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Abstract

While statistics focusses on hypothesis testing and on estimating

(properties of) the true sampling distribution, in machine learning the

performance of learning algorithms on future data is the primary issue.

In this paper we bridge the gap with a general principle (PHI) that

identifies hypotheses with best predictive performance. This includes

predictive point and interval estimation, simple and composite

hypothesis testing, (mixture) model selection, and others as special

cases. For concrete instantiations we will recover well-known methods,

variations thereof, and new ones. In particular we will discover moment

estimation and a reparametrization invariant variation of MAP

estimation, which beautifully reconciles MAP with ML. One particular

feature of PHI is that it can genuinely deal with nested hypotheses.
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The Problem - Information Summarization

• Given: Data D ≡ (x1, ..., xn) ∈ Xn (any X )

sampled from distribution p(D|θ) with unknown θ ∈ Ω.

• Likelihood function p(D|θ) or posterior p(θ|D) ∝ p(D|θ)p(θ)
contain all statistical information about the sample D.

• Information summary or simplification of p(D|θ) is needed:

(comprehensibility, communication, storage,

computational efficiency, mathematical tractability, etc.).

• Regimes: - parameter estimation,

- hypothesis testing,

- model (complexity) selection.
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Ways to Summarize the Posterior by

• a single point Θ = {θ} (ML or MAP or mean or stochastic or ...),

• a convex set Θ ⊆ Ω (e.g. confidence or credible interval),

• a finite set of points Θ = {θ1, ..., θl} (mixture models)

• a sample of points (particle filtering),

• the mean and covariance matrix (Gaussian approximation),

• more general density estimation,

• in a few other ways.

I concentrate on set estimation, which includes (multiple) point

estimation and hypothesis testing as special cases.

Call it: Hypothesis Identification.
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Desirable Properties
of any hypothesis identification principle

• leads to good predictions (that’s what models are ultimately for),

• be broadly applicable,

• be analytically and computationally tractable,

• be defined and works also for non-i.i.d. and non-stationary data,

• be reparametrization and representation invariant,

• works for simple and composite hypotheses,

• works for classes containing nested and overlapping hypotheses,

• works in the estimation, testing, and model selection regime,

• reduces in special cases (approximately) to existing other methods.

Here we concentrate on the first item, and will show that the resulting

principle nicely satisfies many of the other items.
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The Main Idea
• Machine learning primarily cares about predictive performance.

• We address the problem head on.

• Goal: Predict m future obs. x ≡ (xn+1, ..., xn+m) ∈ Xm well.

• If θ0 is true parameter, then p(x|θ0) is obviously the best prediction.

• If θ0 unknown, then predictive distribution

p(x|D) =
∫

p(x|θ)p(θ|D)dθ = p(D, x)/p(D) is best.

• Approx. full Bayes by predicting with hypothesis H = {θ ∈ Θ}, i.e.

• Use (comp) likelihood p(x|Θ) = 1
P[Θ]

∫
Θ

p(x|θ)p(θ)dθ for prediction.

• The closer p(x|Θ) to p(x|θ0) or p(x|D) the better H’s prediction.

• Measure closeness with some distance function d(·, ·).
• Since x and θ0 are unknown, we must sum or average over them.
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Predictive Hypothesis Identification (PHI)

Definition 1 (Predictive Loss) The predictive Loss/ Lõss of Θ
given D based on distance d for m future observations is

Lossm
d (Θ, D) :=

∫
d(p(x|Θ), p(x|D))dx,

Lõssm
d (Θ, D) :=

∫∫
d(p(x|Θ), p(x|θ)) p(θ|D)dx dθ

Definition 2 (PHI) The best (b̃est) predictive hypothesis in hy-
pothesis class H given D is

Θ̂m
d := arg min

Θ∈H
Lossm

d (Θ, D)

( Θ̃m
d := arg min

Θ∈H
Lõssm

d (Θ, D) )

Use p(x|Θ̂m
d ) (p(x|Θ̃m

d )) for prediction. That’s it!
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A Simple Motivating Example - The Problem

• Consider a sequence of n bits from an unknown source.

Assume we have observed n0 = #0s = #1s = n1.

• We want to test whether the unknown source is a fair coin:

“fair” (Hf = {θ = 1
2}) versus “don’t know” (Hv = {θ ∈ [0; 1]})

H = {Hf ,Hv}, θ ∈ Ω = [0; 1] = bias.

• Classical tests involve the choice of some confidence level α.

• Problem 1: The answer depends on the confidence level.

• Problem 2: The answer should depend on the purpose.
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A Simple Motivating Example - Intuition=PHI

• A smart customer wants to predict m further bits.

We can tell him 1 bit of information: “fair” or “don’t know”.

• m = 1: The answer doesn’t matter,

since in both cases customer will predict 50% by symmetry.

• m ¿ n: We should use our past knowledge and tell him “fair”.

• m À n: We should ignore our past knowledge & tell “don’t know”,

since customer can make better judgement himself,

since he will have much more data.

• Evaluating PHI on this simple Bernoulli example

p(D|θ) = θn1(1− θ)n0 exactly leads to this conclusion!
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A Simple Motivating Example - MAP 6=ML

• Maximum A Posteriori (MAP): P [Ω|D] = 1 ≥ P [Θ|D]∀Θ =⇒
ΘMAP := arg maxΘ∈H P[Θ|D] = Ω = Hv =“don’t know”,

however strong the evidence for a fair coin!

MAP is risk averse finding a likely true model of low pred. power.

• Maximum Likelihood (ML): p(D|Hf ) ≥ p(D|Θ)∀Θ =⇒
ΘML := arg maxΘ∈H p(D|Θ) = {1

2} = Hf =“fair”,

however weak the evidence for a fair coin!

Composite ML risks an (over)precise prediction.

• Fazit: Although MAP and ML give identical answers for

uniform prior on simple hypotheses, their naive

extension to composite hypotheses is diametral.

• Intuition/PHI/MAP/ML conclusions hold in general.
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Some Popular Distance Functions
(f) f -divergence d(p, q) = f(p/q)q for convex f with f(1) = 0
(1) absolute deviation: d(p, q) = |p− q|, f(t) = |t− 1|
(h) Hellinger distance: d(p, q) = (

√
p−√q)2, f(t) = (

√
t− 1)2

(2) squared distance: d(p, q) = (p− q)2, no f

(c) chi-square distance: d(p, q) = (p− q)2/q, f(t) = (t− 1)2

(k) KL-divergence: d(p, q) = p ln(p/q), f(t) = t ln t

(r) reverse KL-div.: d(p, q) = q ln(q/p), f(t) = − ln t

The f -divergences are particularly interesting,

since they contain most of the standard distances

and make Loss representation invariant.
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Exact Properties of PHI

Theorem 3 (Invariance of Loss) Lossm
d (Θ, D) and Lfossm

d (Θ, D) are in-

variant under reparametrization θ ; ϑ = g(θ) of Ω. If distance d is

an f -divergence, then they are also independent of the representation

xi ; yi = h(xi) of the observation space X .

Theorem 4 (PHI for sufficient statistic) Let t = T (x) be a suffi-

cient statistic for θ. Then Lossm
f (Θ, D) =

R
d(p(t|Θ), p(t|D))dt and

Lfossm
f (Θ, D) =

R
d(p(t|Θ), p(t|θ))p(θ|D)dtdθ,

i.e. p(x|·) can be replaced by the probability density p(t|·) of t.

Theorem 5 (Equivalence of PHIm2|r and gPHIm2|r) For square distance

(db=2) and RKL distance (db=r), Lossm
d (Θ, D) differs from Lfossm

d (Θ, D)

only by an additive constant cm
d (D) independent of Θ, hence PHI andgPHI select the same hypotheses Θ̂m

2 = Θ̃m
2 and Θ̂m

r = Θ̃m
r .
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Bernoulli Example
p(t|θ) =

(
m
t

)
θt(1− θ)m−t, t = m1 = #1s =suff.stat.

For RKL-distance and point hypotheses, Theorems 4 and ?? now yield

θ̃r = θ̂r = arg min
θ

Lossm
r (θ|D) = arg min

θ

m∑
t=1

p(t|D) ln
p(t|D)
p(t|θ) =

... = 1
mE[t|D] =

n1 + 1
n + 2

= Laplace rule

Fisher Information and Jeffrey’s Prior

• I1(θ) := − ∫
(∂∂>ln p(x|θ))p(x|θ)dx = Fisher information matrix.

• J :=
∫ √

det I1(θ)dθ = intrinsic size of Ω.

• pJ(θ) :=
√

det I1(θ)/J = Jeffrey’s prior

is a popular reparametrization invariant (objective) reference prior.
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Loss for Large m and Point Estimation

Theorem 6 (Lõss
m
h (θ,D) for large m) Under some differentiabil-

ity assumptions, for point estimation, the predictive Hellinger loss
for large m is

Lõssm
h (θ,D) = 2− 2

(
8π

m

)d/2
p(θ|D)√
det I1(θ)

[1 + O(m−1/2)]

J= 2− 2
(

8π

m

)d/2
p(D|θ)
Jp(D)

[1 + O(m−1/2)]

where the first expression holds for any continuous prior density and
the second expression ( J=) holds for Jeffrey’s prior.
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PHI = IMAP
J
= ML for m À n

Minimizing Lõss
∞
h is equivalent to a reparametrization invariant

variation of MAP:

θ̃∞h = θIMAP := arg max
θ

p(θ|D)√
det I1(θ)

J= arg max
θ

p(D|θ) ≡ θML

This is a nice reconciliation of MAP and ML:

An “improved” MAP leads for Jeffrey’s prior back to “simple” ML.

PHI ≈ MDL for m ≈ n
We can also relate PHI to the Minimum Description Length (MDL)

principle by taking the logarithm of the second expression in Theorem 6:

θ̃∞h
J= arg min

θ
{− log p(D|θ) + d

2 log m
8π + J }

For m = 4n this is the classical (large n approximation of) MDL.
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Loss for Large m and Composite Θ

Theorem 7 (Lõss
m
h (Θ, D) for large m) Under some differentiabil-

ity assumptions, for composite Θ, the predictive Hellinger loss for
large m is

Lõssm
h (Θ, D) J= 2− 2

(
8π

m

)d/4
√

p(D|Θ)P[Θ|D]
JP[D]

+ o(m−d/4)

MAP Meets ML Half Way
• The expression is proportional to the geometric average

of the posterior and the composite likelihood.

• For large Θ, the likelihood gets small,
since the average involves many wrong models.

• For small Θ, posterior ∝ volume of Θ, hence tends to zero.

• The product is maximal for |Θ| ∼ n−d/2 (which makes sense).
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Finding Θ̃∞
h Explicitly

Contrary to MAP and ML, an unrestricted maximization of ML×MAP

over all measurable Θ ⊆ Ω makes sense, and can be reduced to a

one-dimensional maximization.

Theorem 8 (Finding Θ̃∞h exactly) Let Θγ := {θ : p(D|θ) ≥ γ} be
the γ-level set of p(D|θ). If P[Θγ ] is continuous in γ, then

Θ̃∞h = arg max
Θ

P[Θ|D]√
P[Θ]

= arg max
Θγ :γ≥0

P[Θγ |D]√
P[Θγ ]

Theorem 9 (Finding Θ̃∞h for Large n (m À n À 1))
Θ̃∞h = {θ : (θ − θ̄)>I1(θ̄)(θ − θ̄) ≤ r̃2} = Ellipsoid, r̃ ≈

√
d/n

Lossm
h : Similar to (asymptotic) expressions of Lõss

m
h .



Marcus Hutter - 19 - Predictive Hypothesis Identification

Large Sample Approximations
PHI for large sample sizes n À m. For simplicity θ ∈ IR.

• A classical approximation of p(θ|D) is
by a Gaussian with same mean and variance.

• Generalization to Sequential moment fitting (SMF):
Fit first k (central) moments
θ̄A ≡ µA

1 := E[θ|A] and µA
k := E[(θ − θ̄A)2|A] (k ≥ 2)

• Moments µD
k are known and can in principle be computed.

Theorem 10 (PHI for large n by SMF) If Θ∗ ∈ H is chosen such
that µΘ∗

i = µD
i for i = 1, ..., k, then under some technical conditions,

Lossm
f (Θ∗, D) = O(n−k/2)

• Normally, no Θ ∈ H has better loss order, therefore Θ̂m
f ' Θ∗.

• Θ̂ ≡ Θ̂m
f neither depends on m, nor on the chosen distance f .
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Large Sample Applications

• Θ = {θ1, ..., θl} unrestricted =⇒ k = l moments can be fit.

• For interval est. H = {[a; b] : a, b ∈ IR, a ≤ b} and uniform prior,

we have θ̄[a;b] = 1
2 (a + b) and µ

[a;b]
2 = 1

12 (b− a)2

=⇒ k = 2 and Θ̂ = [θ̄D −√3µD
2 ; θ̄D +

√
3µD

2 ].

• In higher dimensions, common choices of H are

convex sets, ellipsoids, and hypercubes.
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Conclusion

• If prediction is the goal, but full Bayes not feasible, one should

identify (estimate/test/select) the hypothesis (parameter/model/

interval) that predicts best.

• What best is can depend on benchmark (Loss, Lõss), distance

function (d), how long we use the model (m), compared to how

much data we have at hand (n).

• We have shown that predictive hypothesis identification (PHI)

scores well on all desirable properties listed on Slide 6.

• In particular, PHI can properly deal with nested hypotheses, and

nicely blends MAP and ML for m À n with MDL for m ≈ n with

SMF for n À m.
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Thanks! THE END Questions?

• Want to work on this or other things ?

• Apply at ANU/NICTA/me for

a PhD or PostDoc position !

• Canberra, ACT, 0200, Australia

http://www.hutter1.net/
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