)−Qf‖

2
n

[AnSzeMu ’07]

71

Open issues

� Adaptive algorithms to take advantage of
regularity when present to address the “curse
of dimensionality”

� Penalized least-squares/aggregation?

� Feature relevance

� Factorization

� Manifold estimation

� Abstraction – build automatically

� Active learning

� Optimal on-line learning for infinite problems

72

References
� [Auer et al. ’02] P. Auer, N. Cesa-Bianchi and P. Fischer: Finite time analysis of the multiarmed bandit problem,

Machine Learning, 47:235—256, 2002.
� [AuSzeMu ’07] J.-Y. Audibert, R. Munos and Cs. Szepesvári: Tuning bandit algorithms in stochastic environments,

ALT, 2007.
� [Auer, Jaksch & Ortner ’07] P. Auer, T. Jaksch and R. Ortner: Near-optimal Regret Bounds for Reinforcement

Learning, (2007), available at
http://www.unileoben.ac.at/~infotech/publications/ucrlrevised.pdf

� [Singh & Sutton ’96] S.P. Singh and R.S. Sutton:
Reinforcement learning with replacing eligibility traces. Machine Learning, 22:123—158, 1996.

� [Sutton ’88] R.S. Sutton: Learning to predict by the method of temporal differences. Machine Learning, 3:9—44,
1988.

� [Jaakkola et al. ’94] T. Jaakkola, M.I. Jordan, and S.P. Singh: On the convergence of stochastic iterative dynamic
programming algorithms. Neural Computation, 6: 1185—1201, 1994.

� [Tsitsiklis, ’94] J.N. Tsitsiklis: Asynchronous stochastic approximation and Q-learning. Machine Learning,
16:185—202, 1994.

� [SzeLi99] Cs. Szepesvári and M.L. Littman: A Unified Analysis of Value-Function-Based Reinforcement-Learning
Algorithms, Neural Computation, 11, 2017—2059, 1999.

� [Watkins ’90] C.J.C.H. Watkins: Learning from Delayed Rewards, PhD Thesis, 1990.
� [Rummery and Niranjan ’94] G.A. Rummery and M. Niranjan: On-line Q-learning using connectionist systems.

Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering Department, 1994.
� [Sutton ’84] R.S. Sutton: Temporal Credit Assignment in Reinforcement Learning.

PhD thesis, University of Massachusetts, Amherst, MA, 1984.
� [Tsitsiklis & Van Roy ’97] J.N. Tsitsiklis and B. Van Roy: An analysis of temporal-difference learning with function

approximation. IEEE Transactions on Automatic Control, 42:674—690, 1997.
� [Sutton ’96] R.S. Sutton: Generalization in reinforcement learning: Successful examples using sparse coarse

coding. NIPS, 1996.
� [Baird ’95] L.C. Baird: Residual algorithms: Reinforcement learning with function approximation, ICML, 1995.
� [Bradtke, Barto ’96] S.J. Bradtke and A.G. Barto: Linear least-squares algorithms for temporal difference

learning. Machine Learning, 22:33—57, 1996.
� [Lagoudakis, Parr ’03] M. Lagoudakis and R. Parr: Least-squares policy iteration, Journal of Machine Learning

Research, 4:1107—1149, 2003.
� [AnSzeMu ’07] A. Antos, Cs. Szepesvari and R. Munos: Learning near-optimal policies with Bellman-residual

minimization based fitted policy iteration and a single sample path, Machine Learning Journal, 2007.

