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Induction = Predicting the Future
Epicurus’ principle of multiple explanations

If more than one theory is consistent with the observations, keep

all theories.

Ockhams’ razor (simplicity) principle

Entities should not be multiplied beyond necessity.

Hume’s negation of Induction

The only form of induction possible is deduction as the conclusion

is already logically contained in the start configuration.
Bayes’ rule for conditional probabilities

Given the prior believe/probability one can predict all future prob-

abilities.

Solomonoff’s universal prior

Solves the question of how to choose the prior if nothing is known.
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Strings and Conditional Probabilities

Strings: x=x1x2...xn with xt∈{0, 1} and x1:n := x1x2...xn−1xn and

x<n := x1...xn−1.

Probabilities: ρ(x1...xn) is the probability that an (infinite) sequence

starts with x1...xn.

Conditional probability: ρ(xt|x<t) = ρ(x1:t)/ρ(x<t) is the ρ-probability

that a given string x1...xt−1 is followed by (continued with) xt.

Interpretation of Probabilities

Frequentist: Probabilities come from experiments.

Objectivist: Probabilities are real aspects of the world.

Subjectivist: Probabilities describe ones believe.
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Computability Concepts

f is finitely computable or recursive iff there are Turing machines T1/2

with output interpreted as natural numbers and f(x) = T1(x)
T2(x) ,

⇓
f is estimable iff ∃ recursive φ(·, ·) ∀ ε>0 : |φ(x,b1εc)− f(x)| < ε ∀x.

⇓
f is lower semi-computable or enumerable iff φ(·, ·) is recursive and

limt→∞ φ(x, t) = f(x) and φ(x, t) ≤ φ(x, t + 1).
⇓

f is approximable iff φ(·, ·) is recursive and limt→∞ φ(x, t) = f(x).

(What we call estimable is often just called computable)
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Kolmogorov Complexity & Solomonoff Prior
The prefix Kolmogorov complexity of a string x is the length of the

shortest (prefix) program p (on a universal Turing machine U)

producing x (given y)

K(x) = min{l(p) : U(p) = x}, K(x|y) = min{l(p) : U(p, y) = x}

Solomonoff:64 (with a flaw fixed by Levin:70) defined (earlier) the

closely related universal prior M(x)

M(x) is defined as the probability that the output of a universal Turing

machine starts with x when provided with fair coin flips on the input

tape. Formally, M can be defined as

M(x) :=
∑

p : U(p)=x∗
2−l(p)
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Semimeasures, Universality, Normalization

Continuous (Semi)measures: µ(x)
(>)
= µ(x0) + µ(x1) and µ(ε)

(<)
= 1.

µ(x) = probability that a sequence starts with string x.

Universality of M (Solomonoff:78): M is an enumerable semimeasure.

M(x) ≥ wρ · ρ(x) with wρ = 2−K(ρ)−O(1) for all an enum. semimeas. ρ.

Explanation: Up to a multiplicative constant, M assigns higher

probability to all x than any other computable probability distribution.

Normalization: It is possible to normalize M to a true probability

measure Mnorm with dominance still being true, but at the expense of

giving up enumerability (Mnorm is still approximable).
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Bayes-Mixtures and Dominance

Consider a countable set of semimeasures M, wν > 0, ξ = ξM:

ξ(x) :=
∑

ν∈M
wνν(x) ⇒ ξ(x) ≥ wνν(x) ⇒ ξ(xt|x<t) → ν(xt|x<t)

Example: M = Msemi
enum = {enumerable semimeasures} ⇒ ξ

×= M .

The distinguishing property of Msemi
enum is that ξ ∈Msemi

enum.

When concerned with predictions, ξM ∈M is not by itself an important

property, but whether ξ is computable in one of the defined senses.

M1

×
> M2 :⇔ ∃ρ ∈M1 ∀ν ∈M2 ∃wν > 0 ∀x : ρ(x) ≥ wνν(x).

×
> is transitive (but not necessarily reflexive) in the sense that

M1

×
>M2

×
>M3 ⇒M1

×
>M3 andM0⊇M1

×
>M2⊇M3 ⇒M0

×
>M3



Marcus Hutter - 9 - Computable Universal Priors

(Semi)Computable (Semi)Measures

Mmsr
comp ⊂ Mmsr

est ≡ Mmsr
enum ⊂ Mmsr

appr

∩ ∩ ∩ ∩
Msemi

comp ⊂ Msemi
est ⊂ Msemi

enum ⊂ Msemi
appr

• With this notation, Levin’s result reads: Msemi
enum

×
> Msemi

enum.

• The standard “diagonalization” way of proving M1

×
6> M2 is to

take an arbitrary µ ∈M1 and “increase” it to ρ such that µ
×
6> ρ

and show that ρ ∈M2.

• There are 7× 7 combinations of (semi)measures M1 with M2 for

which M1

×
> M2 could be true or wrong.

• The 49 combinations follow by transitivity from 4 basic cases:
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Universal (Semi)Measures
A semimeasure ρ is universal for M if it multiplicatively dominates all

elements of M in the sense ∀ν∃wν > 0 : ρ(x) ≥ wνν(x)∀x:

o) ∃ρ : {ρ} ×> M: For every countable set of (semi)measures M, there

is a (semi)measure which dominates all elements of M.

i) Msemi
enum

×
> Msemi

enum: The class of enumerable semimeasures

contains a universal element.

ii) Mmsr
appr

×
> Msemi

enum: There is an approximable measure which

dominates all enumerable semimeasures.

iii) Msemi
est

×
6> Mmsr

comp: There is no estimable semimeasure which

dominates all computable measures.

iv) Msemi
appr

×
6> Mmsr

appr: There is no approximable semimeasure which

dominates all approximable measures.
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Universal (Semi)Measures

↖ M semimeasure measure

ρ ↘ comp. est. enum. appr. comp. est. appr.

s comp. noiii noiii noiii noiv noiii noiii noiv

e est. noiii noiii noiii noiv noiii noiii noiv

m enum. yesi yesi yesi noiv yesi yesi noiv

i appr. yesi yesi yesi noiv yesi yesi noiv

m comp. noiii noiii noiii noiv noiii noiii noiv

s est. noiii noiii noiii noiv noiii noiii noiv

r appr. yesii yesii yesii noiv yesii yesii noiv
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Discussion
• If we ask for a universal (semi)measure which at least satisfies the

weakest form of computability, namely being approximable, we see

that the largest dominated set among the 7 sets defined above is

the set of enumerable semimeasures. This is the reason why

Msemi
enum plays a special role.

• On the other hand, Msemi
enum is not the largest set dominated by an

approximable semimeasure, and indeed no such largest set exists.

• One may, hence, ask for “natural” larger sets M. One such set,

namely the set of cumulatively enumerable semimeasures MCEM ,

has recently been discovered by Schmidhuber:02, for which even

ξCEM ∈MCEM holds.

• The dominance properties also holds for discrete (semi)measures

P : IN → [0, 1] with
∑

x∈IN P (x)
(<)
= 1.
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Martin-Löf Randomness

• Martin-Löf randomness is a very important concept of randomness

of individual sequences.

• Characterization by Levin:73: Sequence x1:∞ is µ-Martin-Löf

random (µ.M.L.) ⇔ ∃c : M(x1:n) ≤ c · µ(x1:n)∀n.

• A µ.M.L. random sequence x1:∞ passes all thinkable effective

randomness tests, e.g. the law of large numbers, the law of the

iterated logarithm, etc. Especially, the set of all µ.M.L. random

sequences has µ-measure 1.
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Convergence of Random Sequences

Let z1(ω), z2(ω), ... be a sequence of real-valued random variables.

zt is said to converge for t →∞ to random variable z∗(ω)

i) with probability 1 (w.p.1) :⇔ P[{ω : zt → z∗}] = 1,

ii) in mean sum (i.m.s.) :⇔ ∑∞
t=1 E[(zt − z∗)2] < ∞,

iii) for every µ-Martin-Löf random sequence (µ.M.L.) :⇔
∀ω : [∃c∀n : M(ω1:n) ≤ c·µ(ω1:n)] implies zt(ω) t→∞−→ z∗(ω),

iv) for every µ/ξ-random sequence (µ.ξ.r.) :⇔
∀ω : [∃c∀n : ξ(ω1:n) ≤ c·µ(ω1:n)] implies zt(ω) t→∞−→ z∗(ω).

where E[..] denotes the expectation and P[..] denotes the probability of

[..].
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Remarks

(i) In statistics, convergence w.p.1 is the “default” characterization of

convergence of random sequences.

(ii) Convergence i.m.s. is very strong: it provides a rate of

convergence in the sense that the expected number of times t in which

zt deviates more than ε from z∗ is finite and bounded by∑∞
t=1 E[(zt − z∗)2]/ε2. Nothing can be said for which t these

deviations occur.

(iii) Martin-Löf’s notion of randomness of individual sequences.

(iv) µ/ξ-randomness based on ξ generalizes the definition of M.L.

randomness based on M .

Convergence i.m.s. implies convergence w.p.1.

Convergence M.L. implies convergence w.p.1.
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Posterior Convergence
Universality ξ(x) ≥ wµµ(x) implies the following posterior convergence

results:

i)
∑n

t=1 E
∑

x′t
(µ(x′t|x<t)− ξ(x′t|x<t))

2 ≤ ln w−1
µ < ∞

ξ(x′t|x<t) → µ(x′t|x<t) for any x′t i.m.s. for t →∞.

ii)
∑n

t=1 E
[(√

ξ(xt|x<t)
µ(xt|x<t)

− 1
)2

]
≤ ln w−1

µ < ∞
√

ξ(xt|x<t)
µ(xt|x<t)

→ 1 i.m.s. for t →∞.

An interesting open question is whether ξ converges to µ (in difference

or ratio) individually for all Martin-Löf random sequences.

Clearly, convergence µ.M.L. may at most fail for a set of sequences with

µ-measure zero.
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Failed Attempts to Proof M
M.L.−→ µ:

• Conversion of bounds (i) or (ii) to effective µ.M.L. randomness

tests fails, since they are not enumerable.

• The proof given in Vitanyi&Li:00 is incomplete. The implication

“M(x1:n) ≤ c · µ(x1:n)∀n ⇒ limn→∞M(x1:n)/µ(x1:n) exists” has

been used, but not proven, and may indeed be wrong.

• Vovk:87 shows that for two finitely computable (semi)measures µ

and ρ and x1:∞ being µ.M.L. random that

∞∑
t=1

(√
µ(xt|x<t)−

√
ρ(xt|x<t)

)2

< ∞ ⇔ x1:∞ is ρ.M.L. random.

If M were recursive, then this would imply M → µ for every µ.M.L.

random sequence x1:∞, since every sequence is M .M.L. random.
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Generalization

• More generally, one may ask whether ξ → µ for every µ/ξ-random

sequence.

• It turns out that this is true for some M, but wrong for others.

• This implies that M
M.L.−→ µ cannot be decided from M being a

mixture distribution or from dominance alone. Further structural

properties of Msemi
enum have to be employed.

• The property M ∈Msemi
enum is also not sufficient to resolve this

question, since there are M3 ξ for which ξ
µ/ξ−→ µ and M3 ξ for

which ξ 6 µ/ξ−→ µ.
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Conclusions
• We discussed general mixture distributions and the important

universality property – multiplicative dominance.

• We defined seven classes of (semi)measures based on four

computability concepts.

• Each class may or may not contain a (semi)measures which

dominates all elements of another class.

• We reduced the analysis of these 49 cases to four basic cases.

• Domination (essentially by M) is known to be true for two cases.

The remaining two (new) cases do not allow for domination.

• We improved the result on posterior convergence in ratio ξ/µ → 1
by providing the speed of convergence.

• We investigated whether convergence for all Martin-Löf random

sequences could hold. [http://www.idsia.ch/∼marcus]


