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Sequence prediction

Given a sequence x1, . . . , xn generated by the environment predict xn+1,
where xi are from a finite set X . Environment here is just a probability
measure µ over X∞.

The task can be formulated as forecasting probabilities for xn+1.

In this case the predictor also defines a probability measure over X∞.
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Sequence prediction

Laplace: weather forecasting. The Sun has risen every day for 5000 years,
what is the probability that it will not rise tomorrow? X is binary: the Sun
rises vs. it does not.

Laplace suggested that xi — the Sun rising on different days — are
independent and identically distributed.
His predictor:

ρL(xn+1 = 0|x1, . . . , xn) =
k + 1

n + 2
≈ 1

1830000

where k is #1 in x1 . . . xn (derived as a Bayesian w. uniform prior).
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Markov processes and Stationary

The same idea generalizes to Markov and k-order Markov measures. For
each k, a predictor ρk can be constructed that predicts any k-order
Markov process.

A predictor ρR (B. Ryabko, 1988) for the class of all stationary process is
constructed as a sum of predictors for k-order Markov measures:

ρR(x1, . . . , xn) =
∞∑

k=0

wiρk(x1, . . . , xn),

Side question: what else does it predict?
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Solomonoff: computable probability measures

Another assumption: µ is computable.

The class of all computable measures is countable: (νi )i∈IN .

A Bayesian predictor: ξ(A) =
∑n

i=1 wiνi (A) for any measurable set A,
where the weights wi are positive and sum to one.

A measure µ is the best predictor for itself; for a countable class of
measures we can just sum all the predictors for individual measures.
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Dominance by a constant and absolute continuity

For the Bayes mixture ξ over a countable class νi , i ∈ IN we have

ξ(A) ≥ cνi (A)

for every νi and every (measurable) set A, where c is a constant c = wi .
ξ dominates each νi with a constant c = wi . In particular, each νi is
absolutely continuous with respect to ξ.

Absolute continuity is sufficient for prediction (Blackwell and Dubins,
1962).
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General open questions

For which classes of measures is prediction possible? So far we have
only some interesting examples.

Given two probability measures, under which conditions does one of
them predict the other? So far we only have absolute continuity —
which is too strong, and some examples.
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New stuff: dominance with decreasing coefficients

For Bayes mixture ξ over (computable) measures νi , i ∈ IN we have
ξ(A) ≥ cνi (A) for every νi and every (measurable) set A.

For Laplace measure ρL we have

ρL(x1, . . . , xn) ≥
1

n + 1
µδ(x1, . . . , xn)

for each Bernoulli µδ.

Is any such property in itself sufficient for prediction?

ρ(x1, . . . , xn) ≥ cnµ(x1, . . . , xn) (1)

for any x1, . . . , xn, where cn → 0 not too fast.
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Divergence characteristics

(d) Kullblack-Leibler (KL) divergence

dt(µ, ρ, x<n) =
∑

x∈X µ(xn = x |x<n) log µ(xn=x |x<n)
ρ(xn=x |x<n)

,

(d̄) average KL divergence d̄n(µ, ρ) = 1
n

∑n
i=1 di (µ, ρ, x<i ),

(a) absolute distance

at(µ, ρ, x<n) =
∑
x∈X

|µ(xn = x |x<n)− ρ(xn = x |x<n)|,

(ā) average absolute distance ān(µ, ρ) = 1
n

∑n
i=1 ai (µ, ρ, x<n).

Thus we say that ρ predicts µ

(d) in KL divergence if dn(µ, ρ, x<n) → 0 µ-a.s.,

(d̄) in average KL divergence if d̄n(µ, ρ, x1..n) → 0 µ-a.s.

(E d̄) in expected average KL divergence if Eµ d̄t(µ, ρ, x1..t) → 0

(a) in absolute distance if an(µ, ρ, x<n) → 0 µ-a.s.,

(ā) in average absolute distance if ān(µ, ρ, x1..n) → 0 µ-a.s.

(E ā) in expected average absolute distance if Eµ ān(µ, ρ, x1..n) → 0
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Results about dominance with decreasing coefficients

E d̄n d̄n dn E ān ān an

log c−1
n = o(n) + ? − + ? −∑∞

n=1
log c−1

n

n2 < ∞ + + − + + −
cn ≥ c > 0 + + + + + +

Theorem

Let µ and ρ be two measures on X∞ and suppose that
ρ(x1..n) ≥ cnµ(x1..n) for any x1..n, where cn are positive constants satisfying

∞∑
n=1

(logc−1
n )2

n2
< ∞.

Then ρ predicts µ in average KL divergence µ-a.s.
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E d̄n d̄n dn E ān ān an

log c−1
n = o(n) + ? − + ? −∑∞

n=1
log c−1

n

n2 < ∞ + + − + + –

cn ≥ c > 0 + + + + + +

Theorem

For each sequence of positive numbers cn that goes to 0 there exist
measures µ and ρ and a number ε > 0 such that ρ(x1:n) ≥ cnµ(x1:n) for
all x1:n, yet an(µ, ρ|x1:n) > ε and dn(µ, ρ|x1:n) > ε infinitely often µ-a.s.
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How to combine predictors?

If a measure ρ predicts a measure µ does ρ + χ also predict µ, for an
arbitrary measure χ?
In particular, if we have two predictors, can we just sum them to obtain a
predictor that combines predictive powers?

E d̄n d̄n dn E ān ān an

+ ? − − − −
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Open questions

Which classes of measures admit a predicting measure (that predicts
all of them)?

Under which conditions on two process measures does one measure
predict the other?

How to combine predictors, saving there predictive abilities?
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