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Abstract

A key issue in statistics and machine learning is to automatically select

the “right” model complexity, e.g. the number of neighbors to be

averaged over in k nearest neighbor (kNN) regression or the polynomial

degree in regression with polynomials. We suggest a novel principle

(LoRP) for model selection in regression and classification. It is based

on the loss rank, which counts how many other (fictitious) data would

be fitted better. LoRP selects the model that has minimal loss rank.

Unlike most penalized maximum likelihood variants (AIC,BIC,MDL),

LoRP only depends on the regression functions and the loss function. It

works without a stochastic noise model, and is directly applicable to any

non-parametric regressor, like kNN.
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Example: Polynomial Regression

• Straight line does not fit data well (large training error)

high bias ⇒ poor predictive performance

• High order polynomial fits data perfectly (zero training error)

high variance (overfitting)

⇒ poor prediction too!

• Reasonable polynomial

degree d performs well.

How to select d?

minimizing training error

obviously does not work.
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Model Complexity Selection
Regression and classification:
Learn functional relation f :X →Y for data D={(x1, y1)...(xn, yn)}.
Model complexity: Many regression models are controlled by some
smoothness or flexibility or complexity parameter c:
• Non-parametric example: the number of neighbors to be

averaged over in k nearest neighbor (kNN) regression.
• Parametric example: the polynomial degree d in regression

with polynomials.

Model selection: Select the “right” model complexity c, like k or d.

Selection cannot be based on the training error,
since the more complex the model (large d, small k)
the better the fit on D (perfect for d = n and k = 1).

This problem is called overfitting,
for which various remedies have been suggested ...
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Empirical Model Selection
How to select complexity parameter

• Kernel width a,

• penalization constant λ,

• number k of nearest neighbors,

• the polynomial degree d?

Empirical test-set-based methods:

Regress on training set and mini-

mize empirical error w.r.t. “com-

plexity” parameter (a, λ, k, d) on

a separate test-set.

Problems: Reduces training set size and therefore regression quality.
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Theoretical Model Selection
How to select complexity or flexibility or smoothness parameter:

Kernel width a, penalization constant λ, number k of nearest neighbors,

the polynomial degree d?

For parametric regression with d parameters:

• Bayesian model selection,

• Akaike Information Criterion (AIC),

• Bayesian Information Criterion (BIC),

• Minimum Description Length (MDL),

They all add a penalty proportional to d to the loss.

Problems:

• Limited to (semi)parametric models (with d “true” parameters).

• Needs a full stochastic model P(y|parameters), not just f .

• Loss function is often not exploited.
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The Loss Rank Principle for Model Selection
Let f̂c

D : X → Y be the (best) regressor of complexity c on data D.

The loss Rank of f̂c
D is defined as the number of other (fictitious) data

D′ that are fitted better by f̂c
D′ than D is fitted by f̂c

D.

• c is too small ⇒ f̂c
D fits D badly

⇒ many other D′ can be fitted better ⇒ Rank is large.

• c is too large ⇒ many D′ can be fitted well ⇒ Rank is large.

• c is appropriate ⇒ f̂c
D fits D well and not too many other D′

can be fitted well ⇒ Rank is small.

LoRP: Select model complexity c that has minimal loss Rank

Unlike most penalized maximum likelihood variants (AIC,BIC,MDL),

• LoRP only depends on the regression and the loss function.

• It works without a stochastic noise model, and

• is directly applicable to any non-parametric regressor, like kNN.
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LoRP for Classification (finite Y)

• Observed data: D = (x,y) := ((x1, y1)...(xn, yn))∈(X×Y)n =: D

• yi≈ftrue(xi) are distorted from the unknown true values ftrue(xi).

• Regression: Gives r : D → F such that

ŷ := r(x|D) ≡ f̂D(x) ≈ ftrue(x) for all x ∈ X .

• Empirical loss of regressor r:

L := Lossr(y|x) := Loss(y, ŷ) =
∑n

i=1 Loss(yi, r(xi|x,y))

• Loss Rank: Rankr(y|x) := #{y′∈Yn : Lossr(y
′|x)≤L}

• Class of regressors R ∋ r, e.g. kNN {rk : k ∈ IN}, or
{rd =best poly. of degree d : d ∈ IN0}.

LoRP: rbest = argminr∈R Rankr(y|x)
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Example: Simple Discrete
Consider X = {1, 2}, Y = {0, 1, 2}, x1 = y1 = 1, x2 = y2 = 2, n = 2,
least squares (zero, constant, linear) polynomials R = {rd : d = 0, 1, 2},
and quadratic Loss:
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d 1 2 3 4 5 6 7 8 9 Rankrd(D)

0 y′
1y

′
2 = 00 < 01 = 10 < 11 < 02 = 20 < 21 = 12 < 22 8

1 y′
1y

′
2 = 00 = 11 = 22 < 01 = 10 = 21 = 12 < 02 = 20 7

2 y′
1y

′
2 = 00 = 01 = 02 = 10 = 11 = 20 = 21 = 22 = 12 9

So LoRP selects r1 as best regressor, since it has minimal rank on D.
r0 fits D too badly and r2 is too flexible (perfectly fits all D′).
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LoRP for Regression
continuous / measure space Y (mostly Y = IR)

Define Rankr(y|x) := |Vr(L)| := Volume({y′∈Yn : Lossr(y
′|x)≤L}).

Problem: Rank is often infinite.

Solution:

• Regularization by adding α||y||2 to the Loss.

• Determine α by minimizing Rankαr w.r.t. α.
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Example: Simple Continuous

Consider the Simple Discrete Example but with interval Y = [0, 2].

The first table (rd and Lossd) remains unchanged,

while the second table becomes:

d Vd(L) = {y′ ∈ [0, 2]2 : ...} |Vd(L)| |Vd(Lossd(D))|

0 y′
1
2 + y′

2
2 ≤ L

2
√

max{L−4,0}+

L(π
4
−cos−1(min{ 2√

L
,1}))

.
= 3.6

1 1
2
(y′

2 − y′
1)

2 ≤ L 4
√
2L− 2L 3

2 0 ≤ L 4 4

So LoRP again selects r1 as best regressor, since it has smallest loss

volume on D.
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LoRP for Linear Models

• Examples: kNN, Kernel, polynomial, linear basis function (LBF)

regression are all linear in y, i.e. ŷ = My for some matrix M(x).

• Rank is volume of ellipsoid {ŷ⊤(11−M)⊤(11−M)ŷ} ≤ L.

⇒ efficient O(n3) algorithm for det(11−M).

• LoRP for projective regression: O(n) algorithm.

• For Gaussian LBF reg, LoRP is similar to Bayesian model selection.

• Other non-parametric model selection schemes [MacKay92,HTF01]:

Use trM as effective degrees of freedom d in AIC/BIC/MDL.

• Problem: deff = trM is a heuristic that breaks down

already for simple examples like “k nearest neighbors

excluding the closest neighbor” (trM ≡ 0).
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LoRP for Variable Selection

• Variable=feature=attribute selection S ⊆ {∞, ..., ⌈}:
Linear regression model y =

∑
j∈S βjxj+noise.

• Model consistency:

LoRP with optimized α for n → ∞ selects the the true model.

• Asymptotic mean efficiency: For suitable choice of α, LoRP

estimates the regression function asymptotically (mean) efficiently.
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Variable Selection for Simulated Data
Percentage of correctly-fitted linear models over 1000 replications.

LoRP compared to Akaike and Bayesian Information Criterion (AIC&BIC)

n d SNR AIC BIC LoRP n d SNR AIC BIC LoRP

100 5 1 62 62 69 300 5 1 74 82 83

5 85 85 86 5 78 90 91

10 80 90 91 10 81 94 94

10 1 52 42 54 10 1 63 67 71

5 63 77 77 5 70 85 86

10 68 84 85 10 74 90 90

20 1 32 22 36 20 1 54 45 61

5 55 63 65 5 64 79 80

10 56 73 74 10 67 85 85
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Fourier Order Selection for Simulated Data
Est. of mean efficiency over 1000 replications of y = log(1−x)+noise.

LoRP compared to Akaike and Bayesian Information Criterion (AIC&BIC)

n σ AIC BIC LoRP n σ AIC BIC LoRP

400 .001 1.00 .98 .99 600 .001 1.00 .98 1.00

.01 .93 .68 .90 .01 .99 .67 .92

.05 .88 .67 .95 .05 .90 .66 .94

.1 .88 .67 .92 .1 .90 .67 .93

.5 .81 .66 .85 .5 .82 .66 .83

1 .79 .63 .82 1 .79 .65 .82

5 .67 .65 .70 5 .65 .67 .66

10 .54 .67 .59 10 .54 .59 .54

100 .31 .89 .33 100 .40 .90 .41
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Nearest Neighbor and Spline Regression
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• EPE=Expected Prediction Error = infeasible gold standard

• GCV=Generalized Cross Validation, • LR=Loss Rank,

• y = f(x) = sin(12(x+ 0.2))/(x+ 0.2)+noise, x ∈ [0; 1].

kEPE = 5 = optimal λEPE ≈ 3× 10−4 = optimal

kLR = 7 λLR ≈ 5× 10−4

kGCV = 8 λGCV ≈ 7× 10−4
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LoRP for Classification
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Proportions of correct identification of LR and Rademacher Criterion

n h LR RC n h LR RC

50 .05 .12 .13 200 .05 .23 .21
.1 .35 .35 .1 .67 .66
.2 .62 .64 .2 .99 .97
.3 .95 .97 .3 1 1

100 .05 .15 .15 300 .05 .30 .28
.1 .41 .41 .1 .78 .76
.2 .89 .90 .2 1 .99
.3 .98 .98 .3 1 1
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LoRP for Classification
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LoRP for Clustering

• A natural loss is the within-cluster sum of dissimilarities.

• Comparison of LR=Loss Rank criterion to

CH= Calinski and Harabasz (1974) criterion on

• Simulated data with 2–4 Gaussian clusters in 2D of varying σ.

• Using Monte Carlo simulation to compute the Loss Rank.

Percentages of correct identification over 100 replications

#Cl σ CH LR #Cl σ CH LR #Cl σ CH LR

1 1 0.82 1 0.99 0.84 1 0.92 0.56

2 2 1 0.74 3 2 0.7 0.45 4 2 0.04 0.38

3 1 0.86 3 0 0.39 3 0 0.50
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LoRP for Graphical Modeling

Graphical models ≈ Markov networks

≈ graphical log-linear modeling ≈ Bayesian networks

Goal: learn/recover correct graphical structure.

Example: 100 samples from graph ⃝−⃝−⃝

Proportions of correct identification:

n 200 500 1000 2000 5000

LR .2 .7 .9 1 1
BIC .05 .4 .7 .8 1

Similar results for n = 10000 and 6 vertex graph ◃ ▹
Compute Bootstrap Loss Rank by Monte Carlo sampling
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Outlook
LoRP seems to be a promising principle with a lot of potential

• Preliminary experiments look promising.

• Rank for non-linear LoRP can be estimated by Monte Carlo.

• det(11−M) may be approximated numerically in time O(n).

• Explicit expressions for kNN on a grid.

• LoRP for hybrid model classes.

• Cubic algorithm for linear LoRP works for general additive loss.

• LoRP can be used to select the loss-function itself.

• (Log) Rank can be regarded as a code (length) of y.

Other ideas that count: normalized ML, luckiness framework, empirical

Rademacher complexity, permutation tests, Bootstrapping.
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