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AbstractAbstract

Given the joint chances of a pair of random variables one can compute quantities of interest, 
like the mutual information. The Bayesian treatment of unknown chances involves computing, 
from a second order prior distribution and the data likelihood, a posterior distribution of the 
chances. A common treatment of incomplete data is to assume ignorability and determine the 
chances by the expectation maximization (EM) algorithm. The two different methods above are 
well established but typically separated. This paper joins the two approaches in the case of 
Dirichlet priors, and derives efficient approximations for the mean, mode and the (co)variance
of the chances and the mutual information. Furthermore, we prove the unimodality of the 
posterior distribution, whence the important property of convergence of EM to the global 
maximum in the chosen framework. These results are applied to the problem of selecting 
features for incremental learning and naive Bayes classification. A fast filter based on the 
distribution of mutual information is shown to outperform the traditional filter based on 
empirical mutual information on a number of incomplete real data sets.

Incomplete data, Bayesian statistics, expectation maximization, global optimization, Mutual 
Information, Cross Entropy, Dirichlet distribution, Second order distribution, Credible intervals, 
expectation and variance of mutual information, missing data, Robust feature selection, Filter 
approach, naive Bayes classifier.
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Mutual Information (MI)Mutual Information (MI)

nn Consider two discrete random variables (Consider two discrete random variables (ιι,,γγ))

nn ((In)DependenceIn)Dependence often measured by MIoften measured by MI

–– Also known as Also known as crosscross--entropyentropy or or information gaininformation gain
–– ExamplesExamples

nn Inference of Bayesian nets, classification treesInference of Bayesian nets, classification trees
nn Selection of relevant variables for the task at handSelection of relevant variables for the task at hand
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MIMI--Based FeatureBased Feature--Selection Filter (F)Selection Filter (F)
Lewis, 1992Lewis, 1992

nn ClassificationClassification
–– Predicting the Predicting the classclass value given values of value given values of featuresfeatures
–– Features (or attributes) and class = random variablesFeatures (or attributes) and class = random variables
–– Learning the rule ‘features Learning the rule ‘features èè classclass’’ from datafrom data

nn Filters goal: removing irrelevant featuresFilters goal: removing irrelevant features
–– More accurate predictions, easier modelsMore accurate predictions, easier models

nn MIMI--based approachbased approach
–– Remove feature Remove feature ιι if class if class γγ does not does not depend on it:depend on it:
–– Or: remove Or: remove ιι if                   if                   

nn is an arbitrary threshold of relevanceis an arbitrary threshold of relevance
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Empirical Mutual InformationEmpirical Mutual Information
a common way to use MI in practicea common way to use MI in practice

nn Data ( ) Data ( ) èè ccontingency tableontingency table

–– Empirical (sample) probability:Empirical (sample) probability:
–– Empirical mutual information: Empirical mutual information: 

nn Problems of the empirical approachProblems of the empirical approach
–– due to random fluctuations? (finite sample)due to random fluctuations? (finite sample)
–– How to know if it is reliable, e.g. by How to know if it is reliable, e.g. by 
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Incomplete SamplesIncomplete Samples

nn Missing features/classesMissing features/classes
–– Missing class: (i,?) Missing class: (i,?) →→ nnii?? = # features i with missing class label= # features i with missing class label
–– Missing feature: (?,j) Missing feature: (?,j) →→ nn?j?j = # classes j with missing feature= # classes j with missing feature
–– Total sample size Total sample size NNijij==nnijij+n+ni?i?+n+n?j?j

nn MAR assumption: MAR assumption: ππi?i?==ππi+   i+   ,  ,  ππ?j?j==ππ+j+j

–– General case: missing features and classGeneral case: missing features and class
nn EM + closedEM + closed--form leading order in Nform leading order in N--11 expressionsexpressions

–– Missing features onlyMissing features only
nn ClosedClosed--form leading order expressions for Mean and Varianceform leading order expressions for Mean and Variance
nn Complexity Complexity OO((rsrs))



We Need the Distribution of MIWe Need the Distribution of MI

nn Bayesian approachBayesian approach
–– Prior distribution       for the unknown chances Prior distribution       for the unknown chances 

(e.g., (e.g., DirichletDirichlet) ) 
–– Posterior: Posterior: 

nn Posterior probability density of MI:Posterior probability density of MI:

nn How to compute it?How to compute it?
–– Fitting a curve using mode and approximate varianceFitting a curve using mode and approximate variance
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Mean and Variance of Mean and Variance of ππ and Iand I
(missing features only)(missing features only)

nn Exact mode                                                 = leaExact mode                                                 = leading meanding mean

nn Leading covariance:Leading covariance:

withwith

nn Exact mode =                                               = leaExact mode =                                               = leading order meanding order mean

nn Leading variance:Leading variance:

nn Missing features & classes: EM converges globally, since Missing features & classes: EM converges globally, since p(p(ππ|n|n) is ) is unimodalunimodal
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MI Density Example GraphsMI Density Example Graphs
(complete sample)(complete sample)

Distribution of Mutual Information for Dirichlet Priors
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Robust Feature SelectionRobust Feature Selection

nn Filters: two new proposalsFilters: two new proposals
–– FF: include feature FF: include feature ιι iffiff

nn (include (include iffiff ““provenproven”” relevant)relevant)

–– BF: exclude feature BF: exclude feature ιι iffiff
nn (exclude (exclude iffiff ““provenproven”” irrelevant) irrelevant) 

nn ExamplesExamples
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Comparing the FiltersComparing the Filters

nn Experimental setExperimental set--upup
–– Filter (F,FF,BF) + Naive Bayes classifierFilter (F,FF,BF) + Naive Bayes classifier
–– Sequential learning and testingSequential learning and testing

nn Collected measures for each filterCollected measures for each filter
–– Average # of correct predictions (prediction accuracy)Average # of correct predictions (prediction accuracy)
–– Average # of features usedAverage # of features used
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Results on 10 Complete DatasetsResults on 10 Complete Datasets

nn # of used features# of used features

nn Accuracies NOT significantly differentAccuracies NOT significantly different
–– Except Chess & Spam with FFExcept Chess & Spam with FF

# Instances # Features Dataset FF F BF
690 36 Australian 32.6 34.3 35.9

3196 36 Chess 12.6 18.1 26.1
653 15 Crx 11.9 13.2 15.0

1000 17 German-org 5.1 8.8 15.2
2238 23 Hypothyroid 4.8 8.4 17.1
3200 24 Led24 13.6 14.0 24.0
148 18 Lymphography 18.0 18.0 18.0

5800 8 Shuttle-small 7.1 7.7 8.0
1101 21611 Spam 123.1 822.0 13127.4
435 16 Vote 14.0 15.2 16.0



Results on 10 Complete Datasets Results on 10 Complete Datasets -- ctdctd
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FF: Significantly Better AccuraciesFF: Significantly Better Accuracies

nn ChessChess

nn SpamSpam
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Results on 5 Incomplete Data SetsResults on 5 Incomplete Data Sets
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ConclusionsConclusions

nn Expressions for several moments of Expressions for several moments of ππ and MI and MI 
distribution even for incomplete categorical datadistribution even for incomplete categorical data
–– The distribution can be approximated wellThe distribution can be approximated well
–– Safer inferences, same computational complexity of empirical MISafer inferences, same computational complexity of empirical MI
–– Why not to use it?Why not to use it?

nn Robust feature selection shows power of MI distributionRobust feature selection shows power of MI distribution
–– FF outperforms traditional filter FFF outperforms traditional filter F

nn Many useful applications possibleMany useful applications possible
–– Inference of Bayesian netsInference of Bayesian nets
–– Inference of classification treesInference of classification trees
–– ……


