Convergence of Discrete MDL for Sequential Prediction

Jan Poland and Marcus Hutter

Overview

- Sequential online prediction in a Bayesian framework
- No i.i.d. assumption!!!
- Applies to classification and to regression
- Applies to Universal Prediction in the sense of AIT
- We will obtain strong asymptotic assertions
- ... and also (weak) loss bounds

Rough Problem Setup

- ullet Given an initial part $x=x_{1:t}$ of a sequence, predict the next symbol x_{t+1}
- Examples:
 - -x = 01010101010101

(Semi)Measures

- This is a "binary talk", but everything also works for arbitrary alphabet!
- Let $\mathbb{B} = \{0, 1\}$, $\mathbb{B}^{\infty} = \{\text{all binary sequences}\}$
- \bullet ϵ is the empty string
- A *measure* μ is a function $\mu : \mathbb{B}^* \to [0,1]$ s.t.

$$\mu(\epsilon) = 1$$
 and $\mu(x) = \mu(x0) + \mu(x1)$ for all x

ullet A semimeasure u has

$$\nu(\epsilon) \leq 1 \text{ and } \nu(x) \geq \nu(x0) + \nu(x1) \text{ for all } x$$

Examples: (Semi)Measures

- $\lambda(x) = 2^{-length(x)}$ is the uniform measure
- $\mu_1(111...1) = 1$ and $\mu_1(x) = 0$ if x contains at least one 0, is a deterministic measure
- $M_U(x) =$ the probability that some universal Turing machine (UTM) U outputs a string starting with x when the input is random coin flips
- ullet The latter is a semimeasure, not a measure, since U does not halt on each input!
- Binary classification: $\mu(1|z)$ is i.i.d. given some input z (conditionalized measure)

Classes of (Semi)Measures

- Let C be a *countable* class of (semi)measures
- Each $\nu \in \mathcal{C}$ is assigned a *prior weight* $w_{\nu} > 0$
- Kraft inequality: $\sum_{\nu \in \mathcal{C}} w_{\nu} \leq 1$
- ullet Universal setup: $\mathcal{C}=\mathcal{M}\cong \mathsf{all}$ programs on a UTM U
- $w_{\nu}=2^{-K(\nu)}$ where $K(\nu)$ is the *prefix Kolmogorov Complexity* of ν , i.e. the length of the shortest self-delimiting program defining ν

Assumptions

- ullet We make *no probabilistic* assumption on ${\mathcal C}$
- ullet We show bounds for given *true distribution* μ
- which is a *measure* (not a semimeasure)
- ullet and assumed to be in ${\mathcal C}$
- ullet Thus, bounds depend on the complexity (or prior weight w_{μ}) of the true distribution
- Occam's razor
- priors correspond to regularization

Bayes Mixtures

- ullet We denote a Bayes mixture by ξ
- Given observation x and a countable class together with weights (w_{ν}) , the ξ -prediction is

$$\xi(a|x) = \frac{\sum_{\nu} w_{\nu} \nu(xa)}{\sum_{\nu} w_{\nu} \nu(x)}$$

for $a \in \{0, 1\}$.

- \bullet ξ is semimeasure
- "Committee of all models"

Minimum Description Length

Minimum Description Length (MDL) estimator

$$\nu^{x} = \arg\max\{w_{\nu}\nu(x)\}$$

$$\varrho(x) = \max\{w_{\nu}\nu(x)\}$$

- ν^x is maximizing element
- $-\log \varrho(x) = \min\{-\log w_{\nu} \log \nu(x)\}$
- $\bullet \log w_{\nu} \leftrightarrow \mathsf{code} \ \mathsf{of} \ \mathsf{the} \ \mathsf{model}$
- $-\log \nu(x) \leftrightarrow \text{code of data given}$

Prediction using MDL

- Dynamic MDL predictor: $\varrho(a|x) = \frac{\varrho(xa)}{\varrho(x)}$ not a semimeasure!
- Normalized dynamic MDL: $\varrho(a|x) = \frac{\varrho(xa)}{\varrho(x0) + \varrho(x1)}$ measure search new model for each next symbol
- Static MDL predictor: $\varrho^x(a|x) = \frac{\nu^x(xa)}{\nu^x(x)}$ (semi)measure find best model and use this for prediction
- ◆ Static MDL is computationally more efficient

Bayes Mixture Predictions

• **Theorem** (Solomonoff): Let $\mu \in \mathcal{C}$ be a measure, then

$$\sum_{t=0}^{\infty} \mathbf{E} \sum_{a \in \{0,1\}} \left(\mu(a|x_{1:t}) - \xi(a|x_{1:t}) \right)^2 \le \ln(w_{\mu}^{-1})$$

- The posteriors almost surely converge to the true probabilities fast
- ullet Universal setup: μ must be a computable measure
- This requirement is (philosophically) very weak

Proof of Solomonoff's Theorem

$$\sum_{t=0}^{I} \mathbf{E} \sum_{a \in \{0,1\}} (\mu(a|x_{1:t}) - \xi(a|x_{1:t}))^{2}$$

$$\leq \sum_{t=0}^{T} \mathbf{E} \sum_{a \in \{0,1\}} \mu(a|x_{1:t}) \ln \frac{\mu(a|x_{1:t})}{\xi(a|x_{1:t})} = \sum_{t=0}^{T} \mathbf{E} \ln \frac{\mu(x_{t}|x_{1:t})}{\xi(x_{t}|x_{1:t})}$$

$$\left(= \mathbf{E} \ln \left(\prod_{t=0}^{T} \frac{\mu(x_t|x_{1:t})}{\xi(x_t|x_{1:t})} \right) = \mathbf{E} \ln \frac{\mu(x_{1:T+1})}{\xi(x_{1:T+1})} \le \ln w_{\mu}^{-1} \right)$$

Lemma:

The quadratic distance is bounded by the relative entropy.

Observation:

x dominates μ , i.e. $x(x) \ge w\mu \mu(x)$ for all x

MDL: Main Theorem

Theorem: $\mu \in \mathcal{C}$ measure, then

$$(i) \qquad \sum_{t=0}^{\mathbf{E}} \ \mathbf{E} \sum_{a \in \{0,1\}} \left(\mu(a|x_{1:t}) - \varrho_{\text{norm}}(a|x_{1:t}) \right)^2 \leq \ln w_{\mu}^{-1} + w_{\mu}^{-1}, \\ \text{normalized dynamic}$$

$$(ii) \qquad \sum_{t=0} \ \mathbf{E} \sum_{a \in \{0,1\}} \left(\mu(a|x_{1:t}) - \varrho(a|x_{1:t}) \right)^2 \leq 8 \cdot w_{\mu}^{-1}, \\ \text{dynamic}$$

(iii)
$$\sum_{t=0}^{\infty} \mathbf{E} \sum_{a \in \{0,1\}} \left(\mu(a|x_{1:t}) - \varrho^{x_{1:t}}(a|x_{1:t}) \right)^2 \le 21 \cdot w_{\mu}^{-1}$$

⇒ The posteriors *almost surely* converge to the true probabilities, but convergence is *slow* in general

Proof Idea

- For ρ_{norm} :
 - use relative entropy bound
 - decompose ρ_{norm} in ρ and normalizer
 - ϱ -contribution bounded by $\ln w_{\mu}^{-1}$
 - normalizer contribution bounded by w_{μ}^{-1}
- Then bound the cumulative absolute difference $|\varrho-\varrho_{
 m norm}|$ by $2w_{\mu}^{-1}$
- Finally bound the cumulative absolute difference $|\varrho^x - \varrho|$ by $3w_u^{-1}$
- square distances may be chained

Loss Bounds

• **Theorem** (Hutter): $\mu \in \mathcal{C}$ measure \Rightarrow

$$L^{\xi}(T) \le L^{\mu}(T) + 2\sqrt{L^{\mu}(T)\ln w_{\mu}^{-1}} + 2\ln w_{\mu}^{-1}$$

for 0/1 los and arbitrary loss

• Corollary: For arbitrary loss,

$$L^{\varrho_{\text{norm}}}(T) \le L^{\mu}(T) + O(\sqrt{L^{\mu}(T)w_{\mu}^{-1}}) + O(w_{\mu}^{-1})$$

Loss Bounds

• Corollary: For 0/1 loss,

$$L^{\varrho}(T) \leq L^{\mu}(T) + O(\sqrt{L^{\mu}(T)w_{\mu}^{-1}}) + O(w_{\mu}^{-1})$$
$$L^{\varrho^{x}}(T) \leq L^{\mu}(T) + O(\sqrt{L^{\mu}(T)w_{\mu}^{-1}}) + O(w_{\mu}^{-1})$$

- Arbitrary loss open!
- Compare to prediction with expert advice: worst-case loss for individual sequences

$$L^{PEA}(T) \le L^{\mu}(T) + 2\sqrt{2L^{\mu}(T)\ln w_{\mu}^{-1}} + O(\ln w_{\mu}^{-1})$$

Exponential Bounds are Sharp

- MDL bound exponentially worse than Bayes mixture
- This bound is sharp! Example $\nu_1, \dots, \nu_7, \nu_8 = \mu$ deterministic,

```
\nu_5:1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \dots, \quad w_5=\frac{1}{8}
       \nu_6: 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \dots, \quad w_6 = \frac{1}{8}

u_7 : 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \dots, \quad w_7 = \frac{1}{8}

\mu = \nu_8 : 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad \dots , \quad w_8 =
```


Exponential Bounds are Sharp

- Then normalized dynamic MDL predicts probability of $\frac{1}{2}$ for $t=1,\ldots,7$
- $\bullet \to \text{cumulative error} = O(w_{\mu}^{-1})$
- The bound is even sharp if \mathcal{C} contains only Bernoulli distributions!
- But there under additional mild conditions, a good bound holds

Hybrid MDL predictions

- Hybrid MDL predictor: $\varrho^{hybrid}(a|x) = \frac{\nu^{xa}(xa)}{\nu^{x}(x)}$
- "Dynamic MDL but drop weights"
- Predictive properties? Poorer!
- Only converges if the maximizing element stabilizes
- This happens almost surely if
 - all (semi)measures in C are independent of the past (factorizable)
 - $-\mu$ is uniformly stochastic, i.e. in each time step either deterministic or noisy with at least a certain amplitude

Complexity and Randomness

Universal case: $\mathcal{C}=\mathcal{M}$, and $\widetilde{\mathcal{C}}$ is \mathcal{C} restricted to computable measures

$$\Rightarrow 2^{Km(x)} \stackrel{\times}{=} \tilde{\varrho}(x) \stackrel{\times}{\leq} \tilde{\xi}(x) \stackrel{\times}{\leq} \varrho(x) \stackrel{\times}{=} \xi(x) \stackrel{\times}{=} M(x)$$

$$\text{Gács:} \stackrel{\times}{=} \Rightarrow \text{ which inequality is proper?}$$

 \Rightarrow all quantities define Martin-Löf randomness by $f(x_{1:n}) \leq C\mu(x_{1:n})$ for all n and some C

Further Open Problems

- Between MDL and Bayes mixture?
- Active Learning?
- Other ideas?

That's it, thank you!