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Summary

• Bayesian reasoning is consistent but incomplete.
• Solomonoff provides universal choice of model class & prior.
• I show that this solves the long-standing induction problem.

Abstract

Bayesian reasoning is a well-studied and successful framework for inductive
inference, which includes hypothesis testing and confirmation, parameter
estimation, sequence prediction, classification, and regression. But stan-
dard statistical guidelines for choosing the model class and prior are not
always available or can fail, in particular in complex situations. Finding
tailor-made solutions to every particular (new) such problem might be pos-
sible but is cumbersome and prone to disagreement or contradiction. What
is desirable is a formal general theory for inductive inference, and for build-
ing general purpose intelligent machines, such a theory is not only desirable
but indispensable.

Solomonoff completed the Bayesian framework by providing a rigorous,
unique, formal, and universal choice for the model class and the prior. This
“universal” Bayesian approach differs significantly from the classical objec-
tive as well as the subjective Bayesian philosophy. I show that Universal
Bayes (UB) essentially solves the long-standing induction problem, at least
from a philosophical and statistical perspective.

More specifically, I show that UB convergence rapidly and in contrast to us-
ing prior densities has no zero p(oste)rior problem, i.e. can confirm universal
hypotheses, is reparametrization and regrouping invariant, and avoids the
old-evidence and updating problem. It even performs well (actually better)
in non-computable environments.

Induction Examples

Sequence prediction: Predict weather/stock-quote/... tomorrow, based on
past sequence. Continue IQ test sequence like 1,4,9,16,?

Classification: Predict whether email is spam.
Classification can be reduced to sequence prediction.

Hypothesis testing/identification: Does treatment X cure cancer?
Do observations of white swans confirm that all ravens are black?

These are instances of the important problem of inductive inference or time-
series forecasting or sequence prediction.

Problem: Finding prediction rules for every particular (new) problem is pos-
sible but cumbersome and prone to disagreement or contradiction.

Goal: A single, formal, general, complete theory for prediction.

Beyond induction: active/reward learning, fct. optimization, game theory.

Foundations of Universal Induction

Ockhams’ razor (simplicity) principle
Entities should not be multiplied beyond necessity.

Epicurus’ principle of multiple explanations
If more than one theory is consistent with the observations, keep
all theories.

Bayes’ rule for conditional probabilities
Given the prior belief/probability one can predict all future proba-
bilities.

Turing’s universal machine
Everything computable by a human using a fixed procedure can
also be computed by a (universal) Turing machine.

Kolmogorov’s complexity
The complexity or information content of an object is the length
of its shortest description on a universal Turing machine.

Solomonoff’s universal prior=Ockham+Epicurus+Bayes+Turing
Solves the question of how to choose the prior if nothing is known.
⇒ universal induction, formal Occam, AIT,MML,MDL,SRM,...

Bayesian Seq. Prediction & Confirmation

• Assumption: Sequence ω ∈ X∞ is sampled from the “true” probability
measure µ, i.e. µ(x) := P[x|µ] is the µ-probability that ω starts with
x ∈ X n.

•Model class: We assume that µ is unknown but known to belong to a
countable class of environments=models=measures M = {ν1, ν2, ...}.
[no i.i.d./ergodic/stationary assumption]

• Hypothesis class: {Hν : ν ∈ M} forms a mutually exclusive and com-
plete class of hypotheses.

• Prior: wν := P[Hν] is our prior belief in Hν

⇒ Evidence: ξ(x) := P[x] =
∑

ν∈MP[x|Hν]P[Hν] =
∑

ν wνν(x) must
be our (prior) belief in x.

⇒ Posterior: wν(x) := P[Hν|x] = P[x|Hν]P[Hν]
P[x]

is our posterior belief in ν

(Bayes’ rule).

Convergence and Decisions

Goal: Given seq. x1:t−1 ≡ x<t ≡ x1x2...xt−1, predict continuation xt.

Expectation w.r.t. µ: E[f (ω1:n)] :=
∑

x∈X n µ(x)f (x)

KL-divergence: Dn(µ||ξ) :=E[ln µ(ω1:n)
ξ(ω1:n)

] ≤ lnw−1
µ ∀n

Hellinger distance: ht(ω<t) :=
∑

a∈X (
√

ξ(a|ω<t)−
√
µ(a|ω<t))

2

Rapid convergence:
∑∞

t=1E[ht(ω<t)] ≤ D∞ ≤ lnw−1
µ < ∞ implies

ξ(xt|ω<t) → µ(xt|ω<t), i.e. ξ is a good substitute for unknown µ.

Bayesian decisions: Bayes-optimal predictor Λξ suffers instantaneous loss
lΛξ
t ∈ [0, 1] at t only slightly larger than the µ-optimal predictor Λµ:∑∞
t=1E[(

√
lΛξ
t −

√
lΛµ
t )2] ≤

∑∞
t=1 2E[ht] < ∞ implies rapid lΛξ

t → lΛµ
t.

Pareto-optimality of Λξ: Every predictor with loss smaller than Λξ in some
environment µ ∈ M must be worse in another environment.

How to Choose the Prior?

• Subjective: quantifying personal prior belief (not further discussed)

•Objective: based on rational principles (agreed on by everyone)

• Indifference or symmetry principle: Choose wν = 1
|M| for finite M.

• Jeffreys or Bernardo’s prior: Analogue for compact parametric spaces
M.

• Problem: The principles typically provide good objective priors for small
discrete or compact spaces, but not for “large” model classes like count-
ably infinite, non-compact, and non-parametric M.

• Solution: Occam favors simplicity ⇒ Assign high (low) prior to simple
(complex) hypotheses.

• Problem: Quantitative and universal measure of simplicity/complexity.

Kolmogorov Complexity K(x)

K. of string x is the length of the shortest (prefix) program producing x:
K(x) := minp{l(p) : U(p) = x}, U = universal TM

For non-string objects o (like numbers and functions) we define K(o) :=
K(⟨o⟩), where ⟨o⟩ ∈ X ∗ is some standard code for o.

+ Simple strings like 000...0 have small K,
irregular (e.g. random) strings have large K.

• The definition is nearly independent of the choice of U .

+K satisfies most properties an information measure should satisfy.

+K shares many properties with Shannon entropy but is superior.

−K(x) is not computable, but only semi-computable from above.

Fazit:
K is an excellent universal complexity measure,

suitable for quantifying Occam’s razor.

The Universal Prior

•Quantify the complexity of an environment ν or hypothesis Hν by its
Kolmogorov complexity K(ν).

• Universal prior: wν = wU
ν := 2−K(ν) is a decreasing function in the

model’s complexity, and sums to (less than) one.

⇒Dn ≤ K(µ) ln 2, i.e. the number of ε-deviations of ξ from µ or lΛξ

from lΛµ is proportional to the complexity of the environment.

• No other semi-computable prior leads to better prediction (bounds).

• For continuous M, we can assign a (proper) universal prior (not density)

wU
θ = 2−K(θ) > 0 for computable θ, and 0 for uncomp. θ.

• This effectively reduces M to a discrete class {νθ ∈ M : wU
θ > 0}

which is typically dense in M.

• This prior has many advantages over the classical prior (densities).

Universal Choice of Class M
• The larger M the less restrictive is the assumption µ ∈ M.

• The class MU of all (semi)computable (semi)measures, although only
countable, is pretty large, since it includes all valid physics theories. Fur-
ther, ξU is semi-computable [ZL70].

• Solomonoff’s universal prior M(x) := probability that the output of a
universal TM U with random input starts with x.

• Formally: M(x) :=
∑

p : U(p)=x∗ 2
−l(p) where the sum is over all (min-

imal) programs p for which U outputs a string starting with x.

•M may be regarded as a 2−l(p)-weighted mixture over all deterministic
environments νp. (νp(x) = 1 if U(p) = x∗ and 0 else)

•M(x) coincides with ξU (x) within an irrelevant multiplicative constant.

Universal is better than Continuous

• Problem of zero prior / confirmation of universal hypotheses:

P[All ravens black|n black ravens]

{
≡ 0 in Bayes-Laplace model
fast−→ 1 for universal prior wU

θ

• Reparametrization and regrouping invariance: wU
θ = 2−K(θ) always ex-

ists and is invariant w.r.t. all computable reparametrizations f . (Jeffrey
prior only w.r.t. bijections, and does not always exist)

• The Problem of Old Evidence: No risk of biasing the prior towards past
data, since wU

θ is fixed and independent of M.

• The Problem of New Theories: Updating of M is not necessary, since
MU includes already all.

•M predicts better than all other mixture predictors based on any (con-
tinuous or discrete) model class and prior, even in non-computable envi-
ronments.

More Bounds

• Instantaneous i.i.d. bounds: For i.i.d. M with continuous, discrete, and
universal prior, respectively:
E[hn]

×≤ 1
n lnw(µ)

−1 and E[hn]
×≤ 1

n lnw
−1
µ = 1

nK(µ) ln 2.

• Bounds for computable environments: Rapidly M(xt|x<t) → 1 on every
computable sequence x1:∞ (whichsoever, e.g. 1∞ or the digits of π or
e), i.e. M quickly recognizes the structure of the sequence.

•Weak instantaneous bounds: valid for all n and x1:n and x̄n ̸= xn:
2−K(n) ×≤ M(x̄n|x<n)

×≤ 22K(x1:n∗)−K(n)

•Magic instance numbers: e.g. M(0|1n) ×=2−K(n) → 0, but spikes up for
simple n. M is cautious at magic instance numbers n.

• Future bounds / errors to come: If our past observations ω1:n con-
tain a lot of information about µ, we make few errors in future:∑∞

t=n+1E[ht|ω1:n]
+≤ [K(µ|ω1:n)+K(n)] ln 2

More Stuff / Critique / Problems

• Prior knowledge y can be incorporated by using “subjective” prior
wU
ν|y = 2−K(ν|y) or by prefixing observation x by y.

• Additive/multiplicative constant fudges and U -dependence is often (but
not always) harmless.

• Incomputability: K and M can serve as “gold standards” which practi-
tioners should aim at, but have to be (crudely) approximated in practice
(MDL [Ris89], MML [Wal05], LZW [LZ76], CTW [WSTT95], NCD [CV05]).

Summary
Universal Bayesian prediction solves/avoids/meliorates many problems of
(Bayesian) induction. We discussed:

+ general total bounds for generic class, prior, and loss,

+ i.i.d./universal-specific instantaneous and future bounds,

+ the Dn bound for continuous classes,

+ indifference/symmetry principles,

+ the problem of zero p(oste)rior & confirm. of universal hypotheses,

+ reparametrization and regrouping invariance,

+ the problem of old evidence and updating,

+ that M works even in non-computable environments,

+ how to incorporate prior knowledge,

− the prediction of short sequences,

− the constant fudges in all results and the U -dependence,

−M ’s incomputability and crude practical approximations.

Generalization to ReActive Problems
Universal AI = Universal Induction + Sequential Decision Theory

r1 | o1 r2 | o2 r3 | o3 r4 | o4 r5 | o5 r6 | o6 ...

y1 y2 y3 y4 y5 y6 ...

work
Agent

p
tape ... work

Environ-

ment q
tape ...
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AIXI: yk = argmax
yk

∑
xk

...max
ym

∑
xm

[r(xk)+...+r(xm)]M(x1:m|y1:m)

Claim: AIXI is the most intelligent environmental independent, i.e. univer-
sally optimal, agent possible.

Applications: Strategic Games, Function Minimization, Supervised Learning
from Examples, Sequence Prediction, Classification.
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Book intends to excite a broader AI audience about
abstract Algorithmic Information Theory –and–
inform theorists about exciting applications to AI.

Decision Theory = Probability + Utility Theory
+ +

Universal Induction = Ockham + Bayes + Turing
= =

A Unified View of Artificial Intelligence


