Self-Optimizing and Pareto-Optimal Policies in General Environments based on Bayes-Mixtures

- 1 -

Marcus Hutter

Istituto Dalle Molle di Studi sull'Intelligenza Artificiale IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland marcus@idsia.ch, http://www.idsia.ch/~marcus

COLT, 8-12 July 2002

Contents

• Rational agents

- 2 -

- Sequential decision theory
- Reinforcement learning
- Value function
- Bayes mixtures
- Self-optimizing policies
- Pareto-optimality
- Unbounded effective horizon
- (non) Markov decision processes

The Agent Model

Rational Agents in Deterministic Environments

- $p: \mathcal{X}^* \to \mathcal{Y}^*$ is deterministic policy of the agent, $p(x_{\leq k}) = y_{1:k}$ with $x_{\leq k} \equiv x_1...x_{k-1}$.
- $q: \mathcal{Y}^* \to \mathcal{X}^*$ is deterministic environment, $q(y_{1:k}) = x_{1:k}$ with $y_{1:k} \equiv y_1...y_k$.
- Input $x_k \equiv x'_k r_k$ consists of a regular part x'_k and reward $r_k \in [0..r_{max}]$.
- Value $V_{km}^{pq} := r_k + ... + r_m$, optimal policy $p^{best} := \arg \max_p V_{1m}^{pq}$, Lifespan or initial horizon m.

Agents in Probabilistic Environments

Given history $y_{1:k}x_{< k}$, the probability that the environment leads to perception x_k in cycle k is (by definition) $\sigma(x_k|y_{1:k}x_{< k})$.

Abbreviation (Bayes rule)

 $\sigma(x_{1:m}|y_{1:m}) = \sigma(x_1|y_1) \cdot \sigma(x_2|y_{1:2}x_1) \cdot \dots \cdot \sigma(x_m|y_{1:m}x_{< m})$

The average value of policy p with horizon m in environment σ given history $y_{\leq k} x_{\leq k}$ is defined as

$$V_{\sigma}^{p} := \frac{1}{m} \sum_{x_{1:m}} (r_{1} + \dots + r_{m}) \sigma(x_{1:m} | y_{1:m})_{|y_{1:m} = p(x_{< m})}$$

The goal of the agent should be to maximize the value.

Optimal Policy and Value

The σ -optimal policy $p^{\sigma} := \arg \max_{p} V_{\sigma}^{p}$ maximizes $V_{\sigma}^{p} \leq V_{\sigma}^{*} := V_{\sigma}^{p^{\sigma}}$. Explicit expressions for the action y_{k} in cycle k of the σ -optimal policy p^{σ} and their value V_{σ}^{*} are

$$y_{k} = \arg \max_{y_{k}} \sum_{x_{k}} \max_{y_{k+1}} \sum_{x_{k+1}} \dots \max_{y_{m}} \sum_{x_{m}} (r_{k} + \dots + r_{m}) \cdot \sigma(x_{k:m} | y_{1:m} x_{< k}),$$

$$V_{\sigma}^{*} = \frac{1}{m} \max_{y_{1}} \sum_{x_{1}} \max_{y_{2}} \sum_{x_{2}} \dots \max_{y_{m}} \sum_{x_{m}} (r_{1} + \dots + r_{m}) \cdot \sigma(x_{1:m} | y_{1:m}).$$

Keyword: Expectimax tree/algorithm.

Expectimax Tree/Algorithm

Known environment μ

- Assumption: μ is the true environment in which the agent operates
- Then, policy p^{μ} is optimal in the sense that no other policy for an agent leads to higher μ -expected reward.
- Special choices of μ : deterministic environments, Markov decision processes (MDPs), adversarial environments.
- There is no principle problem in computing the optimal action y_k as long as μ is known and computable and \mathcal{X} , \mathcal{Y} and m are finite.
- Things drastically change if μ is unknown ...

The Bayes-mixture distribution ξ

Assumption: The true environment μ is unknown.

Bayesian approach: The true probability distribution μ is not learned directly, but is replaced by a Bayes-mixture ξ .

Assumption: We know that the true environment μ is contained in some known (finite or countable) set \mathcal{M} of environments.

The Bayes-mixture ξ is defined as

$$\xi(x_{1:m}|y_{1:m}) := \sum_{\nu \in \mathcal{M}} w_{\nu} \nu(x_{1:m}|y_{1:m}) \quad \text{with} \quad \sum_{\nu \in \mathcal{M}} w_{\nu} = 1, \quad w_{\nu} > 0 \ \forall \nu$$

The weights w_{ν} may be interpreted as the prior degree of belief that the true environment is ν .

Then $\xi(x_{1:m}|y_{1:m})$ could be interpreted as the prior subjective belief probability in observing $x_{1:m}$, given actions $y_{1:m}$.

Questions of Interest

- It is natural to follow the policy p^{ξ} which maximizes V_{ξ}^{p} .
- If μ is the true environment the expected reward when following policy p^{ξ} will be $V_{\mu}^{p^{\xi}}.$
- The optimal (but infeasible) policy p^{μ} yields reward $V^{p^{\mu}}_{\mu} \equiv V^*_{\mu}$.
- Are there policies with uniformly larger value than $V^{p^{\xi}}_{\mu}$?
- How close is $V^{p^{\xi}}_{\mu}$ to V^{*}_{μ} ?
- What is the most general class \mathcal{M} and weights w_{ν} .

A universal choice of ξ and ${\mathcal M}$

- We have to assume the existence of some structure on the environment to avoid the No-Free-Lunch Theorems [Wolpert 96].
- We can only unravel effective structures which are describable by (semi)computable probability distributions.
- So we may include all (semi)computable (semi)distributions in \mathcal{M} .
- Occam's razor tells us to assign high prior belief to simple environments.
- Using Kolmogorov's universal complexity measure $K(\nu)$ for environments ν one should set $w_{\nu} \sim 2^{-K(\nu)}$, where $K(\nu)$ is the length of the shortest program on a universal TM computing ν .
- The resulting AIXI model [Hutter:00] is a unification of (Bellman's) sequential decision and Solomonoff's universal induction theory.
- In the following we consider generic \mathcal{M} and w_{ν} .

Linearity and Convexity of V_σ in σ

 V^p_σ is a linear function in σ : $V^p_\xi = \sum_\nu w_\nu V^p_\nu$

 V_{σ}^* is a convex function in σ : $V_{\xi}^* \leq \sum_{\nu} w_{\nu} V_{\nu}^*$

where $\xi(x_{1:m}|y_{1:m}) = \sum_{\nu} w_{\nu} \nu(x_{1:m}|y_{1:m}).$

These are the crucial properties of the value function V_{σ} .

Loose interpretation: A mixture can never increase performance.

Pareto-Optimality of p^{ξ}

Policy p^{ξ} is Pareto-optimal in the sense that there is no other policy pwith $V_{\nu}^{p} \geq V_{\nu}^{p^{\xi}}$ for all $\nu \in \mathcal{M}$ and strict inequality for at least one ν . Extension: Balanced Pareto optimality.

Self-optimizing Policies

Under which circumstances does the value of the universal policy p^{ξ} converge to optimum?

$$V_{\nu}^{p^{\xi}} \to V_{\nu}^{*}$$
 for horizon $m \to \infty$ for all $\nu \in \mathcal{M}$. (1)

The least we must demand from \mathcal{M} to have a chance that (1) is true is that there exists some policy \tilde{p} at all with this property, i.e.

$$\exists \tilde{p}: V_{\nu}^{\tilde{p}} \to V_{\nu}^{*} \quad \text{for horizon} \quad m \to \infty \quad \text{for all} \quad \nu \in \mathcal{M}.$$
 (2)

Main result: (2) \Rightarrow (1): The necessary condition of the existence of a self-optimizing policy \tilde{p} is also sufficient for p^{ξ} to be self-optimizing.

Marcus Hutter

Environments with Self-Optimizing Policies

- Ergodic MDPs,
- l^{th} order ergodic MDPs,
- Certain classes of POMDPs,
- Classification tasks,
- i.i.d. processes,
- Bandit problems,
- Factorizable environments,
- Repeated games,
- Prediction problems,
- ? ... ?

Discussion of Self-optimizing Property

- The beauty of this theorem is that the necessary condition of convergence is also sufficient.
- The unattractive point is that this is not an asymptotic convergence statement of a single policy p^{ξ} for time $k \to \infty$ for some fixed m.
- Shift focus from the total value V and horizon $m \to \infty$ to the future value (value-to-go) V and current time $k \to \infty$.

Future Value and Discounting

- Eliminate the horizon by discounting the rewards $r_k \rightsquigarrow \gamma_k r_k$ with
- $$\begin{split} &\Gamma_k := \sum_{i=k}^{\infty} \gamma_i < \infty \text{ and letting } m \to \infty. \\ \bullet \ V_{k\gamma}^{p\sigma} := \frac{1}{\Gamma_k} \lim_{m \to \infty} \sum_{i=k}^{\infty} (\gamma_k r_k + \ldots + \gamma_m r_m) \sigma(x_{k:m} | y_{1:m} x_{< k})_{|y_{1:m} = p(x_{< m})} \end{split}$$
- Further advantage: Traps (non-ergodic environments) do not necessarily prevent self-optimizing policies any more.

Results for Discounted Future Value

- $V_{k\gamma}^{p\sigma}$ is linear in σ : $V_{k\gamma}^{p\xi} = \sum_{\nu} w_k^{\nu} V_{k\gamma}^{p\nu}$.
- $V_{k\gamma}^{*\sigma}$ is convex in σ : $V_{k\gamma}^{*\xi} \leq \sum_{\nu} w_k^{\nu} V_{k\gamma}^{*\nu}$.
- where $w_k^{\nu} := w_{\nu} \frac{\nu(x_{< k}|y_{< k})}{\xi(x_{< k}|y_{< k})}$ is the posterior belief in ν .
- p^{ξ} is Pareto-optimal in the sense that there is no other policy p with $V_{k\gamma}^{p\nu} \ge V_{k\gamma}^{p^{\xi}\nu}$ for all $\nu \in \mathcal{M}$ and strict inequality for at least one ν .
- If there exists a self-optimizing policy for \mathcal{M} , then p^{ξ} is self-optimizing in the sense that If $\exists \tilde{p}_k \forall \nu : V_{k\gamma}^{\tilde{p}_k \nu} \stackrel{k \to \infty}{\longrightarrow} V_{k\gamma}^{*\nu} \implies V_{k\gamma}^{p^{\xi} \mu} \stackrel{k \to \infty}{\longrightarrow} V_{k\gamma}^{*\mu}$.

Importance of the Right Discounting

Standard geometric discounting: $\gamma_k = \gamma^k$ with $0 < \gamma < 1$.

Problem: Most environments do not possess self-optimizing policies under this discounting.

Reason: Effective horizon h_k^{eff} is finite $(\sim \ln \frac{1}{\gamma} \text{ for } \gamma_k = \gamma^k)$.

The analogue of $m \to \infty$ is $k \to \infty$ and $h_k^{e\!f\!f} \to \infty$ for $k \to \infty$.

Result: Policy p^{ξ} is self-optimizing for the class of $(l^{th} \text{ order})$ ergodic MDPs if $\frac{\gamma_{k+1}}{\gamma_k} \to 1$.

Example discounting: $\gamma_k = k^{-2}$ or $\gamma_k = k^{-1-\varepsilon}$ or $\gamma_k = 2^{-K(k)}$.

Horizon is of the order of the age of the agent: $h_k^{eff} \sim k$.

Outlook

- Continuous classes \mathcal{M} .
- Restricted policy classes.
- Non-asymptotic bounds.
- Tighter bounds by exploiting extra properties of the environments, like the mixing rate of MDPs.
- Search for other performance criteria [Hutter:00].
- Instead of convergence of the expected reward sum, study convergence with high probability of the actually realized reward sum.

Conclusions

• Setup: Agents acting in general probabilistic environments with reinforcement feedback.

- 19 -

- Assumptions: True environment μ belongs to a known class of environments \mathcal{M} , but is otherwise unknown.
- Results: The Bayes-optimal policy p^{ξ} based on the Bayes-mixture $\xi = \sum_{\nu \in \mathcal{M}} w_{\nu} \nu$ is Pareto-optimal and self-optimizing if \mathcal{M} admits self-optimizing policies.
- Application: The class of ergodic MDPs admits self-optimizing policies.
- New: Policy p^{ξ} with unbounded effective horizon is the first purely Bayesian self-optimizing consistent policy for ergodic MDPs.
- Learn: The combined conditions $\Gamma_k < \infty$ and $\frac{\gamma_{k+1}}{\gamma_k} \rightarrow 1$ allow a consistent self-optimizing Bayes-optimal policy based on mixtures.