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Overview

e Sequential online prediction in a Bayesian
framework

e No 1.1.d. assumption!!]

o A

o A
A

D
D

vlies to classification and to regression

dlies to Universal Prediction in the sense of

e We will obtain strong asymptotic assertions

and also (weak) loss bounds
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Rough Problem Setup

e Given an initial part x = x1.+ of a sequence, predict
the next symbol z;4

e Examples:

— 2 =01010101010101
— £ =1100100100001111110110101010001000100001
— ¢ =0001111001010010001111110110101001001111



(Semi)Measures

e This is a "binary talk”, but everything also
works for arbitrary alphabet!

e Let B={0,1}, B> = {all binary sequences}
e c is the empty string
e A measure y is a function p : B* — |0,1] s.t.

pu(e) =1 and p(x) = u(x0) + p(xl) for all x
e A semimeasure v has

v(e) < 1and v(z) > v(x0)+ v(xl) for all x
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= Examples: (Semi)Measures

o \(z) = 271m9th(®) s the uniform measure

e 11(111...1) =1 and p1(x) = 0 if x contains at least
one 0, is a deterministic measure

e My(x) = the probability that some universal Turing
machine (UTM) U outputs a string starting with x
when the input is random coin flips

e [ he latter is a semimeasure, not a measure, since U
does not halt on each input!

e Binary classification: u(1|2) isi.i.d. given some input
2z (conditionalized measure)



6

=— C(Classes of (Semi)Measures

e Let C be a countable class of (semi)measures
e Each v € C is assigned a prior weight w, > 0
o Kraft inequality: ) _.w, <1

e Universal setup: C = M = all programs on a
UTM U

e w, = 275W where K(v) is the prefix Kol-
mogorov Complexity of v, i.e. the length of
the shortest self-delimiting program defining v



Assumptions

We make no probabilistic assumption on C
We show bounds for given true distribution 1
which is a measure (not a semimeasure)

and assumed to be in C

hus, bounds depend on the complexity (or
prior weight w,,) of the true distribution

Occam'’s razor
priors correspond to regularization
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Bayes Mixtures

e \We denote a Bayes mixture by &

e Given observation £ and a countable class
together with weights (w, ) , the &-prediction is

- > wr(za)
g(a,]a:) o ZV UJVV(CIZ)

for a € {0, 1}.
e { Is semimeasure
e “"Committee of all models”
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Minimum Description Length

e Minimum Description Length (MDL) estimator

VCB

¥ = argmax{w,v(z)}

o(x) = max{w,v(z)}

IS maximizing element

log o(x) = min{— logw, — logv(x)}
logw, < code of the model

logv(z) <> code of data given
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Prediction using MDL

e Dynamic MDL predictor: o(a|z) = Q@(gg)

not a semimeasure!

e Normalized dynamic MDL: p(a|x) = Q(wg)(iz)(wl)

measure
search new model for each next symbol

v (za)
v ()

e Static MDL predictor: ¢%(a|x) =
(semi)measure
find best model and use this for prediction

e — Static MDL is computationally more efficient
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Bayes Mixture Predictions

Theorem (Solomonoff): Let © € C be a measure,
then
Z Z p(a|xys) (a\a:lzt))2 < ln(wgl)
ac{0,1}

= The posteriors almost surely converge to the true
probabilities fast

Universal setup: © must be a computable measure
This requirement is (philosophically) very weak



— Proof of Solomonoff's
= Theorem

() ( )
— Eln PATE 10 — Eln’uxl;Tle < lnw !
€($1:T+1)

Lemma:
The quadratic distance Observation:
IS bounded by the X dominates m I.e.

relative entropy. X(X) 2 wmn(x) for all x
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MDL: Main Theorem

Theorem: 1 € C measure, then

(i) Z Y (alz1) = Guom(alr1))” < Inw)t +w?,

ac{0,1} normalized dynamic
(i1) Z > (ulaers) — olalzi))” < 8- w,,
a€{0,1} dynamic
117 p(alxys) — 0™ (a|zy. 2§21-w_]L
7!
ac{0, 1} static

= The posteriors almost surely converge to the true prob-
abilities, but convergence is slow in general
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=—— Proof Idea

e For onorm:

— use relative entropy bound
— decompose pnorm IN 0 and normalizer

— o-contribution bounded by Inw}*

— normalizer contribution bounded by w;l

e [hen bound the cumulative absolute difference
|Q o Qnorm| by Qw;1

e Finally bound the cumulative absolute differ-
ence |o” — o| by 3w

e square distances may be chained
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Loss Bounds

¢ Theorem (Hutter): p € C measure =

LE(T) < LA(T) + 2/ LA(T) Inw;? + 2Inw,’

for 0/1 los and arbitrary loss
e Corollary: For arbitrary loss,

LQnorm( ) < LFL _|_ O \/L/J (w
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Loss Bounds

e Corollary: For 0/1 loss,

Le(T) < LM(T) + O \/Lﬂ + O(w;, ")

LY (T) < LMT) + O \/Lﬂ + O(w, ")

e Arbitrary loss open!

e Compare to prediction with expert advice: worst-case
loss for individual sequences

LPEA(TY < LY(T) _|_2\/2L#(T) Inw,*+O(In w;l)
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Exponential Bounds are Sharp

e MDL bound exponentially worse than Bayes mixture

e This bound is sharp! Example v1,..., 07,53 = 1
deterministic,
V10000000 , wlzé
VQZ]. 0O 0 0 0 0 0.. , W2 %
Vg].].OOOOO , wgzé
V4].].].OOOO , w4:%
vs:1 11100 0..., w=5
vs:1 1 1 1 10 0..., w=s
v7:1111110..., w=g
,U,:Vgl].].].].].].]...,UJg:%
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Exponential Bounds are Sharp

e [hen normalized dynamic MDL predicts probability
of s fort=1,...,7
e — cumulative error = O(w; ")

e The bound is even sharp if C contains only Bernoulli
distributions!

e But there under additional mild conditions, a good
bound holds
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Hybrid MDL predictions

v (za)

e Hybrid MDL predictor: o™ (q|x) = 7 (2)
e "‘Dynamic MDL but drop weights”

e Predictive properties? Poorer!
e Only converges if the maximizing element stabilizes

e This happens almost surely if

— all (semi)measures in C are independent of the past
(factorizable)

— u is uniformly stochastic, i.e. in each time step
either deterministic or noisy with at least a certain
amplitude
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Complexity and Randomness

Universal case: C = M, and C is C restricted to
computable measures

~

= 257 X 5(2) < €(x) < o(w) = &(z) = M(x)

TGécs: X = which inequality is proper? T

= all quantities define Martin-Lof randomness by
f(z1.n) < Cu(zy.,) for all n and some C
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Further Open Problems

e Between MDL and Bayes mixture?

e Active Learning?
e Other ideas?

e That's it, thank youl



