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Abstract

Walley's Imprecise Dirichlet Model (IDM) for categorical
data overcomes several fundamental problems which other
approaches to uncertainty suffer from. Yet, to be useful in
practice, one needs efficient ways for computing the
Imprecise=robust sets or intervals. The main objective of
this work is to derive exact, conservative, and approximate,
robust and credible interval estimates under the IDM for a

large class of statistical estimators, including the entropy
and mutual information.



The Dirichlet

Model

Discrete random variables: 1+ € Q := {1, ...,d}

I.i.d. random process: outcome i € {1, ..., d} with

probability ;.

Likelihood of data D with n; observations 7 and sample

sizen =n, (r, =) . x;)isp(D|mw) =], 7"

Initial uncertainty in 7t Is mode

ed by a (second order)

/

“belief” Dirichlet prior p(r) o |

Y
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The Dirichlet Model (ctd.)

o Notation: Write n; = s - t; with s :=n/_, hence
te A:={teR*:t,>0Vi, t, =1}

e Examples of uninformed priors: t; = %W:
Haldane (s = 0), Perks (s = 1), Jeffreys (s = £),
Bayes/Laplace/uniform (s = d).

e Posterior: p(mw|D) = p(ﬂ'\n) X HZ rritsti—d,
o Expected value: E¢[F] = [, F(m)p(w|n)dnr

e Variance: Var|F| = Et[fz] — Et[f] .



The Imprecise Dirichlet Model

Model our ignorance by considering sets of priors p(7),
often called Imprecise probabilities.

The Imprecise Dirichlet Model (IDM) [Walley:96]
considers the set of all t € A, i.e. {ps(7) :t € A},

IDM satisfies symmetry principle and is
reparametrization invariant (RIP).

Set of priors = set of posteriors = set of expected vals.

For real-valued quantities like F;|F] the sets are
typically intervals (called robust):

Et[]:] S [minteA Et[]:] , IMaXge A Et[]:]]
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Problem Setup and Notation

F(u) == Ey[F] with identification u;" = """

Goal: Derive expressions for upper and lower F' values

F :=max F(u) and F := min F(u), F :=[F,F]

ucA’ ucA’
AN ={u:u; >u), u, =1 with ! := s
Example: F'(u) = E¢|m;| = % —u; = F = et ";C:SS]
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Exact Robust Intervals for Concave F

e Assume F': A’ — IR concave and F'(u) = Zle fu;):

e [ attains the the global minimum F' at corner u‘- with

F .
t.— = 0;r and i = arg max; mn;.

e [ attains the global maximum F' at water-filling point

u’ with u; = max{u?, @}, where

~ o S—i_z E<m nik

TVg, < T, < ...




Approximate Robust Intervals
Exact expansion of F'(u) =, f(u;) around u".

Assume [ : A" — IR Lipschitz diff. and o := —=— small.

= [ — F = O(o) = approximation to I’ should be O(c?).
Notation: FC G & F <G and FF =G+ 0(c?)

Fo+F2 C F < Fu) < FLC Fy+Fgb

Fo=F(u®), Ff=omaxf'(u)) = of (M),

Fit = omin f/(uf + 0) = o f/(Rsits)
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Application: Expected Entropy H
H(m) :=— ). mlogm; =

h(u;) = u; - ZZZ(SMLS)WH k=1 (for integer s and (n + s)u;)

General expression in terms of DiGamma function .
Example (exact): For d =2, ny = 3, ny =6, s = 1 we have

H =[0.5639...,0.6256...], so H — H = O(55).

Example (approximate): o = &,

Ho + HY, Hy + HY] = [0.5564...,0.6404...], hence
Ho+ Hi — H = 0.0148 = O(555),

H — Hy— HZ2 =0.0074... = O(555).



Error Propagation
F: =G+ H. Naive: F<G+H,but FZG+ H.
Results: O(c?) bounds (C) for ' = GG« H and
xe{+,—, %x,/,...}.

Every function /' (w.b.c.) can be written as a sum of a
concave function ¢ and a convex function H.

For convex and concave functions, determining bounds
is particularly easy (special case on previous slides).

Often F' decomposes naturally into convex and concave
parts as is the case for the mutual information:

I(m) = Him) +H(w,) = H(mw,)



IDM for Product Spaces
Product spaces: 2 = Q1 x Qs =A{1,...,d1 } x{1,...,d>}
Applications: mutual inform., robust trees, Bayes nets.

Full IDM invariant under general (non-column/row

cross) groupings of elements of (2.
teA:={te R">% : t,, >0Vij, t,, =1}

Smaller IDM, invariant only under groupings of whole
columns and/or rows of (), makes more sense:
tEAdl @AdQ C A.

Result: Smaller IDM leads to O(c?) smaller (=better)
robust sets.



Exact Robust Credible Sets

For a probability distribution p : IR — [0, 1],

a/the a-credible set is A" := argmin Vol(A)
A:p(A)>a

For a set of probability distributions {p;(x)}, a robust
a-credible set is a set A which contains = with p;-probability
at least o for all . A minimal size robust a-credible set is

A™I . — arg min Vol(A) # | Jay™
A:UtAtpt(At)ZOé\V/tET ¢

It is not easy to deal with the first expression, but [ J, A; can

be used as a conservative estimate.



Approximate Robust Credible Intervals

Shortest a-credible intervals w.r.t. a univariate p;(x):

Ty := argmin (b—a),
la,b]:pt([a,b]) >

r < max Ty < max Eilx] + m?X[ft — Bi|x]] =

= Elz] + AT = Elz] 4 ko + O(n3/?).
o = erf(k/v/2) and 02 = Var.[x] for some t* € A, e.g.
r e {F,H, T} and Vary|Z] computed in [Hutter:02].

Non-Gaussian distributions depending on some sample size

n are usually close to Gaussian for large n due to the central
limit theorem.



Conclusions

e |IDM has not only interesting theoretical properties, but
explicit (exact/conservative/approximate) expressions
for robust (credible) intervals for various quantities can
and have been derived.

e [he computational complexity of the derived bounds on
F =)". fi is very small, typically one or two
evaluations of F' or related functions, like its derivative.

e First applications of these results, especially the mutual

information, to robust inference of trees look promising
[Zaffalon& Hutter:03].



