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Abstract. This paper is concerned with the reliable inference of optimal tree-
approximations to the dependency structure of an unknown distribution generating
data. The traditional approach to the problem measures the dependency strength
between random variables by the index called mutual information. In this paper reli-
ability is achieved by Walley’s imprecise Dirichlet model, which generalizes Bayesian
learning with Dirichlet priors. Adopting the imprecise Dirichlet model results in
posterior interval expectation for mutual information, and in a set of plausible trees
consistent with the data. Reliable inference about the actual tree is achieved by
focusing on the substructure common to all the plausible trees. We develop an
exact algorithm that infers the substructure in time O(m4), m being the number
of random variables. The new algorithm is applied to a set of data sampled from
a known distribution. The method is shown to reliably infer edges of the actual
tree even when the data are very scarce, unlike the traditional approach. Finally, we
provide lower and upper credibility limits for mutual information under the imprecise
Dirichlet model. These enable the previous developments to be extended to a full
inferential method for trees.
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1. Introduction

This paper deals with the following problem. We are given a random
sample of n observations, which are jointly categorized according to a
set of m nominal random variables ı, , κ, etc. The dependency between
two variables is measured by the information-theoretic symmetric index
called mutual information [16]. If the chances1 π of all instances defined
by the co-occurrence of ı= i, =j, κ= κ̇, etc., were known, it would be
possible to approximate the distribution by another, for which all the
dependencies are bivariate and can graphically be represented as an
undirected tree T , that is the optimal approximating tree-dependency
distribution (Section 2). This result is due to Chow and Liu [5], who
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use Kullback-Leiber’s divergence [17] to measure the similarity of two
distributions.

Since only a sample is available, the joint distribution π is unknown
and an inferential approach is necessary. Prior uncertainty about the
vector π is described by the imprecise Dirichlet model (IDM) [26],
which results in posterior uncertainty about π, the mutual information
and the tree T (Section 2). In general, this makes a set of trees T
consistent with the data.

Robust inference about T is achieved by identifying the edges com-
mon to all the trees in T , called strong edges (Sections 3). An exact
and an approximate algorithm are developed that detect strong edges
in times O(m4) and O(m3), respectively. The former is applied to a set
of data sampled from a known distribution, and is compared with the
original algorithm from Chow and Liu (Section 5). The new algorithm
is shown to reliably infer partial trees (namely, forests), which quickly
converge to the actual complete tree as the sample grows. Unlike the
traditional approach based on precise probabilities, the new algorithm
avoids drawing wrong edges by suspending the judgement on those for
which the information is poor.

Many technical issues are addressed in the paper to develop the new
algorithm. The identification of strong edges involves solving a problem
on graphs. We develop original exact and approximate algorithms for
this task in Section 3. Robust inference involves computing bounds for
the lower and upper expectation of mutual information under the IDM
(Section 4). We provide conservative (i.e., over-cautious) bounds that
at most make an error of magnitude O(n−2).

These results lead to important extensions, reported in Section 6.
Inference on mutual information is extended by providing lower and
upper credibility limits under the IDM (i.e., intervals that depend on
a given guarantee level). The overall approach extends accordingly.
Furthermore, we discuss alternatives to the strong edges algorithm
proposed in this paper, aiming to exploit the results presented here
in wider contexts.

To our knowledge, literature only reports two other attempts to
infer robust structures of dependence. Kleiter [14] uses approximate
confidence intervals on mutual information2 to measure the dependence
between random variables. Kleiter’s work is different in spirit from ours.
We look for tree structures that are optimal in some sense, by using
systematic and reliable interval approximations to the actual mutual
information. Kleiter focuses on general graphical structures and is not

2 Note that accurate expressions for credible mutual information intervals have
been derived in [9, 11].
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concerned with questions of optimality. In the second case, Bernard
[3] describes a method to build a directed graph from a multivariate
binary database. The method is based on the IDM and Bayesian im-
plicative analysis. The connection with our work is looser here since
the arcs of the graph are interpreted as logical implications rather than
probabilistic dependencies.

2. Background

2.1. Maximum spanning trees

This paper is concerned with trees. In the undirected case, trees are
undirected connected graphs with m nodes and m−1 edges. Undirected
trees are such that for each pair of nodes there is only one path that
connects them [20, Proposition 2]. Directed trees can be constructed
from undirected ones, orienting the arrows in such a way that each
node has at most a single direct predecessor (or parent). When used
to represent dependency structures, the nodes of a tree are regarded
as random variables and the tree itself represents the dependencies
between the variables. It is a well-known result that all the directed
trees that share the same undirected structure represent the same set
of dependencies [24]. This is the reason why the inference of directed
trees from data focuses on recovering the undirected structure; and it
is also the reason why this paper is almost entirely concerned with
undirected trees (called more simply ‘trees’ in the following).

Chow and Liu [5] address the problem of approximating the actual
pattern of dependencies of a distribution by an undirected tree. Their
work is based on mutual information. Given two random variables
ı,  with values in {1,...,dı} and {1,...,d}, respectively, the mutual
information is defined as

I(π) =
dı∑

i=1

d∑

j=1

πij log
πij

πi+π+j
,

where πij is the actual chance of (i,j), and πi+ :=
∑

jπij and π+j :=
∑

iπij

are marginal chances. Chow and Liu’s algorithm works by computing
the mutual information for all the pairs of random variables. These
values are used as edge weights in a fully connected graph. The output
of the algorithm is a tree for which the sum of the edge weights is
maximum. In the literature of graph algorithms, the general version of
the last problem is called the maximum spanning tree [20, p. 271]. Its
construction takes O(m2) time. This is also the computational com-
plexity of the above procedure. The tree constructed as above is shown
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to be an optimal tree-approximation to the actual dependencies when
the similarity of two distributions is measured by Kullback-Leiber’s
divergence [17].

Chow and Liu extend their procedure to the inference of trees from
data by replacing the mutual information with the sample mutual in-
formation (or empirical mutual information). This approximates the
actual mutual information by using, in the expression for mutual in-
formation, the sample relative frequencies instead of the chances πij ,
which are typically unknown in practice.

2.2. Robust inference

Using empirical approximations for unknown quantities, as described in
the previous section, can lead to fragile models. Fragile models produce
quite different outputs depending on the random fluctuations involved
in the generation of the sample.

Reliability can be achieved by robust inferential tools. In this paper
we consider the imprecise Dirichlet model [26, 4]. The IDM is a model of
inference for multivariate categorical data. It models prior uncertainty
with a set of Dirichlet prior densities and does posterior inference by
combining them with the likelihood function (see Section 4.1 for de-
tails). By requiring very weak prior assumptions, the IDM appears to
be a very robust inferential tool.

The IDM leads to lower and upper expectations for mutual informa-
tion (and, possibly, lower and upper credibility limits), i.e., to intervals.
This is a complication for the discovery of tree structures from data.
In fact, the maximum spanning tree problem assumes that the edge
weights can be totally ordered. Now, multiple values of mutual infor-
mation are generally consistent with the given intervals. In general, this
prevents us from having a total order on the edges: not all the pairs of
edges can be compared.

The generalization of Chow and Liu’s approach is achieved via the
definition of more general graphs that can deal with multiple edge
weights. This is done in the next section.

3. Set-based weighted graphs

Consider an undirected fully connected graph Gw =<V,E>, with m=
|V | nodes, and where E denotes the set of edges [(v,v) /∈E for each
v∈V ]. Gw is also a weighted graph, in the sense that each edge e∈E
is associated with the real number w(e), which in this paper will be a
value of mutual information. Consider a set of graphs with the same
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topological structure but different weight functions w in a non-empty
set W : G= {Gw : w∈W}. We call G a set-based weighted graph. Note
that G can be thought of also as a single graph G, on each edge e of
which there is a set of real weights: {w(e) :w∈W}. Yet, for the latter
view to be equivalent to the former, one should pay attention to the
fact that there could be logical dependencies between weights of two
different sets; in other words, it could be the case that not all the pairs
of weights in the cartesian product of two sets appear in a single graph
of G.

In order to extend the notion of maximum spanning tree to set-
based weighted graphs, we define the solution of the maximum spanning
tree problem generalized to set-based weighted graphs, as the set T of
maximum spanning trees originated by the graphs in G.

Recall that Kruskal’s algorithm only needs a total order on the edges
to build a unique maximum spanning tree [15]. Therefore, in order to
focus on T , we can equivalently focus on the set OT of total orders that
are consistent with the graphs in G. In the following we find it more
convenient not to directly deal with OT . Rather, we first show how to
construct a partial order that is consistent with all the total orders in
OT , and then we consider all the total orders that extend the partial
order. Initially, we need the following definition.

DEFINITION 1. We say that edge e dominates edge e′ if w(e)>w(e′)
for all w∈W .

By applying the above definition to all the distinct pairs of edges in G
we obtain the sought partial order. To see that the order is only partial
in general, consider the example graph in Figure 1. We have defined
such a graph G by drawing the graphical structure and specifying set-
based weights by placing intervals on the edges in a separate way (i.e.,
assuming logical independency between different intervals). That is, the
example graph is equivalent to the set G of graphs obtained by choosing
real weights within the intervals in all the possible ways. Now observe
that the intervals for the edges (A,B) and (B,C) overlap, so that there
is no dominance in either direction. Figure 2 shows the overall partial
order on the edges for the graph in Figure 1.

Now we consider the set O of all the total orders that extend the
partial order induced by Definition 1. Of course, O includes OT . They
coincide if for each total order in O, there is a graph Gw∈G in which
w(e) > w(e′) if e dominates e′ in the given total order. This is the
case, for example, when mutual information is separately specified via
intervals on the edges.
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Figure 1. An example set-based weighted graph. The sets for the edges are specified
separately by intervals that in two cases degenerate to real numbers.

   

(A,B)   (D,C)   (A,C)   (B,D)   

(A,D)   

(B,C)   

Figure 2. The partial order on the edges of the graph in the preceding figure. Here
an arrow from e to e′ means that e dominates e′.

3.1. Exact detection of strong edges

We call strong edges the edges of G that are common to all the trees in
T . Identifying the strong edges allows us to robustly infer dependencies
that belong to the unknown optimal approximating trees. The following
theorem is the central tool for the identification.

THEOREM 2. Assume O=OT . An edge e of G is strong if and only
if in each simple3 cycle that contains e there is an edge e′ dominated
by e.

Proof.
(⇐) By contradiction, assume that there is a graph Gw∈G for which

an optimal tree T does not contain e. By adding e to T we create a
cycle [20, Proposition 2]. By hypothesis, in such a cycle there must exist
an edge e′ dominated by e, so w(e)>w(e′). Removing e′, we obtain a
new tree that improves upon T , so that T cannot be optimal for Gw.

(⇒) By contradiction, assume that there is a cycle C in G where e
does not dominate any edge. Then there is a total order in O in which
e is dominated by any other edge e′ in C. Since O=OT , there must

3 This is a cycle in which the nodes are all different. In the following we will
simply refer to simple cycles as cycles.

RobustTree.tex; 24/08/2005; 16:46; p.6



7

also exist a related graph Gw for which w(e)≤w(e′) for any edge e′
in C. Call T the related tree. By removing e from T we create two
subtrees, say T ′ and T ′′. One of these can possibly be a degenerate tree
composed by a single node. Now consider that there must be an edge
eC of C that connects a node of T ′ with one of T ′′. If there was not,
there would be no way to start from an endpoint of e in T ′ and reach
the other endpoint, because all the paths would be confined within T ′.
The graph composed by T ′, T ′′ and eC has m−1 edges, spans all the
nodes of G, and therefore it is a tree, say T ∗ [20, Proposition 2]. If
w(e) < w(eC), T ∗ improves upon T , so that T cannot be optimal for
Gw. If w(e)=w(eC), both T ∗ and T are optimal, but their intersection
does not contain e, so e /∈T . ¤

Theorem 2 directly leads to a procedure that determines whether
or not a given edge e is strong. It suffices to consider the graph G′
obtained from G by removing e and the edges that e dominates (see
the Procedure ‘DetectStrongEdges’ in Table III). Edge e is strong if
and only if its endpoints are not connected in G′. By applying this
procedure to the graph in Figure 1, we conclude that only (A,B) is
strong.

Note that Theorem 2 assumes that O coincides with OT . If this
failed to be true, OT ⊂O would still hold, making Theorem 2 work
with a set of trees larger than T , eventually leading to an excess of
caution: the edges determined by the above procedure would anyway
be strong, but there might be strong edges that the procedure would
not be able to determine.

As for computational considerations, note that testing whether or
not two nodes are connected in a graph demands O(m2) time. Re-
peating the test for all the edges e ∈ E, we have the computational
complexity of the overall procedure, O(m4).

3.2. Approximate detection of strong edges

This section presents a procedure that approximately detects the strong
edges, reducing the complexity to O(m3) with respect to the exact
procedure given in Section 3.1.

Consider the algorithm outlined in a pseudo programming language
in Table I. It takes as input a fully connected graph G =< V,E >. In
the algorithm, a tree with a number of nodes in {2,...,m−1} is called
subtree.

The following proposition shows that the algorithm in Table I re-
turns only strong edges.

PROPOSITION 1. SE is a subset of the strong edges of G.
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Table I. Approximate procedure to detect strong edges.

1. Let SE =∅;
2. for each v∈V

a) if there is a node v′ ∈V such that (v,v′) /∈SE and it dominates (v,v′′) for
each v′′∈V , v′′ 6=v′ then

i) add (v,v′) to SE;

3. if there is a subtree in SE then

a) make it the current subtree;

b) consider the set of edges E′⊆E with one endpoint in the nodes of the current
subtree and the other outside;

c) if there is an edge e′∈E′ that dominates all the other edges in E′ then

i) add e′ to SE and to the current subtree;

ii) go to 3b;

d) else

i) if there is another subtree in SE not considered yet then

A) go to 3a;

ii) else output SE.

Proof.
Consider the first possible insertion in Step 2(a)i. The cycles that

encompass (v,v′) must pass through the set of edges {(v,v′′) : v′′ ∈
V,v′′ 6= v′}. Since (v,v′) dominates all the edges in the preceding set,
for each cycle passing through (v,v′) there is an edge in the cycle that
is dominated by (v,v′), so that (v,v′) is strong, by Theorem 2.

The algorithm can insert an edge in SE also in Step 3(c)i. Recall
that each subtree is a connected acyclic graph. It is clear that any cycle
that contains e′ must pass through an edge e′′ that has one endpoint
in the nodes of the subtree and the other outside. But e′ dominates e′′
by Step 3c. This holds for all the cycles, so e′ is strong by Theorem 2.

¤

The logic of the algorithm in Table I is to move from subtrees made
of strong edges to adjacent nodes, in order to detect the strong edges of
a graph. This policy does not allow all the strong edges to be determined
in general. For example, the approximate algorithm cannot determine
that the edge (A,B) in Figure 1 is strong.
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The heuristic policy implements a trade-off between computational
complexity and the capability to fully detect the strong edges. This
choice does not seem critical to the specific extent of discovering tree-
dependency structures. In fact, the knowledge of the actual mutual
information increases with the sample size, becoming a number in the
limit. It is easy to check that in these conditions the exact and the
approximate procedure produce the same set of edges.

Computational complexity. The assumption behind the following anal-
ysis is that the comparison of two edges can be done in constant time.
In this case, given a set E′ of edges, there is a procedure that determines
in time O(|E′|) if there is an edge e′∈E′ that dominates all the others.
The first step of the procedure selects an edge that is candidate to be
dominant. This is made by doing pairwise comparisons of edges and
by always discarding the non-dominant edge (or edges) in the compar-
ison. After at most |E′|−1 comparisons, we know whether there is a
candidate or not. If there is, the second step of the procedure compares
such candidate e′ with all the other edges, deciding if e′ dominates all
the others. This requires |E′|−1 comparisons. The two steps of the
procedure take O(|E′|) time.

Let us now focus on the algorithm in Table I. The loop 2 is repeated
m=|V | times. Each time the test 2a decides whether there is a dominant
edge out of m−1 edges (each node is connected to all the others). By
the previous result, such task takes O(m) time. Then the loop requires
O(m2) time.

Now consider the two nested loops made by the instructions 3a, 3b,
3(c)ii, and 3(d)iA. Each time the instruction of jump 3(c)ii is executed,
a new edge has been added to SE. Each time 3(d)iA is executed, a
new subtree is considered. Since SE can have m−1 edges at most and
m is also an upper bound on the number of different subtrees, the two
loops can jointly require 2m−1 iterations at most. Each such iteration
executes the test 3c. By using m2 as an upper bound on |E′|, we need
O(m2) time to detect whether the dominant edge exists. The overall
time required by the loops is O(m3). This is also the computational
complexity of the entire procedure.

4. Robust comparison of edges

So far we have focused on the detection of strong edges, taking for
granted that there exists a method to partially compare edges based on
imprecise knowledge of mutual information. We provide such a method
in the following sections. We will first present a formal introduction to
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the imprecise Dirichlet model in Section 4.1. Section 4.2 will make a
first step by computing robust estimates for the entropy. These will be
used in Section 4.3 to derive robust estimates of mutual information.
Finally, the method to compare edges will be given in Section 4.4.

4.1. The imprecise Dirichlet model

Random i.i.d. processes. We consider a discrete random variable ı
and a related i.i.d. random process with samples i ∈ {1,...,d} drawn
with probability πi. The chances π form a probability distribution, i.e.,
π∈∆:={x∈IRd : xi≥0∀i, x+=1}, where we have used the abbreviation
x+ :=

∑d
i=1xi. The likelihood of a specific data set D =(i1,...,in) with

ni samples i and total sample size n = n+ =
∑

ini is p(D|π)∝∏
iπ

ni
i .

Quantities of interest are, for instance, the entropyH(π)=−∑
iπilogπi,

where log denotes the natural logarithm. The chances πi are usually
unknown and have to be estimated from the data.

Second order p(oste)rior. In the Bayesian approach one models the
initial uncertainty in π by a (second order) prior distribution p(π)
with domain π ∈ ∆. The Dirichlet priors p(π) ∝ ∏

iπ
n′i−1
i , where n′i

comprises prior information, represent a large class of priors. n′i may
be interpreted as (possibly fractional) “virtual” sample numbers. High
prior belief in i can be modelled by large n′i. It is convenient to write
n′i =s·ti with s :=n′+, hence t∈∆. Examples for s are 0 for Haldane’s
prior [8], 1 for Perks’ prior [22], d

2 for Jeffreys’ prior [12], and d for
Bayes-Laplace’s uniform prior [7] (all with ti= 1

d). These are also called
noninformative priors. From the prior and the data likelihood one can
determine the posterior p(π|D)=p(π|n)∝∏

iπ
ni+sti−1
i . The expected

value or mean ui :=Et[πi]= ni+sti
n+s is often used for estimating πi (the

accuracy may be obtained from the covariance of π). The expected
entropy is Et[H]=

∫
∆H(π)p(π|n)dπ. An approximate solution can be

obtained by exchanging E with H (exact only for linear functions):
Et[H(π)]≈H(Et[π]) =H(u). The approximation error is typically of
the order 1

n . In [27, 9, 11] exact expressions have been obtained:

Et[H] = H(u) :=
∑

i

h(ui) with (1)

h(u) = u·[ψ(n + s + 1)− ψ((n + s)u + 1)],

where ψ(x)=d logΓ(x)/dx is the logarithmic derivative of the Gamma
function. There are fast implementations of ψ and its derivatives and
exact expressions for integer and half-integer arguments (see Appendix A).
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Definition of the imprecise Dirichlet model. There are several prob-
lems with noninformative priors. First, the inference generally depends
on the arbitrary definition of the sample space. Second, they assume
exact prior knowledge p(π). The solution to the second problem is
to model our ignorance by considering sets of priors p(π), a model
that is part of the wider theory of imprecise4 probabilities [25]. The
specific imprecise Dirichlet model [26] considers the set of all5 t∈∆,
i.e., {p(π) :t∈∆}, which solves also the first problem. Walley suggests
to fix the hyperparameter s somewhere in the interval [1,2]. A set of
priors results in a set of posteriors, set of expected values, etc. For real-
valued quantities like the expected entropy Et[H] the sets are typically
intervals:

Et[H] ∈ [min
t∈∆

Et[H] , max
t∈∆

Et[H]] =: [H, H].

In the next section we derive approximations for

H = max
t∈∆

H(u) and H = min
t∈∆

H(u).

One can show that h(u) is strictly concave (see Appendix A), i.e.,
h′′(u)<0 and that h′′ is monotone increasing (h′′′>0), which we exploit
in the following. The results for the entropy serve as building blocks to
derive similar results for the needed mutual information. We define the
general correspondence

u···i =
ni + st···i

n + s
, where ... can be various superscripts.

4.2. Robust entropy estimates

Taylor expansion of H(u). In the following we derive reliable approx-
imations for H and H. If n is not too small these approximations are
close to the exact values. More precisely, the length of interval [H,H]

4 In the following we will avoid the term imprecise in favor of robust, since
expressions like “exact imprecise intervals” sound confusing.

5 Strictly speaking, ∆ should be the open simplex [26], since p(π) is improper
for t on the boundary of ∆. For simplicity we assume that, if necessary, considered
functions of t can be, and are, continuously extended to the boundary of ∆, so that,
for instance, minima and maxima exist. All considerations can straightforwardly,
but cumbersomely, be rewritten in terms of an open simplex. Note that open/closed
∆ result in open/closed robust intervals, the difference being numerically/practically
irrelevant.
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is O(σ), where σ := s
n+s , while the approximations will differ from H

and H by at most O(σ2). Let t∗i ∈ [0,1] and u∗i = ni+st∗i
n+s . This implies

ui − u∗i = σ ·(ti − t∗i ) and |ui − u∗i | = σ|ti − t∗i | ≤ σ. (2)

Hence we may Taylor-expand H(u) around u∗. H is approximately
linear in u and hence in t. A linear function on a simplex assumes its
extreme values at the vertices of the simplex. The most natural point
for expansion is t∗i = 1

d in the center of ∆. For this choice the bound (2)
and most of the following bounds can be improved to σ Ã σ|1− 1

d |.
Other, even data-dependent choices like t∗i = ni

n =u∗i , are possible. The
only property we use in the following is that6 argmaxiu

∗
i =argmaxini

and argminiu
∗
i =argminini. We have

H(u) =

H0=O(1)︷ ︸︸ ︷
H(u∗) +

H1=O(σ)︷ ︸︸ ︷∑

i

h′(u∗i )(ui − u∗i )+

HR=O(σ2)︷ ︸︸ ︷
1
2

∑

i

h′′(ǔi)(ui − u∗i )
2 .

For suitable ǔi between u∗i and ui this expansion is exact (HR is the
exact remainder).

Approximation of H. Inserting (2) into H1 we get

H1 =
∑

i

h′(u∗i )(ui − u∗i ) = σ
∑

i

h′(u∗i )(ti − t∗i ).

Ignoring the O(σ2) remainder HR, in order to maximize H(u) we only
have to maximize

∑
ih
′(u∗i )ti (the only t-dependent part). A linear

function on ∆ is maximized by setting the ti component with largest
coefficient to 1. Due to concavity of h, h′(u∗i ) is largest for the smallest
u∗i , i.e., for smallest ni, i.e., for i= i :=argminini. Hence H1 =H1(u),
where ti := δi,i and u follows from t by the general correspondence.
H0+H1 is an O(σ2) approximation of H. Consider now the remainder
HR:

HR = 1
2σ2

∑

i

h′′(ǔi)|ti − t∗i |2 ≤ 0 =: Hub
R

due to h′′<0. This bound cannot be improved in general, since HR=0 is
attained for ti=t∗i . Non-positivity of HR shows that H0+H1 is an upper
bound of H. Since H ≥H(u) for all u, H(u) in particular is a lower
bound on H, and moreover also an O(σ2) approximation. Together we
have

H(u)︸ ︷︷ ︸
H−O(σ2)

≤ H ≤ H0 + H1︸ ︷︷ ︸
H+O(σ2)

.

6 argminini is the i for which ni is minimal. Ties can be broken arbitrarily.
Kronecker’s δi,j =1 for i=j and δi,j =0 for i 6=j.
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For robust estimates, the upper bound is, of course, more interesting.

Approximation of H. The determination of H1 follows the same scheme
as for H1. We get H1 =H1(u) with ti := δi,i and i :=argmaxini. Using
|ti−t∗i |≤1, ǔi≥ ni

n+s , h′′<0 and that h′′ is monotone increasing (h′′′>0)
we get the following lower bound on the remainder HR:

HR = 1
2σ2

∑

i

h′′(ǔi)|ti − t∗i |2 ≥ 1
2σ2

∑

i

h′′( ni
n+s) =: H lb

R .

Putting everything together we have

H0 + H1︸ ︷︷ ︸
H−O(σ2)

+ H lb
R︸︷︷︸

O(σ2)

≤ H ≤ H(u)︸ ︷︷ ︸
H+O(σ2)

.

For robust estimates, the lower bound is more interesting. General
approximation techniques for other quantities of interest are developed
in [10]. Exact expressions for [H,H] are also derived there.

4.3. Robust estimates for mutual information

Mutual information. Here we generalize the bounds for the entropy
found in Section 4.2 to the mutual information of two random variables
ı and  that take values in {1,...,dı} and {1,...,d}, respectively. Consider
an i.i.d. random process with samples (i,j)∈{1,...,dı}×{1,...,d} drawn
with joint probability πij , where π∈∆:={x∈IRdı×d : xij≥0∀ij, x++=
1}. We are interested in the mutual information of ı and :

I(π) =
dı∑

i=1

d∑

j=1

πij log
πij

πi+π+j

=
∑

ij

πij log πij −
∑

i

πi+ log πi+ −
∑

j

π+j log π+j

= H(πı+) +H(π+)−H(πı).

πi+ =
∑

jπij and π+j =
∑

iπij are marginal probabilities. Again, we
assume a Dirichlet prior over πı, which leads to a Dirichlet posterior
p(πı|n)∝∏

ijπ
nij+stij−1
ij . The expected value of πij is

uij := Et[πij ] =
nij + stij

n + s
.

The marginals πi+ and π+j are also Dirichlet with expectation ui+ and
u+j . The expected mutual information Et[I] can, hence, be expressed
in terms of the expectations of three entropies

I(u) := H(uı+) + H(u+)−H(uı) = Hleft + Hright −Hjoint
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=
∑

i

h(ui+) +
∑

j

h(u+j)−
∑

ij

h(uij)

where here and in the following we index quantities with joint, left, and
right to denote to which distribution the quantity refers. Using (1) we
get Et[I]=I(u).

Crude bounds for I(u). Estimates for the IDM interval [mint∈∆Et[I],
maxt∈∆Et[I]] can be obtained by minimizing/maximizing I(u). A crude
upper bound can be obtained as

I := max
t∈∆

I(u) = max[Hleft + Hright −Hjoint] ≤

maxHleft + maxHright −minHjoint = H left + Hright −Hjoint,

where upper and lower bounds to H left, Hright and Hjoint have been
derived in Section 4.2. Similarly I≥H left+Hright−Hjoint. The prob-
lem with these bounds is that, although good in some cases, they can
become arbitrarily crude. In the following we derive bounds similar to
the entropy case with O(σ2) accuracy.

O(σ2) bounds for I(u). We expand I(u) around u∗ with a constant
term I0, a term I1 linear in σ and an exact O(σ2) remainder.

I(u) = I0 + I1 + IR, I0 = H0left + H0right −H0joint = I(u∗),

I1 = H1left + H1right −H1joint

=
∑

i

h′(u∗i+)(ui+−u∗i+) +
∑

j

h′(u∗+j)(u+j−u∗+j)−
∑

ij

h′(u∗ij)(uij−u∗ij)

= σ
∑

ij

gij(tij − t∗ij) with gij := h′(u∗i+) + h′(u∗+j)− h′(u∗ij).

I1 is maximal if
∑

ijgijtij is maximal. This is maximal if tij = tij :=
δ
(ij),(ij)

and (ij):=argmax(ij)gij , hence I1=I1(u), and I0+I1 and I(u)

being O(σ2) approximations to I. Replacing all max’s by min’s we get
I0+I1 and I(u) as O(σ2) approximations to I. To get robust bounds
we need bounds on IR =HR left+HR right−HR joint.

IR ≤ max
u,ǔ

[HR left + HR right −HR joint]

≤ Hub
R left + Hub

R right −H lb
R joint = −H lb

R joint =: Iub
R .

IR ≥ min
u,ǔ

[HR left+HR right−HR joint]

≥ H lb
R left+H lb

R right−Hub
R joint = H lb

R left+H lb
R right =: I lb

R .
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Note that for HR we can tolerate such a crude approximation, since
HR (and H

ub/lb
R ) are small O(σ2) corrections. In summary we have

I−O(σ2)︷ ︸︸ ︷
I(u) ≤ I ≤

I+O(σ2)︷ ︸︸ ︷
I0 + I1 +

O(σ2)︷︸︸︷
Iub
R and

I0 + I1︸ ︷︷ ︸
I−O(σ2)

+ I lb
R︸︷︷︸

O(σ2)

≤ I ≤ I(u)︸ ︷︷ ︸
I+O(σ2)

.

4.4. Comparing edges

For two edges a and b with no common vertex, the reliable interval
containing [I,I] of Section 4.3 can be used separately for a and b. For
edges with a common vertex the results of Section 4.3 may still be used,
but they may no longer be reliable or good from a global perspective.
Consider the subgraph ı

a
—

b
—κ, joint probabilities πıκ of vertices ı, ,

κ, a Dirichlet posterior
∏

ijκ̇π
nijκ̇+stijκ̇−1
ijκ̇ , uijκ̇=Et[πijκ̇]= nijκ̇+stijκ̇

n+s , etc.
The expected mutual information between node ı and  is Ia := I(ua)
and Ib :=I(ub) between  and κ, where ua

ij =uij+ and ub
jκ̇ =u+jκ̇. The

weight of edge a is wa =[min Ia,max Ia], where min and max are w.r.t.
taij :=tij+. Similarly, the weight of edge b is wb =[min Ib,max Ib], where
min and max is w.r.t. tbjκ̇ :=t+jκ̇. The results of Section 4.3 can be used
to determine the intervals. Unfortunately this procedure neglects the
constraint ta+j = tbj+. The correct treatment is to define wa larger than
wb as follows:

[wa > wb] ⇔ [Ia > Ib for all tıκ ∈ ∆] ⇔ min
t

[Ia − Ib] > 0.

The crude approximation min[Ia−Ib]≥minIa−maxIb gives back the
above naive interval comparison procedure. This shows that the naive
procedure is reliable, but the approximation may be crude. For good
estimates we proceed similar as in Section 4.3 to get O(σ2) approxima-
tions and bounds on Ia−Ib.

min[Ia−Ib]−O(σ2)︷ ︸︸ ︷
Ia
0−Ib

0+Ia
1 (u)−Ib

1(u)+

O(σ2)︷ ︸︸ ︷
Ia.lb
R − Ib.ub

R ≤ min
t∈∆

[Ia−Ib] ≤
min[Ia−Ib]+O(σ2)︷ ︸︸ ︷
Ia(u)−Ib(u)

(ijκ̇) := arg min
ijκ̇

[h′(u∗i++)− h′(u∗ij+)− h′(u∗++κ̇) + h′(u∗+jκ̇)]

= arg(ijκ̇){min
j

[min
i

(h′(u∗i++)− h′(u∗ij+)) + min
κ̇

(h′(u∗+jκ̇)− h′(u∗++κ̇))]}
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and tijκ̇ := δ(ijκ̇),(ijκ̇), and, for instance, choosing t∗ijκ̇ = 1
dıddκ

or t∗ijκ̇ =
nijκ̇

n =u∗ijκ̇. The second representation for (ijκ̇) shows that (ijκ̇), and
hence the bounds, can be computed in time O(d2) rather than O(d3).
Note that mini and minκ̇ determine i and κ̇ as a function of j, then
minj determines j, which can be used to get i = i(j) and κ̇ = κ̇(j).
This lower bound on min[Ia−Ib] is used in the next section to robustly
compare weights.

5. An example

This section illustrates the application of the developed methodology
to an artificial problem.

 
Care of 

environment 

Organic 
farming 

Low 
consumptions 

Care of 
animals 

Low 
pollution 

Sustainable 
growth 

Vegetarianism 

Healthy 
lifestyle 

Figure 3. A graph that models the dependencies between the random variables of
an artificial domain.

The graph in Figure 3 models the domain by relationships of di-
rect dependency, represented by directed arcs. Each node represents a
binary (yes-no) variable that is associated with the probability distri-
bution of the variable itself conditional on the state of the parent node.
The distributions are given in Table II.

A model made by the graph and the probability tables, as the one
above, is called Bayesian network [21]. We used the Bayesian network
to sample units from the joint distribution of the variables in the graph.
Each unit is a vector that represents a joint instance of all the variables.
By the generated data set we can test our algorithm for the discovery
of strong edges, and compare it with Chow and Liu’s algorithm.

The ‘strong edges algorithm’ is summarized for clarity in Table III.
The main procedure is called ‘DetectStrongEdges’ and it implements
the exact procedure from Section 3.1. The comparison of edges needed
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Table II. Conditional probability distributions for the variables of the example in
Figure 3. (The distribution of ‘Care of environment’ is represented in this table though
it is actually unconditional.)

Variable P(variable=yes|parent=yes) P(variable=yes|parent=no)

Care of environment 0.366 0.366

Low consumptions 0.959 0.460

Organic farming 0.950 0.450

Care of animals 0.801 0.332

Low pollution 1.000 0.208

Sustainable growth 0.951 0.200

Vegetarianism 0.993 0.460

Healthy lifestyle 0.920 0.300

by ‘DetectStrongEdges’ is implemented by the subprocedure ‘TestDom-
inance’. The test 2(a)vii there exploits the bounds defined in Section 4.3
(we have added superscripts a and b to the terms of the bounds to make
it clear to which edge they refer). For edges with a common node, the
test 2(b)vi exploits the bounds given in Section 4.4. For the dominance
tests we have used the value 1 for the IDM hyper-parameter s (see
Section 4.1). We have also chosen t∗ij = 1

dıd
, t∗ijκ̇ = 1

dıddκ
, etc.

Care of 
environment 

Organic 
farming 

Low 
consumptions 

Care of 
animals 

Low 
pollution 

Sustainable 
growth 

Vegetarianism 

Healthy 
lifestyle 
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environment 

Organic 
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consumptions 

Care of 
animals 

Low 
pollution 

Sustainable 
growth 

Vegetarianism 

Healthy 
lifestyle 

a. Strong edges algorithm b. Chow and Liu’s algorithm

Figure 4. The outputs of the two algorithms after reading 20 instances.
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Table III. A summary view of the strong edges algorithm. Remember that σ= s
n+s

, n

is the sample size, u···= n···+t···
n+s

denotes the expectation of a certain chance, u∗··· the
expectation taken for a specific value t∗··· of hyper-parameter t···; finally, ψ denotes
the ψ-function, described in Appendix A.

1. Procedure DetectStrongEdges(a set-based weighted graph G)

a) forest:=∅;
b) for each edge e∈E

i) consider G′ obtained from G dropping e and the edges it dominates;

ii) if the endpoints of e are not connected in G′, add e to forest;

c) return forest.

2. Procedure TestDominance(edge a, edge b)

a) if a and b do not share nodes then (i.e., the edges are ı
a
— and ı̃

b
— ̃)

i) Ia
0 :=

∑
i
h(u∗i+)+

∑
j
h(u∗+j)−

∑
ij

h(u∗ij);

ii) Ib
0 :=

∑
ĩ
h(u∗

ĩ+
)+

∑
j̃
h(u∗

+j̃
)−∑

ĩj̃
h(u∗

ĩj̃
);

iii) Ia
1 := σ minij [h

′(u∗i+)+h′(u∗+j)−h′(u∗ij)]
−σ

∑
ij

t∗ij [h
′(u∗i+)+h′(u∗+j)−h′(u∗ij)];

iv) Ib
1 := σ maxĩj̃ [h

′(u∗
ĩ+

)+h′(u∗
+j̃

)−h′(u∗
ĩj̃

)]

−σ
∑

ĩj̃
t∗
ĩj̃

[h′(u∗
ĩ+

)+h′(u∗
+j̃

)−h′(u∗
ĩj̃

)];

v) Ia.lb
R := 1

2
σ2

∑
i
h′′( ni+

n+s
)+ 1

2
σ2

∑
j
h′′( n+j

n+s
);

vi) Ib.ub
R :=− 1

2
σ2

∑
ĩj̃

h′′(
n

ĩj̃

n+s
);

vii) if Ia
0−Ib

0+Ia
1−Ib

1+Ia.lb
R −Ib.ub

R >0, return ‘true’;

b) else (i.e., the edges are ı
a
—

b
—κ)

i) Ia
0 :=

∑
i
h(u∗i++)+

∑
j
h(u∗+j+)−∑

ij
h(u∗ij+);

ii) Ib
0 :=

∑
j
h(u∗+j+)+

∑
κ̇
h(u∗++κ̇)−∑

jκ̇
h(u∗+jκ̇);

iii) Ia
1−Ib

1 :=σ minj [mini(h
′(u∗i++)−h′(u∗ij+))+minκ̇(h′(u∗+jκ̇)−h′(u∗++κ̇))]

−σ
∑

j
[dκ

∑
i
t∗ijκ̇(h′(u∗i++)−h′(u∗ij+))+dı

∑
κ̇
t∗ijκ̇(h′(u∗+jκ̇)−h′(u∗++κ̇))];

iv) Ia.lb
R := 1

2
σ2

∑
i
h′′(ni++

n+s
)+ 1

2
σ2

∑
j
h′′(n+j+

n+s
);

v) Ib.ub
R :=− 1

2
σ2

∑
jκ̇

h′′(
n+jκ̇

n+s
);

vi) if Ia
0−Ib

0+Ia
1−Ib

1+Ia.lb
R −Ib.ub

R >0, return ‘true’;

c) return ‘false’.

3. Procedure h(u) return uψ(n+s+1)−uψ(nu+su+1);

4. Procedure h′(u) return ψ(n+s+1)−ψ(nu+su+1)−u(n+s)ψ′(nu+su+1);

5. Procedure h′′(u) return −2(n+s)ψ′(nu+su+1)−u(n+s)2ψ′′(nu+su+1);
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a. Strong edges algorithm b. Chow and Liu’s algorithm

Figure 5. The outputs of the two algorithms after reading 30 instances.
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a. Strong edges algorithm b. Chow and Liu’s algorithm

Figure 6. The outputs of the two algorithms after reading 40 instances.
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Figure 7. The outputs of the two algorithms after reading 50 instances.

Figures 4 to 7 show the progression of the models discovered by the
two algorithms as more instances are read. The strong edges algorithm
appears to behave more reliably than Chow and Liu’s algorithm. It
suspends the judgment on ambiguous cases and outputs forests. These
are always composed of edges of the actual graph. Chow and Liu’s
algorithm always produces complete trees, but these misrepresent the
actual tree until 50 instances have been read. At this point Chow and
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Liu’s algorithm detects the right tree. The cautious approach imple-
mented by the strong edges algorithm needs other 20 instances to
produce the same complete tree.

6. Extensions

The methodology developed so far leads naturally to other possible ex-
tensions of Chow and Liu’s approach. We briefly report on two different
types of extensions in the following.

Section 6.1 discusses the question of tree-dependency structures vs.
forest-dependency structures under several respects. The discussion fo-
cuses both on algorithms that are alternative to the strong edges one,
and that aim at yielding trees, and on the other hand on algorithms
that emphasize the inference of forest-dependency structures from data.

In Section 6.2 we extend the computation of lower and upper expec-
tations of mutual information to the computation of robust credible
limits. These are intervals for mutual information obtained from the
IDM that contain the actual value with given probability. This result
is useful in order to produce dependency structures that provide the
user with a given guarantee level. In principle the extension to credible
limits can be applied both to the computation of strong edges and to
that of robust trees, as defined in the next section, although the results
of Sections 6.1 and 6.2 are actually independent, in the sense that one
does not need to use them together.

6.1. Forests vs. Trees

It may be useful to critically re-consider Chow and Liu’s algorithm
in the following respect. Chow and Liu’s algorithm yields always a
tree by construction, and hence this happens also when the actual
(but usually unknown) dependency structure is a forest. This is a
questionable characteristic of the algorithm, as in the mentioned case
yielding a tree seems to be hard to justify. There are indeed approaches
in the literature of precise probability that suppress the edges of a
maximum spanning tree for which the mutual information is not large
enough, yielding a forest. This is typically implemented using a nu-
merical threshold ε, sometimes computed via statistical tests. Such ap-
proaches can be used immediately also within the imprecise-probability
framework introduced in this paper; it is sufficient to suppress the edges
for which the upper value of mutual information [i.e., maxw∈W w(e)]
does not exceed ε. In contrast with the precise-probability approach,
the latter should have the advantage to better deal with the problem
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to suppress edges by mistake, as a consequence of the variability of the
inferred values of mutual information. This should be especially true
once forests are inferred using the credible limits for mutual information
introduced in the next section.

A more subtle question is how the forests inferred using the above
threshold procedure relate to the forests that are naturally produced
by the strong edges algorithm in its original form. Remind that the
strong edges algorithm produces a forest rather than a tree when there
is more than one optimal tree consistent with the available data; indeed
the algorithm aims at yielding the graphical structure made of the in-
tersection of all such trees. The situation may be clarified by focusing on
a special case: consider a problem in which the true dependency struc-
ture is a tree in which there are edges with the same value of mutual
information, say µ. In this case the strong edges algorithm will never
produce a tree, only a forest, also in the limit of infinitely many data.
The reason is that there will always be multiple optimal trees consistent
with the data, just because multiple optimal trees are a characteristic
of the problem. In particular, there would arise a forest because some
edges with weight µ would never belong to the set of strong edges. Now
suppose that µ>ε. In this case, the previous threshold procedure would
not suppress the edges with mutual information equal to µ. In other
words, the two procedures suppress edges under different conditions:
the strong edges algorithm may suppress edges because they have equal
true values of mutual information, despite those values may be high;
the threshold procedure only suppresses edges with low value of mutual
information. For this reason it could make sense to apply the threshold
procedure also as a post-processing step of the strong edges algorithm.

The discussion so far has highlighted an interesting point. By fo-
cusing on the intersection of all the trees consistent with the data, the
strong edges algorithm appears to be well suited as a tool to recover
the actual dependency structure underlying the data. This is because
the algorithm does not aim at recovering just any of the equivalent
structures, rather, it focuses on the common pattern to all of them,
which is obviously part of the actual structure. In this sense, the strong
edges algorithm might be well suited for applications concerned with
the recovery of causal patterns.

On the other hand, one can think of applications for which the
algorithm is probably not so well suited. For instance, in (precise-
probability) problems of pattern classification based on Bayesian net-
works [6], it is important to recover any tree (or forest) structure for
which the sum of the edge weights is maximized. In this case, sup-
pressing edges with large weights only because they are not strong
might lead to low classification accuracy. In these cases, the extension of
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those precise approaches to the IDM-based inferential approach should
probably follow other lines than those described here. One possibility
could be to exploit existing results in the literature of robust optimiza-
tion; the work of Yaman et al. [28] seems to be particularly worthy of
consideration. Yaman et al. consider a problem of maximum spanning
tree for a graph with weights specified by intervals (the weights are
given no particular interpretation), which is a special case of a set-
based weighted graph. They define the relative robust spanning tree
as follows (using our notations): let T be a generic tree spanning G,
and denote by T ∗w a maximum spanning tree of Gw ∈G. Let S∗w resp.
Sw be the sum of the edge weights of T ∗w resp. T , with respect to
the weight function w. A relative robust spanning tree T ∗ is one that
solves the optimization problem minT maxw∈W (S∗w−Sw), i.e., one that
minimizes the largest deviation S∗w−Sw among all the possible graphs
Gw ∈G. In this sense the approach adopted by Yaman et al. is in the
long tradition of the popular maximin (or minimax ) decision criterion.
From the computational point of view, although the problem is NP-
complete [2], recent results show that relatively large instances of the
problem can be solved efficiently [19]. The trees defined by Yaman et al.
could probably be combined with the IDM-based inferential approach
presented here, suitably modified for classification problems, in order to
yield relative robust classification trees. Here, too, it could make sense
to post-process the relative robust trees in order to suppress edges with
small upper (or even lower) values of mutual information, yielding a
forest.

6.2. Robust credible limits for mutual information

In this section we develop a full inferential approach for mutual infor-
mation under the IDM.

An α-credible interval for the mutual information I is an interval
[Ĩ,Ĩ] which contains I with probability at least α, i.e.,

∫ Ĩ
I
˜

p(I)dI≥α.
We define α-credible intervals w.r.t. distribution pt(I) as

[Ĩt, Ĩt] = [Et[I]−∆Ĩt , Et[I] + ∆̃It] such that
∫ Ĩt

I
˜

t

pt(I)dI ≥ α,

where ∆̃It :=Ĩt−Et[I] (∆Ĩt :=Et[I]−Ĩt) is the distance from the right
boundary Ĩt (left boundary Ĩt) of the α-credible interval [Ĩt,Ĩt] to the
mean Et[I] of I under distribution pt. We can use

[I', Ĩ] := [min
t
Ĩt,max

t
Ĩt] =

⋃

t

[Ĩt, Ĩt]
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as a robust credible interval, since
∫ Ĩ
I
'

pt(I)dI ≥ ∫ Ĩt

I
˜

t
pt(I)dI ≥α for all

t. An upper bound for Ĩ (and similarly lower bound for I') is

Ĩ = max
t

(Et[I] + ∆̃It) ≤ max
t

Et[I] + max
t

∆̃It = E[I] + ∆̃I.

Good upper bounds on I =E[I] have been derived in Section 4.3.
For not too small n, pt(I) is close to Gaussian due to the central

limit theorem. So we may approximate ∆̃It ≈ rσt with r given by
α=erf(r/

√
2), where erf is the error function (e.g., r=2 for α≈95%)

and σt is the variance of pt, keeping in mind that this could be a non-
conservative approximation. In order to determine ∆̃I we only need to
estimate maxt

√
Vart[I]=O( 1

n). The variation of
√

Vart[I] with t is of
order n−3/2. If we regard this as negligibly small, we may simply fix
some t∗∈∆. So the robust credible interval for I can be estimated as

Ĩ ≤ I + ∆̃I ≤ I0 + I1 + Iub
R + ∆̃I ≈ I0 + I1 + Iub

R + r
√

Vart∗ [I].

Expressions for the variance of I have been derived in [9, 11]:

Vart[I] =
1

n+s

∑

ij

uij

(
log

uij

ui+u+j

)2

− 1
n + s

(∑

ij

uij log
uij

ui+u+j

)2

+O(n−2).

Higher order corrections to the variance and higher moments have also
been derived, but are irrelevant in light of our other approximations.
In Sections 4.4 and 5 we also needed a lower bound on Ia−Ib. Taking
credible intervals into account we need a robust upper α-credible limit
for Iba := Ib−Ia. Similarly as for the variance one can derive the
following expression:

Ĩba ≤ Ib
0 − Ia

0 + Ib
1 − Ia

1 + Ib.ub
R − Ia.lb

R +

r
√

Vart∗ [Ib − Ia] + O(n−3/2),

Vart[Ib − Ia] = Vart[Ib] + Vart[Ia]− 2Covt[Ib, Ia],

Covt[Ib, Ia] =
1

n + s

∑

ijκ̇

uijκ̇

(
log

ua
ij

ua
i+ua

+j

log
ub

jκ̇

ub
j+

ub
+κ̇

)

− 1
n + s

( ∑

ij

ua
ij log

ua
ij

ua
i+ua

+j

)( ∑

jκ̇

ub
jκ̇ log

ub
jκ̇

ub
j+

ub
+κ̇

)
+ O(n−2).

Variances are typically of order 1/n, so for large n, credible intervals
Ĩ−I'=O(1/

√
n) are much wider than expected intervals I−I=O(1/n).
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7. Conclusions

This paper has tackled the problem to reliably infer trees from data.
We have provided an exact procedure that infers strong edges in time
O(m4), and have shown that it performs well in practice on an example
problem. We have also developed an approximate algorithm that works
in time O(m3).

Reliability follows from using the IDM, a robust inferential model
that rests on very weak prior assumptions. Working with the IDM
involves computing lower and upper estimates, i.e., solving global op-
timization problems. These can hardly be tackled exactly, as they are
typically non-linear and non-convex. A substantial part of the present
work has been devoted to provide systematic approximations to the ex-
act intervals with a guaranteed worst case of O(σ2). This was achieved
by optimizing approximating functions, obtained by Taylor-expanding
the original objective function. We have taken care to make these ap-
proximations conservative, i.e., they always include the exact interval.
This is the necessary step to ultimately obtain over-cautious rather
than overconfident models.

More broadly speaking, the same approach has been used also for
another approximation, concerned with the representation level chosen
for the IDM. In principle, one might use the IDM for the joint realiza-
tion of all the m random variables. In this paper we have used one IDM
for each bivariate (and tri-variate, in some cases) realization. Using
separate IDMs simplifies the treatment, but it may give rise to global
inconsistencies (in the same lines of the discussion on comparing edges
with a common vertex, in Section 4.4). However, their effect is only to
make O strictly include OT , thus producing an excess of caution, as
discussed in Section 3.1.

We have already reported two developments that follow naturally
from the work described above. The first involves the computation of
robust trees, which widens the scope of this paper to other applications.
The second is in the direction of even greater robustness by providing
robust credibile limits for mutual information, which provide the user
with a guarantee level on the inferred dependency structures.

Other extensions of the present work could be considered that need
further research to be realized. Obviously, it would be worth extending
the work to the robust inference of more general dependency structures.
This could be achieved, for example, in a way similar to Kleiter’s work
[14]. One could also extend our approach to dependency measures other
than mutual information, like the statistical coefficient φ2 [13, pp. 556–
561]. This would require new approximations to be derived for the new
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index under the IDM, but the first part of the paper on the detection
of strong edges could be applied as it is.

Another important extension could be realized by considering the
inference of dependency structures from incomplete samples. Recent
research has developed robust approaches to incomplete samples that
make very weak assumptions on the mechanism responsible for the
missing data [18, 23, 29]. This would be an important step towards
realism and reliability in structure inference.

Appendix

A. Properties of the digamma ψ function

The digamma function ψ is defined as the logarithmic derivative of the
Gamma function. Integral representations for ψ and its derivatives are

ψ(z) =
d ln Γ(z)

dz
=

Γ′(z)
Γ(z)

=
∫ ∞

0

[
e−t

t
− e−zt

1− e−t

]
dt,

ψ(`)(z) = (−1)`+1
∫ ∞

0

t`e−zt

1− e−t
dt for ` > 0.

The h function (1) and its derivatives are h(`)(u) =

u(`)ψ(n+s+1)− `(n+s)`−1ψ(`−1)((n+s)u+1)−u(n+s)`ψ(`)((n+s)u+1).

At argument ui = ni+sti
n+s we get for h, h′ and h′′

h(ui) = (ni+sti)[ψ(n+s+1)− ψ(ni+sti+1)]/(n+s),
h′(ui) = ψ(n+s+1)− ψ(ni+sti+1)− (ni+sti)ψ′(ni+sti+1),
h′′(ui) = −2(n+s)ψ′(ni+sti+1)− (ni+sti)(n+s)ψ′′(ni+sti+1),

For integral arguments the following closed representations for ψ, ψ′,
and ψ′′ exist:

ψ(n+1)=−γ+
n∑

i=1

1
i
, ψ′(n+1)=

π2

6
−

n∑

i=1

1
i2

, ψ′′(n+1)=−2ζ(3)+2
n∑

i=1

1
i3

where γ=0.5772156... is Euler’s constant and ζ(3)=1.202569... is Rie-
mann’s zeta function at 3. Closed expressions for half-integer values and
fast approximations for arbitrary arguments also exist. The following
asymptotic expansion can be used if one is interested in O(( s

n+s)
2)

approximations only (and not rigorous bounds):

ψ(z + 1) = log z +
1
2z
− 1

12z2
+ O(

1
z4

).
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See [1] for details on the ψ function and its derivatives. From the above
expressions one may show h′′<0 and h′′′>0.
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