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Abstract

Universal Induction = Ockham + Epicur + Bayes

# Errors(Universal Prediction Scheme)

# Errors(Any other Prediction Scheme)
≤ 1+o(1)
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Induction = Predicting the Future

Extrapolate past observations to the future, but how
can we know something about the future?

Philosophical Dilemma:

• Epicurus’ principle of multiple explanations
If more than one theory is consistent with the
observations, keep all theories.

• Ockhams’ razor (simplicity) principle
Entities should not be multiplied beyond necessity.

• Hume’s negation of Induction
The only form of induction possible is deduction as
the conclusion is already logically contained in the
start configuration.

• Bayes’ rule for conditional probabilities

Given sequence x1...xk−1 what is the next letter xk?
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Strings and Conditional Probabilities

Binary strings: x=x1x2...xn with xk∈{0, 1}.
x1:m := x1x2...xm−1xm x<n := x1...xn−1.

ρ(x1...xn) is the probability that an (infinite) sequence
starts with x1...xn.

An underlined argument xk is a probability variable.
Non-underlined arguments xk represent conditions.
With this convention, Bayes’ rule has the form:

ρ(x<nxn) = ρ(x1:n)/ρ(x<n),

ρ(x1...xn) = ρ(x1)·ρ(x1x2)·...·ρ(x1...xn−1xn).

If the true prior probability µ(x1...xn) is known,
then the optimal scheme is to predict the xk with
highest conditional µ probability if x<k is known, i.e.
maxargxk

µ(x<kxk).

Interpretation of Probabilities

Frequentist: Probabilities come from experiments.
Objectivist: Probabilities are real aspects of the world.
Subjectivist: Probabilities describe ones believe.
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Probability of Sunrise Tomorrow

What is the probability that the sun will rise tomorrow?
It is µ(1d0). d = actual lifetime of the sun in days.
1 = sun raised. 0 = sun will not raise.

• The probability is undefined, because there has never
been an experiment that tested the existence of the
sum tomorrow (reference class problem).

• The probability is 1, because in all experiments that
have been done (on past days) the sun raised.

• The probability is 1 − ε, where ε is the proportion
of stars in the universe that explode in a supernova
per day.

• The probability is (d+1)/(d+2) (Laplace estimate
by assuming a Bernoulli(p) process with uniformly
distributed raising prior probability p)

• The probability can be derived from the type, age,
size and temperature of the sun, even though we
never have observed another star with those exact
properties.

Solomonoff solved the problem of unknown prior µ by
introducing a universal probability distribution ξ based
on Algorithmic Information Theory.

4



Marcus Hutter 2000 Error Bounds for Universal Solomonoff Sequence Prediction

Kolmogorov Complexity

The Kolmogorov Complexity of a string x is the length
of the shortest (prefix) program producing x.

K(x) := min
p
{l(p) : U(p) = x} , U = univ.TM

The definition is ”nearly” independent of the choice
of U

|KU(x)−KU ′(x)| < cUU ′, KU(x) += KU ′(x)

+= indicates equality up to a constant cUU ′ independent
of x.

K satisfies most properties an information measure

should satisfy, e.g. K(xy)
+≤ K(x) + K(y).

K(x) is not computable, but only co-enumerable
(semi-computable from above).
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Universal Probability Distribution

The universal semimeasure is the probability that
output of U starts with x when the input is provided
with fair coin flips

ξ(x) :=
∑

p : U(p)=x∗
2−l(p) ×=

∑
ρ

2−K(ρ)ρ(x)

[Solomonoff 64]

Universality property of ξ: ξ maximizes every
computable probability distribution

ξ(x)
×≥ 2−K(ρ)·ρ(x) ∀ρ

Furthermore, the µ expected squared distance sum
between ξ and µ is finite for computable µ

∞∑

k=1

∑
x1:k

µ(x1:k)(ξ(x<kxk)−µ(x<kxk))
2 +

< 1
2 ln 2·K(µ)

[Solomonoff 78] (for binary alphabet)
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Universal Sequence Prediction

⇒ ξ(x<nxn) n→∞−→ µ(x<nxn) with µ probability 1.

⇒ Replacing µ by ξ might not introduce many
additional prediction errors.

General scheme: Predict xk with prob. ρ(x<kxk).

The predictor is deterministic, if ρ(x1:n)∈{0, 1}.

Probability of making a wrong prediction:
enρ(x<n) :=

∑
xn∈{0,1} µ(x<nxn)[1− ρ(x<nxn)]

Total µ-expected errors in the first n steps:
Enρ :=

∑n
k=1

∑
x1...xk−1

µ(x<k)·ekρ(x<k)

Kullback Leibler distance between µ and ξ:

hn(x<n) =
∑

xn
µ(x<nxn) ln µ(x<nxn)

ξ(x<nxn)

Hn is then defined as the sum-expectation:

Hn :=
∑n

k=1

∑
x<k

µ(x<k)·hk(x<k)
+
< ln 2·K(µ)

[Solomonoff 78]
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Error Bounds

Comparison of the expected number of errors

Enµ made by the informed scheme µ,
Enξ made by the universal scheme ξ,
Enρ made by an arbitrary scheme ρ.

i) |Enξ − Enµ| < Hn +
√

2EnµHn

ii) Enµ ≤ 2Enρ , enµ ≤ 2enρ

iii) Enξ < 2Enρ + Hn +
√

4EnρHn

[Hutter 99]

For computable µ, i.e. for K(µ) < ∞, the following
statements immediately follow:

vii) if E∞µ is finite, then E∞ξ is finite

viii) Enξ/Enµ = 1 + O(E−1/2
nµ )

Enµ→∞−→ 1
ix) Enξ − Enµ = O(

√
Enµ)

x) Enξ/Enρ ≤ 2 + O(E−1/2
nρ )
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Deterministic Sequence Prediction

Θρ is defined to predict the xn with higher ρ probability

Θρ(x<nxn) :=
{

0 for ρ(x<nxn) < 1
2

1 for ρ(x<nxn) > 1
2

Comparison of the expected number of errors

EnΘµ made by the informed scheme Θµ,
EnΘξ

made by the universal scheme Θξ,
Enρ made by an arbitrary scheme ρ.

i) 0 ≤ EnΘξ
− EnΘµ < Hn +

√
4EnΘµHn + H2

n

ii) EnΘµ ≤ Enρ , enΘµ ≤ enρ

iii) EnΘξ
< Enρ + Hn +

√
4EnρHn + H2

n

For computable µ, i.e. for K(µ) < ∞, the following
statements immediately follow:

vii) if E∞Θµ is finite, then E∞Θξ
is finite

viii) EnΘξ
/EnΘµ = 1 + O(E−1/2

nΘµ
)

EnΘµ→∞−→ 1
ix) EnΘξ

− EnΘµ = O(
√

EnΘµ)
x) EnΘξ

/Enρ ≤ 1 + O(E−1/2
nρ )
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Example Application

A dealer has two dice, one with 2 white and 4 black
faces, the other with 4 white and 2 black faces. He
chooses a die according to some deterministic rule. In
every round, we bet s = $3 on white or black and
receive r=$5 for every correct prediction.

Expected profit when using scheme ρ:
Pnρ := (n− Enρ)r − ns = (2n− 5Enρ)$

If we know µ, i.e. the die the dealer chooses, we should
predict the color which is on 4 sides and win money:
EnΘµ/n = 1

3, PnΘµ/n = 1
3$ > 0

With the probabilistic scheme we loose money:
Enµ/n = 1

3 ·23 + 2
3 ·13, Pnµ/n = −2

9$ < 0

If we don’t know µ we can use Solomonoff prediction
ξ or Θξ with asymptotically the same profit:
Pnξ/Pnµ = 1−O(n−1/2) = PnΘξ

/PnΘµ,
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Example Application (Profit Bound)

Estimate of the number of rounds before reaching the
winning zone with the Θξ system.

PnΘξ
>0 if

EnΘξ
<(1−s/r)n if

EnΘµ + Hn +
√

4EnΘµHn + H2
n < (1− s/r)·n if

n > 330 ln 2·K(µ) + O(1).

Θξ is asymptotically optimal with rapid convergence.

Generalization

For every (passive) game of chance for which there
exists a winning strategy, you can make money by using
Θξ even if you don’t know the underlying probabilistic
process/algorithm.

Θξ finds and exploits every regularity.
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Definition of the Universal AIξ Model

Universal AI = Universal Induction + Decision Theory

Replace µAI in decision theory model AIµ by an
appropriate generalization of ξ .

ξ(yx1:k) :=
∑

q:q(y1:k)=x1:k

2−l(q)

ẏk = maxarg
yk

∑
xk

max
yk+1

∑
xk+1

... max
ymk

∑
xmk

(c(xk)+ ... +c(xmk
))·ξ(ẏẋ<kyxk:mk

)

Claim: AIξ is the most intelligent environmental
independent, i.e. universally optimal, agent possible.

Applications

- Strategic Games.
- Function Minimization.
- Supervised Learning by Examples.
- Sequence Prediction.
- Classification.
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Outlook

• Generalize error bounds to non-binary sequences
(done).

• Generalize error bounds to more general credit
functions, i.e. credit Cij if outcome is i and
prediction was j.

• Error bounds for computable approximations to ξ.

• Determine suitable performance measures for the
universal AIξ model and prove bounds.
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Conclusions

• We have proved several new error bounds for
Solomonoff prediction ξ in terms of informed
prediction µ and in terms of general prediction
schemes ρ.

• Theorem 1 and Corollary 1 summarize the results in
the probabilistic case and Theorem 2 and Corollary
2 for the deterministic case.

• We have shown that in the probabilistic case Enξ

is asymptotically bounded by twice the number of
errors of any other prediction scheme.

• In the deterministic variant of Solomonoff prediction
this factor 2 is absent. It is well suited, even for
difficult prediction problems, as the error probability
EΘξ

/n converges rapidly to that of the minimal
possible error probability EΘµ/n.
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