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Abstract

When applying aggregating strategies to Prediction with Expert Advice,
the learning rate must be adaptively tuned. The natural choice of

\/complexity/current loss renders the analysis of Weighted Majority
derivatives quite complicated. In particular, for arbitrary weights there
have been no results proven so far. The analysis of the alternative
“Follow the Perturbed Leader” (FPL) algorithm from Kalai&Vempala
(based on Hannan's algorithm) is easier. We derive loss bounds for
adaptive learning rate and both finite expert classes with uniform
weights and countable expert classes with arbitrary weights. For the
former setup, our loss bounds match the best known results so far, while

for the latter our results are new.



Prediction with Expert Advice (PEA) - Informal

Given a class of n experts {Expert,, ..., Expert, }, each Expert, at times
t =1,2,... makes a prediction 7.

The goal is to construct a master algorithm, which exploits the experts,
and predicts asymptotically as well as the best expert in hindsight.

Expert;y Experty ... Expert,, | PEA true Loss
day; 0 0 0 0 1 1
days 0 1 1 1 1 0
days 1 0 1 1 0 1

day; Y, y; yr yPEA mp JyPEA— oy
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Prediction with Expert Advice (PEA) - Setup

More formally, a PEA-Master is defined as:

Fort=1,2,....,7T
- Predict y FA := PEA(24,y,, Loss)
- Observe x; := Env(y <, T<¢, y°5")

- Receive Loss;(Expert;) := Loss(x;,y!) for each Expert (i = 1,...,n)
- Suffer  Loss;(PEA) := Loss; (¢, y} =7)

Notation: z.; := (x1,....,7¢,_1) and y; = (y;,..., yl).
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Generality

e Arbitrary prediction space ) 5 y; and observation space X > x;.
e No (statistical) assumption on observation sequence 1, xo, ...

e Indeed, formulation solely in terms of losses is possible, but to talk
about predictions and observations is more intuitive.

e Environment can be adversary who
- tries to maximize the Loss of PEA,
- knows the PEA algorithm and the loss function,
- knows all Experts’ and PEA's past predictions.



Best Expert in Hindsight (BEH)

BEH

iBEH

Loss:.1

Total Loss

Expert of minimal total Loss, I.e.

arg min{Loss;.7(Expert;)}, where
1

Loss; + ... + Losst

sum of instantaneous losses

Goal

Total Loss of PEA shall not be much more

than Loss of BEH, i.e. of any Expert.

.
! i
Loss1.7(PEA) < Lossy.7(BEH) < Lossy.7(Expert;) Vi



Naive Ansatz: Follow the Leader (FL)

FL exploits prediction of expert which performed best in past, i.e.

iy - = arg min{Loss_;(Expert;)} (known at time t)
(

FL

At time ¢, FL predicts yi - := y," .

Problem: The predictor which performed best in the past my oscillate.
—> FL often selects suboptimal expert.

Example (2 Experts): Losstzl,g,,_.,T(Experté) = (1/2 0

— LosslzT(Experté) ~T/2 —— twice as large \

FL 1if ¢ is even
:> 1 p—
t 2 if tis odd’

Solution: Smooth decision by randomization

but Loss;(FL) =1 = Loss;.p(FL) =T



Weighted Majority (WM)

Take expert which performed best in past with high probability
and others with smaller probability.

[Littlestone&Warmuth'90 (Classical)]
[Freund&Shapire’97 (Hedge)]

At time ¢, select Expert 1)YM with probability

P[I" = 4] o exp|[—n-Loss;(Expert,)]

n = learning rate
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Follow the Perturbed Leader (FPL)

Select expert of minimal perturbed Loss.
Let ! be i.i.d. random variables.

Select expert [Tt := arg min,;{Loss_;(Expert,) — Q% /n}.

Hannan'57]: Qi & —Uniform|0, 1],
[Kalai&Vempala'03]: P[Q% :u] — %e_lu’,
Hutter&Poland’04]: P[Q: =u| = e % (u>0).

For all PEA variants (WM & FPL & others) it holds:
P[I, =i] = {79V if Expert, has {Sm“”} Loss.

small

I, ™= Best Expert in Past = ift (7 = learning rate)
n—0

I, =5 Uniform distribution among Experts.



Goals

0) Regret := Loss;.7(FPL) — Loss;.7(BEH)
shall be small (O(y/Loss;.7(BEH)).

1) Any bounded Loss function (w.l.g. 0 < Loss; < 1).

2) Neither (non-trivial) upper bound on total Loss,
nor sequence length 7" is known.

3) Infinite number of Experts.



To 1) Any bounded Loss function

Literature: Observation and prediction spaces X and )
mostly binary {0, 1} or unit interval [0, 1],
and specific Loss (absolute, 0/1, log, square).

Exceptions: WM-Hedge [Freund&Shapire’97] and others:
General Loss, but —(2).



To 2) Unknown 7T and L

Solution: Learning rate 1 ~~ 1; must be time-dependent.

WM: Doubling trick [Cesa-Bianchi et al.’97]:
First who succeeded, but unesthetic:
Occasionally reset WM with decreased constant 7.

WM: Smooth 1n; \, 0 [Auer&Gentile’00, Yaroshinsky et al.'04]:
Nice algorithms, but complex analysis (proof is many pages).

In both cases —(1),—(3).

FPL: 1; 1/\/% [Kalai&Vempala'03]:
Nice analysis, but =(3) and O(\/T) regret only, not O(+/Loss).



To 3) Infinite number of Experts

Example 1) Expert, = polynomial of degree © = 1,2, 3, ... through data
Example 2) {Expert, : 2 € IN} = class of all computable Experts.
Solution: Penalize “complex” Experts (Occam’s razor).

Assign complexity k' to Expert, -or- a-priori probability w’ = ¢~ *".
Assume Kraft inequality > w® < 1.

— k' = prefix code length -and- w'=(semi)probability.

Examples: Finite number n of Experts: k' = Inn.
Infinite #Experts: k' = % + 21n 7 increases slowly with 7.

p-norm algorithm [Gentile'03]: only k* = 7 and 0/1 loss.

WM: | P[I)YM = i] « w" - exp[—n;-Loss<;(Expert;)]

FPL: | IfPt = argmin;{Loss<;(Expert;) + (k' — Q})/n:}




The FPL Algorithm

Fort=1,....7T
- Choose i.i.d. random vector Q; = exp, i.e. PlQI] = e 9 (Qf > 0).
- Choose learning rate 7).

- Output prediction of expert 7 which minimizes
Loss<¢(Expert;) + (k' — Q1)/m.

- Receive Loss;(Expert;) for each expert .

- Suffer Loss;(FPL).



Key Analysis Tool: Implicit or Infeasible FPL

IFPL .= argmin;{Loss;.; (Expert,) + (k* — Q%) /m;}
IFPL is infeasible, since it depends on Loss; (¢, 1:"), unknown at time t.
One can show: Loss;.7(FPL) < Loss;.7(IFPL) < Loss;.(BEH)

Since FPL is randomized, we need to consider expected-Loss =: Loss.

T Loss;.7(E t.) 4+ k? Vi
Lossy.7(IFPL) { ossi.r(Expert;) + k' /nr Vi,

Lossi.r(BEH) + 22 if ki =Inn.

Loss;(FPL) < €™ Loss.(IFPL)

Choose 7;, and sum latter bound over ¢ = 1,....T", and chain with first
bound to get final bounds ...



Marcus Hutter - 17 - Follow the Perturbed Leader

Regret Bounds for n < co and k' = lnn
Regret := _Lossl:T(FPL) — Lossq.7(BEH)

Static 1 = \/an —>  Regret < 2v/T-Inn

Dynamic n; = \/lg—t” —>  Regret < 2v/27-Inn

Self-confident 1, = | /5oty =

Regret < 2,/2(Loss;.7(BEH) + 1)-Inn + 8lnn

Adaptive n, = /1 min {1, /sl —
Regret < 2./2Loss;.77(BEH)-Inn + 5Inn-In Loss;.r(BEH)+3Inn+6

No hidden O() terms!



Proof of Self-Confident Bound

Notation: ¢ = Loss(FPL), r = Loss(IFPL), s* = Loss(Expert,).

Using n: = V K/2(l<: + 1) < \/K/201.4, and b\;ga < 2(v/b—+/a) for a < b,
and r; < e''l; we get

T — T T
K lr.e—¥ —
El:T_[rl:T S Zntgt S \/? Z = = S QKZ[ El:t_ €<t] — \/2K\/‘€1:T
t=0 Vit t=0

< k20t + 1)/K we get

Adding r1.7 — si.r < 5

br.r — sh.p < /2R (b1.7+1), where Vi :=VEK+k'/VK.

Taking the square and solving the quadratic inequality w.r.t. £;.7 we get

El;T S Si:T + RZ + \/Q(S?LT—F]‘)RZ + (RZ)Q S Si:T + \/Q(SI?LT—F].)/%% -+ 2/%2

For k' = K = Inn we have §* = 4K. L]



Regret Bounds for n = oo and general &’
We expect Inn ~ k', i.e. Regret = O(1/k*-(Loss or T')).
Problem: Choice of 7; = \/k@i depends on 7. Proofs break down.
Choose: 7; = \/7 =  Regret < kv ... ie. k' not under V .

Solution: Two-Level Hierarchy of Experts:

Group all experts of (roughly) equal complexity.

o FPL™ over subclass of experts with complexity &' € (K — 1, K].
Choose 1/* = /K /2Loss—; = constant within subclass.

e Regard each FPL® as a (meta)expert. Construct from them (meta)
FPL. Choose N = \/1/Loss<t

— | Regret < 2,/2k?-Loss.7(Expert;) - (1 + O(l\r}k—)) + O(k")




Miscellaneous
Lower bound: Loss;.7(IFPL) > Lossy.z(BEH) + 2 if k' =Inn.

Bounds with high probability (Chernoff-Hoeffding):
P||Lossi.1 — _Lossl:T] > \/SC_LOSSl:T] < 2e~ ¢ is tiny for e.g. ¢ = 5.

Computational aspects: It is trivial to generate the randomized decision
of FPL. If we want to explicitly compute the probability we need to
compute a 1D integral.

Deterministic prediction: FPL can be derandomized if prediction space

)V and loss-function Loss(x, 1) are convex.



Constant ¢ in Regret = ¢-+/Loss-Inn for various settings and algorithms.

Discussion and Open Problems

n Loss | Optimal | LowBnd Upper Bound
static | 0/1 17 17 V2 [V'95]
static any V2 | V2 [V'95] V2 [FS'97], 2 [FPL]
dynamic | 0/1 V27 1 [H'03]? | v/2 [YEYS'04], 2+/2 [ACBG'02]
dynamic | any 27 V2 [V'95] 24/2 [FPL], 2 [H'03,HP'04]

Open problems e Elimination of hierarchy (trick)

e Lower regret bound for infinite #Experts

e Same results (dynamic 7, any Loss, n = oco) for WM
e Improve regret constant ¢ = 2v/2 ~» 2.
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Thanks! Questions? Details:

Papers at http://www.idsia.ch/~marcus

Book intends to excite a broader Al audience about
abstract Algorithmic Information Theory —and-
inform theorists about exciting applications to Al.

Universal
Decision Theory = Probability 4+ Utility Theory ANl gerice
+ +
Universal Induction = Ockham + Bayes + Turing

A Unified View of Artificial Intelligence




