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Abstract

The mutual information of two random variables ı and  with joint probabilities
{πij} is commonly used in learning Bayesian nets as well as in many other fields.
The chances πij are usually estimated by the empirical sampling frequency nij/n
leading to a point estimate I(nij/n) for the mutual information. To answer questions
like “is I(nij/n) consistent with zero?” or “what is the probability that the true
mutual information is much larger than the point estimate?” one has to go beyond
the point estimate. In the Bayesian framework one can answer these questions
by utilizing a (second order) prior distribution p(π) comprising prior information
about π. From the prior p(π) one can compute the posterior p(π|n), from which the
distribution p(I|n) of the mutual information can be calculated. We derive reliable
and quickly computable approximations for p(I|n). We concentrate on the mean,
variance, skewness, and kurtosis, and non-informative priors. For the mean we also
give an exact expression. Numerical issues and the range of validity are discussed.



1 Introduction

The mutual information I (also called cross entropy) is a widely used information theoretic
measure for the stochastic dependency of random variables [CT91, Soo00]. It is used,
for instance, in learning Bayesian nets [Bun96, Hec98], where stochastically dependent
nodes shall be connected. The mutual information defined in (1) can be computed if the
joint probabilities {πij} of the two random variables ı and  are known. The standard
procedure in the common case of unknown chances πij is to use the sample frequency
estimates nij

n
instead, as if they were precisely known probabilities; but this is not always

appropriate. Furthermore, the point estimate I(nij

n
) gives no clue about the reliability of

the value if the sample size n is finite. For instance, for independent ı and , I(π) = 0
but I(nij

n
)=O(n−1/2) due to noise in the data. The criterion for judging dependency is

how many standard deviations I(nij

n
) is away from zero. In [KJ96, Kle99] the probability

that the true I(π) is greater than a given threshold has been used to construct Bayesian
nets. In the Bayesian framework one can answer these questions by utilizing a (second
order) prior distribution p(π),which takes account of any impreciseness about π. From
the prior p(π) one can compute the posterior p(π|n), from which the distribution p(I|n)
of the mutual information can be obtained.

The objective of this work is to derive reliable and quickly computable analytical ex-
pressions for p(I|n). Section 2 introduces the mutual information distribution, Section
3 discusses some results in advance before delving into the derivation. Since the central
limit theorem ensures that p(I|n) converges to a Gaussian distribution a good starting
point is to compute the mean and variance of p(I|n). In section 4 we relate the mean
and variance to the covariance structure of p(π|n). Most non-informative priors lead to
a Dirichlet posterior. An exact expression for the mean (Section 6) and approximate
expressions for the variance (Sections 5) are given for the Dirichlet distribution. More
accurate estimates of the variance and higher central moments are derived in Section 7,
which lead to good approximations of p(I|n) even for small sample sizes. We show that
the expressions obtained in [KJ96, Kle99] by heuristic numerical methods are incorrect.
Numerical issues and the range of validity are briefly discussed in section 8.

2 Mutual Information Distribution

We consider discrete random variables ı∈{1,...,r} and ∈{1,...,s} and an i.i.d. random
process with samples (i,j)∈{1,...,r}×{1,...,s} drawn with joint probability πij. An im-
portant measure of the stochastic dependence of ı and  is the mutual information

I(π) =
r∑

i=1

s∑
j=1

πij log
πij

πi+π+j

=
∑
ij

πij log πij −
∑

i

πi+ log πi+ −
∑
j

π+j log π+j. (1)

log denotes the natural logarithm and πi+ =
∑

jπij and π+j =
∑

iπij are marginal proba-
bilities. Often one does not know the probabilities πij exactly, but one has a sample set
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with nij outcomes of pair (i,j). The frequency π̂ij := nij

n
may be used as a first estimate

of the unknown probabilities. n :=
∑

ijnij is the total sample size. This leads to a point
(frequency) estimate I(π̂)=

∑
ij

nij

n
log nijn

ni+n+j
for the mutual information (per sample).

Unfortunately the point estimation I(π̂) gives no information about its accuracy. In
the Bayesian approach to this problem one assumes a prior (second order) probability
density p(π) for the unknown probabilities πij on the probability simplex. From this one
can compute the posterior distribution p(π|n)∝ p(π)

∏
ijπ

nij

ij (the nij are multinomially
distributed). This allows to compute the posterior probability density of the mutual
information.1

p(I|n) =
∫
δ(I(π)− I)p(π|n)drsπ (2)

2The δ() distribution restricts the integral to π for which I(π)=I. For large sample size
n→∞, p(π|n) is strongly peaked around π= π̂ and p(I|n) gets strongly peaked around
the frequency estimate I = I(π̂). The mean E[I] =

∫∞
0 Ip(I|n) dI =

∫
I(π)p(π|n)drsπ and

the variance Var[I]=E[(I−E[I])2]=E[I2]−E[I]2 are of central interest.

3 Results for I under the Dirichlet P(oste)rior

Most3 non-informative priors for p(π) lead to a Dirichlet posterior distribution p(π|n)∝∏
ijπ

nij−1
ij with interpretation nij = n′ij +n

′′
ij, where n′ij are the number of samples (i,j),

and n′′ij comprises prior information (1 for the uniform prior, 1
2

for Jeffreys’ prior, 0 for
Haldane’s prior, 1

rs
for Perks’ prior [GCSR95]). In principle this allows to compute the

posterior density p(I|n) of the mutual information. In sections 4 and 5 we expand the
mean and variance in terms of n−1:

E[I] =
∑
ij

nij

n
log

nijn

ni+n+j

+
(r − 1)(s− 1)

2n
+ O(n−2), (3)

Var[I] =
1

n

∑
ij

nij

n

(
log

nijn

ni+n+j

)2

− 1

n

(∑
ij

nij

n
log

nijn

ni+n+j

)2

+ O(n−2).

The first term for the mean is just the point estimate I(π̂). The second term is a small
correction if n� r ·s. Kleiter [KJ96, Kle99] determined the correction by Monte Carlo
studies as min{ r−1

2n
, s−1

2n
}. This is wrong unless s or r are 2. The expression 2E[I]/n they

determined for the variance has a completely different structure than ours. Note that the
mean is lower bounded by const.

n
+O(n−2), which is strictly positive for large, but finite

1I(π) denotes the mutual information for the specific chances π, whereas I in the context above is
just some non-negative real number. I will also denote the mutual information random variable in the
expectation E[I] and variance Var[I]. Expectaions are always w.r.t. to the posterior distribution p(π|n).

2Since 0≤I(π)≤Imax with sharp upper bound Imax :=min{logr,logs}, the integral may be restricted
to
∫ Imax

0
, which shows that the domain of p(I|n) is [0,Imax].

3But not all priors which one can argue to be non-informative lead to Dirichlet posteriors. Brand
[Bra99] (and others), for instance, advocate the entropic prior p(π)∝e−H(π).
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sample sizes, even if ı and  are statistically independent and independence is perfectly
represented in the data (I(π̂)=0). On the other hand, in this case, the standard deviation

σ=
√

Var(I)∼ 1
n
∼E[I] correctly indicates that the mean is still consistent with zero.

Our approximations (3) for the mean and variance are good if r·s
n

is small. The central
limit theorem ensures that p(I|n) converges to a Gaussian distribution with mean E[I]
and variance Var[I]. Since I is non-negative it is more appropriate to approximate p(I|π)
as a Gamma (= scaled χ2) or log-normal distribution with mean E[I] and variance Var[I],
which is of course also asymptotically correct.

A systematic expansion in n−1 of the mean, variance, and higher moments is possible but
gets arbitrarily cumbersome. The O(n−2) terms for the variance and leading order terms
for the skewness and kurtosis are given in Section 7. For the mean it is possible to give
an exact expression

E[I] =
1

n

∑
ij

nij[ψ(nij + 1)− ψ(ni+ + 1)− ψ(n+j + 1) + ψ(n+ 1)] (4)

with ψ(n+1)=−γ+
∑n

k=1
1
k
=logn+O( 1

n
) for integer n. See Section 6 for details and more

general expressions for ψ for non-integer arguments.

There may be other prior information available which cannot be comprised in a Dirichlet
distribution. In this general case, the mean and variance of I can still be related to the
covariance structure of p(π|n), which will be done in the following Section.

4 Approximation of Expectation and Variance of I

In the following let π̂ij :=E[πij]. Since p(π|n) is strongly peaked around π= π̂ for large
n we may expand I(π) around π̂ in the integrals for the mean and the variance. With
∆ij :=πij−π̂ij and using

∑
ijπij =1=

∑
ijπ̂ij we get for the expansion of (1)

I(π) = I(π̂) +
∑
ij

log

(
π̂ij

π̂i+π̂+j

)
∆ij +

∑
ij

∆2
ij

2π̂ij

−
∑

i

∆2
i+

2π̂i+

−
∑
j

∆2
+j

2π̂+j

+O(∆3). (5)

Taking the expectation, the linear term E[∆ij] = 0 drops out. The quadratic terms
E[∆ij∆kl] = Cov(πij,πkl) are the covariance of π under distribution p(π|n) and are pro-
portional to n−1. It can be shown that E[∆3]∼n−2 (see Section 7).

E[I] = I(π̂) +
1

2

∑
ijkl

(
δikδjl
π̂ij

− δik
π̂i+

− δjl
π̂+j

)
Cov(πij, πkl) +O(n−2). (6)

The Kronecker delta δij is 1 for i=j and 0 otherwise. The variance of I in leading order
in n−1 is

Var I(π) = E[(I − E[I])2]
+
= E


∑

ij

log

(
π̂ij

π̂i+π̂+j

)
∆ij

2
 =

=
∑
ijkl

log
π̂ij

π̂i+π̂+j

log
π̂kl

π̂k+π̂+l

Cov(πij, πkl), (7)
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where
+
= means = up to terms of order n−2. So the leading order variance and the leading

and next to leading order mean of the mutual information I(π) can be expressed in terms
of the covariance of π under the posterior distribution p(π|n).

5 The Second Order Dirichlet Distribution

Noninformative priors for p(π) are commonly used if no additional prior information is
available. Many non-informative choices (uniform, Jeffreys’, Haldane’s, Perks’, ... prior)
lead to a Dirichlet posterior distribution:

p(π|n) =
1

N(n)

∏
ij

π
nij−1
ij δ(π++ − 1) with normalization

N(n) =
∫ ∏

ij

π
nij−1
ij δ(π++ − 1)drsπ =

∏
ij Γ(nij)

Γ(n)
, (8)

where Γ is the Gamma function, and nij =n′ij+n
′′
ij, where n′ij are the number of samples

(i,j), and n′′ij comprises prior information (1 for the uniform prior, 1
2

for Jeffreys’ prior, 0
for Haldane’s prior, 1

rs
for Perks’ prior). Mean and covariance of p(π|n) are

π̂ij := E[πij] =
nij

n
, Cov(πij, πkl) =

1

n+ 1
(π̂ijδikδjl − π̂ijπ̂kl) (9)

Inserting this into (6) and (7) we get after some algebra for the mean and variance of the
mutual information I(π) up to terms of order n−2:

E[I] = J +
(r − 1)(s− 1)

2(n+ 1)
+ O(n−2), (10)

Var[I] =
1

n+ 1
(K − J2) + O(n−2), (11)

J :=
∑
ij

nij

n
log

nijn

ni+n+j

= I(π̂), (12)

K :=
∑
ij

nij

n

(
log

nijn

ni+n+j

)2

. (13)

J and K (and L, M , P , Q defined later) depend on π̂ij = nij

n
only, i.e. are O(1) in n.

Strictly speaking we should expand 1
n+1

= 1
n
+O(n−2), i.e. drop the +1, but the exact

expression (9) for the covariance suggests to keep the +1. We compared both versions
with the exact values (from Monte-Carlo simulations) for various parameters π. In most
cases the expansion in 1

n+1
was more accurate, so we suggest to use this variant.
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6 Exact Value for E[I ]

It is possible to get an exact expression for the mean mutual information E[I] under
the Dirichlet distribution. By noting that xlogx= d

dβ
xβ|β=1, (x={πij,πi+,π+j}), one can

replace the logarithms in the last expression of (1) by powers. From (8) we see that

E[(πij)
β]= Γ(nij+β)Γ(n)

Γ(nij)Γ(n+β)
. Taking the derivative and setting β=1 we get

E[πij log πij] =
d

dβ
E[(πij)

β]β=1 =
1

n

∑
ij

nij[ψ(nij + 1)− ψ(n+ 1)].

The ψ function has the following properties (see [AS74] for details)

ψ(z) =
d log Γ(z)

dz
=

Γ′(z)

Γ(z)
, ψ(z + 1) = log z +

1

2z
− 1

12z2
+O(

1

z4
),

ψ(n) = −γ +
n−1∑
k=1

1

k
, ψ(n+ 1

2
) = −γ + 2 log 2 + 2

n∑
k=1

1

2k − 1
. (14)

The value of the Euler constant γ is irrelevant here, since it cancels out. Since the
marginal distributions of πi+ and π+j are also Dirichlet (with parameters ni+ and n+j) we
get similarly

E[πi+ log πi+] =
1

n

∑
i

ni+[ψ(ni+ + 1)− ψ(n+ 1)],

E[π+j log π+j] =
1

n

∑
j

n+j[ψ(n+j + 1)− ψ(n+ 1)].

Inserting this into (1) and rearranging terms we get the exact expression4

E[I] =
1

n

∑
ij

nij[ψ(nij + 1)− ψ(ni+ + 1)− ψ(n+j + 1) + ψ(n+ 1)] (15)

For large sample sizes, ψ(z+1)≈ logz and (15) approaches the frequency estimate I(π̂)
as it should be. Inserting the expansion ψ(z+1)=logz+ 1

2z
+... into (15) we also get the

correction term (r−1)(s−1)
2n

of (3).

The presented method (with some refinements) may also be used to determine an exact
expression for the variance of I(π). All but one term can be expressed in terms of Gamma
functions. The final result after differentiating w.r.t. β1 and β2 can be represented in
terms of ψ and its derivative ψ′. The mixed term E[(πi+)β1(π+j)

β2 ] is more complicated
and involves confluent hypergeometric functions, which limits its practical use [WW93].

4This expression has independently been derived in [WW93].
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7 Generalizations

A systematic expansion of all moments of p(I|n) to arbitrary order in n−1 is possible, but
gets soon quite cumbersome. For the mean we already gave an exact expression (15), so
we concentrate here on the variance, skewness and the kurtosis of p(I|n). The 3rd and 4th

central moments of π under the Dirichlet distribution are

E[∆a∆b∆c] =
2

(n+ 1)(n+ 2)
[2π̂aπ̂bπ̂c − π̂aπ̂bδbc − π̂bπ̂cδca − π̂cπ̂aδab + π̂aδabδbc] (16)

E[∆a∆b∆c∆d] =
1

n2
[3π̂aπ̂bπ̂cπ̂d − π̂cπ̂dπ̂aδab − π̂bπ̂dπ̂aδac − π̂bπ̂cπ̂aδad (17)

−π̂aπ̂dπ̂bδbc − π̂aπ̂cπ̂bδbd − π̂aπ̂bπ̂cδcd

+π̂aπ̂cδabδcd + π̂aπ̂bδacδbd + π̂aπ̂bδadδbc] +O(n−3)

with a = ij, b = kl,... ∈ {1,...,r}×{1,...,s} being double indices, δab = δikδjl,... π̂ij = nij

n
.

Expanding ∆k =(π−π̂)k in E[∆a∆b...] leads to expressions containing E[πaπb...], which
can be computed by a case analysis of all combinations of equal/unequal indices a,b,c,...
using (8). Many terms cancel leading to the above expressions. They allow to compute
the order n−2 term of the variance of I(π). Again, inspection of (16) suggests to expand
in [(n+1)(n+2)]−1, rather than in n−2. The variance in leading and next to leading order
is

Var[I] =
K − J2

n+ 1
+
M + (r − 1)(s− 1)(1

2
− J)−Q

(n+ 1)(n+ 2)
+O(n−3) (18)

M :=
∑
ij

(
1

nij

− 1

ni+

− 1

n+j

+
1

n

)
nij log

nijn

ni+n+j

, (19)

Q := 1−
∑
ij

n2
ij

ni+n+j

. (20)

J and K are defined in (12) and (13). Note that the first term K−J2

n+1
also contains second

order terms when expanded in n−1. The leading order terms for the 3rd and 4th central
moments of p(I|n) are

E[(I − E[I])3] =
2

n2
[2J3 − 3KJ + L] +

3

n2
[K + J2 − P ] +O(n−3),

L :=
∑
ij

nij

n

(
log

nijn

ni+n+j

)3

, P :=
∑

i

nJ2
i+

ni+

+
∑
j

nJ2
+j

n+j

,

Ji+ :=
∑
j

nij

n
log

nijn

ni+n+j

, J+j :=
∑

i

nij

n
log

nijn

ni+n+j

,

E[(I − E[I])4] =
3

n2
[K − J2]2 +O(n−3),

from which the skewness and kurtosis can be obtained by dividing by Var[I]3/2 and Var[I]2

respectively. One can see that the skewness is of order n−1/2 and the kurtosis is 3+O(n−1).
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Significant deviation of the skewness from 0 or the kurtosis from 3 would indicate a non-
Gaussian I. They can be used to get an improved approximation for p(I|n) by making,
for instance, an ansatz

p(I|n) ∝ (1 + b̃I + c̃I2) · p0(I|µ̃, σ̃2)

and fitting the parameters b̃, c̃, µ̃, and σ̃2 to the mean, variance, skewness, and kurtosis
expressions above. p0 is the Normal or Gamma distribution (or any other distribution with
Gaussian limit). From this, quantiles p(I>I∗|n) :=

∫∞
I∗ p(I|n) dI, needed in [KJ96, Kle99],

can be computed. A systematic expansion of arbitrarily high moments to arbitrarily high
order in n−1 leads, in principle, to arbitrarily accurate estimates.

8 Numerics

There are short and fast implementations of ψ. The code of the Gamma function in
[PFTV92], for instance, can be modified to compute the ψ function. For integer and
half-integer values one may create a lookup table from (14). The needed quantities J ,
K, L, M , and Q (depending on n) involve a double sum, P only a single sum, and the
r+s quantities Ji+ and J+j also only a single sum. Hence, the computation time for the
(central) moments is of the same order O(r ·s) as for the point estimate (1). “Exact”
values have been obtained for representative choices of πij, r, s, and n by Monte Carlo
simulation. The πij := xij/x++ are Dirichlet distributed, if each xij follows a Gamma
distribution. See [PFTV92] how to sample from a Gamma distribution. The variance has

been expanded in r·s
n

, so the relative error Var[I]approx−Var[I]exact

Var[I]exact
of the approximation (11)

and (18) are of the order of r·s
n

and ( r·s
n

)2 respectively, if ı and  are dependent. If they are
independent the leading term (11) drops itself down to order n−2 resulting in a reduced
relative accuracy O( r·s

n
) of (18). Comparison with the Monte Carlo values confirmed an

accurracy in the range ( r·s
n

)1...2. The mean (4) is exact. Together with the skewness and
kurtosis we have a good description for the distribution of the mutual information p(I|n)
for not too small sample bin sizes nij. We want to conclude with some notes on useful
accuracy. The hypothetical prior sample sizes n′′ij = {0, 1

rs
,1
2
,1} can all be argued to be

non-informative [GCSR95]. Since the central moments are expansions in n−1, the next
to leading order term can be freely adjusted by adjusting n′′ij ∈ [0...1]. So one may argue
that anything beyond leading order is free to will, and the leading order terms may be
regarded as accurate as we can specify our prior knowledge. On the other hand, exact
expressions have the advantage of being safe against cancellations. For instance, leading
order of E[I] and E[I2] does not suffice to compute the leading order of Var[I].

Acknowledgements

I want to thank Ivo Kwee for valuable discussions and Marco Zaffalon for encouraging me
to investigate this topic. This work was supported by SNF grant 2000-61847.00 to Jürgen
Schmidhuber.

7



References

[AS74] M. Abramowitz and I. A. Stegun, editors. Handbook of mathematical functions.
Dover publications, inc., 1974.

[Bra99] M. Brand. Structure learning in conditional probability models via an entropic
prior and parameter extinction. Neural Computation, 11(5):1155–1182, 1999.

[Bun96] W. Buntine. A guide to the literature on learning probabilistic networks from
data. IEEE Transactions on Knowledge and Data Engineering, 8:195–210,
1996.

[CT91] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley Series
in Telecommunications. John Wiley & Sons, New York, NY, USA, 1991.

[GCSR95] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis.
Chapman, 1995.

[Hec98] D. Heckerman. A tutorial on learning with Bayesian networks. Learnig in
Graphical Models, pages 301–354, 1998.

[KJ96] G. D. Kleiter and R. Jirousek. Learning Bayesian networks under the control
of mutual information. Proceedings of the 6th International Conference on
Information Processing and Management of Uncertainty in Knowledge-Based
Systems (IPMU-1996), pages 985–990, 1996.

[Kle99] G. D. Kleiter. The posterior probability of Bayes nets with strong dependences.
Soft Computing, 3:162–173, 1999.

[PFTV92] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press,
Cambridge, second edition, 1992.

[Soo00] E. S. Soofi. Principal information theoretic approaches. Journal of the Amer-
ican Statistical Association, 95:1349–1353, 2000.

[WW93] D. R. Wolf and D. H. Wolpert. Estimating functions of distributions from A
finite set of samples, part 2: Bayes estimators for mutual information, chi-
squared, covariance and other statistics. Technical Report LANL-LA-UR-93-
833, Los Alamos National Laboratory, 1993. Also Santa Fe Insitute report
SFI-TR-93-07-047.

8


