On Sequence Prediction for Arbitrary Measures

Daniil Ryabko and Marcus Hutter

ISIT, June 2007

Daniil Ryabko and Marcus Hutter ()

Given a sequence x_1, \ldots, x_n generated by the *environment* predict x_{n+1} , where x_i are from a finite set X. *Environment* here is just a probability measure μ over X^{∞} .

The task can be formulated as forecasting probabilities for x_{n+1} .

In this case the predictor also defines a probability measure over X^{∞} .

Sequence prediction

Laplace: weather forecasting. The Sun has risen every day for 5000 years, what is the probability that it will not rise tomorrow? X is binary: the Sun rises vs. it does not.

Laplace suggested that x_i — the Sun rising on different days — are independent and identically distributed. His predictor:

$$\rho_L(x_{n+1}=0|x_1,\ldots,x_n)=\frac{k+1}{n+2}\approx\frac{1}{1830000}$$

where k is #1 in $x_1 \dots x_n$ (derived as a Bayesian w. uniform prior).

Markov processes and Stationary

The same idea generalizes to Markov and k-order Markov measures. For each k, a predictor ρ_k can be constructed that predicts any k-order Markov process.

A predictor ρ_R (B. Ryabko, 1988) for the class of all *stationary* process is constructed as a sum of predictors for *k*-order Markov measures:

$$\rho_R(x_1,\ldots,x_n)=\sum_{k=0}^{\infty}w_i\rho_k(x_1,\ldots,x_n),$$

Side question: what else does it predict?

Solomonoff: computable probability measures

Another assumption: μ is computable.

The class of all computable measures is countable: $(\nu_i)_{i \in \mathbb{N}}$.

A Bayesian predictor: $\xi(A) = \sum_{i=1}^{n} w_i \nu_i(A)$ for any measurable set A, where the weights w_i are positive and sum to one.

A measure μ is the best predictor for itself; for a countable class of measures we can just sum all the predictors for individual measures.

Dominance by a constant and absolute continuity

For the Bayes mixture ξ over a countable class ν_i , $i \in \mathbf{N}$ we have

 $\xi(A) \geq c\nu_i(A)$

for every ν_i and every (measurable) set A, where c is a constant $c = w_i$. ξ dominates each ν_i with a constant $c = w_i$. In particular, each ν_i is absolutely continuous with respect to ξ .

Absolute continuity is sufficient for prediction (Blackwell and Dubins, 1962).

General open questions

- For which classes of measures is prediction possible? So far we have only some interesting examples.
- Given two probability measures, under which conditions does one of them predict the other? So far we only have absolute continuity which is too strong, and some examples.

New stuff: dominance with decreasing coefficients

For Bayes mixture ξ over (computable) measures ν_i , $i \in \mathbb{N}$ we have $\xi(A) \ge c\nu_i(A)$ for every ν_i and every (measurable) set A.

For Laplace measure ρ_L we have

$$\rho_L(x_1,\ldots,x_n)\geq \frac{1}{n+1}\mu_{\delta}(x_1,\ldots,x_n)$$

for each Bernoulli μ_{δ} .

Is any such property in itself sufficient for prediction?

$$\rho(x_1,\ldots,x_n) \ge c_n \mu(x_1,\ldots,x_n) \tag{1}$$

for any x_1, \ldots, x_n , where $c_n \rightarrow 0$ not too fast.

Divergence characteristics

 $\begin{array}{l} (d) \quad \text{Kullblack-Leibler (KL) divergence} \\ \quad d_t(\mu,\rho,x_{< n}) = \sum_{x \in X} \mu(x_n = x | x_{< n}) \log \frac{\mu(x_n = x | x_{< n})}{\rho(x_n = x | x_{< n})}, \\ (\bar{d}) \quad \text{average KL divergence } \bar{d}_n(\mu,\rho) = \frac{1}{n} \sum_{i=1}^n d_i(\mu,\rho,x_{< i}), \\ (a) \quad \text{absolute distance} \\ \quad a_t(\mu,\rho,x_{< n}) = \sum_{x \in X} |\mu(x_n = x | x_{< n}) - \rho(x_n = x | x_{< n})|, \\ (\bar{a}) \quad \text{average absolute distance } \bar{a}_n(\mu,\rho) = \frac{1}{n} \sum_{i=1}^n a_i(\mu,\rho,x_{< n}). \end{array}$

Thus we say that ρ predicts μ

- (d) in KL divergence if $d_n(\mu, \rho, x_{< n}) \rightarrow 0$ μ -a.s.,
- (\overline{d}) in average KL divergence if $\overline{d}_n(\mu, \rho, x_{1..n}) \rightarrow 0 \mu$ -a.s.
- $(\mathbf{E}\,\overline{d})$ in expected average KL divergence if $\mathbf{E}_{\mu}\,\overline{d}_t(\mu,\rho,x_{1..t})
 ightarrow 0$
 - (a) in absolute distance if $a_n(\mu, \rho, x_{< n}) \rightarrow 0$ μ -a.s.,
 - (a) in average absolute distance if $\bar{a}_n(\mu, \rho, x_{1..n}) \rightarrow 0$ μ -a.s.
- (Eā) in expected average absolute distance if $E_{\mu} \bar{a}_n(\mu, \rho, x_{1..n}) \rightarrow 0$

Results about dominance with decreasing coefficients

	$\mathbf{E}\overline{d}_n$	\bar{d}_n	d _n	E ā _n	ā _n	a _n
$\log c_n^{-1} = o(n)$	+	?	_	+	?	_
$\sum_{n=1}^{\infty} \frac{\log c_n^{-1}}{n^2} < \infty$	+	+	_	+	+	_
$c_n \ge c > 0$	+	+	+	+	+	+

Theorem

Let μ and ρ be two measures on X^{∞} and suppose that $\rho(x_{1..n}) \ge c_n \mu(x_{1..n})$ for any $x_{1..n}$, where c_n are positive constants satisfying

$$\sum_{n=1}^{\infty} \frac{(logc_n^{-1})^2}{n^2} < \infty.$$

Then ρ predicts μ in average KL divergence μ -a.s.

	$\mathbf{E}\overline{d}_n$	\bar{d}_n	d _n	E ā _n	ā _n	a _n
$\log c_n^{-1} = o(n)$	+	?	—	+	?	-
$\sum_{n=1}^{\infty} \frac{\log c_n^{-1}}{n^2} < \infty$	+	+	_	+	+	-
$c_n \ge c > 0$	+	+	+	+	+	+

Theorem

For each sequence of positive numbers c_n that goes to 0 there exist measures μ and ρ and a number $\varepsilon > 0$ such that $\rho(x_{1:n}) \ge c_n \mu(x_{1:n})$ for all $x_{1:n}$, yet $a_n(\mu, \rho | x_{1:n}) > \varepsilon$ and $d_n(\mu, \rho | x_{1:n}) > \varepsilon$ infinitely often μ -a.s.

How to combine predictors?

If a measure ρ predicts a measure μ does $\rho + \chi$ also predict μ , for an arbitrary measure χ ?

In particular, if we have two predictors, can we just sum them to obtain a predictor that combines predictive powers?

$\mathbf{E}\overline{d}_n$	\bar{d}_n	dn	E ā _n	ān	an
+	?	—	—	—	_

Open questions

- Which classes of measures admit a predicting measure (that predicts all of them)?
- Under which conditions on two process measures does one measure predict the other?
- How to combine predictors, saving there predictive abilities?