
Marcus Hutter - 1 - The Fastest and Shortest Algorithm

An effective Procedure for

Speeding up Algorithms

Marcus Hutter

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland
marcus@idsia.ch, http://www.idsia.ch/∼marcus

2001

Marcus Hutter - 2 - The Fastest and Shortest Algorithm

Table of Contents

• Blum’s Speed-up Theorem and Levin’s Theorem.

• The Fastest Algorithm Mp∗ (Main New Result).

• Applicability of Levin Search and Mp∗ .

• Time Analysis of Mp∗ .

• Extension of Kolmogorov Complexity to Functions.

• The Fastest and Shortest Algorithm.

• Generalizations.

• Summary & Outlook.

Marcus Hutter - 3 - The Fastest and Shortest Algorithm

Introduction

• Searching for fast algorithms to solve certain problems is a central and difficult

task in computer science.

• Positive results usually come from explicit constructions of efficient algorithms for

specific problem classes.

• A wide class of problems can be phrased in the following way:

• Find a fast algorithm computing f :X→Y , where f is a formal specification of

the problem depending on some parameter x.

• The specification can be formal (logical, mathematical),

it need not necessarily be algorithmic.

• Ideally, we would like to have the fastest algorithm, maybe apart from some small

constant factor in computation time.

Marcus Hutter - 4 - The Fastest and Shortest Algorithm

Blum’s Speed-up Theorem (Negative Result)

There are problems for which an (incomputable) sequence of speed-improving

algorithms (of increasing size) exists, but no fastest algorithm.

[Blum, 1967, 1971]

Levin’s Theorem (Positive Result)

Within a (large) constant factor, Levin search is the fastest algorithm to invert a

function g :Y →X, if g can be evaluated quickly.

[Levin 1973]

Marcus Hutter - 5 - The Fastest and Shortest Algorithm

Simple is as fast as Search

• simple: run all programs p1p2p3 . . . one step at a time according to the following

scheme: p1 is run every second step, p2 every second step in the remaining unused

steps, ... timeSIMPLE(x) ≤ 2ktime+
pk

(x) + 2k−1.

• search: run all p of length less than i for 2i2−l(p) steps in phase i = 1, 2, 3,

timeSEARCH(x) ≤ 2K(k)+O(1)time+
pk

(x), K(k) ¿ k.

• Refined analysis: search itself is an algorithm with some index kSEARCH =O(1)
=⇒ simple executes search every 2kSEARCH-th step

=⇒ timeSIMPLE(x) ≤ 2kSEARCHtime+
SEARCH(x)

=⇒ simple and search have the same asymptotics also in k.

• Practice: search should be favored because the constant 2kSEARCH is rather large.

Marcus Hutter - 6 - The Fastest and Shortest Algorithm

Main New Result (The Fast Algorithm Mp∗)

• Let p∗ :X→Y be a given algorithm or specification.

• Let p be any algorithm, computing provably the same function as p∗

• with computation time provably bounded by the function tp(x).

• timetp(x) is the time needed to compute the time bound tp(x).

• Then the algorithm Mp∗ computes p∗(x) in time

timeMp∗ (x) ≤ 5·tp(x) + dp ·timetp(x) + cp

• with constants cp and dp depending on p but not on x.

• Neither p, tp, nor the proofs need to be known in advance for the construction of

Mp∗(x).

[Hutter, 2000]

Marcus Hutter - 7 - The Fastest and Shortest Algorithm

Applicability

• Prime factorization, graph coloring, truth assignments, ... are Problems suitable

for Levin search, if we want to find a solution, since verification is quick.

• Levin search cannot decide the corresponding decision problems.

• Levin search cannot speedup matrix multiplication, since there is no faster method

to verify a product than to calculate it.

• Strassen’s algorithm p′ for n×n matrix multiplication has time complexity

timep′(x) ≤ tp′(x) := c·n2.81.

• The time-bound function (cast to an integer) can, as in many cases, be computed

very fast, timetp′ (x) = O(log2n).

• Hence, also Mp∗ is fast, timeMp∗ (x) ≤ 5c·n2.81 + O(log2n), even without known

Strassen’s algorithm.

• If there exists an algorithm p′′ with timep′′(x) ≤ d·n2log n, for instance, then we

would have timeMp∗ (x) ≤ 5d·n2log n+O(1).

• Problems: Large constants c, cp, dp.

Marcus Hutter - 8 - The Fastest and Shortest Algorithm

The Fast Algorithm Mp∗

Mp∗(x)
Initialize the shared variables

L := {}, tfast := ∞, pfast := p∗.
Start algorithms A, B, and C

in parallel with 10%, 10% and 80%

computational resources, respectively.

A

Run through all proofs.

if a proof proves for some (p, t) that

p(·) is equivalent to (computes) p∗(·)
and has time-bound t(·)
then add (p, t) to L.

B

Compute all t(x) in parallel

for all (p, t)∈L with

relative computation time 2−l(p)−l(t).

if for some t, t(x)<tfast,

then tfast := t(x) and pfast := p.

continue

C

for k:=1,2,4,8,16,32,... do

run current pfast for k steps

(without switching).

if pfast halts in less than k steps,

then print result and abort A, B and C.

else continue with next k.

Marcus Hutter - 9 - The Fastest and Shortest Algorithm

Fictitious Sample Execution of Mp∗

1 2 4
p314

16

p3

t42

t100

t314

t3

ttotal

p3p*p*

p100

p42

p314

t

Mp* stopsp42

8

p9

t9

content of shared variable tfa st

time-bound for executed byp C

number of executed steps of inp C

guaranteed stopping point

Marcus Hutter - 10 - The Fastest and Shortest Algorithm

Time Analysis

TA ≤ 1
10%

·2l(proof(p′))+1 ·O(l(proof(p′))2)

TB ≤ TA +
1

10%
·2l(p′)+l(tp′) ·timetp′ (x)

TC ≤

4TB if C stops not using p′ but on some earlier program

1
80%4tp′ if C computes p′.

timeMp∗ (x) = TC ≤ 5·tp(x) + dp ·timetp(x) + cp

dp = 40·2l(p)+l(tp), cp = 40·2l(proof(p))+1 ·O(l(proof(p)2)

Marcus Hutter - 11 - The Fastest and Shortest Algorithm

Kolmogorov Complexity

Kolmogorov Complexity is a universal notion of the information content of a string. It

is defined as the length of the shortest program computing string x.

K(x) := min
p
{l(p) : U(p) = x}

[Kolmogorov 1965 and others]

Universal Complexity of a Function

The length of the shortest program provably equivalent to p∗

K ′′(p∗) := min
p
{l(p) : a proof of [∀y :u(p, y) = u(p∗, y)] exists}

[Hutter, 2000]

K and K ′′ can be approximated from above (are co-enumerable), but not finitely

computable. The provability constraint is important.

Marcus Hutter - 12 - The Fastest and Shortest Algorithm

The Fastest and Shortest Algorithm for p∗

Let p∗ be a given algorithm or formal specification of a function.

There exists a program p̃, equivalent to p∗, for which the following holds

i) l(p̃) ≤ K ′′(p∗) + O(1)

ii) timep̃(x) ≤ 5·tp(x) + dp ·timetp(x) + cp

where p is any program provably equivalent to p∗ with computation time provably less

than tp(x). The constants cp and dp depend on p but not on x.

[Hutter, 2000]

Proof
Insert the shortest algorithm p′ provably equivalent to p∗ into M , that is p̃ := Mp′ .

l(p̃) = l(p′)+O(1) = K ′′(p∗)+O(1)

Marcus Hutter - 13 - The Fastest and Shortest Algorithm

Generalizations

• If p∗ has to be evaluated repeatedly, algorithm A can be modified to remember its

current state and continue operation for the next input (A is independent of x!).

The large offset time cp is only needed on the first call.

• Mp∗ can be modified to handle i/o streams, definable by a Turing machine with

monotone input and output tapes (and bidirectional working tapes) receiving an

input stream and producing an output stream.

• The construction above also works if time is measured in terms of the current

output rather than the current input x (e.g. for computing π).

Marcus Hutter - 14 - The Fastest and Shortest Algorithm

Summary & Outlook

• Under certain provability constraints, Mp∗ is the asymptotically fastest algorithm

for computing p∗ apart from a factor 5 in computation time.

• The fastest program computing a certain function is also among the shortest

programs provably computing this function.

• To quantify this statement we defined a novel natural measures for the complexity

of a function, related to Kolmogorov complexity.

• The large constants cp and dp seem to spoil a direct implementation of Mp∗ .

• On the other hand, Levin search has been successfully applied even though it

suffers from a large multiplicative factor [Schmidhuber 1997]

• More elaborate theorem-provers could lead to smaller constants.

• Transparent or holographic proofs allow under certain circumstances an

exponential speed up for checking proofs [Babai et al. 1991].

• Will the ultimate search for asymptotically fastest programs typically lead to fast

or slow programs for arguments of practical size?

