Monotone Conditional Complexity Bounds on Future Prediction Errors

Alexey Chernov Marcus Hutter

Istituto Dalle Molle di Studio sull'Intelligenza Artificiale Lugano, Switzerland

Algorithmic Learning Theory 2005 Singapore

Supported by SNF grants 200020-107590/1 (to Jürgen Schmidhuber), 2100-67712 and 200020-107616

Disinformation and New Complexity

Sequence Prediction and Solomonoff Prior

Future Errors and A Priori Information

Disinformation and New Complexity

Disinformation and New Complexity

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

finite alphabet $\mathcal{X} \ni x_1, x_2, \ldots$

 μ is a measure

$$\mu_{i+1}(\cdot) = \mu(\cdot|\mathbf{x}_1 \dots \mathbf{x}_i) = \frac{\mu(\mathbf{x}_1 \dots \mathbf{x}_i \cdot)}{\mu(\mathbf{x}_1 \dots \mathbf{x}_i)}$$

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

finite alphabet $\mathcal{X} \ni x_1, x_2, \ldots$

 μ is a measure

$$\mu_{i+1}(\cdot) = \mu(\cdot|\mathbf{x}_1 \dots \mathbf{x}_i) = \frac{\mu(\mathbf{x}_1 \dots \mathbf{x}_i \cdot)}{\mu(\mathbf{x}_1 \dots \mathbf{x}_i)}$$

Disinformation and New Complexity

Sequence

finite alphabet $\mathcal{X} \ni x_1, x_2, \ldots$

 μ is a measure

$$\mu_{i+1}(\cdot) = \mu(\cdot|\mathbf{x}_1 \dots \mathbf{x}_i) = \frac{\mu(\mathbf{x}_1 \dots \mathbf{x}_i \cdot)}{\mu(\mathbf{x}_1 \dots \mathbf{x}_i)}$$

finite alphabet $\mathcal{X} \ni x_1, x_2, \ldots$

 μ is a measure

$$\mu_{i+1}(\cdot) = \mu(\cdot|\mathbf{x}_1 \dots \mathbf{x}_i) = \frac{\mu(\mathbf{x}_1 \dots \mathbf{x}_i \cdot)}{\mu(\mathbf{x}_1 \dots \mathbf{x}_i)}$$

Sequence

finite alphabet $\mathcal{X} \ni x_1, x_2, \ldots$

 μ is a measure

$$\mu_{i+1}(\cdot) = \mu(\cdot|x_1\ldots x_i) = \frac{\mu(x_1\ldots x_i \cdot)}{\mu(x_1\ldots x_i)}$$

Sequence

finite alphabet $\mathcal{X} \ni x_1, x_2, \ldots$

 μ is a measure

$$\mu_{i+1}(\cdot) = \mu(\cdot|x_1\ldots x_i) = \frac{\mu(x_1\ldots x_i \cdot)}{\mu(x_1\ldots x_i)}$$

Disinformation and New Complexity

Sequence

finite alphabet $\mathcal{X} \ni x_1, x_2, \ldots$

 μ is a measure

$$\mu_{i+1}(\cdot) = \mu(\cdot|\mathbf{x}_1 \dots \mathbf{x}_i) = \frac{\mu(\mathbf{x}_1 \dots \mathbf{x}_i \cdot)}{\mu(\mathbf{x}_1 \dots \mathbf{x}_i)}$$

Disinformation and New Complexity

Sequence

finite alphabet $\mathcal{X} \ni x_1, x_2, \ldots$

 μ is a measure

$$\mu_{i+1}(\cdot) = \mu(\cdot|x_1\ldots x_i) = \frac{\mu(x_1\ldots x_i \cdot)}{\mu(x_1\ldots x_i)}$$

Predictor ρ : $x_1, \ldots, x_i \mapsto \rho_{i+1}(\cdot) \approx \mu_{i+1}(\cdot)$

Predictor ρ :

Predictor ρ :

Predictor ρ :

$$\mathbf{x}_1,\ldots,\mathbf{x}_i \quad \mapsto \quad \rho_{i+1}(\cdot) \approx \mu_{i+1}(\cdot)$$

Predictor ρ :

$$\mathbf{x}_1,\ldots,\mathbf{x}_i \quad \mapsto \quad \rho_{i+1}(\cdot) \approx \mu_{i+1}(\cdot)$$

$ ho_1$	ρ_2	$ ho_3$	$ ho_4$	$ ho_5$	ρ
<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₄		
G	А	Т	Т	?	μ
				μ_5	

Predictor ρ : $x_1, \ldots, x_i \mapsto \rho_{i+1}(\cdot) \approx \mu_{i+1}(\cdot)$

1							
	$ ho_1$	ρ_2	$ ho_{3}$	$ ho_4$	$ ho_5$	$ ho_6$	ho
ļ							
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>X</i> 5		
	G	А	т	Т	А	?	μ
						μ_{6}	

Predictor ρ : $x_1, \ldots, x_i \mapsto \rho_{i+1}(\cdot) \approx \mu_{i+1}(\cdot)$

ρ_1	ρ ₂	$ ho_3$	$ ho_4$	$ ho_5$	$ ho_6$	ρ_7	ρ
		•					
<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₄	<i>X</i> 5	<i>x</i> ₆		
G	A	Т	Т	А	С	?	μ
		•				μ_7	

Predictor
$$\rho$$
: $x_1, \ldots, x_i \mapsto \rho_{i+1}(\cdot) \approx \mu_{i+1}(\cdot)$

$ ho_1$	ρ_2	$ ho_3$	$ ho_4$	$ ho_5$	$ ho_6$	$ ho_7$	$ ho_8$	ρ
<i>x</i> ₁	Xo	Xa	X.	X-	X _o	V-		
		~3	~4	~5	~6	~/		
G	A	T	T	A	C	A	?	μ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Quality of prediction

 $\rho_i(\cdot) \approx \mu_i(\cdot)$ with high μ -probability:

$$\text{Dist}(\rho,\mu) = \mathbf{E} \sum_{i=1}^{\infty} \text{dist}_{x_1...x_i}(\rho_i,\mu_i) = \sum_{x_1x_2...} \mu(x_1x_2...) \sum_{i=1}^{\infty} \text{dist}_{x_1...x_i}(\rho_i,\mu_i)$$

$$\begin{aligned} \operatorname{dist}_{X_1...X_i}(\rho_i,\mu_i) &= \quad \frac{1}{\ln 2} \times \\ \sum_{a \in \mathcal{X}} (\rho_i(a) - \mu_i(a))^2 & \text{or} \quad \frac{1}{2} \left(\sum_{a \in \mathcal{X}} |\rho_i(a) - \mu_i(a)| \right)^2 & \text{or} \\ \sum_{a \in \mathcal{X}} \left(\sqrt{\rho_i(a)} - \sqrt{\mu_i(a)} \right)^2 & \text{or} \quad \sum_{a \in \mathcal{X}} \mu_i(a) \ln \frac{\mu_i(a)}{\rho_i(a)} \end{aligned}$$

$$\mathsf{0} \leq \mathrm{Dist}(
ho,\mu) \leq \mathcal{D}_{
ho} := \mathsf{E} \log_2 rac{\mu(x_1x_2\ldots)}{
ho(x_1x_2\ldots)}$$

Intuitively: (for a deterministic μ) $D_{\rho} \sim$ number of prediction errors

・ロット 御マ キョマ キョン

Solomonoff prior

$$\rho_i(\cdot) = \frac{M(x_1 \dots x_i \cdot)}{M(x_1 \dots x_i)} \qquad \qquad M(x_1 \dots x_i)$$

$$M(x) = \sum_{\mu} w_{\mu} \mu(x)$$

・ロット (雪) (日) (日)

M is a Bayes mixture of all semi-computable semi-measures.

Theorem (Solomonoff 1964, 1978) For any computable measure μ

$$\operatorname{Dist}(M,\mu) \leq D_M \stackrel{+}{\leq} K(\mu)$$

${\cal K}(\mu)$ is Kolmogorov complexity of μ \sim quantity of information in μ \sim the size of the shortest description of μ

Disinformation and New Complexity

Sequence Prediction and Solomonoff Prior

Future Errors and A Priori Information

Disinformation and New Complexity

 x_1, \ldots, x_n are fixed

$$\operatorname{Dist}(\rho,\mu|x_1\ldots x_n) = \mathop{\mathsf{E}}_{x_{n+1}x_{n+2}\ldots}\sum_{i=n+1}^{\infty}\operatorname{dist}_{x_1\ldots x_i}(\rho_i,\mu_i)$$

 x_1, \ldots, x_n are fixed

$$\operatorname{Dist}(\rho,\mu|\mathbf{x}_{1}\ldots\mathbf{x}_{n}) = \mathop{\mathbf{E}}_{\mathbf{x}_{n+1}\mathbf{x}_{n+2}\ldots}\sum_{i=n+1}^{\infty}\operatorname{dist}_{\mathbf{x}_{1}\ldots\mathbf{x}_{i}}(\rho_{i},\mu_{i})$$

 x_1, \ldots, x_n are fixed

$$\operatorname{Dist}(\rho,\mu|x_1\ldots x_n) = \mathop{\mathbf{E}}_{x_{n+1}x_{n+2}\ldots}\sum_{i=n+1}^{\infty}\operatorname{dist}_{x_1\ldots x_i}(\rho_i,\mu_i)$$

 x_1, \ldots, x_n are fixed

$$\operatorname{Dist}(\rho,\mu|x_1\ldots x_n) = \mathop{\mathbf{E}}_{x_{n+1}x_{n+2}\ldots}\sum_{i=n+1}^{\infty}\operatorname{dist}_{x_1\ldots x_i}(\rho_i,\mu_i)$$

The problem

$$x = x_1 \dots x_n$$
 Dist $(M, \mu | x) \le D_M(x) := \mathbf{E}_y \log_2 \frac{\mu(y_1 y_2 \dots | x)}{M(y_1 y_2 \dots | x)}$

For any computable measure μ , for any word *x*

$$rac{\mu(y|x)}{M(y|x)} \leq ?$$

We know

$$\log_2 \frac{\mu(y)}{M(y)} \stackrel{+}{\leq} K(\mu)$$

・ロット (雪) (日) (日)

If x contains a lot of information about μ ($K(\mu|x)$ is small), prediction is easy.

The problem

$$x = x_1 \dots x_n \qquad \text{Dist}(M, \mu | x) \le D_M(x) := \mathbf{E}_y \log_2 \frac{\mu(y_1 y_2 \dots | x)}{M(y_1 y_2 \dots | x)}$$

For any computable measure μ , for any word x

$$rac{\mu(y|x)}{M(y|x)} \leq ?$$

We know

We want

$$\log_2 \frac{\mu(y)}{M(y)} \stackrel{+}{\leq} K(\mu) \qquad \qquad \log_2 \frac{\mu(y|x)}{M(y|x)} \stackrel{+}{\leq} K(\mu|x)$$

If x contains a lot of information about μ ($K(\mu|x)$ is small), prediction is easy.

(日)

Prefix Kolmogorov complexity

Definition $x, y \in \mathcal{X}^*$, U is a universal prefix machine, $p \in \{0, 1\}^*$

 $\mathcal{K}(y|x) = \min\{\ell(p)|U(p*,x) = y\}$

Prefix machine

U gets finite x and infinite sequence α , reads a finite part ρ of α , and halts with output y

Universal machine

for any other machine V: there is constant C

 $V(q,x) = y \quad \Rightarrow \quad \ell(q) \le \ell(p) + C, \qquad \text{where } U(p,x) = y$

Prefix Kolmogorov complexity

Definition $x, y \in \mathcal{X}^*$, *U* is a universal prefix machine, $p \in \{0, 1\}^*$

$$K(y|x) = \min\{\ell(p)|U(p*,x) = y\}$$

Prefix machine U gets finite *x* and infinite sequence α , reads a finite part *p* of α , and halts with output *y*

Universal machine

for any other machine V: there is constant C

 $V(q, x) = y \quad \Rightarrow \quad \ell(q) \le \ell(p) + C, \qquad \text{where } U(p, x) = y$

Prefix Kolmogorov complexity

Definition $x, y \in \mathcal{X}^*$, *U* is a universal prefix machine, $p \in \{0, 1\}^*$

$$K(y|x) = \min\{\ell(p)|U(p*,x) = y\}$$

Prefix machine

U gets finite x and infinite sequence α , reads a finite part p of α , and halts with output y

Universal machine

for any other machine V: there is constant C

$$V(q,x) = y \quad \Rightarrow \quad \ell(q) \leq \ell(p) + C, \qquad ext{where } U(p,x) = y$$

Future Errors and A Priori Information

Disinformation and New Complexity

 $K(\mu|x)$ bound

Theorem For any computable measure μ and any $x, y \in \mathcal{X}^*$

$$\log_2 \frac{\mu(y|x)}{M(y|x)} \stackrel{+}{\leq} K(\mu|x) + K(\ell(x))$$

Corollary

1.
$$\operatorname{Dist}(M, \mu | x_1 \dots x_n) \stackrel{+}{\leq} K(\mu | x_1 \dots x_n) + K(n)$$

2. $\operatorname{Dist}(M, \mu) \stackrel{+}{\leq} \min\{\mathbf{E}_{\ell(x)=n}K(\mu | x) + K(n) + \frac{2}{\ln 2}R(n)\}$

(日)

 $K(\mu|x)$ bound

Theorem For any computable measure μ and any $x, y \in \mathcal{X}^*$

$$\log_2 \frac{\mu(y|x)}{M(y|x)} \stackrel{+}{\leq} K(\mu|x) + K(\ell(x))$$

Corollary

1.
$$\operatorname{Dist}(M, \mu | x_1 \dots x_n) \stackrel{+}{\leq} K(\mu | x_1 \dots x_n) + K(n)$$

2. $\operatorname{Dist}(M, \mu) \stackrel{+}{\leq} \min_{n} \{ \mathbf{E}_{\ell(x)=n} K(\mu | x) + K(n) + \frac{2}{\ln 2} n \}$

$$\operatorname{Dist}(\boldsymbol{M},\boldsymbol{\mu}) \stackrel{+}{\leq} \min_{\boldsymbol{n}} \{ \mathbf{E}_{\ell(\boldsymbol{x})=\boldsymbol{n}} \boldsymbol{K}(\boldsymbol{\mu}|\boldsymbol{x}) + \boldsymbol{K}(\boldsymbol{n}) + \frac{2}{\ln 2} \boldsymbol{n} \}$$

"number of errors" $\sim \text{Dist}(M, \mu)$

Solomonoff bound:

 $\mathrm{Dist}(M,\mu) \lesssim K(\mu) \sim$ "size of the image" $\approx 10^5$

New bound:

 $\operatorname{Dist}(M,\mu) \lesssim K(\mu|x_1) + K(1) + \frac{2}{\ln 2} \sim \text{"small constant"}$

$$\operatorname{Dist}(\boldsymbol{M},\boldsymbol{\mu}) \stackrel{+}{\leq} \min_{\boldsymbol{n}} \{ \mathbf{E}_{\ell(\boldsymbol{x})=\boldsymbol{n}} \boldsymbol{K}(\boldsymbol{\mu}|\boldsymbol{x}) + \boldsymbol{K}(\boldsymbol{n}) + \frac{2}{\ln 2} \boldsymbol{n} \}$$

 X_2

"number of errors" $\sim {
m Dist}(M,\mu)$

olomonoff bound: ${
m Dist}(M,\mu) \lesssim K(\mu) \sim$ "size of the image" pprox 10⁵

New bound:

 $\operatorname{Dist}(M,\mu) \lesssim K(\mu|x_1) + K(1) + \frac{2}{\ln 2} \sim \text{``small constant''}$

$$\operatorname{Dist}(M,\mu) \stackrel{+}{\leq} \min_{n} \{ \mathbf{E}_{\ell(x)=n} \mathcal{K}(\mu|x) + \mathcal{K}(n) + \frac{2}{\ln 2} n \}$$

*X*3

"number of errors" $\sim \text{Dist}(M, \mu)$

 X_2

folomonoff bound: ${
m Dist}(M,\mu) \lesssim K(\mu) \sim$ "size of the image" pprox 10 5

New bound:

 $\operatorname{Dist}(M,\mu) \lesssim K(\mu|x_1) + K(1) + \frac{2}{\ln 2} \sim \text{``small constant''}$

$$\operatorname{Dist}(\boldsymbol{M},\boldsymbol{\mu}) \stackrel{+}{\leq} \min_{\boldsymbol{n}} \{ \mathbf{E}_{\ell(\boldsymbol{x})=\boldsymbol{n}} \boldsymbol{K}(\boldsymbol{\mu}|\boldsymbol{x}) + \boldsymbol{K}(\boldsymbol{n}) + \frac{2}{\ln 2} \boldsymbol{n} \}$$

*X*4

"number of errors" $\sim \text{Dist}(M, \mu)$

 X_2

olomonoff bound: Dist $(M, \mu) \lesssim K(\mu) \sim$ "size of the image" $\approx 10^5$

New bound:

 $\operatorname{Dist}(M,\mu) \lesssim K(\mu|x_1) + K(1) + \frac{2}{\ln 2} \sim \text{``small constant''}$

$$\operatorname{Dist}(\boldsymbol{M},\mu) \stackrel{+}{\leq} \min_{\boldsymbol{n}} \{ \mathbf{E}_{\ell(\boldsymbol{x})=\boldsymbol{n}} \mathcal{K}(\mu|\boldsymbol{x}) + \mathcal{K}(\boldsymbol{n}) + \frac{2}{\ln 2} \boldsymbol{n} \}$$

"number of errors" $\sim \text{Dist}(M, \mu)$

Solomonoff bound: ${\rm Dist}(M,\mu) \lesssim {\cal K}(\mu) \sim$ "size of the image" $\approx 10^5$

New bound: Dist $(M, \mu) \lesssim K(\mu | x_1) + K(1) + \frac{2}{\ln 2} \sim$ "small constant"

$$\operatorname{Dist}(\boldsymbol{M},\mu) \stackrel{+}{\leq} \min_{\boldsymbol{n}} \{ \mathbf{E}_{\ell(\boldsymbol{x})=\boldsymbol{n}} \mathcal{K}(\mu|\boldsymbol{x}) + \mathcal{K}(\boldsymbol{n}) + \frac{2}{\ln 2} \boldsymbol{n} \}$$

"number of errors" $\sim \text{Dist}(M, \mu)$

Solomonoff bound:

 $\mathrm{Dist}(M,\mu) \lesssim \mathcal{K}(\mu) \sim$ "size of the image" pprox 10⁵

New bound:

 $\operatorname{Dist}(M,\mu) \lesssim \mathcal{K}(\mu|x_1) + \mathcal{K}(1) + rac{2}{\ln 2} \sim \text{``small constant''}$

Disinformation and New Complexity

Sequence Prediction and Solomonoff Prior

Future Errors and A Priori Information

Disinformation and New Complexity

If x is not μ -typical ($\mu(x) \approx 0$), then x is disinformation

prediction errors	information	+	disinformation
$\operatorname{Dist}(M,\mu)$	$K(\mu)$		
$Dist(M, \mu x)$	$K(\mu x)$	+	$K(\ell(x))$
$Dist(M, \mu x)$	$K(\mu)$	+	$K(d_{\mu}(x))$
$Dist(M, \mu x)$	$\textit{K}_{*}(\mu \textit{x}*)$	+	$K(d_{\mu}(x))$

Randomness deficiency: $d_{\mu}(x) = \log_2 \frac{M(x)}{\mu(x)}$

 d_{μ} is a measure of non-typicalness, $d_{\mu}(x)$ is small for most x $d_{\mu}(x) = \ell(x) - K(x)$ for uniform μ

If x is not μ -typical ($\mu(x) \approx 0$), then x is disinformation

prediction errors	¢	information	+	quantity of disinformation
$Dist(M, \mu)$		$K(\mu)$		
$\operatorname{Dist}(M,\mu x)$		$K(\mu x)$	+	$K(\ell(x))$
$\operatorname{Dist}(M,\mu x)$		$K(\mu)$	+	$K(d_{\mu}(x))$
$Dist(M, \mu x)$		$K_*(\mu x*)$	+	$K(d_{\mu}(x))$

Randomness deficiency: $d_{\mu}(x) = \log_2 \frac{M(x)}{\mu(x)}$

 d_{μ} is a measure of non-typicalness, $d_{\mu}(x)$ is small for most x $d_{\mu}(x) = \ell(x) - K(x)$ for uniform μ

If x is not μ -typical ($\mu(x) \approx 0$), then x is disinformation

prediction errors	\Leftarrow	information	+	quantity of disinformation	
$Dist(M, \mu)$	$\stackrel{+}{\leq}$	$K(\mu)$			
$\operatorname{Dist}(M,\mu x)$		$K(\mu x)$	+	$K(\ell(x))$	
$\operatorname{Dist}(M,\mu x)$		$K(\mu)$	+	$K(d_{\mu}(x))$	
$Dist(M, \mu x)$		$\textit{K}_{*}(\mu \textit{x}*)$	+	$K(d_{\mu}(x))$	

Randomness deficiency: $d_{\mu}(x) = \log_2 \frac{M(x)}{\mu(x)}$

 d_{μ} is a measure of non-typicalness, $d_{\mu}(x)$ is small for most x $d_{\mu}(x) = \ell(x) - K(x)$ for uniform μ

If x is not μ -typical ($\mu(x) \approx 0$), then x is disinformation

prediction errors	\Leftarrow	information	+	quantity of disinformation
$Dist(M, \mu)$	$\stackrel{+}{\leq}$	$K(\mu)$		
$Dist(M, \mu x)$	$\stackrel{+}{\leq}$	$K(\mu x)$	+	$K(\ell(x))$
$\operatorname{Dist}(M,\mu x)$		$K(\mu)$	+	$K(d_{\mu}(x))$
$Dist(M, \mu x)$		$\textit{K}_{*}(\mu \textit{x}*)$	+	$K(d_{\mu}(x))$

Randomness deficiency: $d_{\mu}(x) = \log_2 \frac{M(x)}{\mu(x)}$

 d_{μ} is a measure of non-typicalness, $d_{\mu}(x)$ is small for most x $d_{\mu}(x) = \ell(x) - K(x)$ for uniform μ

If x is not μ -typical ($\mu(x) \approx 0$), then x is disinformation

prediction errors	\Leftarrow	information	+	quantity of disinformation
$Dist(M, \mu)$	$\stackrel{+}{\leq}$	$K(\mu)$		
$Dist(M, \mu x)$	$\stackrel{+}{\leq}$	$K(\mu x)$	+	$K(\ell(x))$
$Dist(M, \mu x)$	$\stackrel{+}{\leq}$	$K(\mu)$	+	$K(d_{\mu}(x))$
$Dist(M, \mu x)$	\leq^+	$\textit{K}_{*}(\mu \textit{x}*)$	+	$K(d_{\mu}(x))$

Randomness deficiency: $d_{\mu}(x) = \log_2 \frac{M(x)}{\mu(x)}$

 d_{μ} is a measure of non-typicalness, $d_{\mu}(x)$ is small for most x $d_{\mu}(x) = \ell(x) - K(x)$ for uniform μ

If x is not μ -typical ($\mu(x) \approx 0$), then x is disinformation

prediction errors	\Leftarrow	information	+	quantity of disinformation
$Dist(M, \mu)$	$\stackrel{+}{\leq}$	$K(\mu)$		
$Dist(M, \mu x)$	$\stackrel{+}{\leq}$	$K(\mu x)$	+	<i>K</i> (ℓ(x))
$Dist(M, \mu x)$	\leq	$K(\mu)$	+	$K(d_{\mu}(x))$
$Dist(M, \mu x)$	$\stackrel{+}{\leq}$	$\textit{K}_{*}(\mu \textit{x}*)$	+	$K(d_{\mu}(x))$

Randomness deficiency: $d_{\mu}(x) = \log_2 \frac{M(x)}{\mu(x)}$

 d_{μ} is a measure of non-typicalness, $d_{\mu}(x)$ is small for most x $d_{\mu}(x) = \ell(x) - K(x)$ for uniform μ

If x is not μ -typical ($\mu(x) \approx 0$), then x is disinformation

prediction errors	\Leftarrow	information	+	quantity of disinformation
$Dist(M, \mu)$	$\stackrel{+}{\leq}$	$K(\mu)$		
$Dist(M, \mu x)$	\leq	$K(\mu x)$	+	<i>K</i> (ℓ(x))
$Dist(M, \mu x)$	\leq	$K(\mu)$	+	$K(d_{\mu}(x))$
$Dist(M, \mu x)$	\leq^+	$\textit{K}_{*}(\mu \textit{x}*)$	+	$K(d_{\mu}(x))$

Randomness deficiency: $d_{\mu}(x) = \log_2 \frac{M(x)}{\mu(x)}$

 d_{μ} is a measure of non-typicalness, $d_{\mu}(x)$ is small for most x $d_{\mu}(x) = \ell(x) - K(x)$ for uniform μ

New conditional complexity

Definition (Prefix complexity monotone in conditions) $x, y \in \mathcal{X}^*$, *U* is a universal twice-prefix machine, $p \in \{0, 1\}^*$

$$K_*(y|x*) = \min\{\ell(p)|U(p*,x*) = y\}$$

Recall: conditional prefix complexity $x, y \in \mathcal{X}^*, U$ is a universal prefix machine, $p \in \{0, 1\}^*$

$$K(y|x) = \min\{\ell(p)|U(p*,x) = y\}$$

New conditional complexity

Definition (Prefix complexity monotone in conditions) $x, y \in \mathcal{X}^*$, *U* is a universal twice-prefix machine, $p \in \{0, 1\}^*$

$$K_*(y|x*) = \min\{\ell(p)|U(p*,x*) = y\}$$

 $K_*(y|xz*) \leq K_*(y|x*)$

$K_*(\mu|x*)$ bound

Theorem For any computable measure μ and any $x, y \in \mathcal{X}^*$

$$\log_2 \frac{\mu(y|x)}{M(y|x)} \stackrel{+}{\leq} K_*(\mu|x*) + K(\lceil d_{\mu}(x) \rceil)$$

Corollary Dist $(M, \mu | x_1 \dots x_n) \stackrel{+}{\leq} \min_{i \leq n} \{ K(\mu | x_1 \dots x_i) + K(i) + K(d_{\mu}(x_1 \dots x_i)) \}$

For μ -typical x, Dist $(M, \mu | x) \le K(\mu | x') + O(\log \ell(x'))$

$K_*(\mu|x*)$ bound

Theorem For any computable measure μ and any $x, y \in \mathcal{X}^*$

$$\log_2 \frac{\mu(y|x)}{M(y|x)} \stackrel{+}{\leq} K_*(\mu|x*) + K(\lceil d_{\mu}(x)\rceil)$$

Corollary

$$\operatorname{Dist}(M, \mu | x_1 \dots x_n) \stackrel{+}{\leq} \\ \min_{i \leq n} \{ K(\mu | x_1 \dots x_i) + K(i) + K(d_{\mu}(x_1 \dots x_i)) \}$$

For μ -typical x, Dist $(M, \mu | x) \le K(\mu | x') + O(\log \ell(x'))$

Conclusion and Open Problems

We extended the Solomonoff results on online sequence prediction to the case when some initial part of the sequence is given.

- Informative initial segment reduces the future loss; this gives us improved total loss bounds if the alphabet is large
- The future loss \Leftarrow information + quantity of disinformation

Directions for further research:

- Future loss bounds for general Bayes mixtures
- Online classification instead of sequence prediction
- Technical properties of the new complexity

Conclusion and Open Problems

We extended the Solomonoff results on online sequence prediction to the case when some initial part of the sequence is given.

- Informative initial segment reduces the future loss; this gives us improved total loss bounds if the alphabet is large
- The future loss ⇐ information + quantity of disinformation

Directions for further research:

- Future loss bounds for general Bayes mixtures
- Online classification instead of sequence prediction
- Technical properties of the new complexity

