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Abstract

Solomonoff completed the Bayesian framework by providing a rigorous,

unique, formal, and universal choice for the model class and the prior. I

will discuss in breadth how and in which sense universal (non-i.i.d.)

sequence prediction solves various (philosophical) problems of traditional

Bayesian sequence prediction. I show that Solomonoff’s model possesses

many desirable properties: Fast convergence, and in contrast to most

classical continuous prior densities has no zero p(oste)rior problem, i.e.

can confirm universal hypotheses, is reparametrization and regrouping

invariant, and avoids the old-evidence and updating problem. It even

performs well (actually better) in non-computable environments.
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Induction Examples
Sequence prediction: Predict weather/stock-quote/... tomorrow, based

on past sequence. Continue IQ test sequence like 1,4,9,16,?

Classification: Predict whether email is spam.

Classification can be reduced to sequence prediction.

Hypothesis testing/identification: Does treatment X cure cancer?

Do observations of white swans confirm that all ravens are black?

These are instances of the important problem of inductive inference or

time-series forecasting or sequence prediction.

Problem: Finding prediction rules for every particular (new) problem is

possible but cumbersome and prone to disagreement or contradiction.

Goal: Formal general theory for prediction.

Beyond induction: active/reward learning, fct. optimization, game theory.
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Foundations of Universal Induction
Ockhams’ razor (simplicity) principle
Entities should not be multiplied beyond necessity.

Epicurus’ principle of multiple explanations
If more than one theory is consistent with the observations, keep
all theories.
Bayes’ rule for conditional probabilities
Given the prior belief/probability one can predict all future prob-
abilities.
Turing’s universal machine
Everything computable by a human using a fixed procedure can
also be computed by a (universal) Turing machine.
Kolmogorov’s complexity
The complexity or information content of an object is the length
of its shortest description on a universal Turing machine.
Solomonoff’s universal prior=Ockham+Epicurus+Bayes+Turing
Solves the question of how to choose the prior if nothing is known.
⇒ universal induction, formal Occam, AIT,MML,MDL,SRM,...
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Bayesian Sequence Prediction and Confirmation
• Assumption: Sequence ω ∈ X∞ is sampled from the “true”

probability measure µ, i.e. µ(x) := P[x|µ] is the µ-probability that

ω starts with x ∈ Xn.

• Model class: We assume that µ is unknown but known to belong to

a countable class of environments=models=measures

M = {ν1, ν2, ...}.
• Hypothesis class: {Hν : ν ∈M} forms a mutually exclusive and

complete class of hypotheses.

• Prior: wν := P[Hν ] is our prior belief in Hν

⇒ Evidence: ξ(x) := P[x] =
∑

ν∈MP[x|Hν ]P[Hν ] =
∑

ν wνν(x)
must be our (prior) belief in x.

⇒ Posterior: wν(x) := P[Hν |x] = P[x|Hν ]P[Hν ]
P[x] is our posterior belief

in ν (Bayes’ rule).
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Convergence and Decisions

Goal: Given sequence x1x2...xt−1, predict its likely continuation xt.

Expectation w.r.t. µ: E[f(ω1:n)] :=
∑

x∈Xn µ(x)f(x)

KL-divergence: Dn(µ||ξ) := E[ln µ(ω1:n)
ξ(ω1:n) ] ≤ ln w−1

µ ∀n
Hellinger distance: ht(ω<t) :=

∑
a∈X (

√
ξ(a|ω<t)−

√
µ(a|ω<t))2

Rapid convergence:
∑∞

t=1 E[ht(ω<t)] ≤ D∞ ≤ ln w−1
µ < ∞ implies

ξ(xt|ω<t) → µ(xt|ω<t), i.e. ξ is a good substitute for unknown µ.

Bayesian decisions: Bayes-optimal predictor Λξ suffers instantaneous

loss lΛξ
t ∈ [0, 1] at t only slightly larger than the µ-optimal predictor Λµ.

Pareto-optimality of Λξ: Every predictor with loss smaller than Λξ in

some environment µ ∈M must be worse in another environment.



Marcus Hutter - 8 - Universal Sequence Prediction

Generalization: Continuous Classes M
In statistical parameter estimation one often has a continuous

hypothesis class (e.g. a Bernoulli(θ) process with unknown θ∈ [0, 1]).

M := {νθ : θ ∈ IRd}, ξ(x) :=
∫

IRd

dθ w(θ) νθ(x),
∫

IRd

dθ w(θ) = 1

Under weak regularity conditions [CB90,H’03]:

Theorem: Dn(µ||ξ) ≤ ln w(µ)−1 + d
2 ln n

2π + O(1)

where O(1) depends on the local curvature (parametric complexity) of

ln νθ, and is independent n for many reasonable classes, including all

stationary (kth-order) finite-state Markov processes (k = 0 is i.i.d.).

Dn ∝ log(n) = o(n) still implies excellent prediction and decision for

most n.
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How to Choose the Prior?

• Subjective: quantifying personal prior belief (not further discussed)

• Objective: based on rational principles (agreed on by everyone)

• Indifference or symmetry principle: Choose wν = 1
|M| for finite M.

• Jeffreys or Bernardo’s prior: Analogue for compact parametric

spaces M.

• Problem: The principles typically provide good objective priors for

small discrete or compact spaces, but not for “large” model classes

like countably infinite, non-compact, and non-parametric M.

• Solution: Occam favors simplicity ⇒ Assign high (low) prior to

simple (complex) hypotheses.

• Problem: Quantitative and universal measure of simplicity/complexity.
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Kolmogorov Complexity K(x)
K. of string x is the length of the shortest (prefix) program producing x:

K(x) := minp{l(p) : U(p) = x}, U = universal TM

For non-string objects o (like numbers and functions) we define

K(o) := K(〈o〉), where 〈o〉 ∈ X ∗ is some standard code for o.

+ Simple strings like 000...0 have small K,

irregular (e.g. random) strings have large K.

• The definition is nearly independent of the choice of U .

+ K satisfies most properties an information measure should satisfy.

+ K shares many properties with Shannon entropy but is superior.

− K(x) is not computable, but only semi-computable from above.

Fazit:
K is an excellent universal complexity measure,

suitable for quantifying Occam’s razor.
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The Universal Prior
• Quantify the complexity of an environment ν or hypothesis Hν by

its Kolmogorov complexity K(ν).

• Universal prior: wν = wU
ν := 2−K(ν) is a decreasing function in

the model’s complexity, and sums to (less than) one.

⇒ Dn ≤ K(µ) ln 2, i.e. the number of ε-deviations of ξ from µ or lΛξ

from lΛµ is proportional to the complexity of the environment.

• No other semi-computable prior leads to better prediction (bounds).

• For continuous M, we can assign a (proper) universal prior (not

density) wU
θ = 2−K(θ) > 0 for computable θ, and 0 for uncomp. θ.

• This effectively reduces M to a discrete class {νθ ∈M : wU
θ > 0}

which is typically dense in M.

• This prior has many advantages over the classical prior (densities).
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Example: Bayes’ and Laplace’s Rule

Let x ∈ Xn = {0, 1}n be generated by a coin with bias θ ∈ [0, 1]

i.e. νθ(x) = P[x|Hθ] = θn1(1− θ)n0 , n1 =x1+...+xn =n−n0.

Bayes (1763) assumed a uniform prior density w(θ) = 1.

The evidence is ξ(x) =
∫ 1

0
νθ(x)w(θ) dθ = n1!n0!

(n+1)!

Bayes: The posterior density w(θ|x) = νθ(x)w(θ)/ξ(x)
is strongly peaked around the frequency estimate θ̂ = n1

n for large n.

Laplace (1812) asked for the pred. prob. ξ(xn+1 =1|x) = ξ(x1)
ξ(x) = n1+1

n+2

Laplace believed that the sun had risen for 5000 years = 1’826’213 days,

so he concluded that the probability of doomsday tomorrow is 1
1826215 .
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The Problem of Zero Prior
= the problem of confirmation of universal hypotheses

Problem: If the prior is zero, then the posterior is necessarily also zero.

Example: Consider the hypothesis H = H1 that all balls in some urn or

all ravens are black (=1) or that the sun rises every day.

Starting with a prior density as w(θ) = 1 implies that prior P[Hθ] = 0
for all θ, hence posterior P [Hθ|1..1] = 0, hence H never gets confirmed.

3 non-solutions: define H = {ω = 1∞} | use finite population | abandon

strict/logical/all-quantified/universal hypotheses in favor of soft hyp.

Solution: Assign non-zero prior to θ = 1 ⇒ P[H|1n] → 1.

Generalization: Assign non-zero prior to all “special” θ, like 1
2 and 1

6 ,

which may naturally appear in a hypothesis, like “is the coin or die fair”.

Universal solution: Assign non-zero prior to all comp. θ, e.g. wU
θ = 2−K(θ)
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Reparametrization Invariance

• New parametrization e.g. ψ =
√

θ, then the ψ-density

w′(ψ) = 2
√

θ w(θ) is no longer uniform if w(θ) = 1 is uniform

⇒ indifference principle is not reparametrization invariant (RIP).

• Jeffrey’s and Bernardo’s principle satisfy RIP w.r.t. differentiable

bijective transformations ψ = f−1(θ).

• The universal prior wU
θ = 2−K(θ) also satisfies RIP w.r.t. simple

computable f . (within a multiplicative constant)
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Regrouping Invariance

• Non-bijective transformations:

E.g. grouping ball colors into categories black/non-black.

• No classical principle is regrouping invariant.

• Regrouping invariance is regarded as a very important and desirable

property. [Walley’s (1996) solution: sets of priors]

• The universal prior wU
θ = 2−K(θ) is invariant under regrouping, and

more generally under all simple [computable with complexity O(1)]
even non-bijective transformations. (within a multiplicative constant)

• Note: Reparametrization and regrouping invariance hold for

arbitrary classes and are not limited to the i.i.d. case.
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Universal Choice of Class M
• The larger M the less restrictive is the assumption µ ∈M.

• The class MU of all (semi)computable (semi)measures, although

only countable, is pretty large, since it includes all valid physics

theories. Further, ξU is semi-computable [ZL70].

• Solomonoff’s universal prior M(x) := probability that the output of

a universal TM U with random input starts with x.

• Formally: M(x) :=
∑

p : U(p)=x∗ 2−l(p) where the sum is over all

(minimal) programs p for which U outputs a string starting with x.

• M may be regarded as a 2−l(p)-weighted mixture over all

deterministic environments νp. (νp(x) = 1 if U(p) = x∗ and 0 else)

• M(x) coincides with ξU (x) within an irrelevant multiplicative constant.



Marcus Hutter - 17 - Universal Sequence Prediction

The Problem of Old Evidence / New Theories

• What if some evidence E=̂x (e.g. Mercury’s perihelion advance) is

known well-before the correct hypothesis/theory/model H=̂µ

(Einstein’s general relativity theory) is found?

• How shall H be added to the Bayesian machinery a posteriori?

• What should the “prior” of H be?

• Should it be the belief in H in a hypothetical counterfactual world

in which E is not known?

• Can old evidence E confirm H?

• After all, H could simply be constructed/biased/fitted towards

“explaining” E.
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Solution of the Old-Evidence Problem

• The universal class MU and universal prior wU
ν formally solves this

problem.

• The universal prior of H is 2−K(H) independent of M and of

whether E is known or not.

• Updating M is unproblematic, and even not necessary when

starting with MU , since it includes all hypothesis (including yet

unknown or unnamed ones) a priori.
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Universal is Better than Continuous M
• Although νθ() and wθ are incomp. for cont. classes M for most θ,

ξ() is typically computable. (exactly as for Laplace or numerically)

⇒ Dn(µ||M)
+≤ Dn(µ||ξ)+K(ξ) ln 2 for all µ

• That is, M is superior to all computable mixture predictors ξ based

on any (continuous or discrete) model class M and weight w(θ),
save an additive constant K(ξ) ln 2 = O(1), even if environment µ

is not computable.

• While Dn(µ||ξ) ∼ d
2 ln n for all µ ∈M,

Dn(µ||M) ≤ K(µ) ln 2 is even finite for computable µ.

Fazit: Solomonoff prediction works also in non-computable environments
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More Stuff / Critique / Problems

• Prior knowledge y can be incorporated by using “subjective” prior

wU
ν|y = 2−K(ν|y) or by prefixing observation x by y.

• Additive/multiplicative constant fudges and U -dependence is often

(but not always) harmless.

• Incomputability: K and M can serve as “gold standards” which

practitioners should aim at, but have to be (crudely) approximated

in practice (MDL [Ris89], MML [Wal05], LZW [LZ76], CTW [WSTT95],

NCD [CV05]).
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Summary
Universal Solomonoff prediction solves/avoids/meliorates many problems

of (Bayesian) induction. We discussed:

+ general total bounds for generic class, prior, and loss,

+ i.i.d./universal-specific instantaneous and future bounds,

+ the Dn bound for continuous classes,

+ indifference/symmetry principles,

+ the problem of zero p(oste)rior & confirm. of universal hypotheses,

+ reparametrization and regrouping invariance,

+ the problem of old evidence and updating,

+ that M works even in non-computable environments,

+ how to incorporate prior knowledge,

− the prediction of short sequences,

− the constant fudges in all results and the U -dependence,

− M ’s incomputability and crude practical approximations.
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