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Why Consistency?

² Consistent learners will learn the right thing (at
least) in the limit

² Not all learners are consistent

² The learner should have at least the chance to
be consistent (proper learning)

² Consistency is a desirable property

What is “learning the right thing“?

² Identify the exact data generating distribution

² Learn the predictive distribution
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Setup

² Given some training data (x1:n, y1:n)

² where xi 2 X and yi 2 f0, 1g for 1 · i · n

² Given a new input x 2 X , what is the corre-
sponding output y?

² More advanced question: What is the proba-
bility that y(x) = 1?

² Solution: Train a SVM, a Neural Net, ...
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Bayesian Framework

² A model is a function ν from X to the proba-
bility measures on f0, 1g

² Let C be a countable model class

² Each ν 2 C is assigned a prior weight wν > 0

² Kraft inequality:
P

ν∈C wν · 1

² Example: C lin2 »= Q2 is the class of rational
linear separators on the plane
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Proper/Online Learning

Online learning: Learn predictive distribution
µ(¢jx1:t, y<t) for increasing data (x<t, y<t)

Proper Learning assumption:

² The inputs x 2 X are generated by some
arbitrary mechanism

² The outputs y are generated by a distri-
bution

µ 2 C
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Bayes Mixture

² Then, given (x1:n, y1:n), predict according to
the Bayes mixture

ξ(yn+1jx1:n+1, y1:n) =

P
ν
wν

Qn+1
t=1 ν(ytjxt)P

ν
wν

Qn

t=1 ν(ytjxt)

² The Bayes mixture is the best we can do under
the Bayesian assumptions, but:

{ it is costly to evaluate and to approximate

{ it may output a distribution not within C (in

particular for regression)
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Static MDL

Therefore, we might prefer MDL (or MAP):

̺static(yn+1jx1:n+1, y1:n) = ν
∗
(x1:n,y1:n)

(yn+1jxn+1)

where

ν∗(x1:n,y1:n) = argmaxν∈C
fwνν(y1:njx1:n)g

Determine and use the most plausible model from C.
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Dynamic MDL

The term static MDL is opposed to non-normalized and
normalized dynamic MDL, which we need for the proofs:

̺(ynj, y<n) =
̺(y1:njx1:n)

̺(y<njx<n)

¯̺(ynj, y<n) =
̺(y1:njx1:n)P
yn
̺(y1:njx1:n)

with ̺(y1:njx1:n) = max
ν∈C

fwνν(y1:njx1:n)g.

This means: compute a new estimate for each possible
yn. Note that the dynamic MDL predictor may be not a
probability density (mass more than 1).
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Distance and Convergence

Hellinger distance of two predictive distributions:

h2t (µ, ψ) =
X

yt∈{0,1}

³p
µ(ytjx1:t, y<t)¡

p
ψ(ytjx1:t, y<t)

´2
.

Then the ψ-predictions converge to the µ-predictions in
Hellinger sum if

H2
x<∞

(µ, ψ) =
∞X

t=1

E[h2t (µ, ψ)] <1.

This implies h2t ! 0 almost surely .
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Other Distance Measures

st(µ, ψ) =
X

yt∈{0,1}

³
µ(ytjx1:t, y<t)¡ ψ(ytjx1:t, y<t)

´2

square distance

at(µ, ψ) =
X

yt∈{0,1}

¯̄
¯µ(ytjx1:t, y<t)¡ ψ(ytjx1:t, y<t)

¯̄
¯

absolute distance

dt(µ, ψ) =
X

yt∈{0,1}

µ(ytjx1:t, y<t) ¢ ln
µ(ytjx1:t, y<t)

ψ(ytjx1:t, y<t)

Kullback-Leibler divergence
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Distance Measures: Properties

² Hellinger distance ht:

8
>><
>>:

triangle inequality
· at
· dt
implies arbitrary loss bounds

² Quadratic distance st:

8
>><
>>:

triangle inequality
· at
· dt
implies arbitrary loss bounds

² Absolute distance at:

½
triangle inequality
· dt

² Kullback-Leibler divergence dt:

½
triangle inequality
· at
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Convergence Theorem

̺static ̺ ¯̺ µ
P

t at · 2w−1µ
P

t at · 3w−1µ
P

t dt · 2w−1µ

) H2(µ,̺static) · 21w−1µ

Recall µ 2 C (proper learning),
and wµ is the prior weight of µ, then
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Properties of the Proof

² Purely algebraic

² no hidden O-terms

² Inspired by Solomonoffs proof for univer-
sal induction
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Loss bounds
² Assume that predictions entail a loss ℓ(y, ỹjx)

² Loss depends on input x, true output is y, and pre-
diction ỹ

² Then we should predict in order to minimize expected
loss wrt. our current believe (Bayes-optimal)

² L denotes cumulative expected loss

² Loss bound :

L(̺) · L(µ) + 42w−1µ + 2
q
42w−1µ L(µ)

² ) expected per-round regret converges to zero al-
most surely
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Discussion

² w−1µ may be huge

{ Similar bounds hold for the Bayes mixture,
e.g.

H2(¹; ») · lnw−1µ

{ ) Bayes mixture converges much faster in
general

{ The w−1µ bound for MDL is sharp in general
{ With carefully chosen model class and prior,

MDL converges fast, too
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Discussion

² µ 2 C

{ This condition may be important!
{ Weak condition for universal model
class »= all programs on some universal
Turing machine

Thank you!


