UNIVERSAL CONVERGENCE OF SEMIMEASURES ON INDIVIDUAL RANDOM SEQUENCES

Marcus Hutter

IDSIA, Galleria 2 CH-6928 Manno-Lugano Switzerland http://www.idsia.ch/~marcus

Andrej Muchnik

Institute of New Technologies 10 Nizhnyaya Radischewskaya Moscow 109004, Russia muchnik@lpcs.math.msu.ru

ALT-2004, October 2-5

Abstract

Solomonoff's central result on induction is that the posterior of a universal semimeasure M converges rapidly and with probability 1 to the true sequence generating posterior μ , if the latter is computable. Hence, M is eligible as a universal sequence predictor in case of unknown μ . Despite some nearby results and proofs in the literature, the stronger result of convergence for all (Martin-Löf) random sequences remained open. Such a convergence result would be particularly interesting and natural, since randomness can be defined in terms of M itself. We show that there are universal semimeasures M which do not converge for all random sequences, i.e. we give a partial negative answer to the open problem. We also provide a positive answer for some non-universal semimeasures. We define the incomputable measure D as a mixture over all computable measures and the enumerable semimeasure W as a mixture over all enumerable nearly-measures. We show that \boldsymbol{W} converges to D and D to μ on all random sequences. The Hellinger distance measuring closeness of two distributions plays a central role.

Table of Contents

- Induction = Predicting the Future
- Meaning of Randomness and Probability
- $\bullet\,$ Solomonoff's Universal Prior M
- (Semi)measures & Universality
- Martin-Löf Randomness
- Convergence of Random Sequences
- $\bullet\,$ Posterior Convergence M
- Failed Attempts to Prove $M \xrightarrow{\mathsf{M.L.}} \mu$
- Non-M.L.-Convergence of ${\cal M}$
- M.L.-Converging Enumerable Semimeasure ${\cal W}$
- Open Problems

Induction = Predicting the Future

Epicurus' principle of multiple explanations If more than one theory is consistent with the observations, keep all theories.

Ockhams' razor (simplicity) principle Entities should not be multiplied beyond necessity.

Hume's negation of Induction

The only form of induction possible is deduction as the conclusion is already logically contained in the start configuration.

Bayes' rule for conditional probabilities

Given the prior believe/probability one can predict all future probabilities.

Solomonoff's universal prior

Solves the question of how to choose the prior if nothing is known.

When is a Sequence Random?

- Intuitively: (a) and (c) look random, but (b) and (d) look unlikely.
- Problem: Formally (a-d) have equal probability $(\frac{1}{2})^{length}$.
- Classical solution: Consider hypothesis class H := {Bernoulli(p) : p ∈ Θ ⊆ [0,1]} and determine p for which sequence has maximum likelihood ⇒ (a,c,d) are fair Bernoulli(¹/₂) coins, (b) not.
- Problem: (d) is non-random, also (c) is binary expansion of π .
- Solution: Choose *H* larger, but how large? Overfitting? MDL?
- AIT Solution: A sequence is **random** *iff* it is **incompressible**.

Marcus Hutter - 6 - Convergence of Semimeasures on Individual Sequences

What does Probability Mean?

Naive frequency interpretation is circular:

- Probability of event E is $p := \lim_{n \to \infty} \frac{k_n(E)}{n}$, n = # i.i.d. trials, $k_n(E) = \#$ occurrences of event E in n trials.
- Problem: Limit may be anything (or nothing):
 e.g. a fair coin can give: Head, Head, Head, Head, ... ⇒ p = 1.
- Of course, for a fair coin this sequence is "unlikely". For fair coin, p=1/2 with "high probability".
- But to make this statement rigorous we need to formally know what "high probability" means.
 Circularity!

Also: In complex domains typical for AI, sample size is often 1. (e.g. a single non-iid historic weather data sequences is given). We want to know whether certain properties hold for this *particular* seq. Marcus Hutter - 7 - Convergence of Semimeasures on Individual Sequences

Solomonoff's Universal Prior ${\cal M}$

Strings: $x = x_1 x_2 \dots x_n$ with $x_t \in \{0, 1\}$ and $x_{1:n} := x_1 x_2 \dots x_{n-1} x_n$ and $x_{<n} := x_1 \dots x_{n-1}$.

Probabilities: $\rho(x_1...x_n)$ is the probability that an (infinite) sequence starts with $x_1...x_n$.

Conditional probability: $\rho(x_t|x_{< t}) = \rho(x_{1:t})/\rho(x_{< t})$ is the ρ -probability that a given string $x_1...x_{t-1}$ is followed by (continued with) x_t .

The universal prior M(x) is defined as the probability that the output of a universal Turing machine starts with x when provided with fair coin flips on the input tape. Formally, M can be defined as

$$M(x) := \sum_{p : U(p) = x*} 2^{-l(p)}$$

Semimeasures & Universality

Continuous (Semi)measures: $\mu(x) \stackrel{(>)}{=} \mu(x0) + \mu(x1)$ and $\mu(\epsilon) \stackrel{(<)}{=} 1$. $\mu(x) =$ probability that a sequence starts with string x.

Universality of M (Levin:70): M is an enumerable semimeasure. $M(x) \ge w_{\rho} \cdot \rho(x)$ with $w_{\rho} = 2^{-K(\rho)-O(1)}$ for all enum. semimeas. ρ .

Explanation: Up to a multiplicative constant, M assigns higher probability to all x than any other computable probability distribution.

Marcus Hutter - 9 - Convergence of Semimeasures on Individual Sequences
Martin-Löf Randomness

- Martin-Löf randomness is a very important concept of randomness of individual sequences.
- Characterization by Levin:73: Sequence $x_{1:\infty}$ is μ -Martin-Löf random (μ .M.L.) $\Leftrightarrow \exists c : M(x_{1:n}) \leq c \cdot \mu(x_{1:n}) \forall n$. Moreover, $d_{\mu}(\omega) := \sup_{n} \{ \log \frac{M(\omega_{1:n})}{\mu(\omega_{1:n})} \} \leq \log c$ is called the randomness deficiency of $\omega := x_{1:\infty}$.
- A μ.M.L. random sequence x_{1:∞} passes all thinkable effective randomness tests, e.g. the law of large numbers, the law of the iterated logarithm, etc. In particular, the set of all μ.M.L. random sequences has μ-measure 1.

Convergence of Random Sequences

Let $z_1(\omega), z_2(\omega), ...$ be a sequence of real-valued random variables. z_t is said to converge for $t \to \infty$ to random variable $z_*(\omega)$

- i) with probability 1 (w.p.1) : \Leftrightarrow P[{ $\omega : z_t \to z_*$ }] = 1,
- *ii*) in mean sum (i.m.s.) : $\Leftrightarrow \sum_{t=1}^{\infty} \mathbf{E}[(z_t z_*)^2] < \infty$,
- *iii*) for every μ -Martin-Löf random sequence (μ .M.L.) : $\forall \omega : [\exists c \forall n : M(\omega_{1:n}) \leq c \cdot \mu(\omega_{1:n})]$ implies $z_t(\omega) \xrightarrow{t \to \infty} z_*(\omega)$,

where $\mathbf{E}[..]$ denotes the expectation and $\mathbf{P}[..]$ denotes the probability of [..].

Remarks

(*i*) In statistics, convergence w.p.1 is the "default" characterization of convergence of random sequences.

(*ii*) Convergence **i.m.s.** is **very strong**: it provides a rate of convergence in the sense that the expected number of times t in which z_t deviates more than ε from z_* is finite and bounded by $\sum_{t=1}^{\infty} \mathbf{E}[(z_t - z_*)^2]/\varepsilon^2$. Nothing can be said for **which** t these deviations occur.

(iii) Martin-Löf's notion of randomness of individual sequences.

Convergence i.m.s. implies convergence w.p.1 + convergence rate. Convergence M.L. implies convergence w.p.1 + on which sequences.

Posterior Convergence

Theorem: Universality $M(x) \ge w_{\mu}\mu(x)$ implies the following posterior convergence results for the Hellinger distance

$$h_t(M, \mu | \omega_{< t}) := \sum_{a \in \mathcal{X}} (\sqrt{M(a | \omega_{< t})} - \sqrt{\mu(a | \omega_{< t})})^2$$

$$\sum_{t=1}^{\infty} \mathbf{E}\left[\left(\sqrt{\frac{M(\omega_t|\omega_{< t})}{\mu(\omega_t|\omega_{< t})}} - 1\right)^2\right] \le \sum_{t=1}^{\infty} \mathbf{E}[h_t] \le 2\ln\{\mathbf{E}[\exp(\frac{1}{2}\sum_{t=1}^{\infty}h_t)]\} \le \ln w_{\mu}^{-1}$$

where \mathbf{E} means expectation w.r.t. μ .

Implications:

$$\begin{split} &M(x'_t | x_{< t}) \to \mu(x'_t | x_{< t}) \quad \text{for any} \quad x'_t \quad \text{rapid w.p.1 for} \quad t \to \infty. \\ &\frac{M(x_t | x_{< t})}{\mu(x_t | x_{< t})} \to 1 \qquad \qquad \text{rapid w.p.1 for} \quad t \to \infty. \end{split}$$

The probability that the number of ε -deviations of M_t from μ_t exceeds $\frac{1}{\varepsilon^2} \ln w_{\mu}^{-1}$ is small.

Question: Does M_t converge to μ_t for all Martin-Löf random sequences?

Failed Attempts to Prove $M \xrightarrow{M.L.} \mu$

- Conversion of bound to effective μ .M.L. randomness tests fails, since they are not enumerable.
- The proof given in Vitanyi&Li:00 is erroneous.
- Vovk:87 shows that for two finitely computable (semi)measures μ and ρ and $x_{1:\infty}$ being μ .M.L. random that

 $\sum_{t=1}^{\infty} \left(\sqrt{\mu(x_t | x_{< t})} - \sqrt{\rho(x_t | x_{< t})} \right)^2 < \infty \iff x_{1:\infty} \text{ is } \rho.\text{M.L. random.}$

If M were recursive, then this would imply $M \to \mu$ for every μ .M.L. random sequence $x_{1:\infty}$, since *every* sequence is M.M.L. random.

• $M \xrightarrow{M.L.} \mu$ cannot be decided from M being a mixture distribution or from dominance or enumerability alone.

Universal Semimeasure (USM) Non-Convergence

- $M \not\rightarrow \mu$: There exists a universal semimeasure M and a computable measure μ and a μ .M.L.-random sequence α , such that $\boxed{M(\alpha_n | \alpha_{\leq n}) \not\rightarrow \mu(\alpha_n | \alpha_{\leq n})} \quad \text{for} \quad n \rightarrow \infty.$
- Proof idea: construct ν such that ν dominates M on some μ -random sequence α , but $\nu(\alpha_n | \alpha_{< n}) \not\rightarrow \mu(\alpha_n | \alpha_{< n})$. Then pollute M with ν .
- Open problem: There may be *some* universal semimeasures for which convergence holds.
- Converse: \forall USM $M \exists$ comp. μ and non- μ .M.L.-random sequences α for which $M(\alpha_n | \alpha_{< n}) / \mu(\alpha_n | \alpha_{< n}) \to 1$.

Convergence in Martin-Löf Sense

Main result: There exists a *non-universal* enumerable semimeasure W such that for every computable measure μ and every μ .M.L.-random sequence ω , the posteriors converge to each other:

 $W(a|\omega_{< t}) \xrightarrow{t \to \infty} \mu(a|\omega_{< t}) \quad \text{for all} \quad a \in \mathcal{X} \quad \text{if} \quad d_{\mu}(\omega) < \infty.$

We need a converse of "M.L. implies w.p.1".

Lemma: Conversion of Expected Bounds to Individual Bounds Let $F(\omega) \ge 0$ be an enumerable function and μ be an enumerable measure and $\varepsilon > 0$ be co-enumerable. Then:

$$\text{ If } \ \mathbf{E}_{\mu}[F] \ \leq \ \varepsilon \quad \text{then } \ F(\omega) \ \stackrel{\times}{<} \ \varepsilon \cdot 2^{K(\mu,F,\ 1/\varepsilon) + d_{\mu}(\omega)} \quad \forall \omega$$

 $K(\mu, F, 1/\varepsilon)$ is the complexity of μ , F, and $1/\varepsilon$.

Proof: Integral test \rightarrow submartingale \rightarrow universal submartingale \rightarrow rand.defect

Convergence in Martin-Löf Sense of \boldsymbol{D}

Mixture over proper computable measures:

$$J_k := \{i \le k : \nu_i \text{ is measure }\}, \quad \varepsilon_i = i^{-6} 2^{-i}$$

$$\delta_k(x) :\stackrel{\times}{=} \sum_{i \in J_k} \varepsilon_i \nu_i(x), \qquad D(x) := \delta_\infty(x)$$

Theorem: If
$$\mu = \nu_{k_0}$$
 is a computable measure, then
i) $\sum_{t=1}^{\infty} h_t(\delta_{k_0}, \mu) \stackrel{+}{<} 2 \ln 2 \cdot d_{\mu}(\omega) + 3k_0$
ii) $\sum_{t=1}^{\infty} h_t(\delta_{k_0}, D) \stackrel{\times}{<} k_0^7 2^{k_0 + d_{\mu}(\omega)}$

Although J_k and δ_k are non-constructive, they are computable! But J_{∞} and D are *not* computable, not even approximable :-(Marcus Hutter - 17 - Convergence of Semimeasures on Individual Sequences

M.L.-Converging Enumerable Semimeasure W

Idea: Enlarge the class of computable measures to an enumerable class of semimeasures, which are still sufficiently close to measures in order not to spoil the convergence result.

Quasimeasures:
$$\tilde{\nu}(x_{1:n}) := \nu(x_{1:n})$$
 if $\sum_{y_{1:n}} \nu(y_{1:n}) > 1 - \frac{1}{n}$, and 0 else.

Enumerable semimeasure: $W(x) := \sum_{i=1}^{\infty} \varepsilon_i \tilde{\nu}_i(x) \implies$

Theorem:
$$\frac{W(\omega_{1:t})}{D(\omega_{1:t})} \to 1, \quad \frac{W(\omega_t | \omega_{< t})}{D(\omega_t | \omega_{< t})} \to 1, \quad W(a | \omega_{< t}) \to D(a | \omega_{< t})$$

Proof: Additional contributions of non-measures to W absent in D are zero for long sequences.

Together: $W \to D$ and $D \to \mu \implies W \to \mu$.

Marcus Hutter - 18 - Convergence of Semimeasures on Individual Sequences **Properties of** M, D, and W – Summary

 M := mixture-over-semimeasures is an enumerable semimeasure, which dominates all enumerable semimeasures. M is not computable and not a measure.

 $M \xrightarrow[fast]{w.p.1} \mu$ with logarithmic bound in w_{μ} , but $M \xrightarrow[fast]{\mu} \mu$.

- D := mixture-over-measures is a measure, dominating all enumerable quasimeasures. D is not computable and does not dominate all enumerable semimeasures. D ^{M.L.}/_→ μ, but bound is exponential in w_µ.
- W := mixture-over-quasimeasures is an enumerable semimeasure, which dominates all enumerable quasimeasures. W is not itself a quasimeasure, is not computable, and does not dominate all enumerable semimeasures.

 $W \xrightarrow{M.L.} \mu$, asymptotically (bound exponential in w_{μ} can be shown).

Open Problems

- The bounds for $D \xrightarrow{M.L.} \mu$ and $W \xrightarrow{M.L.} D$ are double exponentially worse than for $M \xrightarrow{w.p.1} \mu$. Can this be improved?
- Finally there could still exist universal semimeasures M (dominating all enumerable semimeasures) for which
 M.L.-convergence holds (∃M : M → µ?).
- In case they exist, we expect them to have particularly interesting additional structure and properties.
- Identify a class of "natural" UTMs/USMs which have a variety of favorable properties.

See www.idsia.ch/~marcus/ai/uaibook.htm for prizes.

Marcus Hutter - 20 - Convergence of Semimeasures on Individual Sequences Thanks! Questions? Details:

Papers at http://www.idsia.ch/~marcus

Book intends to excite a broader AI audience about abstract Algorithmic Information Theory –and– inform theorists about exciting applications to AI.

Decision Theory = Probability + Utility Theory + + Universal Induction = Ockham + Bayes + Turing = = = A Unified View of Artificial Intelligence

Open research problems at www.idsia.ch/~marcus/ai/uaibook.htm