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The problem of population diversity

• Diversity tends to collapse over time
• Especially bad for deceptive problems or 

when high selection pressure is used
• Can be difficult to measure how similar 

individuals are based on their genes, e.g. 
neural nets and in genetic programming

• Diversity loss occurs when we delete 
uncommon individuals



Fitness Uniform Deletion Scheme (FUDS)

The intuition:

• If we delete an individual which has a unique
fitness value we must be losing population diversity

• Conversely, if we delete an individual with a very 
common fitness value we are probably not losing 
much diversity

Thus, if we must delete, delete individuals with 
commonly occurring fitness values.  This should 
help maintain population diversity and allow easy 
escape from local optima.



Simple Implementation!
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Example Population Distributions:
CNF3 SAT with Tournament Selection

Random Deletion FUDS



Resulting Population Distribution
when using Random Deletion

Deceptive Fitness Landscape
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Resulting Population Distribution
when using FUDS
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FUDS is not uniform in the genome space!  

numbers = fitness of a region
shading = density of individuals

Consider a typical
fitness landscape:

With FUDS each fitness level tends to have the same
number of individuals.  Thus as high fitness regions are 
usually smaller, they will have a higher density of individuals.



Properties of FUDS

• Uses fitness to control population diversity
• Doesn't require a similarity metric on the 

genome space to be constructed 
• Problem and representation independent
• Trivial to implement
• Computationally efficient
• Should be good for deceptive problems with 

many local optima and deep valleys in the 
fitness landscape 



Test System

• Implemented FUDS in Java
• Steady State GA rather than a Generational GA
• Used tournament selection for all tests
• Compared FUDS against random deletion
• Generations = number of cycles / population size
• Source code and test problems available on the 

internet (see paper)



Artificial Deceptive Problem

Mutation Operator = new random value for the x or y from [0,1] 
Crossover Operator = x from one parent, y from the other
Default mutation and crossover probabilities of 0.5



Artificial Deceptive Problem

Error bars on graphs represent 95% confidence intervals



Random Distance TSP

• Distance between each pair of cities is random from [0,1]
• Triangle inequality does not hold in general
• Deceptive version of TSP but still has some structure

• Mutation operator = swap position of two cities in the tour
• Crossover operator = "Partial Match Crossover"
• 50 runs with 20 cities in each test



Random TSP



Set Covering Problem

• NP-complete optimisation problem with real applications
• Low cost = high fitness
• Tested against standard benchmark set covering problems
• Crossover probability = 0.8, Mutation probability = 0.2
• Standard mutation and crossover operators
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Set Covering Problem



CNF3 SAT

• An individual is a set of boolean values for the variables
• Fitness is the total number of clauses satisfied

• Used standard benchmark problems for the tests
• 150 variables, 645 clauses in test problems
• Mutation = flip state of one boolean variable
• Crossover = uniform crossover
• Mutation probability & crossover probability = 0.5
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CNF3 SAT with 150 clauses



CNF3 SAT Population Diversity



Summary
FUDS is:
• Problem and representation independent
• Easily implemented
• Computationally efficient
• Helps maintain total population diversity, 

however this isn’t always what matters
• Appears to work best for problems which are 

sensitive to the selection pressure parameter


