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Abstract
The dream of creating artificial devices that reach or outperform human

intelligence is many centuries old. This lecture series presents the

elegant parameter-free theory, developed in [Hut05], of an optimal

reinforcement learning agent embedded in an arbitrary unknown

environment that possesses essentially all aspects of rational intelligence.

The theory reduces all conceptual AI problems to pure computational

questions.

How to perform inductive inference is closely related to the AI problem.

The lecture series covers Solomonoff’s theory, elaborated on in [Hut07],

which solves the induction problem, at least from a philosophical and

statistical perspective.

Both theories are based on Occam’s razor quantified by Kolmogorov

complexity; Bayesian probability theory; and sequential decision theory.
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Relation between ML & RL & (U)AI 

Universal Artificial Intelligence
Covers all Reinforcement Learning problem types

RL Problems 

& Algorithms

Stochastic, 
unknown, 
non-i.i.d. 
environments

Artificial

Intelligence

Traditionally 
deterministic, 
known  world / 
planning problem

Statistical 

Machine Learning

Mostly i.i.d. data 
classification, 

regression, 
clustering
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PHILOSOPHICAL ISSUES

• Philosophical Problems

• What is (Artificial) Intelligence?

• How to do Inductive Inference?

• How to Predict (Number) Sequences?

• How to make Decisions in Unknown Environments?

• Occam’s Razor to the Rescue

• The Grue Emerald and Confirmation Paradoxes

• What this Lecture Series is (Not) About
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Philosophical Issues: Abstract

I start by considering the philosophical problems concerning artificial

intelligence and machine learning in general and induction in particular.

I illustrate the problems and their intuitive solution on various (classical)

induction examples. The common principle to their solution is Occam’s

simplicity principle. Based on Occam’s and Epicurus’ principle, Bayesian

probability theory, and Turing’s universal machine, Solomonoff

developed a formal theory of induction. I describe the sequential/online

setup considered in this lecture series and place it into the wider

machine learning context.
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What is (Artificial) Intelligence?
Intelligence can have many faces ⇒ formal definition difficult

• reasoning
• creativity
• association
• generalization
• pattern recognition
• problem solving
• memorization
• planning
• achieving goals
• learning
• optimization
• self-preservation
• vision
• language processing
• classification
• induction
• deduction
• ...

What is AI? Thinking Acting

humanly Cognitive Turing test,
Science Behaviorism

rationally Laws Doing the
Thought Right Thing

Collection of 70+ Defs of Intelligence
http://www.vetta.org/

definitions-of-intelligence/

Real world is nasty: partially unobservable,
uncertain, unknown, non-ergodic, reactive,
vast, but luckily structured, ...
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Informal Definition of (Artificial) Intelligence

Intelligence measures an agent’s ability to achieve goals

in a wide range of environments. [S. Legg and M. Hutter]

Emergent: Features such as the ability to learn and adapt, or to

understand, are implicit in the above definition as these capacities

enable an agent to succeed in a wide range of environments.

The science of Artificial Intelligence is concerned with the construction

of intelligent systems/artifacts/agents and their analysis.

What next? Substantiate all terms above: agent, ability, utility, goal,

success, learn, adapt, environment, ...
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On the Foundations of Artificial Intelligence

• Example: Algorithm/complexity theory: The goal is to find fast

algorithms solving problems and to show lower bounds on their

computation time. Everything is rigorously defined: algorithm,

Turing machine, problem classes, computation time, ...

• Most disciplines start with an informal way of attacking a subject.

With time they get more and more formalized often to a point

where they are completely rigorous. Examples: set theory, logical

reasoning, proof theory, probability theory, infinitesimal calculus,

energy, temperature, quantum field theory, ...

• Artificial Intelligence: Tries to build and understand systems that

act intelligently, learn from experience, make good predictions, are

able to generalize, ... Many terms are only vaguely defined or there

are many alternate definitions.
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Induction→Prediction→Decision→Action

Induction infers general models from specific observations/facts/data,

usually exhibiting regularities or properties or relations in the latter.

Having or acquiring or learning or inducing a model of the environment

an agent interacts with allows the agent to make predictions and utilize

them in its decision process of finding a good next action.

Example

Induction: Find a model of the world economy.

Prediction: Use the model for predicting the future stock market.

Decision: Decide whether to invest assets in stocks or bonds.

Action: Trading large quantities of stocks influences the market.
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Example 1: Probability of Sunrise Tomorrow

What is the probability p(1|1d) that the sun will rise tomorrow?

(d = past # days sun rose, 1 =sun rises. 0 = sun will not rise)

• p is undefined, because there has never been an experiment that

tested the existence of the sun tomorrow (ref. class problem).

• The p = 1, because the sun rose in all past experiments.

• p = 1− ϵ, where ϵ is the proportion of stars that explode per day.

• p = d+1
d+2 , which is Laplace rule derived from Bayes rule.

• Derive p from the type, age, size and temperature of the sun, even

though we never observed another star with those exact properties.

Conclusion: We predict that the sun will rise tomorrow with high

probability independent of the justification.
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Example 2: Digits of a Computable Number

• Extend 14159265358979323846264338327950288419716939937?

• Looks random?!

• Frequency estimate: n = length of sequence. ki= number of

occured i =⇒ Probability of next digit being i is i
n . Asymptotically

i
n → 1

10 (seems to be) true.

• But we have the strong feeling that (i.e. with high probability) the

next digit will be 5 because the previous digits were the expansion

of π.

• Conclusion: We prefer answer 5, since we see more structure in the

sequence than just random digits.
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Example 3: Number Sequences

Sequence: x1, x2, x3, x4, x5, ...
1, 2, 3, 4, ?, ...

• x5 = 5, since xi = i for i = 1..4.

• x5 = 29, since xi = i4 − 10i3 + 35i2 − 49i+ 24.

Conclusion: We prefer 5, since linear relation involves less arbitrary

parameters than 4th-order polynomial.

Sequence: 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,?

• 61, since this is the next prime

• 60, since this is the order of the next simple group

Conclusion: We prefer answer 61, since primes are a more familiar

concept than simple groups.

On-Line Encyclopedia of Integer Sequences:

http://www.research.att.com/∼njas/sequences/
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Occam’s Razor to the Rescue

• Is there a unique principle which allows us to formally arrive at a

prediction which

- coincides (always?) with our intuitive guess -or- even better,

- which is (in some sense) most likely the best or correct answer?

• Yes! Occam’s razor: Use the simplest explanation consistent with

past data (and use it for prediction).

• Works! For examples presented and for many more.

• Actually Occam’s razor can serve as a foundation of machine

learning in general, and is even a fundamental principle (or maybe

even the mere definition) of science.

• Problem: Not a formal/mathematical objective principle.

What is simple for one may be complicated for another.
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Grue Emerald Paradox

Hypothesis 1: All emeralds are green.

Hypothesis 2: All emeralds found till y2020 are green,

thereafter all emeralds are blue.

• Which hypothesis is more plausible? H1! Justification?

• Occam’s razor: take simplest hypothesis consistent with data.

is the most important principle in machine learning and science.
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Confirmation Paradox
(i) R→ B is confirmed by an R-instance with property B

(ii) ¬B → ¬R is confirmed by a ¬B-instance with property ¬R.
(iii) Since R→ B and ¬B → ¬R are logically equivalent,
R→ B is also confirmed by a ¬B-instance with property ¬R.

Example: Hypothesis (o): All ravens are black (R=Raven, B=Black).

(i) observing a Black Raven confirms Hypothesis (o).

(iii) observing a White Sock also confirms that all Ravens are Black,
since a White Sock is a non-Raven which is non-Black.

This conclusion sounds absurd! What’s the problem?



Marcus Hutter - 17 - Universal Induction & Intelligence

What This Lecture Series is (Not) About
Dichotomies in Artificial Intelligence & Machine Learning

scope of this lecture series ⇔ scope of other lecture seriess

(machine) learning ⇔ (GOFAI) knowledge-based

statistical ⇔ logic-based

decision ⇔ prediction ⇔ induction ⇔ action

classification ⇔ regression

sequential / non-iid ⇔ independent identically distributed

online learning ⇔ offline/batch learning

passive prediction ⇔ active learning

Bayes ⇔ MDL ⇔ Expert ⇔ Frequentist

uninformed / universal ⇔ informed / problem-specific

conceptual/mathematical issues ⇔ computational issues

exact/principled ⇔ heuristic

supervised learning ⇔ unsupervised ⇔ RL learning

exploitation ⇔ exploration
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BAYESIAN SEQUENCE PREDICTION

• Sequential/Online Prediction – Setup

• Uncertainty and Probability

• Frequency Interpretation: Counting

• Objective Uncertain Events & Subjective Degrees of Belief

• Bayes’ and Laplace’s Rules

• The Bayes-mixture distribution

• Predictive Convergence

• Sequential Decisions and Loss Bounds

• Generalization: Continuous Probability Classes

• Summary
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Bayesian Sequence Prediction: Abstract

The aim of probability theory is to describe uncertainty. There are

various sources and interpretations of uncertainty. I compare the

frequency, objective, and subjective probabilities, and show that they all

respect the same rules, and derive Bayes’ and Laplace’s famous and

fundamental rules. Then I concentrate on general sequence prediction

tasks. I define the Bayes mixture distribution and show that the

posterior converges rapidly to the true posterior by exploiting some

bounds on the relative entropy. Finally I show that the mixture predictor

is also optimal in a decision-theoretic sense w.r.t. any bounded loss

function.
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Sequential/Online Prediction – Setup

In sequential or online prediction, for times t = 1, 2, 3, ...,

our predictor p makes a prediction ypt ∈ Y

based on past observations x1, ..., xt−1.

Thereafter xt ∈ X is observed and p suffers Loss(xt, y
p
t ).

The goal is to design predictors with small total loss or cumulative

Loss1:T (p) :=
∑T

t=1 Loss(xt, y
p
t ).

Applications are abundant, e.g. weather or stock market forecasting.

Example:
Loss(x, y) X = {sunny , rainy}

Y =
{

umbrella
sunglasses

}
0.1 0.3
0.0 1.0

Setup also includes: Classification and Regression problems.
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Uncertainty and Probability

The aim of probability theory is to describe uncertainty.

Sources/interpretations for uncertainty:

• Frequentist: probabilities are relative frequencies.

(e.g. the relative frequency of tossing head.)

• Objectivist: probabilities are real aspects of the world.

(e.g. the probability that some atom decays in the next hour)

• Subjectivist: probabilities describe an agent’s degree of belief.

(e.g. it is (im)plausible that extraterrestrians exist)
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Frequency Interpretation: Counting

• The frequentist interprets probabilities as relative frequencies.

• If in a sequence of n independent identically distributed (i.i.d.)

experiments (trials) an event occurs k(n) times, the relative

frequency of the event is k(n)/n.

• The limit limn→∞ k(n)/n is defined as the probability of the event.

• For instance, the probability of the event head in a sequence of

repeatedly tossing a fair coin is 1
2 .

• The frequentist position is the easiest to grasp, but it has several

shortcomings:

• Problems: definition circular, limited to i.i.d, reference class

problem.
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Objective Interpretation: Uncertain Events

• For the objectivist probabilities are real aspects of the world.

• The outcome of an observation or an experiment is not

deterministic, but involves physical random processes.

• The set Ω of all possible outcomes is called the sample space.

• It is said that an event E ⊂ Ω occurred if the outcome is in E.

• In the case of i.i.d. experiments the probabilities p assigned to

events E should be interpretable as limiting frequencies, but the

application is not limited to this case.

• (Some) probability axioms:

p(Ω) = 1 and p({}) = 0 and 0 ≤ p(E) ≤ 1.

p(A ∪B) = p(A) + p(B)− p(A ∩B).

p(B|A) = p(A∩B)
p(A) is the probability of B given event A occurred.
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Subjective Interpretation: Degrees of Belief

• The subjectivist uses probabilities to characterize an agent’s degree

of belief in something, rather than to characterize physical random

processes.

• This is the most relevant interpretation of probabilities in AI.

• We define the plausibility of an event as the degree of belief in the

event, or the subjective probability of the event.

• It is natural to assume that plausibilities/beliefs Bel(·|·) can be repr.

by real numbers, that the rules qualitatively correspond to common

sense, and that the rules are mathematically consistent. ⇒

• Cox’s theorem: Bel(·|A) is isomorphic to a probability function

p(·|·) that satisfies the axioms of (objective) probabilities.

• Conclusion: Beliefs follow the same rules as probabilities
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Bayes’ Famous Rule
Let D be some possible data (i.e. D is event with p(D) > 0) and

{Hi}i∈I be a countable complete class of mutually exclusive hypotheses

(i.e. Hi are events with Hi ∩Hj = {} ∀i ̸= j and
∪

i∈I Hi = Ω).

Given: p(Hi) = a priori plausibility of hypotheses Hi (subj. prob.)

Given: p(D|Hi) = likelihood of data D under hypothesis Hi (obj. prob.)

Goal: p(Hi|D) = a posteriori plausibility of hypothesis Hi (subj. prob.)

Solution: p(Hi|D) =
p(D|Hi)p(Hi)∑
i∈I p(D|Hi)p(Hi)

Proof: From the definition of conditional probability and∑
i∈I

p(Hi|...) = 1 ⇒
∑
i∈I

p(D|Hi)p(Hi) =
∑
i∈I

p(Hi|D)p(D) = p(D)
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Example: Bayes’ and Laplace’s Rule

Assume data is generated by a biased coin with head probability θ, i.e.

Hθ :=Bernoulli(θ) with θ ∈ Θ := [0, 1].

Finite sequence: x = x1x2...xn with n1 ones and n0 zeros.

Sample infinite sequence: ω ∈ Ω = {0, 1}∞

Basic event: Γx = {ω : ω1 = x1, ..., ωn = xn} = set of all sequences

starting with x.

Data likelihood: pθ(x) := p(Γx|Hθ) = θn1(1− θ)n0 .

Bayes (1763): Uniform prior plausibility: p(θ) := p(Hθ) = 1

(
∫ 1

0
p(θ) dθ = 1 instead

∑
i∈I p(Hi) = 1)

Evidence: p(x) =
∫ 1

0
pθ(x)p(θ) dθ =

∫ 1

0
θn1(1− θ)n0 dθ = n1!n0!

(n0+n1+1)!
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Example: Bayes’ and Laplace’s Rule

Bayes: Posterior plausibility of θ

after seeing x is:

p(θ|x) = p(x|θ)p(θ)
p(x)

=
(n+1)!

n1!n0!
θn1(1−θ)n0

.

Laplace: What is the probability of seeing 1 after having observed x?

p(xn+1 = 1|x1...xn) =
p(x1)

p(x)
=
n1+1

n+ 2

Laplace believed that the sun had risen for 5000 years = 1’826’213 days,

so he concluded that the probability of doomsday tomorrow is 1
1826215 .
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Exercise: Envelope Paradox

• I offer you two closed envelopes, one of them contains twice the

amount of money than the other. You are allowed to pick one and

open it. Now you have two options. Keep the money or decide for

the other envelope (which could double or half your gain).

• Symmetry argument: It doesn’t matter whether you switch, the

expected gain is the same.

• Refutation: With probability p = 1/2, the other envelope contains

twice/half the amount, i.e. if you switch your expected gain

increases by a factor 1.25=(1/2)*2+(1/2)*(1/2).

• Present a Bayesian solution.
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Notation: Strings & Probabilities

Strings: x=x1x2...xn with xt∈X and x1:n := x1x2...xn−1xn and

x<n := x1...xn−1.

Probabilities: σ(x1...xn) is the probability that an (infinite) sequence

starts with x1...xn.

Conditional probability:

σn := σ(xn|x<n) = σ(x1:n)/σ(x<n),

σ(x1...xn) = σ(x1)·σ(x2|x1)·...·σ(xn|x1...xn−1).

True data generating distribution: µ
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The Bayes-Mixture Distribution ξ
• Assumption: The true (objective) environment µ is unknown.

• Bayesian approach: Replace true probability distribution µ by a
Bayes-mixture ξ.

• Assumption: We know that the true environment µ is contained in
some known countable (in)finite set M of environments.

• The Bayes-mixture ξ is defined as

ξ(x) :=
∑
ν∈M

wνν(x) with
∑
ν∈M

wν = 1, wν > 0 ∀ν

• The weights wν may be interpreted as the prior degree of belief that
the true environment is ν, or kν = lnw−1

ν as a complexity penalty
(prefix code length) of environment ν.

• Then ξ(x) could be interpreted as the prior subjective belief
probability in observing x.
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Relative Entropy

Relative entropy: D(p||q) :=
∑

i pi ln
pi

qi

Properties: D(p||q) ≥ 0 and D(p||q) = 0 ⇔ p = q

Instantaneous relative entropy: dt(x<t) :=
∑
xt∈X

µ(xt|x<t) ln
µ(xt|x<t)

ξ(xt|x<t)

Total relative entropy: Dn :=
∑n

t=1 E[dt] ≤ lnw−1
µ

E[f ] =Expectation of f w.r.t. the true distribution µ, e.g.

If f : Xn → IR, then E[f ] :=
∑

x1:n
µ(x1:n)f(x1:n).

Proof based on dominance or universality: ξ(x) ≥ wµµ(x).
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Proof of the Entropy Bound

Dn ≡
n∑

t=1

∑
x<t

µ(x<t)·dt(x<t)
(a)
=

n∑
t=1

∑
x1:t

µ(x1:t) ln
µ(xt|x<t)

ξ(xt|x<t)
=

(b)
=

∑
x1:n

µ(x1:n) ln
n∏

t=1

µ(xt|x<t)

ξ(xt|x<t)

(c)
=

∑
x1:n

µ(x1:n) ln
µ(x1:n)

ξ(x1:n)

(d)

≤ lnw−1
µ

(a) Insert def. of dt and used chain rule µ(x<t)·µ(xt|x<t)=µ(x1:t).

(b)
∑

x1:t
µ(x1:t) =

∑
x1:n

µ(x1:n) and argument of log is independent

of xt+1:n. The t sum can now be exchanged with the x1:n sum and

transforms to a product inside the logarithm.

(c) Use chain rule again for µ and ξ.

(d) Use dominance ξ(x) ≥ wµµ(x).
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Predictive Convergence

Theorem: ξ(xt|x<t) → µ(xt|x<t) rapid w.p.1 for t→ ∞

Proof: D∞ ≡
∑∞

t=1 E[dt] ≤ lnw−1
µ and dt ≥ 0

=⇒ dt
t→∞−→ 0 ⇐⇒ ξt → µt.

Fazit: ξ is excellent universal predictor if unknown µ belongs to M.

How to choose M and wµ? Both as large as possible?! More later.
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Sequential Decisions
A prediction is very often the basis for some decision. The decision

results in an action, which itself leads to some reward or loss.

Let Loss(xt, yt) ∈ [0, 1] be the received loss when taking action yt∈Y
and xt∈X is the tth symbol of the sequence.

For instance, decision Y={umbrella, sunglasses} based on weather

forecasts X ={sunny, rainy}. Loss sunny rainy

umbrella 0.1 0.3

sunglasses 0.0 1.0

The goal is to minimize the µ-expected loss. More generally we define

the Λσ prediction scheme, which minimizes the σ-expected loss:

yΛσ
t := arg min

yt∈Y

∑
xt

σ(xt|x<t)Loss(xt, yt)
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Loss Bounds
• Definition: µ-expected loss when Λσ predicts the tth symbol:

Losst(Λσ)(x<t) :=
∑

xt
µ(xt|x<t)Loss(xt, y

Λσ
t )

• Losst(Λµ/ξ) made by the informed/universal scheme Λµ/ξ.

Losst(Λµ) ≤ Losst(Λ) ∀t,Λ.

• Theorem: 0≤ Losst(Λξ)−Losst(Λµ) ≤
∑

xt
|ξt−µt|≤

√
2dt

w.p.1−→ 0

• Total Loss1:n(Λσ) :=
∑n

t=1 E[Losst(Λσ)].

• Theorem: Loss1:n(Λξ)− Loss1:n(Λµ) ≤ 2Dn + 2
√
Loss1:n(Λµ)Dn

• Corollary: If Loss1:∞(Λµ) is finite, then Loss1:∞(Λξ) is finite, and
Loss1:n(Λξ)/Loss1:∞(Λµ) → 1 if Loss1:∞(Λµ) → ∞.

• Remark: Holds for any loss function ∈ [0, 1] with no assumptions
(like i.i.d., Markovian, stationary, ergodic, ...) on µ ∈ M.
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Proof of Instantaneous Loss Bounds

Abbreviations: X = {1, ..., N}, N = |X |, i = xt, yi = µ(xt|x<t),

zi = ξ(xt|x<t), m = y
Λµ

t , s = y
Λξ

t , ℓxy = Loss(x, y).

This and definition of y
Λµ

t and y
Λξ

t and
∑

i ziℓis ≤
∑

i ziℓij ∀j implies

Losst(Λξ)− Losst(Λµ) ≡
∑
i

yiℓis−
∑
i

yiℓim
(a)

≤
∑
i

(yi − zi)(ℓis − ℓim)

≤
∑
i

|yi−zi|·|ℓis−ℓim|
(b)

≤
∑
i

|yi − zi|
(c)

≤
√∑

i

yi ln
yi
zi

≡
√
2dt(x<t)

(a) We added
∑

i zi(ℓim − ℓis) ≥ 0.

(b) |ℓis − ℓim| ≤ 1 since ℓ ∈ [0, 1].

(c) Pinsker’s inequality (elementary, but not trivial)
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Generalization: Continuous Classes M
In statistical parameter estimation one often has a continuous

hypothesis class (e.g. a Bernoulli(θ) process with unknown θ∈ [0, 1]).

M := {νθ : θ ∈ IRd}, ξ(x) :=

∫
IRd

dθ w(θ) νθ(x),

∫
IRd

dθ w(θ) = 1

Under weak regularity conditions [CB90,H’03]:

Theorem: Dn(µ||ξ) ≤ lnw(µ)−1 + d
2 ln

n
2π +O(1)

where O(1) depends on the local curvature (parametric complexity) of

ln νθ, and is independent n for many reasonable classes, including all

stationary (kth-order) finite-state Markov processes (k = 0 is i.i.d.).

Dn ∝ log(n) = o(n) still implies excellent prediction and decision for

most n. [RH’07]
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Bayesian Sequence Prediction: Summary

• The aim of probability theory is to describe uncertainty.

• Various sources and interpretations of uncertainty:

frequency, objective, and subjective probabilities.

• They all respect the same rules.

• General sequence prediction: Use known (subj.) Bayes mixture

ξ =
∑

ν∈M wνν in place of unknown (obj.) true distribution µ.

• Bound on the relative entropy between ξ and µ.

⇒ posterior of ξ converges rapidly to the true posterior µ.

• ξ is also optimal in a decision-theoretic sense w.r.t. any bounded

loss function.

• No structural assumptions on M and ν ∈ M.
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UNIVERSAL INDUCTIVE INFERENCE

• Foundations of Universal Induction
• Bayesian Sequence Prediction and Confirmation
• Convergence and Decisions
• How to Choose the Prior – Universal
• Kolmogorov Complexity
• How to Choose the Model Class – Universal
• The Problem of Zero Prior
• Reparametrization and Regrouping Invariance
• The Problem of Old Evidence / New Theories
• Universal is Better than Continuous Class
• More Bounds / Stuff / Critique / Problems
• Summary / Outlook / Literature
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Universal Inductive Inference: Abstract

Solomonoff completed the Bayesian framework by providing a rigorous,

unique, formal, and universal choice for the model class and the prior. I

will discuss in breadth how and in which sense universal (non-i.i.d.)

sequence prediction solves various (philosophical) problems of traditional

Bayesian sequence prediction. I show that Solomonoff’s model possesses

many desirable properties: Strong total and weak instantaneous bounds

, and in contrast to most classical continuous prior densities has no zero

p(oste)rior problem, i.e. can confirm universal hypotheses, is

reparametrization and regrouping invariant, and avoids the old-evidence

and updating problem. It even performs well (actually better) in

non-computable environments.
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Induction Examples

Sequence prediction: Predict weather/stock-quote/... tomorrow, based

on past sequence. Continue IQ test sequence like 1,4,9,16,?

Classification: Predict whether email is spam.

Classification can be reduced to sequence prediction.

Hypothesis testing/identification: Does treatment X cure cancer?

Do observations of white swans confirm that all ravens are black?

These are instances of the important problem of inductive inference or

time-series forecasting or sequence prediction.

Problem: Finding prediction rules for every particular (new) problem is

possible but cumbersome and prone to disagreement or contradiction.

Goal: A single, formal, general, complete theory for prediction.

Beyond induction: active/reward learning, fct. optimization, game theory.
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Foundations of Universal Induction
Ockhams’ razor (simplicity) principle
Entities should not be multiplied beyond necessity.

Epicurus’ principle of multiple explanations
If more than one theory is consistent with the observations, keep
all theories.
Bayes’ rule for conditional probabilities
Given the prior belief/probability one can predict all future prob-
abilities.
Turing’s universal machine
Everything computable by a human using a fixed procedure can
also be computed by a (universal) Turing machine.
Kolmogorov’s complexity
The complexity or information content of an object is the length
of its shortest description on a universal Turing machine.
Solomonoff’s universal prior=Ockham+Epicurus+Bayes+Turing
Solves the question of how to choose the prior if nothing is known.
⇒ universal induction, formal Occam, AIT,MML,MDL,SRM,...
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Bayesian Sequence Prediction and Confirmation

• Assumption: Sequence ω ∈ X∞ is sampled from the “true”

probability measure µ, i.e. µ(x) := P[x|µ] is the µ-probability that

ω starts with x ∈ Xn.

• Model class: We assume that µ is unknown but known to belong to

a countable class of environments=models=measures

M = {ν1, ν2, ...}. [no i.i.d./ergodic/stationary assumption]

• Hypothesis class: {Hν : ν ∈ M} forms a mutually exclusive and

complete class of hypotheses.

• Prior: wν := P[Hν ] is our prior belief in Hν

⇒ Evidence: ξ(x) := P[x] =
∑

ν∈M P[x|Hν ]P[Hν ] =
∑

ν wνν(x)

must be our (prior) belief in x.

⇒ Posterior: wν(x) := P[Hν |x] = P[x|Hν ]P[Hν ]
P[x] is our posterior belief

in ν (Bayes’ rule).
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When is a Sequence Random?

a) Is 0110010100101101101001111011 generated by a fair coin flip?

b) Is 1111111111111111111111111111 generated by a fair coin flip?

c) Is 1100100100001111110110101010 generated by a fair coin flip?

d) Is 0101010101010101010101010101 generated by a fair coin flip?

• Intuitively: (a) and (c) look random, but (b) and (d) look unlikely.

• Problem: Formally (a-d) have equal probability ( 12 )
length.

• Classical solution: Consider hypothesis class H := {Bernoulli(p) :
p ∈ Θ ⊆ [0, 1]} and determine p for which sequence has maximum

likelihood =⇒ (a,c,d) are fair Bernoulli(12 ) coins, (b) not.

• Problem: (d) is non-random, also (c) is binary expansion of π.

• Solution: Choose H larger, but how large? Overfitting? MDL?

• AIT Solution: A sequence is random iff it is incompressible.
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What does Probability Mean?

Naive frequency interpretation is circular:

• Probability of event E is p := limn→∞
kn(E)

n ,

n = # i.i.d. trials, kn(E) = # occurrences of event E in n trials.

• Problem: Limit may be anything (or nothing):

e.g. a fair coin can give: Head, Head, Head, Head, ... ⇒ p = 1.

• Of course, for a fair coin this sequence is “unlikely”.

For fair coin, p = 1/2 with “high probability”.

• But to make this statement rigorous we need to formally know what

“high probability” means. Circularity!

Also: In complex domains typical for AI, sample size is often 1.

(e.g. a single non-iid historic weather data sequences is given).

We want to know whether certain properties hold for this particular seq.
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How to Choose the Prior?

The probability axioms allow relating probabilities and plausibilities of

different events, but they do not uniquely fix a numerical value for each

event, except for the sure event Ω and the empty event {}.

We need new principles for determining values for at least some basis

events from which others can then be computed.

There seem to be only 3 general principles:

• The principle of indifference — the symmetry principle

• The maximum entropy principle

• Occam’s razor — the simplicity principle

Concrete: How shall we choose the hypothesis space {Hi} and their

prior p(Hi) –or– M = {ν} and their weight wν .
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Indifference or Symmetry Principle

Assign same probability to all hypotheses:

p(Hi) =
1
|I| for finite I

p(Hθ) = [Vol(Θ)]−1 for compact and measurable Θ.

⇒ p(Hi|D) ∝ p(D|Hi)
∧
= classical Hypothesis testing (Max.Likelihood).

Prev. Example: Hθ =Bernoulli(θ) with p(θ) = 1 for θ ∈ Θ := [0, 1].

Problems: Does not work for “large” hypothesis spaces:

(a) Uniform distr. on infinite I = IN or noncompact Θ not possible!

(b) Reparametrization: θ ; f(θ). Uniform in θ is not uniform in f(θ).

Example: “Uniform” distr. on space of all (binary) sequences {0, 1}∞:

p(x1...xn) = (12 )
n ∀n∀x1...xn ⇒ p(xn+1 = 1|x1...xn) = 1

2 always!

Inference so not possible (No-Free-Lunch myth).

Predictive setting: All we need is p(x).
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Occam’s Razor — The Simplicity Principle

• Only Occam’s razor (in combination with Epicurus’ principle) is

general enough to assign prior probabilities in every situation.

• The idea is to assign high (subjective) probability to simple events,

and low probability to complex events.

• Simple events (strings) are more plausible a priori than complex

ones.

• This gives (approximately) justice to both Occam’s razor and

Epicurus’ principle.
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Prefix Sets/Codes

String x is (proper) prefix of y :⇐⇒ ∃ z( ̸= ϵ) such that xz = y.

Set P is prefix-free or a prefix code :⇐⇒ no element is a proper
prefix of another.

Example: A self-delimiting code (e.g. P = {0, 10, 11}) is prefix-free.

Kraft Inequality

For a prefix code P we have
∑

x∈P 2−ℓ(x) ≤ 1.

Conversely, let l1, l2, ... be a countable sequence of natural numbers

such that Kraft’s inequality
∑

k 2
−lk ≤ 1 is satisfied. Then there exists

a prefix code P with these lengths of its binary code.
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Proof of the Kraft-Inequality

Proof ⇒: Assign to each x ∈ P the interval Γx := [0.x, 0.x+ 2−ℓ(x)).

Length of interval Γx is 2−ℓ(x).

Intervals are disjoint, since P is prefix free, hence∑
x∈P

2−ℓ(x) =
∑
x∈P

Length(Γx) ≤ Length([0, 1]) = 1

⇐: Idea: Choose l1, l2, ... in increasing order. Successively chop off

intervals of lengths 2−l1 , 2−l2 , ... from left to right from [0, 1) and

define left interval boundary as code.
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Priors from Prefix Codes

• Let Code(Hν) be a prefix code of hypothesis Hν .

• Define complexity Kw(ν) :=Length(Code(Hν))

• Choose prior wν = p(Hν) = 2−Kw(ν)

⇒
∑

ν∈M wν ≤ 1 is semi-probability (by Kraft).

• How to choose a Code and hypothesis space M ?

• Praxis: Choose a code which is reasonable for your problem

and M large enough to contain the true model.

• Theory: Choose a universal code and consider “all” hypotheses ...
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Kolmogorov Complexity K(x)
K. of string x is the length of the shortest (prefix) program producing x:

K(x) := minp{l(p) : U(p) = x}, U = universal TM

For non-string objects o (like numbers and functions) we define

K(o) := K(⟨o⟩), where ⟨o⟩ ∈ X ∗ is some standard code for o.

+ Simple strings like 000...0 have small K,

irregular (e.g. random) strings have large K.

• The definition is nearly independent of the choice of U .

+ K satisfies most properties an information measure should satisfy.

+ K shares many properties with Shannon entropy but is superior.

− K(x) is not computable, but only semi-computable from above.

Fazit:
K is an excellent universal complexity measure,

suitable for quantifying Occam’s razor.
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Schematic Graph of Kolmogorov Complexity
Although K(x) is incomputable, we can draw a schematic graph
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The Universal Prior
• Quantify the complexity of an environment ν or hypothesis Hν by
its Kolmogorov complexity K(ν).

• Universal prior: wν = wU
ν := 2−K(ν) is a decreasing function in

the model’s complexity, and sums to (less than) one.

⇒ Dn ≤ K(µ) ln 2, i.e. the number of ε-deviations of ξ from µ or lΛξ

from lΛµ is proportional to the complexity of the environment.

• No other semi-computable prior leads to better prediction (bounds).

• For continuous M, we can assign a (proper) universal prior (not

density) wU
θ = 2−K(θ) > 0 for computable θ, and 0 for uncomp. θ.

• This effectively reduces M to a discrete class {νθ ∈ M : wU
θ > 0}

which is typically dense in M.

• This prior has many advantages over the classical prior (densities).
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The Problem of Zero Prior
= the problem of confirmation of universal hypotheses

Problem: If the prior is zero, then the posterior is necessarily also zero.

Example: Consider the hypothesis H = H1 that all balls in some urn or

all ravens are black (=1) or that the sun rises every day.

Starting with a prior density as w(θ) = 1 implies that prior P[Hθ] = 0

for all θ, hence posterior P [Hθ|1..1] = 0, hence H never gets confirmed.

3 non-solutions: define H = {ω = 1∞} | use finite population | abandon
strict/logical/all-quantified/universal hypotheses in favor of soft hyp.

Solution: Assign non-zero prior to θ = 1 ⇒ P[H|1n] → 1.

Generalization: Assign non-zero prior to all “special” θ, like 1
2 and 1

6 ,

which may naturally appear in a hypothesis, like “is the coin or die fair”.

Universal solution: Assign non-zero prior to all comp. θ, e.g. wU
θ = 2−K(θ)
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Reparametrization Invariance

• New parametrization e.g. ψ =
√
θ, then the ψ-density

w′(ψ) = 2
√
θ w(θ) is no longer uniform if w(θ) = 1 is uniform

⇒ indifference principle is not reparametrization invariant (RIP).

• Jeffrey’s and Bernardo’s principle satisfy RIP w.r.t. differentiable

bijective transformations ψ = f−1(θ).

• The universal prior wU
θ = 2−K(θ) also satisfies RIP w.r.t. simple

computable f . (within a multiplicative constant)
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Regrouping Invariance

• Non-bijective transformations:

E.g. grouping ball colors into categories black/non-black.

• No classical principle is regrouping invariant.

• Regrouping invariance is regarded as a very important and desirable

property. [Walley’s (1996) solution: sets of priors]

• The universal prior wU
θ = 2−K(θ) is invariant under regrouping, and

more generally under all simple [computable with complexity O(1)]

even non-bijective transformations. (within a multiplicative constant)

• Note: Reparametrization and regrouping invariance hold for

arbitrary classes and are not limited to the i.i.d. case.
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Universal Choice of Class M
• The larger M the less restrictive is the assumption µ ∈ M.

• The class MU of all (semi)computable (semi)measures, although

only countable, is pretty large, since it includes all valid physics

theories. Further, ξU is semi-computable [ZL70].

• Solomonoff’s universal prior M(x) := probability that the output of

a universal TM U with random input starts with x.

• Formally: M(x) :=
∑

p : U(p)=x∗ 2
−ℓ(p) where the sum is over all

(minimal) programs p for which U outputs a string starting with x.

• M may be regarded as a 2−ℓ(p)-weighted mixture over all

deterministic environments νp. (νp(x) = 1 if U(p) = x∗ and 0 else)

• M(x) coincides with ξU (x) within an irrelevant multiplicative constant.
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The Problem of Old Evidence / New Theories

• What if some evidence E=̂x (e.g. Mercury’s perihelion advance) is

known well-before the correct hypothesis/theory/model H=̂µ

(Einstein’s general relativity theory) is found?

• How shall H be added to the Bayesian machinery a posteriori?

• What should the “prior” of H be?

• Should it be the belief in H in a hypothetical counterfactual world

in which E is not known?

• Can old evidence E confirm H?

• After all, H could simply be constructed/biased/fitted towards

“explaining” E.
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Solution of the Old-Evidence Problem

• The universal class MU and universal prior wU
ν formally solves this

problem.

• The universal prior of H is 2−K(H) independent of M and of

whether E is known or not.

• Updating M is unproblematic, and even not necessary when

starting with MU , since it includes all hypothesis (including yet

unknown or unnamed ones) a priori.
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Universal is Better than Continuous M
• Although νθ() and wθ are incomp. for cont. classes M for most θ,

ξ() is typically computable. (exactly as for Laplace or numerically)

⇒ Dn(µ||M)
+
< Dn(µ||ξ)+K(ξ) ln 2 for all µ

• That is, M is superior to all computable mixture predictors ξ based

on any (continuous or discrete) model class M and weight w(θ),

save an additive constant K(ξ) ln 2 = O(1), even if environment µ

is not computable.

• While Dn(µ||ξ) ∼ d
2 lnn for all µ ∈ M,

Dn(µ||M) ≤ K(µ) ln 2 is even finite for computable µ.

Fazit: Solomonoff prediction works also in non-computable environments
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Convergence and Loss Bounds
• Total (loss) bounds:

∑∞
n=1 E[hn]

×
< K(µ) ln 2, where

ht(ω<t) :=
∑

a∈X (
√
ξ(a|ω<t)−

√
µ(a|ω<t))

2.

• Instantaneous i.i.d. bounds: For i.i.d. M with continuous, discrete,
and universal prior, respectively:

E[hn]
×
< 1

n lnw(µ)−1 and E[hn]
×
< 1

n lnw−1
µ = 1

nK(µ) ln 2.

• Bounds for computable environments: Rapidly M(xt|x<t) → 1 on
every computable sequence x1:∞ (whichsoever, e.g. 1∞ or the digits
of π or e), i.e. M quickly recognizes the structure of the sequence.

• Weak instantaneous bounds: valid for all n and x1:n and x̄n ̸= xn:
2−K(n)

×
< M(x̄n|x<n)

×
< 22K(x1:n∗)−K(n)

• Magic instance numbers: e.g. M(0|1n) ×
= 2−K(n) → 0, but spikes

up for simple n. M is cautious at magic instance numbers n.

• Future bounds / errors to come: If our past observations ω1:n

contain a lot of information about µ, we make few errors in future:∑∞
t=n+1 E[ht|ω1:n]

+
< [K(µ|ω1:n)+K(n)] ln 2
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More Stuff / Critique / Problems

• Prior knowledge y can be incorporated by using “subjective” prior

wU
ν|y = 2−K(ν|y) or by prefixing observation x by y.

• Additive/multiplicative constant fudges and U -dependence is often

(but not always) harmless.

• Incomputability: K and M can serve as “gold standards” which

practitioners should aim at, but have to be (crudely) approximated

in practice (MDL [Ris89], MML [Wal05], LZW [LZ76], CTW [WSTT95],

NCD [CV05]).

• The Minimum Description Length Principle:

M(x) ≈ 2−KU (x) ≈ 2−KT (x). Predict y of highest M(y|x) is
approximately same as MDL: Predict y of smallest KT (xy).
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Universal Inductive Inference: Summary
Universal Solomonoff prediction solves/avoids/meliorates many problems

of (Bayesian) induction. We discussed:

+ general total bounds for generic class, prior, and loss,

+ i.i.d./universal-specific instantaneous and future bounds,

+ the Dn bound for continuous classes,

+ indifference/symmetry principles,

+ the problem of zero p(oste)rior & confirm. of universal hypotheses,

+ reparametrization and regrouping invariance,

+ the problem of old evidence and updating,

+ that M works even in non-computable environments,

+ how to incorporate prior knowledge,

− the prediction of short sequences,

− the constant fudges in all results and the U -dependence,

− M ’s incomputability and crude practical approximations.
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Outlook

• Relation to Prediction with Expert Advice

• Relation to the Minimal Description Length (MDL) Principle

• Generalization to Active/Reinforcement learning (AIXI)

Open Problems

• Prediction of selected bits

• Convergence of M on Martin-Loef random sequences

• Better instantaneous bounds for M

• Future bounds for Bayes (general ξ)
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UNIVERSAL RATIONAL AGENTS

• Rational agents

• Sequential decision theory

• Reinforcement learning

• Value function

• Universal Bayes mixture and AIXI model

• Self-optimizing and Pareto-optimal policies

• Environmental Classes

• The horizon problem

• Computational Issues
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Universal Rational Agents: Abstract

Sequential decision theory formally solves the problem of rational agents

in uncertain worlds if the true environmental prior probability distribution

is known. Solomonoff’s theory of universal induction formally solves the

problem of sequence prediction for unknown prior distribution.

Here we combine both ideas and develop an elegant parameter-free

theory of an optimal reinforcement learning agent embedded in an

arbitrary unknown environment that possesses essentially all aspects of

rational intelligence. The theory reduces all conceptual AI problems to

pure computational ones.

There are strong arguments that the resulting AIXI model is the most

intelligent unbiased agent possible. Other discussed topics are relations

between problem classes, the horizon problem, and computational issues.
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The Agent Model

Most if not all AI problems can be

formulated within the agent

framework

r1 | o1 r2 | o2 r3 | o3 r4 | o4 r5 | o5 r6 | o6 ...

y1 y2 y3 y4 y5 y6 ...

work
Agent

p
tape ... work

Environ-

ment q
tape ...

������ HHHHHY

�������1PPPPPPPq
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Rational Agents in Deterministic Environments

- p :X ∗→Y∗ is deterministic policy of the agent,

p(x<k) = y1:k with x<k ≡ x1...xk−1.

- q :Y∗→X ∗ is deterministic environment,

q(y1:k) = x1:k with y1:k ≡ y1...yk.

- Input xk≡rkok consists of a regular informative part ok

and reward rk ∈ [0..rmax].

- Value V pq
km := rk + ...+ rm,

optimal policy pbest := argmaxp V
pq
1m,

Lifespan or initial horizon m.
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Agents in Probabilistic Environments

Given history y1:kx<k, the probability that the environment leads to

perception xk in cycle k is (by definition) σ(xk|y1:kx<k).

Abbreviation (chain rule)

σ(x1:m|y1:m) = σ(x1|y1)·σ(x2|y1:2x1)· ... ·σ(xm|y1:mx<m)

The average value of policy p with horizon m in environment σ is

defined as

V p
σ := 1

m

∑
x1:m

(r1+ ...+rm)σ(x1:m|y1:m)|y1:m=p(x<m)

The goal of the agent should be to maximize the value.



Marcus Hutter - 71 - Universal Induction & Intelligence

Optimal Policy and Value

The σ-optimal policy pσ := argmaxp V
p
σ maximizes V p

σ ≤ V ∗
σ := V pσ

σ .

Explicit expressions for the action yk in cycle k of the σ-optimal policy

pσ and their value V ∗
σ are

yk = argmax
yk

∑
xk

max
yk+1

∑
xk+1

... max
ym

∑
xm

(rk+ ...+rm)·σ(xk:m|y1:mx<k),

V ∗
σ = 1

m max
y1

∑
x1

max
y2

∑
x2

... max
ym

∑
xm

(r1+ ...+rm)·σ(x1:m|y1:m).

Keyword: Expectimax tree/algorithm.



Marcus Hutter - 72 - Universal Induction & Intelligence

Expectimax Tree/Algorithm

r
�

�
�

��
yk=0

@
@
@

@@
yk=1

max︸ ︷︷ ︸
V

∗
σ (yx<k) = max

yk
V

∗
σ (yx<kyk)

action yk with max value.

q
�
�
�
��
ok=0
rk= ...

A
A
A
AA
ok=1
rk= ...

E︸︷︷︸
q
�
�
�
��

ok=0
rk= ...

A
A
A
AA

ok=1
rk= ...

E︸︷︷︸
V

∗
σ (yx<kyk) =

∑
xk

[rk + V
∗
σ (yx1:k)]σ(xk|yx<kyk)

σ expected reward rk and observation ok.q
�

��
A
AA

max
⌣

yk+1

q
�
��
A
AA

max
⌣

yk+1

q
�
��

A
AA

max
⌣

yk+1

q
�
��
A
AA

max
⌣

V
∗
σ (yx1:k) = max

yk+1
V

∗
σ (yx1:kyk+1)

· · · · · · · · · · · · · · · · · · · · · · · ·
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Known environment µ

• Assumption: µ is the true environment in which the agent operates

• Then, policy pµ is optimal in the sense that no other policy for an

agent leads to higher µAI -expected reward.

• Special choices of µ: deterministic or adversarial environments,

Markov decision processes (mdps), adversarial environments.

• There is no principle problem in computing the optimal action yk as

long as µAI is known and computable and X , Y and m are finite.

• Things drastically change if µAI is unknown ...
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The Bayes-mixture distribution ξ
Assumption: The true environment µ is unknown.

Bayesian approach: The true probability distribution µAI is not learned

directly, but is replaced by a Bayes-mixture ξAI .

Assumption: We know that the true environment µ is contained in some

known (finite or countable) set M of environments.

The Bayes-mixture ξ is defined as

ξ(x1:m|y1:m) :=
∑
ν∈M

wνν(x1:m|y1:m) with
∑
ν∈M

wν = 1, wν > 0 ∀ν

The weights wν may be interpreted as the prior degree of belief that the

true environment is ν.

Then ξ(x1:m|y1:m) could be interpreted as the prior subjective belief

probability in observing x1:m, given actions y1:m.
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Questions of Interest

• It is natural to follow the policy pξ which maximizes V p
ξ .

• If µ is the true environment the expected reward when following

policy pξ will be V pξ

µ .

• The optimal (but infeasible) policy pµ yields reward V pµ

µ ≡ V ∗
µ .

• Are there policies with uniformly larger value than V pξ

µ ?

• How close is V pξ

µ to V ∗
µ ?

• What is the most general class M and weights wν .
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A universal choice of ξ and M
• We have to assume the existence of some structure on the

environment to avoid the No-Free-Lunch Theorems [Wolpert 96].

• We can only unravel effective structures which are describable by

(semi)computable probability distributions.

• So we may include all (semi)computable (semi)distributions in M.

• Occam’s razor and Epicurus’ principle of multiple explanations tell

us to assign high prior belief to simple environments.

• Using Kolmogorov’s universal complexity measure K(ν) for

environments ν one should set wν ∼ 2−K(ν), where K(ν) is the

length of the shortest program on a universal TM computing ν.

• The resulting AIXI model [Hutter:00] is a unification of (Bellman’s)

sequential decision and Solomonoff’s universal induction theory.
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The AIXI Model in one Line
complete & essentially unique & limit-computable

AIXI: ak := argmax
ak

∑
okrk

...max
am

∑
omrm

[rk + ...+ rm]
∑

p :U(p,a1..am)=o1r1..omrm

2−length(p)

k=now, action, observation, reward, Universal TM, program, m=lifespan

AIXI is an elegant mathematical theory of AI

Claim: AIXI is the most intelligent environmental independent, i.e.

universally optimal, agent possible.

Proof: For formalizations, quantifications, and proofs, see [Hut05].

Applications: Strategic Games, Function Optimization, Supervised

Learning, Sequence Prediction, Classification, ...

In the following we consider generic M and wν .
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Pareto-Optimality of pξ

Policy pξ is Pareto-optimal in the sense that there is no other policy p

with V p
ν ≥ V pξ

ν for all ν ∈ M and strict inequality for at least one ν.

Self-optimizing Policies

Under which circumstances does the value of the universal policy pξ

converge to optimum?

V pξ

ν → V ∗
ν for horizon m→ ∞ for all ν ∈ M. (1)

The least we must demand from M to have a chance that (1) is true is

that there exists some policy p̃ at all with this property, i.e.

∃p̃ : V p̃
ν → V ∗

ν for horizon m→ ∞ for all ν ∈ M. (2)

Main result: (2) ⇒ (1): The necessary condition of the existence of a

self-optimizing policy p̃ is also sufficient for pξ to be self-optimizing.
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Environments w. (Non)Self-Optimizing Policies
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Particularly Interesting Environments

• Sequence Prediction, e.g. weather or stock-market prediction.

Strong result: V ∗
µ − V pξ

µ = O(
√

K(µ)
m ), m =horizon.

• Strategic Games: Learn to play well (minimax) strategic zero-sum

games (like chess) or even exploit limited capabilities of opponent.

• Optimization: Find (approximate) minimum of function with as few

function calls as possible. Difficult exploration versus exploitation

problem.

• Supervised learning: Learn functions by presenting (z, f(z)) pairs

and ask for function values of z′ by presenting (z′, ?) pairs.

Supervised learning is much faster than reinforcement learning.

AIξ quickly learns to predict, play games, optimize, and learn supervised.
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Future Value and the Right Discounting
• Eliminate the arbitrary horizon parameter m by discounting the
rewards rk ; γkrk with Γk :=

∑∞
i=k γi <∞ and letting m→ ∞:

V πσ
kγ :=
1

Γk
lim

m→∞

∑
xk:m

(γkrk+...+γmrm)σ(xk:m|y1:mx<k)|y1:m=p(x<m)

• If there exists a self-optimizing policy for M, then pξ is

self-optimizing: If ∃π̃k∀ν : V π̃kν
kγ

k→∞−→ V ∗ν
kγ ⇒ V pξµ

kγ
k→∞−→ V ∗µ

kγ .

• Standard geometric discounting: γk = γk with 0 < γ < 1.
Problem: Most environments do not possess self-optimizing policies

under this discounting, since effective horizon heffk is finite.

• Power discounting: γk = k−2 ⇒ heffk ∼ k = agent’s age.

Universal discounting: γk = 2−K(k) ⇒ heffk ∼ Ackermann(k)

• Result: Policy pξ is self-optimizing for ergodic mdps if γk+1

γk
→ 1.
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Universal Rational Agents: Summary

• Setup: Agents acting in general probabilistic environments with

reinforcement feedback.

• Assumptions: True environment µ belongs to a known class of

environments M, but is otherwise unknown.

• Results: The Bayes-optimal policy pξ based on the Bayes-mixture

ξ =
∑

ν∈M wνν is Pareto-optimal and self-optimizing if M admits

self-optimizing policies.

• Application: The class of ergodic mdps admits self-optimizing

policies.

• New: Policy pξ with unbounded effective horizon is the first purely

Bayesian self-optimizing consistent policy for ergodic mdps.

• Learn: The combined conditions Γk <∞ and γk+1

γk
→ 1 allow a

consistent self-optimizing Bayes-optimal policy based on mixtures.
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Universal Rational Agents: Remarks
• We have developed a parameterless AI model based on sequential

decisions and algorithmic probability.

• We have reduced the AI problem to pure computational questions.

• AIξ seems not to lack any important known methodology of AI,

apart from computational aspects.

• There is no need for implementing extra knowledge, as this can be

learned by presenting it in ok in any form.

• The learning process itself is an important aspect of AI.

• Noise or irrelevant information in the inputs do not disturb the AIξ

system.

• Philosophical questions: relevance of non-computational physics

(Penrose), number of wisdom Ω (Chaitin), consciousness, social

consequences.
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Universal Rational Agents: Outlook

• Continuous classes M.

• Restricted policy classes.

• Non-asymptotic bounds.

• Tighter bounds by exploiting extra properties of the environments,

like the mixing rate of mdps.

• Search for other performance criteria [Hutter:00].

• Instead of convergence of the expected reward sum, study

convergence with high probability of the actually realized reward

sum.

• Other environmental classes (separability concepts, downscaling).
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APPROXIMATIONS & APPLICATIONS

• Universal Similarity Metric

• Universal Search

• Time-Bounded AIXI Model

• Brute-Force Approximation of AIXI

• A Monte-Carlo AIXI Approximation

• Feature Reinforcement Learning

• Comparison to other approaches

• Future directions, wrap-up, references.
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Approximations & Applications: Abstract
Many fundamental theories have to be approximated for practical use.
Since the core quantities of universal induction and universal intelligence
are incomputable, it is often hard, but not impossible, to approximate
them. In any case, having these “gold standards” to approximate
(top→down) or to aim at (bottom→up) is extremely helpful in building
truly intelligent systems. The most impressive direct approximation of
Kolmogorov complexity to-date is via the universal similarity metric
applied to a variety of real-world clustering problems. A couple of
universal search algorithms ((adaptive) Levin search, FastPrg, OOPS,
Goedel-machine, ...) that find short programs have been developed and
applied to a variety of toy problem. The AIXI model itself has been
approximated in a couple of ways (AIXItl, Brute Force, Monte Carlo,
Feature RL). Some recent applications will be presented. The Lecture
Series concludes by comparing various learning algorithms along various
dimensions, pointing to future directions, wrap-up, and references.
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Conditional Kolmogorov Complexity

Question: When is object=string x similar to object=string y?

Universal solution: x similar y ⇔ x can be easily (re)constructed from y

⇔ Kolmogorov complexity K(x|y) := min{ℓ(p) : U(p, y) = x} is small

Examples:

1) x is very similar to itself (K(x|x) +
= 0)

2) A processed x is similar to x (K(f(x)|x) +
= 0 if K(f) = O(1)).

e.g. doubling, reverting, inverting, encrypting, partially deleting x.

3) A random string is with high probability not similar to any other

string (K(random|y) =length(random)).

The problem with K(x|y) as similarity=distance measure is that it is

neither symmetric nor normalized nor computable.
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The Universal Similarity Metric [CV’05]

• Symmetrization and normalization leads to a/the universal metric d:

0 ≤ d(x, y) :=
max{K(x|y),K(y|x)}
max{K(x),K(y)}

≤ 1

• Every effective similarity between x and y is detected by d

• Use K(x|y)≈K(xy)−K(y) and K(x)≡KU (x)≈KT (x) (coding T)
=⇒ computable approximation: Normalized compression distance:

d(x, y) ≈ KT (xy)−min{KT (x),KT (y)}
max{KT (x),KT (y)}

. 1

• For T choose Lempel-Ziv or gzip or bzip(2) (de)compressor in the
applications below.

• Theory: Lempel-Ziv compresses asymptotically better than any
probabilistic finite state automaton predictor/compressor.



Marcus Hutter - 89 - Universal Induction & Intelligence

Tree-Based Clustering [CV’05]

• If many objects x1, ..., xn need to be compared, determine the

Similarity matrix: Mij= d(xi, xj) for 1 ≤ i, j ≤ n

• Now cluster similar objects.

• There are various clustering techniques.

• Tree-based clustering: Create a tree connecting similar objects,

• e.g. quartet method (for clustering)

• Applications: Phylogeny of 24 Mammal mtDNA,

50 Language Tree (based on declaration of human rights),

composers of music, authors of novels, SARS virus, fungi,

optical characters, galaxies, ... [Cilibrasi&Vitanyi’05]
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Genomics & Phylogeny: Mammals [CV’05]

Evolutionary tree built from complete mammalian mtDNA of 24 species:

Carp
Cow

BlueWhale
FinbackWhale

Cat
BrownBear
PolarBear
GreySeal

HarborSeal
Horse

WhiteRhino

Ferungulates

Gibbon
Gorilla

Human
Chimpanzee

PygmyChimp
Orangutan

SumatranOrangutan

Primates

Eutheria

HouseMouse
Rat

Eutheria - Rodents

Opossum
Wallaroo

Metatheria

Echidna
Platypus

Prototheria



Basque [Spain]
Hungarian [Hungary]
Polish [Poland]
Sorbian [Germany]
Slovak [Slovakia]
Czech [Czech Rep]
Slovenian [Slovenia]
Serbian [Serbia]
Bosnian [Bosnia]

Icelandic [Iceland]
Faroese [Denmark]
Norwegian Bokmal [Norway]
Danish [Denmark]
Norwegian Nynorsk [Norway]
Swedish [Sweden]
Afrikaans
Dutch [Netherlands]
Frisian [Netherlands]
Luxembourgish [Luxembourg]
German [Germany]
Irish Gaelic [UK]
Scottish Gaelic [UK]
Welsh [UK]
Romani Vlach [Macedonia]
Romanian [Romania]
Sardinian [Italy]
Corsican [France]
Sammarinese [Italy]
Italian [Italy]
Friulian [Italy]
Rhaeto Romance [Switzerland]
Occitan [France]
Catalan [Spain]
Galician [Spain]
Spanish [Spain]
Portuguese [Portugal]
Asturian [Spain]
French [France]
English [UK]
Walloon [Belgique]
OccitanAuvergnat [France]
Maltese [Malta]
Breton [France]
Uzbek [Utzbekistan]
Turkish [Turkey]
Latvian [Latvia]
Lithuanian [Lithuania]
Albanian [Albany]
Romani Balkan [East Europe]
Croatian [Croatia]

Finnish [Finland]
Estonian [Estonia]

ROMANCE

BALTIC

UGROFINNIC

CELTIC

GERMANIC

SLAVIC

ALTAIC

Language Tree (Re)construction

based on “The Universal Declaration of
Human Rights” in 50 languages.
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Universal Search

• Levin search: Fastest algorithm for

inversion and optimization problems.

• Theoretical application:

Assume somebody found a non-constructive

proof of P=NP, then Levin-search is a polynomial

time algorithm for every NP (complete) problem.

• Practical (OOPS) applications (J. Schmidhuber)

Maze, towers of hanoi, robotics, ...

• FastPrg: The asymptotically fastest and shortest algorithm for all

well-defined problems.

• AIXItl: Computable variant of AIXI.

• Human Knowledge Compression Prize: (50’000C=)
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The Time-Bounded AIXI Model (AIXItl)

An algorithm pbest has been constructed for which the following holds:

• Let p be any (extended chronological) policy

• with length ℓ(p)≤ l̃ and computation time per cycle t(p)≤ t̃
• for which there exists a proof of length ≤ lP that p is a valid

approximation.

• Then an algorithm pbest can be constructed, depending on l̃,t̃ and

lP but not on knowing p

• which is effectively more or equally intelligent according to ≽c than

any such p.

• The size of pbest is ℓ(pbest)=O(ln(l̃· t̃·lP )),
• the setup-time is tsetup(p

best)=O(l2P ·2lP ),
• the computation time per cycle is tcycle(p

best)=O(2l̃ · t̃).
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Brute-Force Approximation of AIXI

• Truncate expectimax tree depth to a small fixed lookahead h.

Optimal action computable in time |Y×X |h× time to evaluate ξ.

• Consider mixture over Markov Decision Processes (MDP) only, i.e.

ξ(x1:m|y1:m) =
∑

ν∈M wν

∏m
t=1 ν(xt|xt−1yt). Note: ξ is not MDP

• Choose uniform prior over wµ.

Then ξ(x1:m|y1:m) can be computed in linear time.

• Consider (approximately) Markov problems

with very small action and perception space.

• Example application: 2×2 Matrix Games like Prisoner’S Dilemma,

Stag Hunt, Chicken, Battle of Sexes, and Matching Pennies. [PH’06]
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AIXI Learns to Play 2×2 Matrix Games

• Repeated prisoners dilemma. Loss matrix

• Game unknown to AIXI.

Must be learned as well

• AIXI behaves appropriately.
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A Monte-Carlo AIXI Approximation
Consider class of Variable-Order Markov Decision Processes.

The Context Tree Weighting (CTW) algorithm can efficiently mix

(exactly in essentially linear time) all prediction suffix trees.

Monte-Carlo approximation of expectimax tree:

Upper Confidence Tree (UCT) algorithm:

• Sample observations from CTW distribution.

• Select actions with highest upper confidence bound.

• Expand tree by one leaf node (per trajectory).

a1
a2 a3

o1 o2 o3 o4

future reward estimate

• Simulate from leaf node further down using (fixed) playout policy.

• Propagate back the value estimates for each node.

Repeat until timeout. [VNHS’09]

Guaranteed to converge to exact value.

Extension: Predicate CTW not based on raw obs. but features thereof.
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Monte-Carlo AIXI Applications

Normalized Learning Scalability
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Feature Reinforcement Learning (FRL)

Goal: Develop efficient general purpose intelligent agent.

State-of-the-art: (a) AIXI: Incomputable theoretical solution.

(b) MDP: Efficient limited problem class.

(c) POMDP: Notoriously difficult. (d) PSRs: Underdeveloped.

Idea: ΦMDP reduces real problem to MDP automatically by learning.

Accomplishments so far: (i) Criterion for evaluating quality of reduction.

(ii) Integration of the various parts into one learning algorithm.

(iii) Generalization to structured MDPs (DBNs)

ΦMDP is promising path towards the grand goal & alternative to (a)-(d)

Problem: Find reduction Φ efficiently (generic optimization problem?)
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Markov Decision Processes (MDPs)
a computationally tractable class of problems

• MDP Assumption: State st := ot and rt are

probabilistic functions of ot−1 and at−1 only.

Example MDP���
s1

r1

��-
���
s2

r4 ���

���
s3 r2

���
s4r3

-

?
�

6
�

���
��	• Further Assumption:

State=observation space § is finite and small.

• Goal: Maximize long-term expected reward.

• Learning: Probability distribution is unknown but can be learned.

• Exploration: Optimal exploration is intractable

but there are polynomial approximations.

• Problem: Real problems are not of this simple form.
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Map Real Problem to MDP
Map history ht := o1a1r1...ot−1 to state st := Φ(ht), for example:

Games: Full-information with static opponent: Φ(ht) = ot.

Classical physics: Position+velocity of objects = position at two

time-slices: st = Φ(ht) = otot−1 is (2nd order) Markov.

I.i.d. processes of unknown probability (e.g. clinical trials ≃ Bandits),

Frequency of obs. Φ(hn) = (
∑n

t=1 δoto)o∈O is sufficient statistic.

Identity: Φ(h) = h is always sufficient, but not learnable.

Find/Learn Map Automatically
Φbest := argminΦ Cost(Φ|ht)

• What is the best map/MDP? (i.e. what is the right Cost criterion?)

• Is the best MDP good enough? (i.e. is reduction always possible?)

• How to find the map Φ (i.e. minimize Cost) efficiently?
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ΦMDP: Computational Flow

Environment
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Intelligent Agents in Perspective�
�
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Agents = General Framework, Interface = Robots,Vision,Language
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Properties of Learning Algorithms
Comparison of AIXI to Other Approaches
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Value/Policy iteration yes/no yes – YES YES NO NO NO yes
TD w. func.approx. no/yes NO NO no/yes NO YES NO YES YES
Direct Policy Search no/yes YES NO no/yes NO YES no YES YES

Logic Planners yes/no YES yes YES YES no no YES yes
RL with Split Trees yes YES no YES NO yes YES YES YES
Pred.w. Expert Advice yes/no YES – YES yes/no yes NO YES NO
OOPS yes/no no – yes yes/no YES YES YES YES
Market/Economy RL yes/no no NO no no/yes yes yes/no YES YES

SPXI no YES – YES YES YES NO YES NO
AIXI NO YES YES yes YES YES YES YES YES
AIXItl no/yes YES YES YES yes YES YES YES YES
MC-AIXI-CTW yes/no yes YES YES yes NO yes/no YES YES
Feature RL yes/no YES yes yes yes yes yes YES YES
Human yes yes yes no/yes NO YES YES YES YES
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Machine Intelligence Tests & Definitions

⋆= yes, ·= no,

•= debatable,

? = unknown.
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Turing Test • · · · • · · · · • · • T

Total Turing Test • · · · • · · · · • · · T

Inverted Turing Test • • · · • · · · · • · • T

Toddler Turing Test • · · · • · · · · · · • T

Linguistic Complexity • ⋆ • · · · · • • · • • T

Text Compression Test • ⋆ ⋆ • · • • ⋆ ⋆ ⋆ • ⋆ T

Turing Ratio • ⋆ ⋆ ⋆ ? ? ? ? ? · ? ? T/D

Psychometric AI ⋆ ⋆ • ⋆ ? • · • • • · • T/D

Smith’s Test • ⋆ ⋆ • · ? ⋆ ⋆ ⋆ · ? • T/D

C-Test • ⋆ ⋆ • · ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ T/D

AIXI ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ · D
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Common Criticisms

• AIXI is obviously wrong.
(intelligence cannot be captured in a few simple equations)

• AIXI is obviously correct. (everybody already knows this)

• Assuming that the environment is computable is too strong.

• All standard objections to strong AI also apply to AIXI.
(free will, lookup table, Lucas/Penrose Goedel argument)

• AIXI doesn’t deal with X or cannot do X.
(X = consciousness, creativity, imagination, emotion, love, soul, etc.)

• AIXI is not intelligent because it cannot choose its goals.

• Universal AI is impossible due to the No-Free-Lunch theorem.

See [Legg:08] for refutations of these and more criticisms.



Marcus Hutter - 106 - Universal Induction & Intelligence

General Murky & Quirky AI Questions

• Does current mainstream AI research has anything todo with AI?

• Are sequential decision and algorithmic probability theory

all we need to well-define AI?

• What is (Universal) AI theory good for?

• What are robots good for in AI?

• Is intelligence a fundamentally simple concept?

(compare with fractals or physics theories)

• What can we (not) expect from super-intelligent agents?

• Is maximizing the expected reward the right criterion?

• Isn’t universal learning impossible due to the NFL theorems?
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Next Steps

• Address the many open theoretical questions (see Hutter:05).

• Bridge the gap between (Universal) AI theory and AI practice.

• Explore what role logical reasoning, knowledge representation,

vision, language, etc. play in Universal AI.

• Determine the right discounting of future rewards.

• Develop the right nurturing environment for a learning agent.

• Consider embodied agents (e.g. internal↔external reward)

• Analyze AIXI in the multi-agent setting.
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The Big Questions

• Is non-computational physics relevant to AI? [Penrose]

• Could something like the number of wisdom Ω prevent a simple

solution to AI? [Chaitin]

• Do we need to understand consciousness before being able to

understand AI or construct AI systems?

• What if we succeed?
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Wrap Up

• Setup: Given (non)iid data D = (x1, ..., xn), predict xn+1

• Ultimate goal is to maximize profit or minimize loss

• Consider Models/Hypothesis Hi ∈ M
• Max.Likelihood: Hbest = argmaxi p(D|Hi) (overfits if M large)

• Bayes: Posterior probability of Hi is p(Hi|D) ∝ p(D|Hi)p(Hi)

• Bayes needs prior(Hi)

• Occam+Epicurus: High prior for simple models.

• Kolmogorov/Solomonoff: Quantification of simplicity/complexity

• Bayes works if D is sampled from Htrue ∈ M
• Bellman equations tell how to optimally act in known environments

• Universal AI = Universal Induction + Sequential Decision Theory

• Practice = approximate, restrict, search, optimize, knowledge
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Thanks! Questions? Details:

Jobs: PostDoc and PhD positions at RSISE and NICTA, Australia

Projects at http://www.hutter1.net/

A Unified View of Artificial Intelligence
= =

Decision Theory = Probability + Utility Theory

+ +

Universal Induction = Ockham + Bayes + Turing

Open research problems at www.hutter1.net/ai/uaibook.htm

Compression contest with 50’000C= prize at prize.hutter1.net


