
Marcus Hutter - 1 - Optimal Program Induction & Universal AI

Theoretically Optimal Program Induction

and Universal Artificial Intelligence

Marcus Hutter

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland
marcus@idsia.ch, http://www.idsia.ch/∼marcus

ICML-2005, August 7

Marcus Hutter - 2 - Optimal Program Induction & Universal AI

Table of Contents

• Levin Search

• The Fastest and Shortest Algorithm

• Universal Artificial Intelligence

• The Universal AIXI(tl) Agent

• Optimal Ordered Problem Solver

• The Gödel Machine

Marcus Hutter - 3 - Optimal Program Induction & Universal AI

Abstract

The idea of the ‘typing monkeys’, one of them eventually producing

‘Shakespeare’, or, more formally, exhaustive search over programs, is

well known and appealing. In this talk I consider completely general

parametric problem solving and the more particular universal AI

(artificial intelligence) problem from this perspective. The difficulty here

is that the right monkey (program) has to be selected algorithmically

(rather than selecting it by hand which would add the intelligence of the

selector), but the criterion for selection can itself be incomputable or

hard to specify.

Keywords: Levin/program/proof search, fastest algorithm, universal

artificial intelligence, AIXI(tl) models, optimal ordered problem solver,

Gödel machine.

Marcus Hutter - 4 - Optimal Program Induction & Universal AI

Introduction: Computability and Monkeys

• Let enough monkeys type on typewriters or computers,

eventually one of them will write Shakespeare,

or solve a hard problem, or write an AI program, etc.

• To pick the right monkey by hand is cheating, as then the

intelligence of the selector is added.

• Problem: How to (algorithmically) select the right monkey?

• This talk: Generic solution for the inversion, computation, and AI

problem.

Marcus Hutter - 5 - Optimal Program Induction & Universal AI

The Fastest and Shortest Algorithm
for All Well-Defined Problems

Marcus Hutter - 6 - Optimal Program Induction & Universal AI

Introduction

• Searching for fast algorithms to solve certain problems is a central

and difficult task in computer science.

• Positive results usually come from explicit constructions of efficient

algorithms for specific problem classes.

• A wide class of problems can be phrased in the following way:

• Find a fast algorithm computing f :X→Y , where f is a formal

specification of the problem depending on some parameter x.

• The specification can be formal (logical, mathematical),

it need not necessarily be algorithmic.

• Ideally, we would like to have the fastest algorithm, maybe apart

from some small constant factor in computation time.

Marcus Hutter - 7 - Optimal Program Induction & Universal AI

Blum’s Speed-up Theorem (Negative Result)

There are problems for which an (incomputable) sequence of

speed-improving algorithms (of increasing size) exists, but no fastest

algorithm.

[Blum, 1967, 1971]

Levin’s Theorem (Positive Result)

Within a (large) constant factor, Levin search is the fastest algorithm to

invert a function g :Y →X, if g can be evaluated quickly.

[Levin 1973]

Marcus Hutter - 8 - Optimal Program Induction & Universal AI

Simple is as fast as Search

• simple: run all programs p1p2p3 . . . on x one step at a time

according to the following scheme: p1 is run every second step, p2

every second step in the remaining unused steps, ... if g(pk(x)) = x,

then output pk(x) and halt ⇒ timeSIMPLE(x) ≤ 2ktime+
pk

(x) + 2k−1.

• search: run all p of length less than i for 2i2−l(p) steps in phase

i = 1, 2, 3, timeSEARCH(x) ≤ 2K(k)+O(1)time+
pk

(x), K(k) ¿ k.

• Refined analysis: search itself is an algorithm with some index

kSEARCH =O(1)
=⇒ simple executes search every 2kSEARCH-th step

=⇒ timeSIMPLE(x) ≤ 2kSEARCHtime+
SEARCH(x)

=⇒ simple and search have the same asymptotics also in k.

• Practice: search should be favored because the constant 2kSEARCH

is rather large.

Marcus Hutter - 9 - Optimal Program Induction & Universal AI

Main New Result (The Fast Algorithm Mp∗)

• Let p∗ :X→Y be a given algorithm or specification.

• Let p be any algorithm, computing provably the same function as p∗

• with computation time provably bounded by the function tp(x).

• timetp(x) is the time needed to compute the time bound tp(x).

• Then the algorithm Mp∗ computes p∗(x) in time

timeMp∗ (x) ≤ 5·tp(x) + dp ·timetp(x) + cp

• with constants cp and dp depending on p but not on x.

• Neither p, tp, nor the proofs need to be known in advance for the

construction of Mp∗(x).
[H’00]

Marcus Hutter - 10 - Optimal Program Induction & Universal AI

Applicability
• Prime factorization, graph coloring, truth assignments, ... are Problems

suitable for Levin search, if we want to find a solution, since verification is
quick.

• Levin search cannot decide the corresponding decision problems.

• Levin search cannot speedup matrix multiplication, since there is no
faster method to verify a product than to calculate it.

• Strassen’s algorithm p′ for n×n matrix multiplication has time
complexity timep′(x) ≤ tp′(x) := c·n2.81.

• The time-bound function (cast to an integer) can, as in many cases, be
computed very fast, timetp′ (x) = O(log2n).

• Hence, also Mp∗ is fast, timeMp∗ (x) ≤ 5c·n2.81 + O(log2n), even
without known Strassen’s algorithm.

• If there exists an algorithm p′′ with timep′′(x) ≤ d·n2log n, for instance,

then we would have timeMp∗ (x) ≤ 5d·n2log n+O(1).

• Problems: Large constants c, cp, dp.

Marcus Hutter - 11 - Optimal Program Induction & Universal AI

The Fast Algorithm Mp∗

Mp∗(x)

Initialize the shared variables

L := {}, tfast := ∞, pfast := p∗.

Start algorithms A, B, and C

in parallel with 10%, 10% and 80%

computational resources, respectively.

A

Run through all proofs.

if a proof proves for some (p, t) that

p(·) is equivalent to (computes) p∗(·)
and has time-bound t(·)
then add (p, t) to L.

B

Compute all t(x) in parallel

for all (p, t)∈L with

relative computation time 2−`(p)−`(t).

if for some t, t(x)<tfast,

then tfast := t(x) and pfast := p.

continue

C

for k:=1,2,4,8,16,32,... do

run current pfast for k steps

(without switching).

if pfast halts in less than k steps,

then print result and abort A, B and C.

else continue with next k.

Marcus Hutter - 12 - Optimal Program Induction & Universal AI

Fictitious Sample Execution of Mp∗

1 2 4
p314

16

p3

t42

t100

t314

t3

ttotal

p3p*p*

p100

p42

p314

t

Mp* stopsp42

8

p9

t9

content of shared variable tfa st

time-bound for executed byp C

number of executed steps of inp C

guaranteed stopping point

Marcus Hutter - 13 - Optimal Program Induction & Universal AI

Time Analysis

TA ≤ 1
10%

·2`(proof(p′))+1 ·O(`(proof(p′))2)

TB ≤ TA +
1

10%
·2`(p′)+`(tp′) ·timetp′ (x)

TC ≤




4TB if C stops not using p′ but on some earlier program

1
80%4tp′ if C computes p′.

timeMp∗ (x) = TC ≤ 5·tp(x) + dp ·timetp(x) + cp

dp = 40·2`(p)+`(tp), cp = 40·2`(proof(p))+1 ·O(`(proof(p)2)

Marcus Hutter - 14 - Optimal Program Induction & Universal AI

Miscellaneous

• Using the shortest algorithm p′ provably equivalent to p∗ one can

show that Mp′ is the fastest and shortest algorithm provably

equivalent to p∗.

• The setting can be generalized to repeated p∗ evaluation, i/o

streams, and time measured in output rather than input length.

• More elaborate theorem-provers could lead to smaller constants.

• Transparent or holographic proofs allow under certain circumstances

an exponential speed up for checking proofs [Babai et al. 1991].

• Will the ultimate search for asymptotically fastest programs typically

lead to fast or slow programs for arguments of practical size?

Marcus Hutter - 15 - Optimal Program Induction & Universal AI

Summary

• Under certain provability constraints, Mp∗ is the asymptotically

fastest algorithm for computing p∗ apart from a factor 5 in

computation time.

• The fastest program computing a certain function is also among the

shortest programs provably computing this function.

• The large constants cp and dp seem to spoil a direct

implementation of Mp∗ .

• On the other hand, Levin search has been successfully extended and

applied even though it suffers from a large multiplicative factor

[Schmidhuber 1996-2002].

Marcus Hutter - 16 - Optimal Program Induction & Universal AI

Universal Artificial Intelligence

Marcus Hutter - 17 - Optimal Program Induction & Universal AI

Overview

• Decision Theory solves the problem of rational agents in uncertain

worlds if the environmental probability distribution is known.

• Solomonoff’s theory of Universal Induction

solves the problem of sequence prediction

for unknown prior distribution.

• We combine both ideas and get

A Unified View of Artificial Intelligence
= =

Decision Theory = Probability + Utility Theory

+ +

Universal Induction = Ockham + Bayes + Turing

Marcus Hutter - 18 - Optimal Program Induction & Universal AI

The Agent Model

r1 | o1 r2 | o2 r3 | o3 r4 | o4 r5 | o5 r6 | o6 ...

y1 y2 y3 y4 y5 y6 ...

work
Agent

p
tape ... work

Environ-

ment q
tape ...

©©©©©¼ HHHHHY

³³³³³³³1PPPPPPPq

Marcus Hutter - 19 - Optimal Program Induction & Universal AI

Rational Agents in Deterministic Environments

- p :X ∗→Y∗ is deterministic policy of the agent,

p(x<k) = y1:k with x<k ≡ x1...xk−1.

- q :Y∗→X ∗ is deterministic environment,

q(y1:k) = x1:k with y1:k ≡ y1...yk.

- Input xk≡rkok consists of a regular informative part ok

and reward rk ∈ [0..rmax].

- Value V pq
km := rk + ... + rm,

optimal policy pbest := arg maxp V pq
1m,

Lifespan or initial horizon m.

Marcus Hutter - 20 - Optimal Program Induction & Universal AI

The Universal AIXI Agent

Problem: True env. q may be probabilistic and/or unknown.

Bayes: Take a mixture over environments.

Occam & Epicurus: Assign high/low prior weight to simple/complex q.

Solomonoff: Take all programs q and use prior(q) = 2−`(q).

Mixture over environments leads to mixture/expected

universal value: V pξ
km :=

∑
q 2−`(q)V pq

km

The program p∗ that maximizes V pξ
km should be selected.

Claim: AIXI policy p∗ := arg maxp V pξ
km is universally optimal agent.

Marcus Hutter - 21 - Optimal Program Induction & Universal AI

Extended Policies

Problem: AIXI policy p∗ is incomputable.

Supplement each policy p with a program that estimates V pξ
km by wp

k

within time t̃.

Combine calculation of yp
k and wp

k and extend the notion of a policy to

p(ẏẋ<k) = wp
1yp

1 ...wp
kyp

k

with chronological order wp
1yp

1 ẏ1ẋ1w
p
2yp

2 ẏ2ẋ2....

Notation:

- ẏẋ<k= realized history.

- wp
i yp

i = estimates and actions by policy p.

Marcus Hutter - 22 - Optimal Program Induction & Universal AI

Valid Approximations
• (Extended) policy p is not allowed to rate its output yp

k with
arbitrarily high wp

k if we want wp
k to be a reliable criterion for

selecting the best p.

• Define (logical) predicate Valid Approximation:

VA(p)=true ⇔ p satisfies wp
k ≤ V pξ

km ∀k, i.e. never overrates itself.

• Consider only p for which VA(p) can be proven in some formal
axiomatic system.

• Enumerability of V ∗ξ
km ensures that for suff. large t̃ ∃p̃ for which

VA(p̃) can be proven and wp̃
k is arb. close to V ∗ξ

km, i.e. p̃
t̃→∞−→ p∗.

• p is eff. more or equal intelligent than p′ :⇔ p ºc p′ ⇔ wp
k ≥ wp′

k ∀k.

• ºc is a co-enumerable partial order relation on extended policies.

• ºc orders valid policies w.r.t. the quality of their outputs and their
ability to justify their outputs with high wk.

Marcus Hutter - 23 - Optimal Program Induction & Universal AI

The Universal Time-Bounded AIXItl Agent
Selection of the best algorithm pbest out of the time t̃ and length l̃

bounded p, for which there exists a proof of VA(p) with length ≤ lP :

1. Create all binary strings of length lP and interpret each as a coding

of a mathematical proof in the same formal logic system in which

VA(·) was formulated. Take those strings that are proofs of VA(p)

for some p and keep the corresponding programs p.

2. Eliminate all p of length > l̃.

3. Modify the behavior of all retained p in each cycle k as follows:

Nothing is changed if p outputs some wp
kyp

k within t̃ time steps.

Otherwise stop p and write wk = 0 and some arbitrary yk to the

output tape of p. Let P be the set of all those modified programs.

4. Start first cycle: k := 1.

Marcus Hutter - 24 - Optimal Program Induction & Universal AI

AIXItl (continued)

5. Run every p ∈ P on extended input ẏẋ<k, where all outputs are

redirected to some auxiliary tape: p(ẏẋ<k) = wp
1yp

1 ...wp
kyp

k. This

step is performed incrementally by adding ẏẋk−1 for k > 1 to the

input tape and continuing the computation of the previous cycle.

6. Select the program p with highest claimed value wp
k:

pbest
k := arg maxp wp

k.

7. Write ẏk := y
pbest

k

k to the output tape.

8. Receive input ẋk from the environment.

9. Begin next cycle: k := k + 1, goto step 5.

Roughly: If there exists a computable solution to some or all AI problems

at all, the explicitly constructed algorithm pbest is such a solution.

Marcus Hutter - 25 - Optimal Program Induction & Universal AI

Property of AIXItl

An algorithm pbest has been constructed for which the following holds:

• Let p be any (extended chronological) policy

• with length `(p)≤ l̃ and computation time per cycle t(p)≤ t̃

• for which there exists a proof of length ≤ lP that p is a valid

approximation.

• Then an algorithm pbest can be constructed, depending on l̃,t̃ and

lP but not on knowing p

• which is effectively more or equally intelligent according to ºc than

any such p.

• The size of pbest is `(pbest)=O(ln(l̃· t̃·lP)),
• the setup-time is tsetup(pbest)=O(l2P ·2lP),
• the computation time per cycle is tcycle(pbest)=O(2l̃ · t̃).

Marcus Hutter - 26 - Optimal Program Induction & Universal AI

Optimal Ordered Problem Solver
& Gödel Machine

=

More practical adaptations/extensions

by Schmidhuber [2002-2004]

of FastPrg and AIXItl.

OOPS: bias-optimal reuse
of previous solutions. In
phase n solve tasks 1-n
(one tape per task) by new
program (may call or copy-
edit previous progs), or just
task n by continuation of
prog for phase n-1. Search
tree branches = program
prefixes; widths =
probabilities. Backtrack to
restore task sets / tapes
(including probability
rewrites) on error or when
∑t > probability * total time.
Just 8 times slower than
bias-optimal method!

FORTH Pilot system
(other languages possible)
Miniature operating system
for multitasking, interwoven
with time-optimal
backtracking. Programs =
integer strings; data looks
like code; functional
programming easy;
~106 steps/s on PC

“If it isn’t 100 times shorter
than C then it isn’t FORTH.”
(C. Moore)

Schmidhuber may be 42 years
old, but is still writing code by
himself

Experiment:
Towers of Hanoi
3 pegs: S, A, D; n disks on
S; move all to D, but never
larger on smaller.

Optimal: 2n-1 moves.

Anderson 1986: R-Learning, n<4.
Langley 1985: production systems, n<6.
Baum & Durdanovic 1999: simpler blocks problem

scales linearly, n<6 (Kwee 2001)
Nonlearning AI planners: n<15; size < 100,000

(since search in raw solution space!)

OOPS: n ≥ 30; solution size >109

(because search in space of solution-computing programs!)

Speedup: first OOPS-learn seemingly unrelated
language tasks f(n)=1n2n for n=1..30, then
Hanoi for n=1…30.
Demonstrates incremental learning - knowledge
transfer from one task to the next - 1000 times
faster than learning double-recursive Hanoi
program from scratch.

Fastest algorithm for all
well-defined problems
(Marcus Hutter, on Schmidhuber‘s
SNF grant 20-61847):

But why all z∈X? Only f(x) needed!
How to reduce the huge constants?
Through the fully self-referential
Gödel Machine (Schmidhuber, 2003):

Gödel Machine: Plug in
any utility function as axiom
stored in initial program p.
p interacts with world and
makes pairs (q, proof) until
it finds proof of: "rewrite of p
through program q implies
higher utility than leaving p
as is." Globally optimal self-
change through executing q!

Given f:X→Y and x∈X, search proofs to find
program q that provably computes f(z) for all
z∈X within time bound tq(z); spend most time
on f(x)-computing q with best current bound.
As fast as fastest f-computer, save for factor
1+ε and f-specific but x-independent constant!

IDSIA.CHIDSIA.CH

Storage
snapshot of
not yet self-
improved
Gödel
Machine
interacting
with world

