AN EFFECTIVE PROCEDURE FOR
SPEEDING UP ALGORITHMS

Marcus Hutter

Istituto Dalle Molle di Studi sull'Intelligenza Artificiale

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland
marcus@idsia.ch, http://www.idsia.ch/~marcus

2001

Marcus Hutter -2 - The Fastest and Shortest Algorithm

Table of Contents

e Blum’'s Speed-up Theorem and Levin's Theorem.
e The Fastest Algorithm M- (Main New Result).

e Applicability of Levin Search and M.

e Time Analysis of M.

e Extension of Kolmogorov Complexity to Functions.
e The Fastest and Shortest Algorithm.

e Generalizations.

e Summary & Outlook.

Introduction

Searching for fast algorithms to solve certain problems is a central and difficult
task in computer science.

Positive results usually come from explicit constructions of efficient algorithms for
specific problem classes.

A wide class of problems can be phrased in the following way:

Find a fast algorithm computing f: X — Y, where f is a formal specification of
the problem depending on some parameter .

The specification can be formal (logical, mathematical),
it need not necessarily be algorithmic.

|deally, we would like to have the fastest algorithm, maybe apart from some small
constant factor in computation time.

Blum’s Speed-up Theorem (Negative Result)

There are problems for which an (incomputable) sequence of speed-improving
algorithms (of increasing size) exists, but no fastest algorithm.
[Blum, 1967, 1971]

Levin's Theorem (Positive Result)

Within a (large) constant factor, Levin search is the fastest algorithm to invert a
function g:Y — X, if g can be evaluated quickly.
[Levin 1973]

Marcus Hutter -5 - The Fastest and Shortest Algorithm

SIMPLE is as fast as SEARCH

e SIMPLE: run all programs pipops ... one step at a time according to the following
scheme: p; is run every second step, ps every second step in the remaining unused
steps, ... timegype(r) < thime;k (z) + 281,

e SEARCH: run all p of length less than i for 2:2~/(P) steps in phase i = 1,2.3,. ...
timesearen () < 2K<k)+0(1)time;§k (), K(k)<E.

e Refined analysis: SEARCH itself is an algorithm with some index kegarey =O(1)
— SIMPLE executes SEARCH every 2FSEARCH_th step
—> timegype(T) < 2FsEARCHEIMet (7))
—> SIMPLE and SEARCH have the same asymptotics also in k.

e Practice: SEARCH should be favored because the constant 27S#4RcH s rather large.

Main New Result (The Fast Algorithm 1/,.)

Let p*: X — Y be a given algorithm or specification.

Let p be any algorithm, computing provably the same function as p*
with computation time provably bounded by the function ¢, (x).
timey,(x) is the time needed to compute the time bound #,(x).

Then the algorithm M, computes p*(z) in time

timens . () < 5-tp(w) + dp-timey, (v) + ¢

with constants ¢, and d,, depending on p but not on z.

Neither p, ?,,, nor the proofs need to be known in advance for the construction of
Mp* (ZC)
[Hutter, 2000]

Marcus Hutter -7 - The Fastest and Shortest Algorithm
Applicability

e Prime factorization, graph coloring, truth assignments, ... are Problems suitable
for Levin search, if we want to find a solution, since verification is quick.

e Levin search cannot decide the corresponding decision problems.

e Levin search cannot speedup matrix multiplication, since there is no faster method
to verify a product than to calculate it.

e Strassen's algorithm p’ for n xn matrix multiplication has time complexity

timey (x) < ty(x):= c-n*sL.

e The time-bound function (cast to an integer) can, as in many cases, be computed

very fast, time; ,(x) = O(log®n).

o Hence, also M, is fast, timey . (z) < 5¢-n?8 + O(log?n), even without known
Strassen’s algorithm.

o If there exists an algorithm p” with time,(z) < d-n?logn, for instance, then we
would have timey . (z) < 5d-n*logn+O(1).

e Problems: Large constants c, ¢, d.

Marcus Hutter -8 - The Fastest and Shortest Algorithm

The Fast Algorithm 1.

M« () A

Initialize the shared variables Run through all proofs.

L:=1{}, trast: =00, Dfast =D" if a proof proves for some (p,t) that
Start algorithms A, B, and C p(+) is equivalent to (computes) p*(-)
in parallel with 10%, 10% and 80% and has time-bound #(-)
computational resources, respectively. then add (p,t) to L.

B C

Compute all t(x) in parallel for k:=1,2,4,8,16,32,... do

for all (p,t) € L with run current pr,q for k steps

relative computation time 27/(P)=H(®) (without switching).

if for some ¢, t(x) <tfast, if prast halts in less than k steps,
then tfqs :=t(x) and pyast == D. then print result and abort A, B and C.

continue else continue with next k.

Fictitious Sample Execution of 1.

5
A .
mp3 S= e content of shared variable 7, ,
t3p9 Pw T time-bound for p executed by C
Dis number of executed steps of p in C

o guaranteed stopping point

total

A
Y ®

P Alp* StOpS

Marcus Hutter - 10 - The Fastest and Shortest Algorithm

Time Analysis

1 ,
Ta < 2! roel DL O (proof (p'))?)

— 10%

1 /
TB S TA —+ le(p)+l(tp/) .timetp/ (x)

T < 41'g if C' stops not using p’ but on some earlier program
C

| sordty if C' computes p'.

timey . (v) = Te < 5-1p(x) + dp-timey, (v) + ¢

d, = 40-2LP)+(tp). ¢, = 40.2l(p7°00f(p))+1.O(l(pr@gf(p)Q)

Marcus Hutter - 11 - The Fastest and Shortest Algorithm
Kolmogorov Complexity

Kolmogorov Complexity is a universal notion of the information content of a string. It
is defined as the length of the shortest program computing string x.

K(z) := min{l(p) : U(p) = =}

p

[Kolmogorov 1965 and others]

Universal Complexity of a Function

The length of the shortest program provably equivalent to p*
K" (p*) := min{l(p) : a proof of [Vy:u(p,y) = u(p*,y)] exists}
p
[Hutter, 2000]

K and K" can be approximated from above (are co-enumerable), but not finitely
computable. The provability constraint is important.

Marcus Hutter - 12 - The Fastest and Shortest Algorithm

The Fastest and Shortest Algorithm for p*

Let p* be a given algorithm or formal specification of a function.

There exists a program p, equivalent to p*, for which the following holds
1) U(p) < K"(p*) + O(1)
it) timep(x) < 5-t,(x) + dp-timeg, () + ¢

where p is any program provably equivalent to p* with computation time provably less
than ¢,(x). The constants ¢, and d,, depend on p but not on .
[Hutter, 2000]

Proof

.) : : o
Insert the shortest algorithm p" provably equivalent to p* into M, that is p := M, .

[(p) = 1(p)+0O(1) = K" (p*)+O(1)

Marcus Hutter - 13 - The Fastest and Shortest Algorithm

Generalizations

e If p* has to be evaluated repeatedly, algorithm A can be modified to remember its
current state and continue operation for the next input (A is independent of x!).
The large offset time ¢, is only needed on the first call.

e M- can be modified to handle i/o streams, definable by a Turing machine with
monotone input and output tapes (and bidirectional working tapes) receiving an

input stream and producing an output stream.

e [he construction above also works if time is measured in terms of the current
output rather than the current input x (e.g. for computing).

Marcus Hutter - 14 - The Fastest and Shortest Algorithm

Summary & Outlook

e Under certain provability constraints, M- is the asymptotically fastest algorithm
for computing p* apart from a factor 5 in computation time.

e The fastest program computing a certain function is also among the shortest
programs provably computing this function.

e To quantify this statement we defined a novel natural measures for the complexity
of a function, related to Kolmogorov complexity.

e The large constants ¢, and d,, seem to spoil a direct implementation of M.

e On the other hand, Levin search has been successfully applied even though it
suffers from a large multiplicative factor [Schmidhuber 1997]

e More elaborate theorem-provers could lead to smaller constants.

e Transparent or holographic proofs allow under certain circumstances an
exponential speed up for checking proofs [Babai et al. 1991].

e Will the ultimate search for asymptotically fastest programs typically lead to fast
or slow programs for arguments of practical size?

