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Abstract
I derive an exact and efficient Bayesian regression algorithm for

piecewise constant functions of unknown segment number, boundary

location, and levels. It works for any noise and segment level prior, e.g.

Cauchy which can handle outliers. I derive simple but good estimates

for the in-segment variance. I also propose a Bayesian regression curve

as a better way of smoothing data without blurring boundaries. The

Bayesian approach also allows straightforward determination of the

evidence, break probabilities and error estimates, useful for model

selection and significance and robustness studies. I present an

application to microarray-CGH data analysis. Many possible extensions

will be discussed.

Keywords: Bayesian regression, exact polynomial algorithm,

non-parametric inference, piecewise constant function, dynamic

programming, application, microarray-CGH data.
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Advantages of Bayesian Regression

• Very principled, hence involves less heuristic design choices.

• Important for estimating the number of segments.

• One can decide among competing models solely on evidence.

• Bayes often works well in theory and practice.

• Probability estimates and variances for quantities of interest.

• Bayesian regression curve (better than local smoothing which

wiggles more and blurs jumps).
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Setup / Likelihood

True function f = (f1, ..., fn)

has k segments with boundaries

0 = t0 < t1 < ... < tk−1 < tk = n,

i.e. f is const. on {tq−1+1, .., tq}
for each 0 < q ≤ k.

Noisy observations y = (y1, ..., yn).

Any independent noise with

mean µq and variance σ2. -1.5
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=⇒ Likelihood: P (y|µ, σ) =
k∏

q=1

tq∏

i=tq−1+1

P (yi|µq, σ)
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Bayesian Regression

Goal: Estimate

– segment levels µ = (µ1, ..., µk),

– boundaries t = (t0, ..., tk),

– and their number k.

Bayesian regression: Assume prior P (µ, t, k)

Compute posterior: P (µ, t, k|y) =
P (y|µ, t, k)P (µ, t, k)

P (y)

Evidence: P (y) =
∑

k,t

∫
P (y|µ, t, k)P (µ, t, k) dµ

Too complex: We need summaries like mean or MAP.
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Prior

• We model the level of each segment by a broad (e.g. Gaussian)

distribution P (µq|ν, ρ)

• Uniform distribution among all segmentations into k segments:

P (t|k) = (n−1
k−1 )−1

• Uniform prior over segment number k: P (k) = 1/n.

=⇒ Prior: P (µ, t, k) =
k∏

q=1

P (µq|ν, ρ)× P (t|k)× P (k)

• (ρ, ν, σ) are fixed hyper-parameters determined later.
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Quantities of Interest

# Segments: k̂ = arg maxk P (k|y)

Boundaries: t̂q = arg maxtq P (tq|y, k̂)

Segment level: µ̂q = E[µq|y, t̂, k̂] =
∫

P (µq|y, t̂, k̂)µqdµq

The estimate (µ̂, t̂, k̂) defines a (single) piecewise constant (PC)

function f̂ , which is our estimate of f .

A (very) different quantity is to Bayes-average over all piecewise

constant functions and to ask for the mean at location i as an estimate

for fi:

Regression curve: µ̂′i = E[µ′i|y] =
∫

P (µ′i|y)µ′idµ′i
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Dynamic Programming
• Dynamic programming: Fix a break, then data left and right of the

break are independent.

• Evidence and moments of single segment from i + 1 to j.

Ar
ij :=

∫
P (µm)

∏j
t=i+1 P (yt|µm)µr

mdµm

• Analytical for exponential family with conjugate prior like Gauss and
numerically for others like Cauchy.

• Lkj :∝ P (y1..yj |k) of first j data, given k segments.

• Rki :∝ P (yi+1..yn|k) of last n− i data, given k segments.

• Left recursion: Evidence of y1..yj with k + 1 segments = evidence
of y0h with k segments × single-segment evidence of yh+1..yj ,
summed over all locations h of boundary k:

Lk+1,j =
∑j−1

h=k LkhA0
hj

• Similarly: Right recursion: Rk+1,i =
∑n−k

h=i+1 A0
ihRkh
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Efficient Solutions for Quantities of Interest
Evidence P (y) =

∑n
k=1 P (y|k)P (k) = 1

n

∑n
k=1 Lkn/(n−1

k−1 )

The posterior of k and its MAP estimate are

P (k|y) =
Lkn

(n−1
k−1 )kmaxE

and k̂ = arg max
k=1..kmax

P (k|y)

Prob. that boundary p located at h is P (tp =h|y, k̂) = LphRk̂−p,h/Lk̂n

MAP segment boundary p is t̂p := arg maxh P (tp = h|y, k̂)

Segment level moments are µ̂r
p = Ar

t̂p−1 t̂p
/A0

t̂p−1 t̂p

Regression curve: Fix single segment tm−1 = i, .., tm = j containing t,

then µ′t = µm. Now sum over all such segments:

µ̂′tr =
∑

i<t≤j

1
Lk̂n

k̂∑
m=1

Lm−1,iA
r
ijRk̂−m,j
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Determination of the Hyper-Parameters

• Global variance ρ and mean ν of µ, in-segment variance σ.

• (Empirical) Bayes: Averaging or maximizing P (y|σ, ν, ρ) is

expensive.

• Fast semi-principled estimation

Global mean ν̂ ≈ 1
n

∑n
t=1 yt

Global variance ρ̂2 ≈ 1
n−1

∑n
t=1(yt − ν̂)2

• In-segment variance σ more tricky without knowing segmentation:

σ̂2 ≈ 1
2(n−1)

∑n−1
t=1 (yt+1 − yt)2

– Good for large noise.

– Crude estimate is enough if noise is low (regression easy).
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Quartiles for Heavy-Tailed Robust Distributions

Let [y] be the data vector y sorted in ascending order.

Global median ν̂ ≈ [y]n/2

Global scale ρ̂ ≈ [y]3n/4 − [y]n/4

2α
with α ≈ 1

Differences ∆t := yt+1 − yt.

In-segment scale σ̂ ≈ [∆]3n/4 − [∆]n/4

2β
with β ≈ 12

Iteratively improve them, if the estimates are really not sufficient.



Marcus Hutter - 13 - Bayesian Regression of Piecewise Constant Functions

Example: Gene Copy # Data

• All genes in a healthy human cell come in pairs, but can be lost or

multiplied in tumor cells.

• With modern micro-arrays one can measure the copy-number of

genes along a chromosome.

• It is important to determine the breaks, where copy-number

chances.

• The measurements are very noisy [Pinkel’98].

• Hence this is a natural application for piecewise constant regression

of noisy (one-dimensional) data.

• Regression results of one aberrant and one healthy chromosome

(without biological interpretation) are shown ...
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Aberrant Gene Copy # of Chromosome 1
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Data (blue), PCR (black), BP (red), and variance1/2 (green).
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Aberrant Gene Copy # of Chromosome 1
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Aberrant Gene Copy # of Chromosome 1
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Normal Gene Copy # of Chromosome 9
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Posterior Segment Number Probability P (k|y)
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Synthetic Example: What do you see?
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Synthetic Example: PC-Regression
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Data was indeed sampled from a three segment function with high

Cauchy noise. Data (blue), PCR (black), BP (red), and
√

Var (green).
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Synthetic Example: Bayesian Regression Curve
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Regression Summary of Gene and other Examples (↑Setup)
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Name σ n P ν̂ ρ̂ σ̂ log E ll−E
σll

k̂ Ck(−1,+1)

GL 0.10 100 G -0.01 0.69 0.18 39 4.9 3|3 74%(0|20)

GM 0.32 100 G -0.03 0.73 0.35 -48 1.2 3|3 44%(0|29)

GH 1.00 100 G -0.10 1.15 1.03 -156 0.3 3|4 13%(10|12)

CL 0.10 100 C -0.02 0.58 0.09 -17 1.0 3|3 69%(0|21)

CM 0.32 100 C -0.09 0.70 0.27 -127 0.8 3|3 38%(0|27)

CH 1.00 100 C -0.20 0.99 0.86 -234 0.9 3|4 12%(11|11)

GMwC 0.32 100 C 0.00 0.49 0.17 -70 1.5 3|3 27%(0|26)

CMwG 0.32 100 G 0.01 1.24 1.22 -160 2.9 5|8 8%(8|8)

Gen31 – 769 G 0.55 0.45 0.30 -283 -1.5 15|34 6%(6|6)

Gen59 – 483 G 1.05 0.47 0.44 -336 -2.3 1|1 8%(0|6)
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Extensions

• Any generalized one-segment evidence (no problem)

• Known segment levels (even easier)

• (Non)constant regressors (easy)

• Piecewise linear regression (easy)

• Continuous regression (harder, approximate)

• Non-parametric prior and noise (easy)

• Very large n (break into overlapping pieces, heuristic)
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Related work

[Sen&Srivastava’75] Frequentist solution for detecting a single break.

[Olshen&al’04] Generalization to pair of breaks.

Heuristic recursion for further remaining breaks.

[Jon’03,Lavielle’05] Penalized Maximum Likelihood.

[Endres&Földiák’05] Piecewise constant (PC) Bayesian density estimation.

[Lav’05,EF’05] Dynamic programming.
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Summary

• Full Bayesian PC-regression

• (Non)Gaussian noise and prior

• Handling of outliers

• Analytic estimate for in-segment variance

• Bayesian regression curve

• Break probabilities and variances

• Global evidence for model comparison

• Principled, little parameters to choose (important for det. of k).
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Thanks! Questions? Details:

Papers at http://www.idsia.ch/˜marcus

Book intends to excite a broader AI audience about

abstract Algorithmic Information Theory –and–

inform theorists about exciting applications to AI.

Decision Theory = Probability + Utility Theory

+ +

Universal Induction = Ockham + Bayes + Turing

= =

A Unified View of Artificial Intelligence


