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Abstract

We study sequence prediction based on the monotone Kolmogorov

complexity Km = − log m, i.e. based on universal deterministic/one-part

MDL. m is extremely close to Solomonoff’s prior M , the latter being an

excellent predictor in deterministic as well as probabilistic environments,

where performance is measured in terms of convergence of posteriors or

losses. Despite this closeness to M , it is difficult to assess the prediction

quality of m, since little is known about the closeness of their posteriors,

which are the important quantities for prediction. We show that for

deterministic computable environments, the “posterior” and losses of m

converge, but rapid convergence could only be shown on-sequence; the

off-sequence behavior is unclear. In probabilistic environments, neither

the posterior nor the losses converge, in general.
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Induction = Predicting the Future
Epicurus’ principle of multiple explanations

If more than one theory is consistent with the observations, keep

all theories.

Ockhams’ razor (simplicity) principle

Entities should not be multiplied beyond necessity.

Hume’s negation of Induction

The only form of induction possible is deduction as the conclusion

is already logically contained in the start configuration.
Bayes’ rule for conditional probabilities

Given the prior believe/probability one can predict all future prob-

abilities.

Solomonoff’s universal prior

Solves the question of how to choose the prior if nothing is known.
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Strings and Conditional Probabilities

Strings: x=x1x2...xn with xt∈X and x1:n := x1x2...xn−1xn and

x<n := x1...xn−1 and ω = x1:∞.

Probabilities: ρ(x1...xn) is the probability that an (infinite) sequence

starts with x1...xn.

(Semi)Measures: ρ : X ∗ → [0, 1] and
∑

xn∈X ρ(x1:n)
(<)
= ρ(x<n) and

ρ(ε)
(<)
= 1.

Deterministic environment: ∃ω : ρ(ω1:n) = 1 ∀n. In this case we

identify ρ with ω.

Conditional probability: ρ(xt|x<t) = ρ(x1:t)/ρ(x<t) is the ρ-probability

that a given string x1...xt−1 is followed by (continued with) xt.
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Posterior Convergence
Assume that µ is the “true” (objective, aleatory) sequence generating

probability measure, also called environment.

Usually we do not know µ, but estimate it from x<t. Let ρ(xt|x<t) be

an estimated (subjective, belief, epistemic) probability of xt, given x<t.

It is reasonable to aim for posterior convergence (consistency,

self-tuningness): ρ(x′t|x<t)
(fast)−→ µ(x′t|x<t) for t →∞

A sequence of random variable zt = zt(ω) (like zt = ρ(xt|x<t)
−µ(xt|x<t) is said to converge for t →∞ to 0

i) with probability 1 (w.p.1) :⇔ P[{ω : zt(ω) → 0}] = 1,

ii) in mean sum (i.m.s.) :⇔ ∑∞
t=1 E[z2

t ] ≤ c < ∞,

Conv. i.m.s. implies conv. w.p.1 (rapid if c is of reasonable size).

Disadvantage: Neglects value/severity of correct/wrong predictions.
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Self-optimizing Predictors

Let `xtyt ∈ [0, 1] be the received loss when performing

action/decision/prediction yt∈Y and xt∈X is the tth symbol of the

sequence, for instance
Loss `xy X = {sunny , rainy}

Y =
{

umbrella
sunglasses

}
0.3 0.1
0.0 1.0

The goal is to minimize the µ-expected loss. More generally we define

the Λρ prediction scheme which minimizes the ρ-expected loss:

y
Λρ

t := arg min
yt∈Y

∑
xt

ρ(xt|x<t)`xtyt

The actual µ-expected loss when Λρ predicts the tth symbol is

l
Λρ

t (x<t) :=
∑
xt

µ(xt|x<t)`xty
Λρ
t

The decision theoretic counterpart of conv. is self-optimizingness

l
Λρ

t (x<t)
(fast)−→ l

Λµ

t (x<t) for t →∞
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Predictive Properties of Universal Prior
If U is a universal prefix Turing machine, then Solomonoff’s prior

M(x) :=
∑

p:U(p)=x∗ 2−l(p), KM(x) := − log M(x).

has (excellent) predictive properties (Solomonoff:78, Hutter:01):

Solomonoff’s prior M is a (i) universal, (v) enumerable, (ii) monotone,

(iii) semimeasure, which (vi) converges to µ i.m.s., and (vii) is

self-optimizing i.m.s. More quantitatively:

(vi)
∑∞

t=1 E[
∑

x′t
(M(x′t|x<t)− µ(x′t|x<t))2]

+≤ ln 2 ·K(µ),

M(x′t|x<t)
t→∞−→ µ(x′t|x<t) i.m.s. for µ ∈Mmsr

comp.

(vii)
∑∞

t=1 E[(lΛM
t − l

Λµ

t )2]
+≤ 2 ln 2 ·K(µ), which implies

lΛM
t

t→∞−→ l
Λµ

t i.m.s. for µ ∈Mmsr
comp,

where K(µ) is the length of the shortest prg computing function µ.
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Monotone Kolmogorov Complexity

• MDL approximation of M(x) =
∑

p:U(p)=x∗ 2−l(p) by the dominant

contribution in the sum:

m(x) := 2−Km(x) with Km(x) := minp{l(p) : U(p) = x∗}.
Km is called monotone complexity and is very close to KM

(Levin:73, Gacs:83).

• A sequence x1:∞ is called computable if Km(x1:∞) < ∞.

• KM , Km, and K are ordered in the following way:

0 ≤ K(x|l(x))
+≤ KM(x) ≤ Km(x) ≤ K(x)

+≤ l(x)·log |X |+ 2 log l(x)

• where the prefix Kolmogorov complexity is defined as

K(x) := minp{l(p) : U(p) = x halts}, k(x) := 2−K(x).
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Minimal Description Length Principle

• Generic complexity K̃ ∈ {K, KM, Km, ...} and its associated

Predictive functions k̃(x) := 2−K̃(x) ∈ {k, M, m, ...}.
• k̃ is generally not a semimeasure, so we have to clarify what it

means to predict using k̃.

• Popular approach: (Universal) MDL: yMDL
t := arg minyt K̃(x<tyt).

Enumerable Posterior: k̃|(x|y) := 2−K̃|(x|y),

Bayes Posterior: k̃(xn|x<n) := k̃(x1:n)/k̃(x<n).

• MDL coincides with the Λk̃ predictor for the error loss `xy =1−δxy:

y
Λk̃
t = arg min

yt

∑
xt

k̃(xt|x<t)`xtyt
= arg min

yt

K̃(x<tyt) = yMDL
t

• Hence, self-optimizingness l
Λk̃
t → l

Λµ

t tells us something about the

validity of the MDL principle (what good prediction means).
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Properties of Predictive Functions
We call functions b, b| : X ∗ → [0,∞) (conditional) predictive functions.

They may possess some of the following properties:

o) Proximity: b(x1:n) is “close” to the universal prior M(x1:n).

i) Universality: b
×≥M, i.e. ∀ν ∈M∃c > 0 : b(x) ≥ c · ν(x)∀x.

ii) Monotonicity: b(x1:n) ≤ b(x<n) ∀n, x1:n.

iii) Semimeasure:
∑

xn
b(x1:n) ≤ b(x<n) and b(ε) ≤ 1.

iv) Multiplication rule: b(x1:n) = b.(xn|x<n)b(x<n).

v) Enumerability: b is lower semi-computable.

vi) Convergence: b.(x′t|x<t)
t→∞−→ µ(x′t|x<t) ∀µ ∈M, x′t ∈ X .

vii) Self-optimizingness: lΛb.
t

t→∞−→ l
Λµ

t i.m.s. or w.p.1.

where b. refers to b or b|.
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Predictive Relations

The importance of the properties (i)− (iv) stems from the fact that

they together imply convergence (vi) and self-optimizingness (vii):

a) (iii) → (ii): A semimeasure is monotone.

b) (i), (iii), (iv) → (vi): The posterior b. as defined by the

multiplication rule (iv) of a universal semimeasure b converges to µ

i.m.s. for all µ ∈M.

c) (i), (iii), (v) → (o): Every w.r.t. Msemi
enum universal enumerable

semimeasure coincides with M within a multiplicative constant.

d) (vi) → (vii): Posterior convergence i.m.s./w.p.1 implies

self-optimizingness i.m.s./w.p.1.
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Predictive Properties of m = 2−Km

(o) m(x1:n) ×= M(x1:n) for every µ ∈Mmsr
comp and µ-random x1:∞.

(i) m is universal w.r.t. M = Mmsr
comp, but not w.r.t. M = Msemi

enum.

(ii) m is monotone.

(iii) m is not a semimeasure.

(iv) m. = m respects the multiplication rule, but m. = m| not.

(v) m is enumerable (lower semi-computable).

(vi) For m. = m converges (fast on-, somehow off-sequence) and ...

(vii) ... is self-optimizing for computable deterministic µ, but in general

not for probabilistic µ.

The lesson to learn is that although m is very close to M and m

dominates all computable measures µ, predictions based on m may

nevertheless fail.
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Detailed Properties of m = 2−Km

(o) ∀µ ∈Mmsr
comp ∀µ-random ω ∃cω : Km(ω1:n) ≤ KM(ω1:n) + cω ∀n,

KM(x) ≤ Km(x) ≤ KM(x) + 2 log Km(x)∀x. Levin:70

¬(o) ∀c : Km(x)−KM(x) ≥ c for infinitely many x. Gacs:83

(i) Km(x)
+≤ − log µ(x) + K(µ) if µ ∈Mmsr

comp, Levin:73

m
×≥Mmsr

comp, but m 6×≥Msemi
enum (unlike M

×≥Msemi
enum).

(ii) Km(xy) ≥ Km(x) ∈ IN0, 0 < m(xy) ≤ m(x) ∈ 2−IN0 ≤ 1.

¬(iii) If x1:n is computable, then
∑

xn
m(x1:n) 6≤ m(x<n) for almost all n

If Km(x1:n) = o(n), then
∑

xn
m(x1:n) 6≤ m(x<n) for most n.

(iv) 0 < m(x|y) := m(yx)
m(y) ≤ 1.

¬(iv) ∃x, y : m(yx) 6= m|(x|y) ·m(y),
Km(yx) = Km|(x|y) + Km(y)±O(log l(y)).



Marcus Hutter - 15 - Sequence Prediction based on Monotone Complexity

Detailed Properties of m = 2−Km

(v) m is enumerable, i.e. lower semi-computable.

(vi)
∑n

t=1 |1−m(xt|x<t)|≤ 1
2Km(x1:n), m(xt|x<t)

fast−→ 1 if x1:∞ comp

Indeed, m(xt|x<t) 6= 1 at most Km(x1:∞) times,∑n
t=1

∑
x̄t 6=xt

m(x̄t|x<t) ≤ 2Km(x1:n), m(x̄t|x<t)
slow?−→ 0 if x1:∞ comp.

¬(vi) ∃µ ∈Mmsr
comp \Mdet : m(norm)(xt|x<t) 6→ µ(xt|x<t) ∀x1:∞

(vii) lΛm
t (x<t)

slow?−→ lΛω
t := arg minyt

`xtyt
if ω ≡ x1:∞ is computable.

Λm = Λmnorm , i.e. yΛm
t = y

Λmnorm
t and lΛm

t = l
Λmnorm
t .

¬(vii) ∀|Y| > 2∃`, µ : lΛm
t /l

Λµ

t = c > 1∀t, n (c = 6
5 − ε possible),

∀′`∀X ,Y ∃U, µ : lΛm
t /l

Λµ

t = LΛm
n /L

Λµ
n = c > 1∀t, n,

where ∀′` means for all non-degenerate `.
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Remarks

Simple MDL: Take the shortest (non-halting) program p which outputs

x, continue running p, and use the continuation y of x for prediction:

m̃|(xt|x<t) := 1 if shortest program for x<t∗ computes x<txt∗
m̃|(x̄t|x<t) := 0.

Predictive properties are worse or at least not better than m.

Predictions based on K: K(x) (and K(x|l(x))) are completely

unsuitable for prediction, since K(x0) += K(x1) (and

K(x0|l(x0)) += K(x1|l(x1))), which implies that the predictive functions

do not even converge for deterministic computable environments.
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Outlook and Open Problems

• How fast does m(x̄t|x<t) converge to zero in the deterministic case?

• Can self-optimizingness of Λm be violated for every non-degenerate

loss-function and universal Turing machine U?

• When does closeness or dominance of unconditional predictive

function k̃ to/over M imply good prediction performance?

• What are the predictive properties of plain Kolmogorov complexity

C, Schnorr’s process complexity, Chaitin’s complexity Kc, Cover’s

extension semimeasure Mc, Loveland’s uniform complexity,

Schmidhuber’s cumulative KE and general KG, Vovk’s predictive

complexity KP , Schmidhuber’s speed prior S, Levin complexity Kt,

and others?
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• Many properties and relations are known for the unconditional

versions, but little relevant for prediction of the conditional versions

is known.

• Levin’s representation of M as a mixture over semi-measures leads

to the universal two-part MDL approximation

Km2(x) := minν∈Msemi
enum

{− log ν(x) + K(ν)}.
What are the predictive properties of Km2, similar to Km?

• More abstract proofs showing that violation of some of the criteria

(i)− (iv) necessarily lead to violation of (vi) or (vii) may deal with

a number of complexity measures simultaneously.

• Non-convergence or non-self-optimizingness of m does not

necessarily mean that m fails in practice. Characterize the class of

environments for which universal MDL alias m converges and

self-optimizes rapidly.
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Summary
• We studied the predictive properties of complexity measures, esp.

KM and Km. Performance was measured in terms of convergence

of posteriors or losses.

• We enumerated and related eight important properties, which

general predictive functions may posses or not: proximity to M ,

universality, monotonicity, being a semimeasure, the multiplication

rule, enumerability, convergence, and self-optimizingness.

• The monotone complexity Km = − log m is, in a sense, closest to

KM . While KM is defined via a mixture of programs, Km

approximates KM by the contribution of the single shortest

program.

• This captures the spirit of Occam’s razor and the popular Minimal

Description Length (MDL) principle.
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Conclusions

• Closeness of “priors” does neither necessarily imply closeness of

“posteriors”, nor good performance from a decision-theoretic

perspective.

• For deterministic, computable environments, the MDL posterior of

m = 2−Km converges and is self-optimizing, but rapid convergence

could only be shown on-sequence; the off-sequence behavior is

unclear. In the presence of noise, m neither converges, nor is it

self-optimizing, in general.

• Some complexity measures like K, fail completely for prediction.


