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Universal Induction = Ockham + Epicurus + Bayes

Loss(Universal Prediction Scheme)

Loss(Any other Prediction Scheme)
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Problem Setup

• Every induction problem can be phrased as a sequence prediction task.

• Classification is a special case of sequence prediction.

(With some tricks the other direction is also true)

• I’m interested in maximizing profit (minimizing loss).

I’m not (primarily) interested in finding a (true/predictive/causal) model.

• Separating noise from data is not necessary in this setting!

My Position to Occam

• Most of us belief in or at least use the axioms of logic, proof theory, set theory,

natural numbers when doing science, without questioning them.

• We should/must add Occam’s razor in some quantified form to these axioms,

because it is the foundation of machine learning and science.

• There is (yet) no mathematical proof of Occam’s razor, and my guess is that it is

an independent axiom, but there is lots of evidence that this is the right axiom.
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On the Foundations of Machine Learning

• Example: Algorithm/complexity theory: The goal is to find fast algorithms solving

problems and to show lower bounds on their computation time. Everything is

rigorously defined: algorithm, Turing machine, problem classes, computation time,

...

• Most disciplines start with an informal way of attacking a subject. With time they

get more and more formalized often to a point where they are completely rigorous.

Examples: set theory, logical reasoning, proof theory, probability theory,

infinitesimal calculus, quantum field theory, ...

• Machine learning: Tries to build and understand systems which learn from past

data, to make good prediction, which are able to generalize, act intelligently, ...

Many terms only vaguely defined or there are many alternate definitions.
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Occam to the Rescue

• Is it possible to give machine learning a rigorous mathematical

framework/definition?

• Yes! Use Occam’s razor, quantified in terms of Kolmogorov complexity and

combine it with Bayes, and possibly sequential decision theory.

• There is at the moment no alternative suggestion of how to define machine

learning rigorously.

My view of (future) Machine learning

• Application = Solve learning tasks by approximating Kolmogorov complexity

(MML, MDL, SRM, and much more specific ones, like SVM, Bayes nets, ...).

• Theory = Proof theorems, especially on convergence and approximations.

• Non-standard ML = Modify “Occam’s axiom” with the goal to find something

better.
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Induction = Predicting the Future

Extrapolate past observations to the future,

but how can we know something about the future?

Epicurus’ principle of multiple explanations

If more than one theory is consistent with the observations, keep all theories.

Ockhams’ razor (simplicity) principle

Entities should not be multiplied beyond necessity.

Hume’s negation of Induction The only form of induction possible is deduc-

tion as the conclusion is already logically contained in the start configuration.

Bayes’ rule for conditional probabilities

Given the prior believe/probability one can predict all future probabilities.

Solomonoff’s universal prior

Solves the question of how to choose the prior if nothing is known.
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Strings and Conditional Probabilities

Strings: x=x1x2...xn with xt∈X and x1:m := x1x2...xm−1xm and x<n := x1...xn−1.

ρ(x1...xn) is the probability that an (infinite) sequence starts with x1...xn.

Heavy use of Bayes’ rule in the following forms:

ρ(xn|x<n) = ρ(x1:n)/ρ(x<n),

ρ(x1...xn) = ρ(x1)·ρ(x2|x1)·...·ρ(xn|x1...xn−1).

If the true prior probability µ(x1...xn) is known, then the optimal scheme is to

minimize the µ- expected loss.

Interpretation of Probabilities

Frequentist: Probabilities come from experiments.

Objectivist: Probabilities are real aspects of the world.

Subjectivist: Probabilities describe ones believe.
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Probability of Sunrise Tomorrow
What is the probability that the sun will rise tomorrow? It is µ(0|1d). d = actual

lifetime of the sun in days.

1 = sun raised. 0 = sun will not raise.

• The probability is undefined, because there has never been an experiment that

tested the existence of the sum tomorrow (reference class problem).

• The probability is 1, because in all experiments that have been done (on past

days) the sun raised.

• The probability is 1− ε, where ε is the proportion of stars in the universe that

explode in a supernova per day.

• The probability is (d + 1)/(d + 2) (Laplace estimate by assuming a Bernoulli(p)

process with uniformly distributed raising prior probability p)

• The probability can be derived from the type, age, size and temperature of the

sun, even though we never have observed another star with those exact properties.

Solomonoff solved the problem of unknown prior µ by introducing a universal

probability distribution ξ related to Algorithmic Information Theory.
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Kolmogorov Complexity

The Kolmogorov Complexity of a string x is the length of the shortest (prefix) program

producing x.

K(x) := min
p
{l(p) : U(p) = x} , U = univ.TM

The definition is ”nearly” independent of the choice of U

|KU (x)−KU ′(x)| < cUU ′ , KU (x) += KU ′(x)

+= indicates equality up to a constant cUU ′ independent of x.

K satisfies most properties an information measure should satisfy, e.g.

K(xy)
+≤ K(x) + K(y).

K(x) is not computable, but only co-enumerable (semi-computable from above).



Marcus Hutter - 10 - Loss Bounds for Universal Sequence Prediction

Universal Probability Distribution
The universal semimeasure is the probability that output of U starts with x when the

input is provided with fair coin flips

ξ(x) =
∑

µi∈M
wµi · µi(x) ×=

∑

p : U(p)=x∗
2−l(p), e.g. wµi = 2−K(µi)

[Solomonoff 64]

Universality property of ξ: ξ dominates every computable probability distribution

ξ(x) ≥ wµi ·µi(x) ∀µi ∈M

Furthermore, the µ expected squared distance sum between ξ and µ is finite for

computable µ

∞∑
t=1

∑
x1:t

µ(x<t)(ξ(xt|x<t)− µ(xt|x<t))2 ≤ ln 2·K(µ)

[Solomonoff 78] (for binary alphabet)

⇒ ξ(xn|x<n) n→∞−→ µ(xn|x<n) with µ probability 1 =⇒ ξ is good guess for µ.
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Convergence Theorem

The universal conditional probability ξ(xt|x<t) of the next symbol xt given x<t is

related to the true conditional probability µ(xt|x<t) in the following way:

i)
n∑

t=1

E
[ ∑

xt

(
µ(xt|x<t)− ξ(xt|x<t)

)2]
≡ Sn ≤ Dn ≤ ln w−1

µ < ∞

ii)
∑
xt

(
µ(xt|x<t)− ξ(xt|x<t)

)2

≡ st(x<t) ≤ dt(x<t) → 0 for t →∞ w.µp.1

iii) ξ(x′t|x<t) → µ(x′t|x<t) for t →∞ with µ probability 1 for any x′t

iv)
n∑

t=1

E




(√
ξ(xt|x<t)
µ(xt|x<t)

− 1

)2

 ≤ Dn ≤ ln w−1

µ < ∞

v)
ξ(xt|x<t)
µ(xt|x<t)

→ 1 for t →∞ with µ probability 1

where dt =
∑

xn
µ(xn|x<n) ln µ(xn|x<n)

ξ(xn|x<n) and Dn =
∑

x1:n
µ(x1:n) ln µ(x1:n)

ξ(x1:n) are

relative entropies, and wµ is the weight of µ in ξ.
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Universal Sequence Prediction
A prediction is very often the basis for some decision. The decision results in an action,

which itself leads to some reward or loss. Let `xtyt ∈ [0, 1] be the received loss when

taking action yt∈Y and xt∈X is the tth symbol of the sequence, for instance,

decision Y={umbrella, sunglasses} based on weather forecasts X ={sunny, rainy}.
Loss sunny rainy

umbrella 0.3 0.1

sunglasses 0.0 1.0

The goal is to minimize the µ-expected loss. More generally we define the Λρ

prediction scheme

y
Λρ

t := arg min
yt∈Y

∑
xt

ρ(xt|x<t)`xtyt

which minimizes the ρ-expected loss. The actual µ-expected loss when Λρ predicts

the tth symbol and the total µ-expected loss in the first n predictions are

ltΛρ
(x<t) :=

∑
xt

µ(xt|x<t)`xty
Λρ
t

, LΛρ
n :=

n∑
t=1

∑
x<t

µ(x<t)·ltΛρ(x<t).



Marcus Hutter - 13 - Loss Bounds for Universal Sequence Prediction

Loss Bounds (Main Theorem)

L
Λµ
n made by the informed scheme Λµ,

L
Λξ
n made by the universal scheme Λξ,

LΛ
n made by any (causal) prediction scheme Λ.

i) L
Λµ
n ≤ LΛ

n for any (causal) prediction scheme Λ.

ii) 0 ≤ L
Λξ
n − L

Λµ
n ≤ 2Dn + 2

√
L

Λµ
n Dn

iii) if L∞Λµ
is finite, then L∞Λξ

is finite

iv) L
Λξ
n /L

Λµ
n = 1 + O((LΛµ

n )−1/2)
L

Λµ
n →∞−→ 1

v)
∑n

t=1 E[(ltΛξ
(x<t)− ltΛµ(x<t))2] ≤ 2Dn ≤ 2 lnw−1

µ < ∞

vi) 0 ≤ ltΛξ
(x<t)− ltΛµ(x<t) ≤

{ √
2dt(x<t)

2dt(x<t)+2
√

ltΛµ (x<t) dt(x<t)

} t→∞−→
µprob.1 0.

where Dn :=
∑

x1:n
µ(x1:n) ln µ(x1:n)

ξ(x1:n) ≤ ln 1
wµ

= ln 2·K(µ).

Remark: The bound is valid for any loss function ∈ [0, 1] with no assumptions (like

i.i.d., Markovian, stationary, ergodic, ...) on the structure of the distributions µi∈M .
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Example Application

A dealer has two dice, one with 2 white and 4 black faces, the other with 4 white and

2 black faces. He chooses a die according to some deterministic rule. In every round,

we bet s=$3 on white or black and receive r=$5 for every correct prediction.

If we know µ, i.e. the die the dealer chooses, we should predict the color which is on 4

sides and win money. Expected Profit (= –Loss): PnΛµ/n = 1
3$ > 0

If we don’t know µ we can use Solomonoff prediction scheme Λξ with asymptotically

the same profit:

PnΛξ
/PnΛµ , = 1−O(n−1/2)

Bound on Winning Time

Estimate of the number of rounds before reaching the winning zone with Λξ:

PnΛξ
>0 if L

Λξ
n <0 if n > 330 ln 2·K(µ) + O(1)

Λξ is asymptotically optimal with rapid convergence.
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General Bound for Winning Time

For every (passive) game of chance for which there exists a winning strategy, you can

make money by using Λξ even if you don’t know the underlying probabilistic

process/algorithm.

Λξ finds and exploits every regularity.

The time n needed to reach the winning zone is

n ≤
( 2p∆

p̄nΛµ

)2

·ln 1
wµ

, p̄nΛµ :=
1
n

n∑
t=1

ptΛµ , p∆ = profit range.
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Generalization: Continuous Probability Classes M
In statistical parameter estimation one often has a continuous hypothesis class (e.g. a

Bernoulli(θ) process with unknown θ∈ [0, 1]).

M := {µθ : θ ∈ IRd}, ξ(x1:n) :=
∫

IRd

dθ w(θ)·µθ(x1:n),
∫

IRd

dθ w(θ) = 1.

The only property of ξ needed was ξ(x1:n)≥wµi ·µi(x1:n) which has been obtained by

dropping the sum over µi. Here, restrict the integral over IRd to a small vicinity Nδ of

θ. For sufficiently smooth µθ and w(θ) we expect

ξ(x1:n)>∼|Nδn |·w(θ)·µθ(x1:n) =⇒ Dn
<∼ ln

1
wµ

+ ln
1

|Nδn |
.

The average Fisher information ̄n measures the curvature (parametric complexity) of

ln µθ. Under some weak regularity conditions on j̄n one can show

Dn :=
∑
x1:n

µ(x1:n) ln µ(x1:n)
ξ(x1:n) ≤ ln 1

wµ
+ d

2 ln n
2π + 1

2 ln det ̄n + o(1)

i.e. Dn grows only logarithmically with n.



Marcus Hutter - 17 - Loss Bounds for Universal Sequence Prediction

Optimality of the Universal Predictor

• There are M and µ ∈M and weights wµ for which the loss bounds are tight.

• The universal prior ξ is pareto-optimal, in the sense that there is no ρ with

F(µa, ρ) ≤ F(µa, ξ) for all µa ∈M and strict inequality for at least one µa,

where F is the instantaneous or total squared distance st, Sn, or entropy distance

dt, Dn , or error et, En, or loss lt, Ln.

• ξ is elastic pareto-optimal in the sense that by accepting a slight performance

decrease in some environments one can only achieve a slight performance increase

in other environments.

• Within the set of enumerable weight functions with short program, the universal

weights wν = 2−K(ν) lead to the smallest performance bounds within an additive

(to ln w−1
µ ) constant in all enumerable environments.

Does all this justify Occam’s razor ?
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Larger & Smaller Environmental Classses

• all finitely computable probability measures

(ξ 6∈ M in no sense computable)

• all enumerable (approximable from below) semi-measures [Solomonoff 64,78]

(ξ ∈M enumerable)

• all cumulatively enumerable semi-measures [Schmidhuber 01]

(distribution enumerable and ∈M)

• all approximable (asymptotically computable) measures [Schmidhuber 01]

(ξ 6∈ M in no sense computable)

• Speed prior related to Levin complexity and Levin search [Schmidhuber 01]

(which distributions are dominated?)

• finite-state automata instead of general Turing machines [Feder et al. 92] related

to Lempel-Ziv data compression (ξ 6∈ M)
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Generalization: The Universal AIξ Model
Universal AI = Universal Induction + Sequential Decision Theory

Replace µAI in decision theory model AIµ by an appropriate generalization of ξ .

ξ(yx1:t) :=
∑

q:q(y1:t)=x1:t

2−l(q)

yt = arg max
yt

∑
xt

max
yt+1

∑
xt+1

... max
ym

∑
xm

(r(xt)+ ... +r(xm))·ξ(xt:m|yt:m)

Claim: AIξ is the most intelligent environmental independent, i.e. universally optimal,

agent possible.

Applications: Strategic Games, Function Minimization, Supervised Learning by

Examples, Sequence Prediction, Classification.

[Proceedings of ECML-2001] and [http://www.hutter1.de/ai]
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Further Generalizations:

• Time and history dependent loss function in general interval [`min, `max].
• Infinite (countable and uncountable) action/decision space.

• Partial Sequence Prediction.

• Independent Experiments & Classification.

Outlook:

• Infinite (prediction) alphabet X .

• Delayed and Probabilistic Sequence Prediction.

• Unification with (Lossbounds for) aggregating strategies.

• Determine suitable performance measures for universal AIξ and prove bounds.

• Study learning aspect of Λξ and AIξ.

• Information theoretic interpretation of winning time.

• Implementation and application of Λξ for specific finite M.

• Downscale theory and results to MDL approach.
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Conclusions

• Solomonoff’s prediction scheme, which is related to Kolomogorov complexity,

formally solves the general problem of induction.

• We proved convergence and loss-bounds for Solomonoff prediction showing that it

is well suited, even for difficult prediction problems.

• We proved several optimality properties for Solomonoff prediction.

• We made no structural assumptions on the probability distributions µi∈M .

• The bounds are valid for any bounded loss function.

• We proved a bound on the time to win in games of chances.

• Discrete and continuous probability classes have been considered.

• Generalizations to active agents with reinforcement feedback have been suggested

• At least all this is a lot of evidence that Occam’s razor is a useful principle.

See [http://www.idsia.ch/∼marcus] for details


