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Abstract

When applying aggregating strategies to Prediction with Expert Advice,

the learning rate must be adaptively tuned. The natural choice of√
complexity/current loss renders the analysis of Weighted Majority

derivatives quite complicated. In particular, for arbitrary weights there

have been no results proven so far. The analysis of the alternative

“Follow the Perturbed Leader” (FPL) algorithm from Kalai&Vempala

(based on Hannan’s algorithm) is easier. We derive loss bounds for

adaptive learning rate and both finite expert classes with uniform

weights and countable expert classes with arbitrary weights. For the

former setup, our loss bounds match the best known results so far, while

for the latter our results are new.
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Prediction with Expert Advice (PEA) - Informal

Given a class of n experts {Expert1, ..., Expertn}, each Experti at times

t = 1, 2, ... makes a prediction yi
t.

The goal is to construct a master algorithm, which exploits the experts,

and predicts asymptotically as well as the best expert in hindsight.

Expert1 Expert2 ... Expertn PEA true Loss

day1 0 0 ... 0 0 1 1

day2 0 1 ... 1 1 1 0

day3 1 0 ... 1 1 0 1

... ... ... ... ... ... ... ...

dayt y1
t y2

t ... yn
t yPEA

t xt |yPEA
t − xt|
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Prediction with Expert Advice (PEA) - Setup

More formally, a PEA-Master is defined as:

For t = 1, 2, ..., T

- Predict yPEA
t := PEA(x<t,yt, Loss)

- Observe xt := Env(y<t, x<t, y
PEA
<t )

- Receive Losst(Experti) := Loss(xt, y
i
t) for each Expert (i = 1, ..., n)

- Suffer Losst(PEA) := Losst(xt, y
PEA
t )

Notation: x<t := (x1, ..., xt−1) and yt = (y1
t , ..., yn

t ).
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Generality

• Arbitrary prediction space Y 3 yt and observation space X 3 xt.

• No (statistical) assumption on observation sequence x1, x2, ....

• Indeed, formulation solely in terms of losses is possible, but to talk

about predictions and observations is more intuitive.

• Environment can be adversary who

- tries to maximize the Loss of PEA,

- knows the PEA algorithm and the loss function,

- knows all Experts’ and PEA’s past predictions.
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Best Expert in Hindsight (BEH)

BEH := Expert of minimal total Loss, i.e.

iBEH := arg min
i
{Loss1:T (Experti)}, where

Loss1:T := Loss1 + ... + LossT

Total Loss := sum of instantaneous losses

Goal

Total Loss of PEA shall not be much more

than Loss of BEH, i.e. of any Expert.

Loss1:T (PEA)
?
<∼ Loss1:T (BEH)

√
≤ Loss1:T (Experti) ∀i
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Naive Ansatz: Follow the Leader (FL)
FL exploits prediction of expert which performed best in past, i.e.

iFL
t := arg min

i
{Loss<t(Experti)} (known at time t)

At time t, FL predicts yFL
t := y

iFL
t

t .

Problem: The predictor which performed best in the past my oscillate.

=⇒ FL often selects suboptimal expert.

Example (2 Experts): Losst=1,2,...,T (Expert 1
2 ) = ( 0

1/2

1
0

0
1

1
0

0
1

1
0

0
1 )

=⇒ Loss1:T (Expert 1
2 ) ≈ T/2 ←− twice as large ↘

=⇒ iFL
t =

{
1 if t is even

2 if t is odd
, but Losst(FL) = 1 ⇒ Loss1:T (FL) = T

Solution: Smooth decision by randomization
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Weighted Majority (WM)

Take expert which performed best in past with high probability

and others with smaller probability.

[Littlestone&Warmuth’90 (Classical)]

[Freund&Shapire’97 (Hedge)]

At time t, select Expert IWM
t with probability

P [IWM
t = i] ∝ exp[−η ·Loss<t(Experti)]

η = learning rate
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Follow the Perturbed Leader (FPL)
Select expert of minimal perturbed Loss.

Let Qi
t be i.i.d. random variables.

Select expert IFPL
t := arg mini{Loss<t(Experti)−Qi

t/η}.
[Hannan’57]: Qi

t
d.∼ −Uniform[0, 1],

[Kalai&Vempala’03]: P [Qi
t = u] = 1

2e−|u|,
[Hutter&Poland’04]: P [Qi

t = u] = e−u (u ≥ 0).

For all PEA variants (WM & FPL & others) it holds:

P [It = i] = { large
small} if Experti has { small

large } Loss.

It
η→∞−→ Best Expert in Past = iFL

t (η = learning rate)

It
η→0−→ Uniform distribution among Experts.
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Goals

0) Regret := L̄oss1:T (FPL)− Loss1:T (BEH)
shall be small (O(

√
Loss1:T (BEH)).

1) Any bounded Loss function (w.l.g. 0 ≤ Losst ≤ 1).

2) Neither (non-trivial) upper bound on total Loss,

nor sequence length T is known.

3) Infinite number of Experts.
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To 1) Any bounded Loss function

Literature: Observation and prediction spaces X and Y
mostly binary {0, 1} or unit interval [0, 1],
and specific Loss (absolute, 0/1, log, square).

Exceptions: WM-Hedge [Freund&Shapire’97] and others:

General Loss, but ¬(2).
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To 2) Unknown T and L

• Solution: Learning rate η Ã ηt must be time-dependent.

• WM: Doubling trick [Cesa-Bianchi et al.’97]:

First who succeeded, but unesthetic:

Occasionally reset WM with decreased constant η.

• WM: Smooth ηt ↘ 0 [Auer&Gentile’00, Yaroshinsky et al.’04]:

Nice algorithms, but complex analysis (proof is many pages).

• In both cases ¬(1),¬(3).

• FPL: ηt ∝ 1/
√

t [Kalai&Vempala’03]:

Nice analysis, but ¬(3) and O(
√

T ) regret only, not O(
√

Loss).
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To 3) Infinite number of Experts
Example 1) Experti = polynomial of degree i = 1, 2, 3, ... through data

Example 2) {Experti : i ∈ IN} = class of all computable Experts.

Solution: Penalize “complex” Experts (Occam’s razor).

Assign complexity ki to Experti -or- a-priori probability wi = e−ki

.

Assume Kraft inequality
∑

i wi ≤ 1.

⇒ ki = prefix code length -and- wi=(semi)probability.

Examples: Finite number n of Experts: ki = ln n.

Infinite #Experts: ki = 1
2 + 2 ln i increases slowly with i.

p-norm algorithm [Gentile’03]: only ki = i and 0/1 loss.

WM: P [IWM
t = i] ∝ wi · exp[−ηt ·Loss<t(Experti)]

FPL: IFPL
t := arg mini{Loss<t(Experti) + (ki −Qi

t)/ηt}
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The FPL Algorithm

For t = 1, ..., T

- Choose i.i.d. random vector Qt
d.∼ exp, i.e. P [Qi

t] = e−Qi
t (Qi

t ≥ 0).

- Choose learning rate ηt.

- Output prediction of expert i which minimizes

Loss<t(Experti) + (ki −Qi
t)/ηt.

- Receive Losst(Experti) for each expert i.

- Suffer Losst(FPL).
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Key Analysis Tool: Implicit or Infeasible FPL

I IFPL
t := arg mini{Loss1:t(Experti) + (ki −Qi

t)/ηi}
IFPL is infeasible, since it depends on Losst(xt, yt

i), unknown at time t.

One can show: L̄oss1:T (FPL) <∼ L̄oss1:T (IFPL) <∼ Loss1:T (BEH)

Since FPL is randomized, we need to consider expected-Loss =: L̄oss.

L̄oss1:T (IFPL) ≤
{

Loss1:T (Experti) + ki/ηT ∀i,
Loss1:T (BEH) + ln n

ηT
if ki = ln n.

L̄osst(FPL) ≤ eηt · L̄osst(IFPL)

Choose ηt, and sum latter bound over t = 1, ..., T , and chain with first

bound to get final bounds ...
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Regret Bounds for n < ∞ and ki = ln n

Regret := L̄oss1:T (FPL)− Loss1:T (BEH)

Static ηt =
√

ln n
T =⇒ Regret ≤ 2

√
T ·ln n

Dynamic ηt =
√

ln n
2t =⇒ Regret ≤ 2

√
2T ·ln n

Self-confident ηt =
√

ln n
2( L̄oss<t(FPL)+1)

=⇒
Regret ≤ 2

√
2(Loss1:T (BEH) + 1)·ln n + 8 lnn

Adaptive ηt =
√

1
2 min

{
1,

√
ln n

Loss<t(“BEH”)

}
=⇒

Regret ≤ 2
√

2Loss1:T (BEH)·ln n + 5 ln n·ln Loss1:T (BEH)+3lnn+6

No hidden O() terms!
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Proof of Self-Confident Bound
Notation: ` = Loss(FPL), r = Loss(IFPL), si = Loss(Experti).

Using ηt =
√

K/2(`<t + 1) ≤
√

K/2`1:t, and b−a√
b
≤ 2(

√
b−√a) for a ≤ b,

and rt ≤ eηt`t we get

`1:T−r1:T ≤
T∑

t=0

ηt`t ≤
√

K

2

T∑
t=0

`1:t−`<t√
`1:t

≤
√

2K

T∑
t=0

[
√

`1:t−
√

`<t] =
√

2K
√

`1:T

Adding r1:T − si
1:T ≤ ki

ηT
≤ ki

√
2(`1:T + 1)/K we get

`1:T − si
1:T ≤

√
2κ̄i(`1:T +1), where

√
κ̄i :=

√
K + ki/

√
K.

Taking the square and solving the quadratic inequality w.r.t. `1:T we get

`1:T ≤ si
1:T + κ̄i +

√
2(si

1:T +1)κ̄i + (κ̄i)2 ≤ si
1:T +

√
2(si

1:T +1)κ̄i + 2κ̄i

For ki = K = ln n we have κ̄i = 4K. ¤
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Regret Bounds for n = ∞ and general ki

We expect ln n Ã ki, i.e. Regret = O(
√

ki ·(Loss or T )).

Problem: Choice of ηt =
√

ki/... depends on i. Proofs break down.

Choose: ηt =
√

1/... ⇒ Regret ≤ ki
√
· · ·, i.e. ki not under

√
.

Solution: Two-Level Hierarchy of Experts:
Group all experts of (roughly) equal complexity.

• FPLK over subclass of experts with complexity ki ∈ (K − 1,K].
Choose ηK

t =
√

K/2Loss<t = constant within subclass.

• Regard each FPLK as a (meta)expert. Construct from them (meta)

F̃PL. Choose η̃t =
√

1/Loss<t.

=⇒ Regret ≤ 2
√

2 ki ·Loss1:T (Experti) · (1 + O( ln ki√
ki

)) + O(ki)
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Miscellaneous

Lower bound: L̄oss1:T (IFPL) ≥ Loss1:T (BEH) + ln n
ηT

if ki = ln n.

Bounds with high probability (Chernoff-Hoeffding):

P [|Loss1:T − L̄oss1:T | ≥
√

3c L̄oss1:T ] ≤ 2e−c is tiny for e.g. c = 5.

Computational aspects: It is trivial to generate the randomized decision

of FPL. If we want to explicitly compute the probability we need to

compute a 1D integral.

Deterministic prediction: FPL can be derandomized if prediction space

Y and loss-function Loss(x, y) are convex.



Marcus Hutter - 21 - Follow the Perturbed Leader

Discussion and Open Problems

Constant c in Regret = c·
√

Loss·ln n for various settings and algorithms.

η Loss Optimal LowBnd Upper Bound

static 0/1 1? 1?
√

2 [V’95]

static any
√

2 !
√

2 [V’95]
√

2 [FS’97], 2 [FPL]

dynamic 0/1
√

2 ? 1 [H’03]?
√

2 [YEYS’04], 2
√

2 [ACBG’02]

dynamic any 2 ?
√

2 [V’95] 2
√

2 [FPL], 2 [H’03,HP’04]

Open problems • Elimination of hierarchy (trick)

• Lower regret bound for infinite #Experts

• Same results (dynamic ηt, any Loss, n = ∞) for WM

• Improve regret constant c = 2
√

2 Ã 2.
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Thanks! Questions? Details:

Papers at http://www.idsia.ch/˜marcus

Book intends to excite a broader AI audience about

abstract Algorithmic Information Theory –and–

inform theorists about exciting applications to AI.

Decision Theory = Probability + Utility Theory

+ +

Universal Induction = Ockham + Bayes + Turing

= =

A Unified View of Artificial Intelligence


