
Fitness Uniform Deletion:
A Simple Way to Preserve Diversity

Shane Legg & Marcus Hutter

IDSIA
Galleria 2

6928 Manno-Lugano
Switzerland

The problem of population diversity

• Diversity tends to collapse over time
• Especially bad for deceptive problems or

when high selection pressure is used
• Can be difficult to measure how similar

individuals are based on their genes, e.g.
neural nets and in genetic programming

• Diversity loss occurs when we delete
uncommon individuals

Fitness Uniform Deletion Scheme (FUDS)

The intuition:

• If we delete an individual which has a unique
fitness value we must be losing population diversity

• Conversely, if we delete an individual with a very
common fitness value we are probably not losing
much diversity

Thus, if we must delete, delete individuals with
commonly occurring fitness values. This should
help maintain population diversity and allow easy
escape from local optima.

Simple Implementation!

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12

fitness

n
u

m
b

er
 o

f
in

d
iv

id
u

al
s ?

delete fro
m here

Example Population Distributions:
CNF3 SAT with Tournament Selection

Random Deletion FUDS

Resulting Population Distribution
when using Random Deletion

Deceptive Fitness Landscape

0
1
2
3
4
5
6
7
8
9

10

Genome Space

Fi
tn

es
s difficult to escape ?

Resulting Population Distribution
when using FUDS

Deceptive Fitness Landscape

0
1
2
3
4
5
6
7
8
9

10

Genome Space

Fi
tn

es
s

easy to escape ?

FUDS is not uniform in the genome space!

numbers = fitness of a region
shading = density of individuals

Consider a typical
fitness landscape:

With FUDS each fitness level tends to have the same
number of individuals. Thus as high fitness regions are
usually smaller, they will have a higher density of individuals.

Properties of FUDS

• Uses fitness to control population diversity
• Doesn't require a similarity metric on the

genome space to be constructed
• Problem and representation independent
• Trivial to implement
• Computationally efficient
• Should be good for deceptive problems with

many local optima and deep valleys in the
fitness landscape

Test System

• Implemented FUDS in Java
• Steady State GA rather than a Generational GA
• Used tournament selection for all tests
• Compared FUDS against random deletion
• Generations = number of cycles / population size
• Source code and test problems available on the

internet (see paper)

Artificial Deceptive Problem

Mutation Operator = new random value for the x or y from [0,1]
Crossover Operator = x from one parent, y from the other
Default mutation and crossover probabilities of 0.5

Artificial Deceptive Problem

Error bars on graphs represent 95% confidence intervals

Random Distance TSP

• Distance between each pair of cities is random from [0,1]
• Triangle inequality does not hold in general
• Deceptive version of TSP but still has some structure

• Mutation operator = swap position of two cities in the tour
• Crossover operator = "Partial Match Crossover"
• 50 runs with 20 cities in each test

Random TSP

Set Covering Problem

• NP-complete optimisation problem with real applications
• Low cost = high fitness
• Tested against standard benchmark set covering problems
• Crossover probability = 0.8, Mutation probability = 0.2
• Standard mutation and crossover operators

8324

1100

1111

1001

= 7 total cost

Set Covering Problem

CNF3 SAT

• An individual is a set of boolean values for the variables
• Fitness is the total number of clauses satisfied

• Used standard benchmark problems for the tests
• 150 variables, 645 clauses in test problems
• Mutation = flip state of one boolean variable
• Crossover = uniform crossover
• Mutation probability & crossover probability = 0.5

() () ()a b c a d e a c e∨ ∨ ¬ ∧ ∨ ¬ ∨ ∧ ∨ ∨

CNF3 SAT with 150 clauses

CNF3 SAT Population Diversity

Summary
FUDS is:
• Problem and representation independent
• Easily implemented
• Computationally efficient
• Helps maintain total population diversity,

however this isn’t always what matters
• Appears to work best for problems which are

sensitive to the selection pressure parameter

