
Metric State Space Reinforcement Learning
for a Vision-Capable Mobile Robot

Viktor Zhumatiya, Faustino Gomeza, 
Marcus Hutter a and Jürgen Schmidhubera,b

(a) IDSIA, Switzerland
(b)TU Munich, Germany



Learning environment: real robot, vision sensors

• Learning algorithm specifically targeted at 
real world mobile robots



Challenges of learning on vision-capable real robots

• Piecewise-continuous (PWC) control
• Partial observability (POMDP)
• High-dimensional sensors
• Costly exploration



• RL: policy learning by autonomous 
environment exploration from reward signal

• Q-learning: estimation of discounted reward for 
each state-action pair

• Assumes that states st are fully observable at 
each moment

• In practice, only incomplete observations are 
available

Reinforcement learning



Discrete and continuous versus PWC

• Transitions and reinforcements on actual robots differ 
from well-studied continuous and discrete cases

PWC
Discrete Continuous



Continuous and discrete versus PWC

PWC
Discrete

Continuous

• PWC is characterized by continuous and differentiable 
structure broken by jumps that appear when, for 
example, an object is hidden from view



Candidate methods for PWC

• Discretizing state space with fixed 
/adaptive grid: artificial discontinuities

• Neural networks: do not model 
discontinuities 

• CMAC & RBFs: knowledge of local scale 
required 

• Instance-based memory: OK, but 
previously used with fixed scale



t=T-2

POMDP

• What if the goal is not seen?
• Solution: use chain of observations for control.

t=T-1

? t=T



PC-NSM

• Nearest Sequence Memory (NSM) by 
McCallum: does everything we need, but 
discrete space and slow convergence

• Solution: modify to work in PWC + speed it 
up to use data more effectively = 
Piecewise-Continuous NSM (PC-NSM)



NSM Description slide

• k nearest neighbours in the history 
• q(t) -- Q-value for each moment in the 

history
• To compute Q(a?,T) – average q(t) over k 

nearest t where at=a?

• Do exploration action with probability 
epsilon

Match length

observation

T



Change 1: for PWC

• Pseudometric in original McCallum:
1/(1+<Number of matching observations>)

• Our metric:



Change 2: endogenous updates

• McCallum: update only for  t=T-1 (with 
traces)

• PC-NSM update:

• Updates through all history needed since 
neighbourhoods change with new 
experience



• Make least explored action greedily

Change 3: directed exploration



Demonstration on a mobile robot



Robot setup

• Sensory input vector: 
(x, y, isVisible, f, b)

Sonar sensor AXIS web camera X

Y

Sonar 
sensor 

distance

f

b

Target 
x-y

position

4m

3m

• Goal: avoid wall collisions,

go to the blue teapot



Actions

• Move forward / backward 
approx 5 cm / 15 cm

• Turn left / right 22.5o / 45o

• Exact values unimportant
• Stand still action
• Wait until robot stops before 

making the next action



Complete learning system



PC-NSM parameters

• epsilon-greedy policy with epsilon set to 0.3.
(30% of the time the robot selects an exploratory 
action). 

• The appropriate number of nearest neighbors, k, 
used to select actions, depends upon the 
noisiness of the environment. For the amount of 
noise in our sensors, we found that learning was 
fastest for k=3.



Reinforcement structure



Results: learned policy

X

Y

Sonar sensor-
measured 
distance

f

b

Target x-y
position

< turn left

> turn right

^ move forward 

v move backward

o stand still

• Learned policy dimensionality 
reduction in the sensor space: 
varaible x, y; r, b walls are 
always far



Results: example trajectories

• A trajectory after learning

• White boxes mark the 
controller’s confusion resulted 
from sound-reflecting wall joints



Contributions and limitations

• An algorithm capable of learning on real 
vision-controlled robots is developed

• The algorithm is able to use modern vision 
preprocessing algorithms thanks to 
reliance on metric

Limitations:
• Single metric may be too strict a limitation
• Exploration scheme is greedy



Future work

• Improved exploration
• Multimetric learning



Conclusion

• Requirements for real-world mobile      
robot learning defined

• An algorithm to satisfy these requirements 
is proposed

• Feasibility study on an actual robot is 
made


