An effective Procedure for Speeding up Algorithms

Marcus Hutter

Istituto Dalle Molle di Studi sull'Intelligenza Artificiale IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland marcus@idsia.ch, http://www.idsia.ch/~marcus

Table of Contents

- Blum's Speed-up Theorem and Levin's Theorem.
- The Fastest Algorithm $M_{p^{*}}$ (Main New Result).
- Applicability of Levin Search and $M_{p^{*}}$.
- Time Analysis of $M_{p^{*}}$.
- Extension of Kolmogorov Complexity to Functions.
- The Fastest and Shortest Algorithm.
- Generalizations.
- Summary \& Outlook.

Introduction

- Searching for fast algorithms to solve certain problems is a central and difficult task in computer science.
- Positive results usually come from explicit constructions of efficient algorithms for specific problem classes.
- A wide class of problems can be phrased in the following way:
- Find a fast algorithm computing $f: X \rightarrow Y$, where f is a formal specification of the problem depending on some parameter x.
- The specification can be formal (logical, mathematical), it need not necessarily be algorithmic.
- Ideally, we would like to have the fastest algorithm, maybe apart from some small constant factor in computation time.

Blum's Speed-up Theorem (Negative Result)

There are problems for which an (incomputable) sequence of speed-improving algorithms (of increasing size) exists, but no fastest algorithm.
[Blum, 1967, 1971]

Levin's Theorem (Positive Result)

Within a (large) constant factor, Levin search is the fastest algorithm to invert a function $g: Y \rightarrow X$, if g can be evaluated quickly.
[Levin 1973]

Simple is as fast as Search

- SIMPLE: run all programs $p_{1} p_{2} p_{3} \ldots$ one step at a time according to the following scheme: p_{1} is run every second step, p_{2} every second step in the remaining unused steps, \ldots time $_{\text {SIMPLE }}(x) \leq 2^{k}$ time $_{p_{k}}^{+}(x)+2^{k-1}$.
- SEARCH: run all p of length less than i for $2^{i} 2^{-l(p)}$ steps in phase $i=1,2,3, \ldots$. $\operatorname{time}_{\text {SEARCH }}(x) \leq 2^{K(k)+O(1)} \operatorname{time}_{p_{k}}^{+}(x), \quad K(k) \ll k$.
- Refined analysis: SEARCH itself is an algorithm with some index $k_{\text {SEARCH }}=O(1)$
\Longrightarrow SIMPLE executes SEARCH every $2^{k_{\text {SEARCH }}}$-th step
$\Longrightarrow \operatorname{time}_{\text {SIMPLE }}(x) \leq 2^{k_{\text {SEARCH }}}$ time $e_{\text {SEARCH }}^{+}(x)$
\Longrightarrow SIMPLE and SEARCH have the same asymptotics also in k.
- Practice: SEARCH should be favored because the constant $2^{k_{\text {SEARCH }}}$ is rather large.

Main New Result (The Fast Algorithm $M_{p^{*}}$)

- Let $p^{*}: X \rightarrow Y$ be a given algorithm or specification.
- Let p be any algorithm, computing provably the same function as p^{*}
- with computation time provably bounded by the function $t_{p}(x)$.
- time $_{t_{p}}(x)$ is the time needed to compute the time bound $t_{p}(x)$.
- Then the algorithm $M_{p^{*}}$ computes $p^{*}(x)$ in time

$$
\operatorname{time}_{M_{p^{*}}}(x) \leq 5 \cdot t_{p}(x)+d_{p} \cdot \text { time }_{t_{p}}(x)+c_{p}
$$

- with constants c_{p} and d_{p} depending on p but not on x.
- Neither p, t_{p}, nor the proofs need to be known in advance for the construction of $M_{p^{*}}(x)$.

Applicability

- Prime factorization, graph coloring, truth assignments, ... are Problems suitable for Levin search, if we want to find a solution, since verification is quick.
- Levin search cannot decide the corresponding decision problems.
- Levin search cannot speedup matrix multiplication, since there is no faster method to verify a product than to calculate it.
- Strassen's algorithm p^{\prime} for $n \times n$ matrix multiplication has time complexity time $_{p^{\prime}}(x) \leq t_{p^{\prime}}(x):=c \cdot n^{2.81}$.
- The time-bound function (cast to an integer) can, as in many cases, be computed very fast, time $_{t_{p^{\prime}}}(x)=O\left(\log ^{2} n\right)$.
- Hence, also $M_{p^{*}}$ is fast, time $M_{p^{*}}(x) \leq 5 c \cdot n^{2.81}+O\left(\log ^{2} n\right)$, even without known Strassen's algorithm.
- If there exists an algorithm $p^{\prime \prime}$ with $\operatorname{time}_{p^{\prime \prime}}(x) \leq d \cdot n^{2} \log n$, for instance, then we would have time $_{M_{p^{*}}}(x) \leq 5 d \cdot n^{2} \log n+O(1)$.
- Problems: Large constants c, c_{p}, d_{p}.

The Fast Algorithm $M_{p^{*}}$

$M_{p^{*}}(x)$
Initialize the shared variables
$L:=\{ \}, \quad t_{\text {fast }}:=\infty, \quad p_{\text {fast }}:=p^{*}$.
Start algorithms A, B, and C
in parallel with $10 \%, 10 \%$ and 80% computational resources, respectively.

B

Compute all $t(x)$ in parallel for all $(p, t) \in L$ with relative computation time $2^{-l(p)-l(t)}$.
if for some $t, t(x)<t_{\text {fast }}$,
then $t_{\text {fast }}:=t(x)$ and $p_{\text {fast }}:=p$. continue
A
Run through all proofs.
if a proof proves for some (p, t) that
$p(\cdot)$ is equivalent to (computes) $p^{*}(\cdot)$
and has time-bound $t(\cdot)$
then add (p, t) to L.
C
for $\mathrm{k}:=1,2,4,8,16,32, \ldots$ do
run current $p_{\text {fast }}$ for k steps
(without switching).
if $p_{\text {fast }}$ halts in less than k steps, then print result and abort A, B and C.
else continue with next k.

Fictitious Sample Execution of $M_{p^{*}}$

Time Analysis

$$
\begin{gathered}
T_{A} \leq \frac{1}{10 \%} \cdot 2^{l\left(\operatorname{proof}\left(p^{\prime}\right)\right)+1} \cdot O\left(l\left(\operatorname{proof}\left(p^{\prime}\right)\right)^{2}\right) \\
T_{B} \leq T_{A}+\frac{1}{10 \%} \cdot 2^{l\left(p^{\prime}\right)+l\left(t_{p^{\prime}}\right)} \cdot \text { time }_{t_{p^{\prime}}}(x) \\
T_{C} \leq\left\{\begin{array}{cl}
4 T_{B} & \text { if } C \text { stops not using } p^{\prime} \text { but on some earlier program } \\
\frac{1}{80 \%} 4 t_{p^{\prime}} & \text { if } C \text { computes } p^{\prime} .
\end{array}\right.
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{time}_{M_{p^{*}}}(x)=T_{C} \leq 5 \cdot t_{p}(x)+d_{p} \cdot \text { time }_{t_{p}}(x)+c_{p} \\
d_{p}=40 \cdot 2^{l(p)+l\left(t_{p}\right)}, \quad c_{p}=40 \cdot 2^{l(\operatorname{proof}(p))+1} \cdot O\left(l\left(\operatorname{proof}(p)^{2}\right)\right.
\end{gathered}
$$

Kolmogorov Complexity

Kolmogorov Complexity is a universal notion of the information content of a string. It is defined as the length of the shortest program computing string x.

$$
\begin{gathered}
K(x):=\min _{p}\{l(p): U(p)=x\} \\
{[\text { Kolmogorov } 1965 \text { and others] }}
\end{gathered}
$$

Universal Complexity of a Function

The length of the shortest program provably equivalent to p^{*}

$$
K^{\prime \prime}\left(p^{*}\right):=\min _{p}\left\{l(p): \text { a proof of }\left[\forall y: u(p, y)=u\left(p^{*}, y\right)\right] \text { exists }\right\}
$$

[Hutter, 2000]
K and $K^{\prime \prime}$ can be approximated from above (are co-enumerable), but not finitely computable. The provability constraint is important.

The Fastest and Shortest Algorithm for p^{*}

Let p^{*} be a given algorithm or formal specification of a function.
There exists a program \tilde{p}, equivalent to p^{*}, for which the following holds

$$
\begin{aligned}
\text { i) } l(\tilde{p}) & \leq K^{\prime \prime}\left(p^{*}\right)+O(1) \\
\text { ii) } \quad \text { time }_{\tilde{p}}(x) & \leq 5 \cdot t_{p}(x)+d_{p} \cdot \text { time }_{t_{p}}(x)+c_{p}
\end{aligned}
$$

where p is any program provably equivalent to p^{*} with computation time provably less than $t_{p}(x)$. The constants c_{p} and d_{p} depend on p but not on x.
[Hutter, 2000]

Proof

Insert the shortest algorithm p^{\prime} provably equivalent to p^{*} into M, that is $\tilde{p}:=M_{p^{\prime}}$.

$$
l(\tilde{p})=l\left(p^{\prime}\right)+O(1)=K^{\prime \prime}\left(p^{*}\right)+O(1)
$$

Generalizations

- If p^{*} has to be evaluated repeatedly, algorithm A can be modified to remember its current state and continue operation for the next input (A is independent of x !). The large offset time c_{p} is only needed on the first call.
- $M_{p^{*}}$ can be modified to handle i/o streams, definable by a Turing machine with monotone input and output tapes (and bidirectional working tapes) receiving an input stream and producing an output stream.
- The construction above also works if time is measured in terms of the current output rather than the current input x (e.g. for computing π).

Summary \& Outlook

- Under certain provability constraints, $M_{p^{*}}$ is the asymptotically fastest algorithm for computing p^{*} apart from a factor 5 in computation time.
- The fastest program computing a certain function is also among the shortest programs provably computing this function.
- To quantify this statement we defined a novel natural measures for the complexity of a function, related to Kolmogorov complexity.
- The large constants c_{p} and d_{p} seem to spoil a direct implementation of $M_{p^{*}}$.
- On the other hand, Levin search has been successfully applied even though it suffers from a large multiplicative factor [Schmidhuber 1997]
- More elaborate theorem-provers could lead to smaller constants.
- Transparent or holographic proofs allow under certain circumstances an exponential speed up for checking proofs [Babai et al. 1991].
- Will the ultimate search for asymptotically fastest programs typically lead to fast or slow programs for arguments of practical size?

