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Consider (Dependent) Random Variables
e p;; = joint probability of (¢, ), ie{l,...,r}and j € {1,....s}.
e pi, = )_;pij = marginal probability of 7,

® p,.; =) .pi; = marginal probability of j.

(In)Dependence of Random Variables : and )

Widely used measure: Mutual Information (= CrossEntropy)

Example Application: Connecting Nodes in Bayesian Nets



Contingency Table

Data: jg\i| 1 2 r
e n,;; = 7 of times (¢, j) occurred. 1 | niy | nis N1y
® n;, = Zj ni; = £ of times ¢ occurred. 2 | no1 | nao Noy
e n, ;=) .n;; = 7 of times j occurred.

e n =) .. n;; =size of data set. s | nag | o Mg

Sample Frequency (Point) Estimate of p;;

nij




Problems of Point Estimate

e /(p) gives no information about its accuracy.

A

e /() # 0 can have to origins:
a true dependency of the random variables 2 and 7 or
just a fluctuation due to the finite sample size.

Questions of Interest
What is the probability that

e the true mutual information I(p) is larger/smaller than a given threshold I*,

e the estimate I(p) is (in)consistent with I(p)=0,



Baysian Solution: 2nd Order Prior
Change convention to avoid confusion: p;; ~ 0;;.

Prior distribution p(6;;) for the unknown 6;; on the probability simplex.
(e.g. non-informative Dirichlet prior).

= Posterior: p(f|n) o< p(9) - [, 0;;" (the ng; are multinomially distributed).

= Posterior probability density of the mutual information is:

p(In) = / 5(1(0) — I)p(Bln)d™0

Hard to Compute:

— Monte Carlo (slow),

/ Exact (partially possible)

— Wild approximation (unreliable)

/ Systematic expansion in 1/n (fast and sufficiently accurate)
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Results for I under Dirichlet P(oste)rior

e Exact expression for mean:

ang (nij+1) =iy +1) = (ny; +1)+v(n+1)],  (n)
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e Leading and next to leading order (n.l.o.) term for variance:

1 n.. n..n 2 1 n.. n..n 2
Var[l] = = —2(1 Y — = 2] Y 1.o.+0(n™?).
ar|[] nZﬂ(og ) n(zn 0g — ) + n.l.o.+0(n"")

T, M 5 ;.M
i 1+ 1l4 g i 1+1b+j

e For n.l.o. variance and leading order for skewness and kurtosis (374 and 4"

central moments) come to my poster or read the paper.
e Computation time: O(r-s), i.e. as fast as point estimate.
e Sytematic expansion of all moments to arbitrary order possible, but cumbersome.

e Leading order is as exact as one can specify prior knowledge.
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Mutual Information Density Example Graph

10

= [6(1(0) — 1) [T, 057 605 —1) d™0

7 Exact n=[(40,10),(20,80)]

Gauss n=[(40,10),(20,80)]
6 [ A\ Gamma n=[(40,10),(20,80)]
‘ Beta  n=[(40,10),(20,80)]
- = = Exact n=[(8,2),(4,16)]

p(lla)
(3]

- = - Gauss n=[(8,2),(4,16)]

4 : \ Gamma n=[(8,2),(4,16)]
= = = Beta n=[(8,2),(4,16)]
3 : —-—-Exact n=[(20,5),(10,40)]
| —-—-Gauss n=[(20,5),(10,40)]
2 : N Gamma n=[(20,5),(10,40)]

—-—-Beta n=[(20,5),(10,40)]

1 11 21 31 41 51 61 71 81 91

I =0..1_max=[log(min(r,s))]



