Convergence of Discrete MDL for Sequential Prediction

Jan Poland and Marcus Hutter

IDSIA • Lugano • Switzerland

Overview

- Sequential online prediction in a Bayesian framework
- No i.i.d. assumption!!!
- Applies to classification and to regression
- Applies to Universal Prediction in the sense of AIT
- We will obtain strong asymptotic assertions
- ... and also (weak) loss bounds

Rough Problem Setup

- Given an initial part $x=x_{1: t}$ of a sequence, predict the next symbol x_{t+1}
- Examples:

$-x=01010101010101$
$-x=1100100100001111110110101010001000100001$
$-x=0001111001010010001111110110101001001111$

(Semi)Measures

- This is a "binary talk", but everything also works for arbitrary alphabet!
- Let $\mathbb{B}=\{0,1\}, \mathbb{B}^{\infty}=\{$ all binary sequences $\}$
- ϵ is the empty string
- A measure μ is a function $\mu: \mathbb{B}^{*} \rightarrow[0,1]$ s.t.
$\mu(\epsilon)=1$ and $\mu(x)=\mu(x 0)+\mu(x 1)$ for all x
- A semimeasure ν has
$\nu(\epsilon) \leq 1$ and $\nu(x) \geq \nu(x 0)+\nu(x 1)$ for all x

Examples: (Semi)Measures

- $\lambda(x)=2^{\text {-length }(x)}$ is the uniform measure
- $\mu_{1}(111 \ldots 1)=1$ and $\mu_{1}(x)=0$ if x contains at least one 0 , is a deterministic measure
- $M_{U}(x)=$ the probability that some universal Turing machine (UTM) U outputs a string starting with x when the input is random coin flips
- The latter is a semimeasure, not a measure, since U does not halt on each input!
- Binary classification: $\mu(1 \mid z)$ is i.i.d. given some input z (conditionalized measure)

Classes of (Semi)Measures

- Let \mathcal{C} be a countable class of (semi)measures
- Each $\nu \in \mathcal{C}$ is assigned a prior weight $w_{\nu}>0$
- Kraft inequality: $\sum_{\nu \in \mathcal{C}} w_{\nu} \leq 1$
- Universal setup: $\mathcal{C}=\mathcal{M} \cong$ all programs on a UTM U
- $w_{\nu}=2^{-K(\nu)}$ where $K(\nu)$ is the prefix Kolmogorov Complexity of ν, i.e. the length of the shortest self-delimiting program defining ν

Assumptions

- We make no probabilistic assumption on \mathcal{C}
- We show bounds for given true distribution μ
- which is a measure (not a semimeasure)
- and assumed to be in \mathcal{C}
- Thus, bounds depend on the complexity (or prior weight w_{μ}) of the true distribution
- Occam's razor
- priors correspond to regularization

Bayes Mixtures

- We denote a Bayes mixture by ξ
- Given observation x and a countable class together with weights $\left(w_{\nu}\right)$, the ξ-prediction is

$$
\xi(a \mid x)=\frac{\sum_{\nu} w_{\nu} \nu(x a)}{\sum_{\nu} w_{\nu} \nu(x)}
$$

for $a \in\{0,1\}$.

- ξ is semimeasure
- "Committee of all models"

Minimum Description Length

- Minimum Description Length (MDL) estimator

$$
\begin{aligned}
\nu^{x} & =\arg \max \left\{w_{\nu} \nu(x)\right\} \\
\varrho(x) & =\max \left\{w_{\nu} \nu(x)\right\}
\end{aligned}
$$

- ν^{x} is maximizing element
- $-\log \varrho(x)=\min \left\{-\log w_{\nu}-\log \nu(x)\right\}$
- $-\log w_{\nu} \leftrightarrow$ code of the model
- $-\log \nu(x) \leftrightarrow$ code of data given

Prediction using MDL

- Dynamic MDL predictor: $\varrho(a \mid x)=\frac{\varrho(x a)}{\varrho(x)}$ not a semimeasure!
- Normalized dynamic MDL: $\varrho(a \mid x)=\frac{\varrho(x a)}{\varrho(x 0)+\varrho(x 1)}$ measure
search new model for each next symbol
- Static MDL predictor: $\varrho^{x}(a \mid x)=\frac{\nu^{x}(x a)}{\nu^{x}(x)}$ (semi)measure find best model and use this for prediction
- \Rightarrow Static MDL is computationally more efficient

Bayes Mixture Predictions

- Theorem (Solomonoff): Let $\mu \in \mathcal{C}$ be a measure, then

$$
\sum_{t=0}^{\infty} \mathbf{E} \sum_{a \in\{0,1\}}\left(\mu\left(a \mid x_{1: t}\right)-\xi\left(a \mid x_{1: t}\right)\right)^{2} \leq \ln \left(w_{\mu}^{-1}\right)
$$

- \Rightarrow The posteriors almost surely converge to the true probabilities fast
- Universal setup: μ must be a computable measure
- This requirement is (philosophically) very weak

Proof of Solomonoff's

Theorem

$$
\begin{aligned}
& \sum_{t=0}^{T} \mathbf{E} \sum_{a \in\{0,1\}}\left(\mu\left(a \mid x_{1: t}\right)-\xi\left(a \mid x_{1: t}\right)\right)^{2} \\
& \quad \leq \sum_{t=0}^{T} \mathbf{E} \sum_{a \in\{0,1\}} \mu\left(a \mid x_{1: t}\right) \ln \frac{\mu\left(a \mid x_{1: t}\right)}{\xi\left(a \mid x_{1: t}\right)}=\sum_{t=0}^{T} \mathbf{E} \ln \frac{\mu\left(x_{t} \mid x_{1: t}\right)}{\xi\left(x_{t} \mid x_{1: t}\right)} \\
& =\mathbf{E} \ln \left(\prod_{t=0}^{T} \frac{\mu\left(x_{t} \mid x_{1: t}\right)}{\xi\left(x_{t} \mid x_{1: t}\right)}\right)=\mathbf{E} \ln \frac{\mu\left(x_{1: T+1}\right)}{\xi\left(x_{1: T+1}\right)} \leq \ln w_{\mu}^{-1}
\end{aligned}
$$

The quadratic distance is bounded by the relative entropy.

Observation:

ξ dominates μ, i.e.
$\xi(x) \geq w \mu \mu(x)$ for all x

MDL: Main Theorem

Theorem: $\mu \in \mathcal{C}$ measure, then
(i) $\quad \sum_{t=0}^{\infty} \mathbf{E} \sum_{a \in\{0,1\}}\left(\mu\left(a \mid x_{1: t}\right)-\underset{\substack{\varrho_{\text {norm }}\left(a \mid x_{1: t}\right) \\ \text { normalized dynamic }}}{2} \leq \ln w_{\mu}^{-1}+w_{\mu}^{-1}\right.$,
(ii) $\quad \sum_{t=0}^{\infty} \mathbf{E} \sum_{a \in\{0,1\}}\left(\mu\left(a \mid x_{1: t}\right)-\underset{\substack{\text { dynamic }}}{\left.\varrho\left(a \mid x_{1: t}\right)\right)^{2} \leq 8 \cdot w_{\mu}^{-1},}\right.$
(iii) $\quad \sum_{t=0}^{\infty} \mathbf{E} \sum_{a \in\{0,1\}}\left(\mu\left(a \mid x_{1: t}\right)-\underset{\text { static }}{\left.\varrho^{x_{1: t}}\left(a \mid x_{1: t}\right)\right)^{2} \leq 21 \cdot w_{\mu}^{-1}, ~}\right.$
\Rightarrow The posteriors almost surely converge to the true probabilities, but convergence is slow in general

Proof Idea

- For $\varrho_{\text {norm }}$:
- use relative entropy bound
- decompose $\varrho_{\text {norm }}$ in ϱ and normalizer
- ϱ-contribution bounded by $\ln w_{\mu}^{-1}$
- normalizer contribution bounded by w_{μ}^{-1}
- Then bound the cumulative absolute difference $\left|\varrho-\varrho_{\text {norm }}\right|$ by $2 w_{\mu}^{-1}$
- Finally bound the cumulative absolute difference $\left|\varrho^{x}-\varrho\right|$ by $3 w_{\mu}^{-1}$
- square distances may be chained

Loss Bounds

- Theorem (Hutter): $\mu \in \mathcal{C}$ measure \Rightarrow

$$
L^{\xi}(T) \leq L^{\mu}(T)+2 \sqrt{L^{\mu}(T) \ln w_{\mu}^{-1}}+2 \ln w_{\mu}^{-1}
$$

for $0 / 1$ los and arbitrary loss

- Corollary: For arbitrary loss,

$$
L^{\varrho_{\mathrm{norm}}}(T) \leq L^{\mu}(T)+O\left(\sqrt{L^{\mu}(T) w_{\mu}^{-1}}\right)+O\left(w_{\mu}^{-1}\right)
$$

Loss Bounds

- Corollary: For 0/1 loss,

$$
\begin{aligned}
L^{\varrho}(T) & \leq L^{\mu}(T)+O\left(\sqrt{L^{\mu}(T) w_{\mu}^{-1}}\right)+O\left(w_{\mu}^{-1}\right) \\
L^{\varrho^{x}}(T) & \leq L^{\mu}(T)+O\left(\sqrt{L^{\mu}(T) w_{\mu}^{-1}}\right)+O\left(w_{\mu}^{-1}\right)
\end{aligned}
$$

- Arbitrary loss open!
- Compare to prediction with expert advice: worst-case loss for individual sequences

$$
L^{P E A}(T) \leq L^{\mu}(T)+2 \sqrt{2 L^{\mu}(T) \ln w_{\mu}^{-1}}+O\left(\ln w_{\mu}^{-1}\right)
$$

Exponential Bounds are Sharp

- MDL bound exponentially worse than Bayes mixture
- This bound is sharp! Example $\nu_{1}, \ldots, \nu_{7}, \nu_{8}=\mu$ deterministic,

$$
\begin{array}{rrrrrrll}
\nu_{1}: 0 & 0 & 0 & 0 & 0 & 0 & 0 \ldots, & w_{1}=\frac{1}{8} \\
\nu_{2}: 1 & 0 & 0 & 0 & 0 & 0 & 0 \ldots, & w_{2}=\frac{1}{8} \\
\nu_{3}: 1 & 1 & 0 & 0 & 0 & 0 & 0 \ldots, & w_{3}=\frac{1}{8} \\
\nu_{4}: 1 & 1 & 1 & 0 & 0 & 0 & 0 \ldots, & w_{4}=\frac{1}{8} \\
\nu_{5}: 1 & 1 & 1 & 1 & 0 & 0 & 0 \ldots, & w_{5}=\frac{1}{8} \\
\nu_{6}: 1 & 1 & 1 & 1 & 1 & 0 & 0 \ldots, & w_{6}=\frac{1}{8} \\
\nu_{7}: 1 & 1 & 1 & 1 & 1 & 1 & 0 \ldots, & w_{7}=\frac{1}{8} \\
\mu=\nu_{8}: 1 & 1 & 1 & 1 & 1 & 1 & 1 \ldots, & w_{8}=\frac{1}{8}
\end{array}
$$

Exponential Bounds are Sharp

- Then normalized dynamic MDL predicts probability of $\frac{1}{2}$ for $t=1, \ldots, 7$
- \rightarrow cumulative error $=O\left(w_{\mu}^{-1}\right)$
- The bound is even sharp if \mathcal{C} contains only Bernoulli distributions!
- But there under additional mild conditions, a good bound holds

Hybrid MDL predictions

- Hybrid MDL predictor: $\varrho^{h y b r i d}(a \mid x)=\frac{\nu^{x a}(x a)}{\nu^{x}(x)}$
- "Dynamic MDL but drop weights"
- Predictive properties? Poorer!
- Only converges if the maximizing element stabilizes
- This happens almost surely if
- all (semi)measures in \mathcal{C} are independent of the past (factorizable)
- μ is uniformly stochastic, i.e. in each time step either deterministic or noisy with at least a certain amplitude

Complexity and Randomness

Universal case: $\mathcal{C}=\mathcal{M}$, and $\tilde{\mathcal{C}}$ is \mathcal{C} restricted to computable measures

$$
\begin{aligned}
\Rightarrow & 2^{K m(x)} \stackrel{\times}{\varrho} \tilde{\varrho}(x) \stackrel{\times}{\leq} \tilde{\xi}(x) \stackrel{\times}{\leq} \varrho(x) \stackrel{\times}{=} \xi(x) \stackrel{\times}{=} M(x) \\
& \text { Gács: } \Rightarrow \text { which inequality is proper? }
\end{aligned}
$$

\Rightarrow all quantities define Martin-Löf randomness by $f\left(x_{1: n}\right) \leq C \mu\left(x_{1: n}\right)$ for all n and some C

Further Open Problems

- Between MDL and Bayes mixture?
- Active Learning?
- Other ideas?
- That's it, thank you!

