
IDSIA  � Lugano � Switzerland

Convergence of Discrete MDL 
for Sequential Prediction

Jan Poland and Marcus Hutter



2

Overview

² Sequential online prediction in a Bayesian
framework

² No i.i.d. assumption!!!
² Applies to classi¯cation and to regression
² Applies to Universal Prediction in the sense of

AIT
² We will obtain strong asymptotic assertions
² ... and also (weak) loss bounds



3

Rough Problem Setup

² Given an initial part x = x1:t of a sequence, predict
the next symbol xt+1

² Examples:
{ x = 01010101010101

{ x = 1100100100001111110110101010001000100001

{ x = 0001111001010010001111110110101001001111
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(Semi)Measures
² This is a "binary talk", but everything also

works for arbitrary alphabet!
² Let B = f0; 1g, B1 = fall binary sequencesg
² ² is the empty string
² A measure ¹ is a function ¹ : B¤ ! [0; 1] s.t.

¹(²) = 1 and ¹(x) = ¹(x0) + ¹(x1) for all x

² A semimeasure º has

º(²) · 1 and º(x) ¸ º(x0) + º(x1) for all x
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Examples: (Semi)Measures
² ¸(x) = 2¡length(x) is the uniform measure
² ¹1(111:::1) = 1 and ¹1(x) = 0 if x contains at least

one 0, is a deterministic measure

² MU(x) = the probability that some universal Turing
machine (UTM) U outputs a string starting with x
when the input is random coin °ips

² The latter is a semimeasure, not a measure, since U
does not halt on each input!

² Binary classi¯cation: ¹(1jz) is i.i.d. given some input
z (conditionalized measure)
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Classes of (Semi)Measures

² Let C be a countable class of (semi)measures
² Each º 2 C is assigned a prior weight wº > 0
² Kraft inequality:

P
º2C wº · 1

² Universal setup: C = M »= all programs on a
UTM U

² wº = 2¡K(º) where K(º) is the pre¯x Kol-
mogorov Complexity of º, i.e. the length of
the shortest self-delimiting program de¯ning º
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Assumptions

² We make no probabilistic assumption on C
² We show bounds for given true distribution ¹
² which is a measure (not a semimeasure)
² and assumed to be in C
² Thus, bounds depend on the complexity (or

prior weight w¹) of the true distribution
² Occam's razor
² priors correspond to regularization
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Bayes Mixtures

² We denote a Bayes mixture by »
² Given observation x and a countable class

together with weights (wº) , the »-prediction is

»(ajx) =
P

º wºº(xa)P
º wºº(x)

for a 2 f0; 1g.
² » is semimeasure
² \Committee of all models"
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Minimum Description Length

² Minimum Description Length (MDL) estimator

ºx = arg maxfwºº(x)g
%(x) = maxfwºº(x)g

² ºx is maximizing element
² ¡ log %(x) = minf¡ logwº ¡ log º(x)g
² ¡ logwº $ code of the model
² ¡ log º(x) $ code of data given
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Prediction using MDL

² Dynamic MDL predictor: %(ajx) = %(xa)
%(x)

not a semimeasure!
² Normalized dynamic MDL: %(ajx) = %(xa)

%(x0)+%(x1)
measure
search new model for each next symbol

² Static MDL predictor: %x(ajx) = ºx(xa)
ºx(x)

(semi)measure
¯nd best model and use this for prediction

² ) Static MDL is computationally more e±cient
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Bayes Mixture Predictions

² Theorem (Solomono®): Let ¹ 2 C be a measure,
then

1X

t=0

E
X

a2f0;1g

¡
¹(ajx1:t)¡ »(ajx1:t)

¢2 · ln(w¡1
¹ )

² ) The posteriors almost surely converge to the true
probabilities fast

² Universal setup: ¹ must be a computable measure
² This requirement is (philosophically) very weak
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Proof of Solomonoff's 
Theorem

Lemma: 
The quadratic distance
is bounded by the 
relative entropy.

Observation: 
ξ dominates µ, i.e.
ξ(x) ≥ wµ µ(x) for all x

TX

t=0

E
X

a2f0;1g

¡
¹(ajx1:t)¡ »(ajx1:t)

¢2

·
TX

t=0

E
X

a2f0;1g
¹(ajx1:t) ln

¹(ajx1:t)
»(ajx1:t)

=
TX

t=0

E ln
¹(xtjx1:t)
»(xtjx1:t)

= E ln

Ã
TY

t=0

¹(xtjx1:t)
»(xtjx1:t)

!
= E ln

¹(x1:T+1)
»(x1:T+1)

· lnw¡1
¹
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MDL: Main Theorem

static

dynamic

normalized dynamic

Theorem: ¹ 2 C measure, then

(i)
1X

t=0

E
X

a2f0;1g

¡
¹(ajx1:t)¡ %norm(ajx1:t)

¢2 · lnw¡1
¹ + w¡1

¹ ;

(ii)
1X

t=0

E
X

a2f0;1g

¡
¹(ajx1:t)¡ %(ajx1:t)

¢2 · 8 ¢ w¡1
¹ ;

(iii)
1X

t=0

E
X

a2f0;1g

¡
¹(ajx1:t)¡ %x1:t(ajx1:t)

¢2 · 21 ¢ w¡1
¹

) The posteriors almost surely converge to the true prob-
abilities, but convergence is slow in general
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Proof Idea

² For %norm:
{ use relative entropy bound
{ decompose %norm in % and normalizer
{ %-contribution bounded by lnw¡1

¹
{ normalizer contribution bounded by w¡1

¹

² Then bound the cumulative absolute di®erence
j%¡ %normj by 2w¡1

¹

² Finally bound the cumulative absolute di®er-
ence j%x ¡ %j by 3w¡1

¹

² square distances may be chained
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Loss Bounds

² Theorem (Hutter): ¹ 2 C measure )

L»(T ) · L¹(T ) + 2
q
L¹(T ) lnw¡1

¹ + 2 lnw¡1
¹

for 0/1 los and arbitrary loss
² Corollary: For arbitrary loss,

L%norm(T ) · L¹(T ) +O(
q
L¹(T )w¡1

¹ ) +O(w¡1
¹ )
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Loss Bounds

² Corollary: For 0/1 loss,

L%(T ) · L¹(T ) +O(
q
L¹(T )w¡1

¹ ) + O(w¡1
¹ )

L%
x
(T ) · L¹(T ) +O(

q
L¹(T )w¡1

¹ ) + O(w¡1
¹ )

² Arbitrary loss open!
² Compare to prediction with expert advice: worst-case

loss for individual sequences

LPEA(T ) · L¹(T )+2
q

2L¹(T ) lnw¡1
¹ +O(lnw¡1

¹ )
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Exponential Bounds are Sharp

² MDL bound exponentially worse than Bayes mixture
² This bound is sharp! Example º1; : : : ; º7; º8 = ¹

deterministic ,

º1 : 0 0 0 0 0 0 0 : : : ; w1 = 1
8

º2 : 1 0 0 0 0 0 0 : : : ; w2 = 1
8

º3 : 1 1 0 0 0 0 0 : : : ; w3 = 1
8

º4 : 1 1 1 0 0 0 0 : : : ; w4 = 1
8

º5 : 1 1 1 1 0 0 0 : : : ; w5 = 1
8

º6 : 1 1 1 1 1 0 0 : : : ; w6 = 1
8

º7 : 1 1 1 1 1 1 0 : : : ; w7 = 1
8

¹ = º8 : 1 1 1 1 1 1 1 : : : ; w8 = 1
8
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Exponential Bounds are Sharp

² Then normalized dynamic MDL predicts probability
of 1

2 for t = 1; : : : ; 7
² ! cumulative error = O(w¡1

¹ )
² The bound is even sharp if C contains only Bernoulli

distributions!
² But there under additional mild conditions, a good

bound holds
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Hybrid MDL predictions

² Hybrid MDL predictor: %hybrid(ajx) = ºxa(xa)
ºx(x)

² \Dynamic MDL but drop weights"
² Predictive properties? Poorer!
² Only converges if the maximizing element stabilizes
² This happens almost surely if

{ all (semi)measures in C are independent of the past
(factorizable)

{ ¹ is uniformly stochastic, i.e. in each time step
either deterministic or noisy with at least a certain
amplitude
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Complexity and Randomness

Universal case: C = M, and ~C is C restricted to
computable measures

) 2Km(x) £= ~%(x)
£
· ~»(x)

£
· %(x) £= »(x) £= M(x)

) all quantities de¯ne Martin-LÄof randomness by
f(x1:n) · C¹(x1:n) for all n and some C

G¶acs: £= ) which inequality is proper?
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Further Open Problems

² Between MDL and Bayes mixture?
² Active Learning?
² Other ideas?

² That's it, thank you!


