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Sequence prediction

Given a sequence xi, ..., X, generated by the environment predict x,41,
where x; are from a finite set X. Environment here is just a probability
measure 4 over X,

The task can be formulated as forecasting probabilities for x41.

In this case the predictor also defines a probability measure over X°.
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Sequence prediction

Laplace: weather forecasting. The Sun has risen every day for 5000 years,
what is the probability that it will not rise tomorrow? X is binary: the Sun
rises vs. it does not.

Laplace suggested that x; — the Sun rising on different days — are
independent and identically distributed.
His predictor:

k+1 1
L1 = 00X, Xn) =~ A qeans

where k is #1 in x1 ...x, (derived as a Bayesian w. uniform prior).

Daniil Ryabko and Marcus Hutter () 3/13



Markov processes and Stationary

The same idea generalizes to Markov and k-order Markov measures. For
each k, a predictor px can be constructed that predicts any k-order
Markov process.

A predictor pr (B. Ryabko, 1988) for the class of all stationary process is
constructed as a sum of predictors for k-order Markov measures:

o
PRGOS - x0) = S wipk(oa, . xa),
k=0

Side question: what else does it predict?
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Solomonoff: computable probability measures

Another assumption: u is computable.

The class of all computable measures is countable: (v;);cp.

A Bayesian predictor: {(A) = "7 ; wji(A) for any measurable set A,
where the weights w; are positive and sum to one.

A measure p is the best predictor for itself; for a countable class of
measures we can just sum all the predictors for individual measures.
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Dominance by a constant and absolute continuity

For the Bayes mixture £ over a countable class v;, i € N we have
§(A) = cvi(A)

for every v; and every (measurable) set A, where c is a constant ¢ = w;.
& dominates each v; with a constant ¢ = w;. In particular, each v; is
absolutely continuous with respect to &.

Absolute continuity is sufficient for prediction (Blackwell and Dubins,
1962).
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General open questions

@ For which classes of measures is prediction possible? So far we have
only some interesting examples.

@ Given two probability measures, under which conditions does one of
them predict the other? So far we only have absolute continuity —
which is too strong, and some examples.
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New stuff: dominance with decreasing coefficients

For Bayes mixture £ over (computable) measures v;, i € N we have
&(A) > cvi(A) for every v; and every (measurable) set A.

For Laplace measure p; we have

1
pr(xi, ... Xn) = m#é(xl,-~-7xn)
for each Bernoulli ps.

Is any such property in itself sufficient for prediction?

p(X1, ..oy Xn) = Capt(X1y .-y Xn)

for any xi, ..., x,, where ¢, — 0 not too fast.
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Divergence characteristics

(d) Kullblack-Leibler (KL) divergence
(Xn:X|X<n)

de(p, Py x<n) = D ex MXn = X|x<n) log m'

(d) average KL divergence d,(p1,p) = 2 37, di(u, p, x<i),

n
(a) absolute distance

3tu p7X<n Z’:U’ n—X’X<n)_ ( n—X’X<n)|,
xeX

(2) average absolute distance a,(u, p) = %Zle ai(f, p, X<n)-
Thus we say that p predicts p
(d) in KL divergence if dp(u, p,x<n) — 0 p-a.s.,
) in average KL divergence if d,(u, p,x1..,) — 0 p-a.s.

)i

expected average KL divergence if E, c_ft(,u, p,x1.t) — 0

(

5

5.

absolute distance if ap(u, p, x<n) — 0 p-a.s.,

5.

(d
Ed
(a)
(3a) average absolute distance if a,(u, p,x1.n) — 0 p-a.s.
Ea

(E3)
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Results about dominance with decreasing coefficients

Ed, | dy | do | E3, | 3y | an
logc, ! = o(n) + [ ?2 =1 4+ |?|-
S e <o + |4+ |- |+ [+]-
| >c>0 | + |+ |+ + [+]+

Theorem

Let i and p be two measures on X*° and suppose that
p(x1..n) > cap(x1.n) for any x1.,, where c, are positive constants satisfying

o0

D

n=1

(loge, *)?

n2

< Q.

Then p predicts . in average KL divergence p-a.s.
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Ed, | d,| d, | E3, | 3, | an
log c, 1 = o(n) T2 =1 F 7=
Yo leet coo | 4 [+ -] + |4+ -
| a>c>0 |+ [+ +] + [ +]+]

Theorem

For each sequence of positive numbers c, that goes to 0 there exist
measures 1 and p and a number € > 0 such that p(x1.n) > cap(x1:n) for
all x1:n, yet an(p, p|x1:n) > € and dn(p, p|x1:n) > € infinitely often u-a.s.
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How to combine predictors?

If a measure p predicts a measure p does p + x also predict p, for an

arbitrary measure x?

In particular, if we have two predictors, can we just sum them to obtain a
predictor that combines predictive powers?

Ed,

dn

dn

Ea,

dn

_I_

?
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Open questions

@ Which classes of measures admit a predicting measure (that predicts
all of them)?

@ Under which conditions on two process measures does one measure
predict the other?

@ How to combine predictors, saving there predictive abilities?
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