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Introduction. Bayesian reasoning is a well-studied and successful framework for
inductive inference, which includes hypothesis testing and confirmation, parameter
estimation, sequence prediction, classification, and regression. But standard statis-
tical guidelines for choosing the model class and prior are not always available or
can fail, in particular in complex situations. Finding tailor-made solutions to ev-
ery particular (new) such problem might be possible but is cumbersome and prone
to disagreement or contradiction. What is desirable is a formal general theory for
inductive inference. Solomonoff completed the Bayesian framework by providing a
rigorous, unique, formal, and universal choice for the model class and the prior.
This “universal” Bayesian approach differs significantly from the classical objective
as well as the subjective Bayesian philosophy. I show that universal Bayes (UB)
essentially solves the long-standing induction problem, at least from a philosophical
and statistical perspective. I know well that it is impossible to convince the reader
in two pages about such a far-reaching claim.1 But I expect that my talk will at
least provoke a lively and critical discussion at ISBA’08, and hope it stimulates fur-
ther investigations. All statements below have been mathematically formulated and
rigorously proven. Strangely enough, it is forbidden to give a reference here.

The Model. In the Bayesian framework one has to specify the model class M
and the prior P . From this, all quantities of interest (evidence, posterior, predictive
distribution) can in principle be computed. General guidelines are that M should
be small but large enough to contain the “true” distribution, and P should reflect
one’s prior (subjective) belief or should be non-informative or neutral or objective
if no prior knowledge is available. Solomonoff suggested to include in MU := M
all constructive probability distributions in the sense that there exists an algorithm
that computes the values. This class is small, since it is countable, but large since it
includes all of today’s valid physics theories. It does not contain many of the mod-
els beloved by statisticians, e.g. not even a Bernoulli(θ) process for incomputable θ.

1To the ISBA PC: Peter Grünwald is a respected Bayesian (he gave an invited talk at the
Valencia 8 meeting) and could judge this work.



Nevertheless, UB is optimal in a strong sense even in those environments. Ockham’s
razor joined with Epicurus principle of multiple explanations, suggest to assign a
high prior probability to simple models, and a small one to complex models. The
Kolmogorov complexity of a function is the shortest computer program computing
this function. It is an excellent complexity measure with various optimality prop-
erties, and can be used to define an essentially unique universal prior PU over MU .
MU and PU together define the universal Bayesian inference scheme UB.

What is shown. I consider all fundamental philosophical and statistical problems
around induction I am aware of; more precisely, problems that the well-known ap-
proaches to inductive inference have. I then show that the aforementioned universal
Bayesian theory has none of these problems. This is a significant progress if not
solution to the induction problem.

The problems solved include:

• The zero prior problem: Confirmation of (universal) hypotheses in general,
and the classical Black ravens paradox in particular (Maher’s approach does
not solve the problem).

• Reparametrization invariance: How to extend the symmetry principle from
finite hypothesis classes (all hypotheses are equally likely) to infinite hypothesis
classes (Jeffrey’s prior does not always work).

• Old-evidence problem / Ad-hoc hypotheses: How can old evidence confirm a
theory developed thereafter? How can we spot ad-hoc hypotheses, just tailored
towards the past data?

• Updating problem: A Bayesian needs to choose the hypothesis/model class
before seeing the data, which seldomly reflects scientific practice.

• Many other issues have been addressed: consistency, efficiency, loss bounds,
magic numbers, Carnap’s confirmation theory, Laplace rule, continuous model
classes, how to incorporate prior knowledge, and others.

Critique. Subjective Bayesians will reject objective and hence also the universal
prior, but there is a trick to incorporate prior knowledge into UB that provably
works. Objective Bayesians will complain about the dependence on the underlying
computational model. While this is indeed unfortunate, there are strong arguments
why we can live with this. Practitioners will find the model useless, since it is incom-
putable, but UB provides a gold-standard that approximations and other practical
approaches can, should and have aimed at. (And Philosophers find the math too
tough and few Computer Scientists care about the issue).

Conclusions. In short, universal Bayesian induction solves or avoids or at least
meliorates many if not all foundational and philosophical problems around induction,
but has to be compromised in practice.


