DISTRIBUTION OF MUTUAL INFORMATION

Marcus Hutter

Istituto Dalle Molle di Studi sull'Intelligenza Artificiale IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland marcus@idsia.ch, http://www.idsia.ch/~marcus

NIPS-2001, December 3-8

Consider (Dependent) Random Variables

- $p_{ij}=$ joint probability of (i,j), $i\in\{1,...,r\}$ and $j\in\{1,...,s\}$.
- $p_{i+} = \sum_{j} p_{ij} = \text{marginal probability of } i$,
- $p_{+j} = \sum_{i} p_{ij} = \text{marginal probability of } j$.

(In)Dependence of Random Variables i and j

Widely used measure: Mutual Information (= CrossEntropy)

$$I(\mathbf{p}) = \sum_{i=1}^{r} \sum_{j=1}^{s} p_{ij} \log \frac{p_{ij}}{p_{i+}p_{+j}}$$

Example Application: Connecting Nodes in Bayesian Nets

Contingency Table

Data:

- $n_{ij} = \#$ of times (i, j) occurred.
- $n_{i+} = \sum_{j} n_{ij} = \#$ of times i occurred.
- $n_{+j} = \sum_{i} n_{ij} = \#$ of times j occurred.
- $n = \sum_{ij} n_{ij} = \text{size of data set.}$

$j\setminus i$	1	$\mid 2 \mid$	•••	$\mid r \mid$
1	n_{11}	n_{12}	• • •	n_{1r}
2	n_{21}	n_{22}	• • •	n_{2r}
:		:	٠	:
s	n_{s1}	n_{s2}	•••	n_{rs}

Sample Frequency (Point) Estimate of p_{ij}

$$p_{ij} \approx \hat{p}_{ij} := \frac{n_{ij}}{n}$$

Problems of Point Estimate

- $I(\hat{\mathbf{p}})$ gives no information about its accuracy.
- $I(\hat{\theta}) \neq 0$ can have to origins: a true dependency of the random variables i and j or just a fluctuation due to the finite sample size.

Questions of Interest

What is the probability that

- the true mutual information $I(\mathbf{p})$ is larger/smaller than a given threshold I^* ,
- the estimate $I(\hat{\mathbf{p}})$ is (in)consistent with $I(\mathbf{p}) = 0$,

Baysian Solution: 2nd Order Prior

Change convention to avoid confusion: $p_{ij} \sim \theta_{ij}$.

Prior distribution $p(\theta_{ij})$ for the unknown θ_{ij} on the probability simplex. (e.g. non-informative Dirichlet prior).

- \Rightarrow Posterior: $p(\theta|\mathbf{n}) \propto p(\theta) \cdot \prod_{ij} \theta_{ij}^{n_{ij}}$ (the n_{ij} are multinomially distributed).
- ⇒ Posterior probability density of the mutual information is:

$$p(I|\mathbf{n}) = \int \delta(I(\theta) - I)p(\theta|\mathbf{n})d^{rs}\theta$$

Hard to Compute:

- \neg Monte Carlo (slow),
- Exact (partially possible)
- ¬ Wild approximation (unreliable)
- $\sqrt{}$ Systematic expansion in 1/n (fast and sufficiently accurate)

Results for I under Dirichlet P(oste)rior

• Exact expression for mean:

$$E[I] = \frac{1}{n} \sum_{ij} n_{ij} [\psi(n_{ij}+1) - \psi(n_{i+1}+1) - \psi(n_{i+1}+1) + \psi(n+1)], \quad \psi(n) = \sum_{k=1}^{n-1} \frac{1}{k}$$

• Leading and next to leading order (n.l.o.) term for variance:

$$\operatorname{Var}[I] = \frac{1}{n} \sum_{ij} \frac{n_{ij}}{n} \left(\log \frac{n_{ij}n}{n_{i+}n_{+j}} \right)^2 - \frac{1}{n} \left(\sum_{ij} \frac{n_{ij}}{n} \log \frac{n_{ij}n}{n_{i+}n_{+j}} \right)^2 + n.l.o. + O(n^{-3}).$$

- For n.l.o. variance and leading order for skewness and kurtosis (3^{rd} and 4^{th} central moments) come to my poster or read the paper.
- Computation time: $O(r \cdot s)$, i.e. as fast as point estimate.
- Sytematic expansion of all moments to arbitrary order possible, but cumbersome.
- Leading order is as exact as one can specify prior knowledge.

Mutual Information Density Example Graph

