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Quality of prediction
ρi(·) ≈ µi(·) with high µ-probability:

Dist(ρ, µ) = E
∞∑

i=1

distx1...xi (ρi , µi) =
P

x1x2...
µ(x1x2...)

∞P

i=1
distx1...xi (ρi ,µi )

distx1...xi (ρi , µi) = 1
ln 2 ×

P
a∈X

(ρi(a) − µi(a))2 or 1
2

�P
a∈X

|ρi(a) − µi(a)|
�2

or

P
a∈X

�p
ρi(a) −

p
µi(a)

�2
or

P
a∈X

µi(a) ln µi (a)
ρi (a)

0 ≤ Dist(ρ, µ) ≤ Dρ := E log2
µ(x1x2 . . .)

ρ(x1x2 . . .)

Intuitively: (for a deterministic µ)
Dρ ∼ number of prediction errors
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Solomonoff prior

ρi(·) =
M(x1 . . . xi · )
M(x1 . . . xi)

M(x) =
∑

µ

wµµ(x)

M is a Bayes mixture of all semi-computable semi-measures.

Theorem (Solomonoff 1964, 1978)
For any computable measure µ

Dist(M, µ) ≤ DM
+
≤ K (µ)

K (µ) is Kolmogorov complexity of µ
∼ quantity of information in µ
∼ the size of the shortest description of µ
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Prediction with a priori information
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distx1...xi (ρi , µi)
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The problem

x = x1 . . . xn Dist(M, µ|x) ≤ DM(x) := Ey log2
µ(y1y2...|x)
M(y1y2...|x)

For any computable measure µ, for any word x

µ(y |x)

M(y |x)
≤ ?

We know

log2
µ(y)

M(y)

+
≤ K (µ)

We want

log2
µ(y |x)

M(y |x)

+
≤ K (µ|x)

If x contains a lot of information about µ (K (µ|x) is small),
prediction is easy.
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Prefix Kolmogorov complexity

Definition
x , y ∈ X ∗, U is a universal prefix machine, p ∈ {0, 1}∗

K (y |x) = min{`(p)|U(p∗, x) = y}

Prefix machine
U gets finite x and infinite sequence α,
reads a finite part p of α, and halts with output y

Universal machine
for any other machine V : there is constant C

V (q, x) = y ⇒ `(q) ≤ `(p) + C, where U(p, x) = y
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K (µ|x) bound

Theorem
For any computable measure µ and any x , y ∈ X ∗

log2
µ(y |x)

M(y |x)

+
≤ K (µ|x) + K (`(x))

Corollary

1. Dist(M, µ|x1 . . . xn)
+
≤ K (µ|x1 . . . xn) + K (n)

2. Dist(M, µ)
+
≤ min

n
{E`(x)=nK (µ|x) + K (n) + 2

ln 2n}
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Example

Dist(M, µ)
+
≤ min

n
{E`(x)=nK (µ|x) + K (n) + 2

ln 2n}

x1

?

x2 x3 x4 x5

“number of errors” ∼ Dist(M, µ)

Solomonoff bound:
Dist(M, µ) . K (µ) ∼ “size of the image” ≈ 105

New bound:
Dist(M, µ) . K (µ|x1) + K (1) + 2

ln 2 ∼ “small constant”
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Structure of the bounds

If x is not µ-typical (µ(x) ≈ 0), then x is disinformation

prediction errors ⇐ information +
quantity of

disinformation

Dist(M, µ)
+
≤ K (µ)

Dist(M, µ|x)
+
≤ K (µ|x) + K (`(x))

Dist(M, µ|x)
+
≤ K (µ) + K (dµ(x))

Dist(M, µ|x)
+
≤ K∗(µ|x∗) + K (dµ(x))

Randomness deficiency: dµ(x) = log2
M(x)
µ(x)

dµ is a measure of non-typicalness, dµ(x) is small for most x
dµ(x) = `(x)− K (x) for uniform µ



Sequence Prediction and Solomonoff Prior Future Errors and A Priori Information Disinformation and New Complexity

Structure of the bounds

If x is not µ-typical (µ(x) ≈ 0), then x is disinformation

prediction errors ⇐ information +
quantity of

disinformation

Dist(M, µ)
+
≤ K (µ)

Dist(M, µ|x)
+
≤ K (µ|x) + K (`(x))

Dist(M, µ|x)
+
≤ K (µ) + K (dµ(x))

Dist(M, µ|x)
+
≤ K∗(µ|x∗) + K (dµ(x))

Randomness deficiency: dµ(x) = log2
M(x)
µ(x)

dµ is a measure of non-typicalness, dµ(x) is small for most x
dµ(x) = `(x)− K (x) for uniform µ



Sequence Prediction and Solomonoff Prior Future Errors and A Priori Information Disinformation and New Complexity

Structure of the bounds

If x is not µ-typical (µ(x) ≈ 0), then x is disinformation

prediction errors ⇐ information +
quantity of

disinformation

Dist(M, µ)
+
≤ K (µ)

Dist(M, µ|x)
+
≤ K (µ|x) + K (`(x))

Dist(M, µ|x)
+
≤ K (µ) + K (dµ(x))

Dist(M, µ|x)
+
≤ K∗(µ|x∗) + K (dµ(x))

Randomness deficiency: dµ(x) = log2
M(x)
µ(x)

dµ is a measure of non-typicalness, dµ(x) is small for most x
dµ(x) = `(x)− K (x) for uniform µ



Sequence Prediction and Solomonoff Prior Future Errors and A Priori Information Disinformation and New Complexity

Structure of the bounds

If x is not µ-typical (µ(x) ≈ 0), then x is disinformation

prediction errors ⇐ information +
quantity of

disinformation

Dist(M, µ)
+
≤ K (µ)

Dist(M, µ|x)
+
≤ K (µ|x) + K (`(x))

Dist(M, µ|x)
+
≤ K (µ) + K (dµ(x))

Dist(M, µ|x)
+
≤ K∗(µ|x∗) + K (dµ(x))

Randomness deficiency: dµ(x) = log2
M(x)
µ(x)

dµ is a measure of non-typicalness, dµ(x) is small for most x
dµ(x) = `(x)− K (x) for uniform µ



Sequence Prediction and Solomonoff Prior Future Errors and A Priori Information Disinformation and New Complexity

Structure of the bounds

If x is not µ-typical (µ(x) ≈ 0), then x is disinformation

prediction errors ⇐ information +
quantity of

disinformation

Dist(M, µ)
+
≤ K (µ)

Dist(M, µ|x)
+
≤ K (µ|x) + K (`(x))

Dist(M, µ|x)
+
≤ K (µ) + K (dµ(x))

Dist(M, µ|x)
+
≤ K∗(µ|x∗) + K (dµ(x))

Randomness deficiency: dµ(x) = log2
M(x)
µ(x)

dµ is a measure of non-typicalness, dµ(x) is small for most x
dµ(x) = `(x)− K (x) for uniform µ



Sequence Prediction and Solomonoff Prior Future Errors and A Priori Information Disinformation and New Complexity

Structure of the bounds

If x is not µ-typical (µ(x) ≈ 0), then x is disinformation

prediction errors ⇐ information +
quantity of

disinformation

Dist(M, µ)
+
≤ K (µ)

Dist(M, µ|x)
+
≤ K (µ|x) + K (`(x))

Dist(M, µ|x)
+
≤ K (µ) + K (dµ(x))

Dist(M, µ|x)
+
≤ K∗(µ|x∗) + K (dµ(x))

Randomness deficiency: dµ(x) = log2
M(x)
µ(x)

dµ is a measure of non-typicalness, dµ(x) is small for most x
dµ(x) = `(x)− K (x) for uniform µ



Sequence Prediction and Solomonoff Prior Future Errors and A Priori Information Disinformation and New Complexity

Structure of the bounds

If x is not µ-typical (µ(x) ≈ 0), then x is disinformation

prediction errors ⇐ information +
quantity of

disinformation

Dist(M, µ)
+
≤ K (µ)

Dist(M, µ|x)
+
≤ K (µ|x) + K (`(x))

Dist(M, µ|x)
+
≤ K (µ) + K (dµ(x))

Dist(M, µ|x)
+
≤ K∗(µ|x∗) + K (dµ(x))

Randomness deficiency: dµ(x) = log2
M(x)
µ(x)

dµ is a measure of non-typicalness, dµ(x) is small for most x
dµ(x) = `(x)− K (x) for uniform µ



Sequence Prediction and Solomonoff Prior Future Errors and A Priori Information Disinformation and New Complexity

New conditional complexity

Definition (Prefix complexity monotone in conditions)
x , y ∈ X ∗, U is a universal twice-prefix machine, p ∈ {0, 1}∗

K∗(y |x∗) = min{`(p)|U(p∗, x∗) = y}

Recall: conditional prefix complexity
x , y ∈ X ∗, U is a universal prefix machine, p ∈ {0, 1}∗

K (y |x) = min{`(p)|U(p∗, x) = y}
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K∗(µ|x∗) bound

Theorem
For any computable measure µ and any x , y ∈ X ∗

log2
µ(y |x)

M(y |x)

+
≤ K∗(µ|x∗) + K (ddµ(x)e)

Corollary
Dist(M, µ|x1 . . . xn)

+
≤

min
i≤n

{K (µ|x1 . . . xi) + K (i) + K (dµ(x1 . . . xi))}

For µ-typical x , Dist(M, µ|x) ≤ K (µ|x ′) + O(log `(x ′))
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Conclusion and Open Problems

We extended the Solomonoff results on online sequence predic-
tion to the case when some initial part of the sequence is given.

• Informative initial segment reduces the future loss; this
gives us improved total loss bounds if the alphabet is large

• The future loss ⇐ information + quantity of disinformation

Directions for further research:
• Future loss bounds for general Bayes mixtures
• Online classification instead of sequence prediction
• Technical properties of the new complexity
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