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Abstract

Consider an agent interacting with an environment in cycles. In every

interaction cycle the agent is rewarded for its performance. We compare

the average reward U from cycle 1 to m (average value) with the future

discounted reward V from cycle k to ∞ (discounted value). We

consider essentially arbitrary (non-geometric) discount sequences and

arbitrary reward sequences (non-MDP environments). We show that

asymptotically U for m →∞ and V for k →∞ are equal, provided

both limits exist. Further, if the effective horizon grows linearly with k

or faster, then the existence of the limit of U implies that the limit of V

exists. Conversely, if the effective horizon grows linearly with k or slower,

then existence of the limit of V implies that the limit of U exists.
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Setup: Rewards, Values, Discounts

Bounded reward: rk ∈ [a, b] at time k ∈ IN

Total average value: U1m := 1
m [r1 + ... + rm]

Monotone discount sequence: γ1 ≥ γ2 ≥ γ3... > 0

Summable normalizer: Γk := γk + γk+1 + ... < ∞
Future discounted value: Vkγ := 1

Γk

∑∞
i=k γiri

Main Result

Theorem 1 (Average equals discounted value, U1∞ = V∞γ)

Asymptotically, the average value coincides with the discounted
value, i.e. lim

m→∞
U1m = lim

k→∞
Vkγ , provided both limits exist.
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Reinforcement Learning Setup

• An agent acts and gets rewarded

for his actions in cycles.

[Russell&Norvig 2003, Hutter 2005]

agent environment

reward

observation

action

• Simplifying assumption: agent and environment are deterministic.

• Generic goal: find action sequence (policy) that maximizes reward.

Which reward r1, r2, r3, ... ?
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Average Reward

Consider total reward sum or equivalently the average reward:

Definition 2 (Average value) U1m := 1
m [r1 + ... + rm]

where m should be the lifespan of the agent.

Pro:

- Simplest reasonable measure of performance.

Problems:

- lifetime m is often not known in advance.

- no bias towards early rewards.

Idea: Infinite horizon m →∞: Problems:

- immortal agents are lazy. [Hutter 2005]

- limit U1∞ may not exist.
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Geometric≡Exponential Discount

Geometrically discounted reward sum: Vkγ := (1−γ)
∑∞

i=k γi−kri with

0 ≤ γ < 1. [Samuelson 1937, Bertsekas&Tsitsiklis 1996, Sutton&Barto 1998, ...]

Pro: Preference towards early rewards and leads to consistent policies

in the sense that the Vkγ maximizing policies are the same for all k

(the agent does not change his mind).

Problems:

Effective finite moving horizon heff ≈ ln γ−1

can lead to suboptimal behavior:

- not self-optimizing for Bandits [Berry&Fristedt 1985, Kumar&Varaiya 1986].

- for every heff there is a “game” needing larger heff .
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Solution Attempts
Moving horizon: Uk,k+h−1 := 1

h [rk + ... + rk+h−1]
(popular for minimax tree truncation in zero sum games)
Problem: Can lead to inconsistent strategies (agent changes his mind)

Discount γ → 1: ⇒ heff →∞ ⇒ defect decreases [Kelly 1981].
Similar and related to m →∞ [Kakade 2001].
Problems: - limits limγ→1 V1γ and limm→∞ U1m exist may not exist
beyond ergodic MDPs.
[Mahadevan 1996 and Avrachenkov&Altman 1999 consider higher order terms]

- but real world is neither ergodic nor completely observable.
- Either fix γ < 1 (how?) or dynamically adapt γ

k→∞−→ 1 (inconsistent)

Sliding Discount: Wkγ ∝ γ0rk + γ1rk+1 + ...
(in psychology & economy)
Problem: also inconsistent for general γ.
[Strotz 1955, Vieille&Weibull 2004]
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Consistent General (Non-Geometric) Discount

Definition 3 (Discounted value)

Vkγ := 1
Γk

∑∞
i=k γiri with normalizer Γk :=

∑∞
i=k γi < ∞

• is well-defined for arbitrary environments,

• leads to consistent policies,

• leads to an increasing effective horizon
(proportionally to k)
for e.g. quadratic discount γk = 1/k2,

• i.e. the optimal agent becomes
increasingly farsighted in a consistent way.

• leads to self-optimizing policies in ergodic (kth-order) MDPs in
general, Bandits in particular, and even beyond MDPs.

[Hutter 2002 and 2005]
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Asymptotics

If the exact environment is not known in advance it has to be learned by

reinforcement [Sutton&Barto 1998] or adaptation [Kumar&Varaiya 1986].

In this case

the asymptotic total average performance U1∞ := limm→∞ U1m and

the asymptotic future discounted performance V∞γ := limk→∞ Vkγ

are more relevant than finite values.

Subject of Study in this Talk

Relation between U1∞ and V∞γ

for general discount γ and arbitrary environment r.
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Effective and Quasi-Horizon

• Rewards rk+h, rk+h+1,... give only a small contribution to Vkγ for

large h, since Γk+h ≡ γk+h + γk+h+1 + ... → 0 for h →∞

⇒ Vkγ has effective horizon heff for which the cumulative tail weight

Γk+heff /Γk ≈ 1
2

• Quasi-horizon hquasi
k := Γk/γk ≈ heff

k

• Super|sub|linear quasi-horizon: hquasi
k /k →∞|0|finite
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Example Discount Sequences & Quasi-Horizons

Discounts γk Γk hquasi
k is growth hquasi/k

finite 1k≤m m−k+1 m−k+1 is decreasing m−k+1
k

geometric γk γk

1−γ
1

1−γ is constant=
sublinear

1
(1−γ)k → 0

quadratic 1
k(k+1)

1
k k + 1 is linear k+1

k → 1

power k−1−ε 1
εk−ε k

ε is linear 1
ε → 1

ε

harmonic 1
k ln2 k

1
ln k k ln k is superlinear ln k →∞
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Example Reward Sequences

• Limit U1∞ may exist or not, independent of whether V∞γ exists.

• Examples for all four possibilities in the table below, with

• asymptotic value for the considered discount and reward sequences

• ∼ means oscillation.

Value∞ γ�r 1∞ 101010... 11021304... 11021408...

finite 1k≤m 1 1/2
1/2

1
3 ∼ 2

3

geometric γk 1 γ
1+γ ∼ 1

1+γ 0 ∼ 1 0 ∼ 1

quadratic 1
k(k+1) 1 1/2

1/2
1
3 ∼ 2

3

power k−1−ε 1 1/2
1/2

1
1+2ε ∼ 1

1+2−ε

harmonic 1
k ln2 k

1 1/2
1/2

1/2

oscillating hquasi 1 1/2 or ∼ 1/2 or ∼ ∼
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Average Implies Discounted Value
... if the quasi-horizon grows linearly with k or faster.

Theorem 4 (U1∞ ⇒ V∞γ) Assume hquasi
k =Ω(k)=(super)linear:

If U1m → α then Vkγ → α (∀γ).

For instance, quadratic, power and harmonic
discounts satisfy the condition, but faster-
than-power discount like geometric do not.

Proof “horizontally” slices Vkγ (as a function of

k) into a weighted sum of average rewards U1m.

The condition is actually necessary
in the sense that

Proposition 5 (U1∞ 6⇒ V∞γ) ∀γ with hquasi
k 6=Ω(k)

∃r for which U1∞ exists, but not V∞γ .
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Discounted Implies Average Value
... if the effective horizon grows linearly with k or slower.

Theorem 6 (V∞γ ⇒ U1∞) Assume hquasi
k = O(k) = (sub)linear:

If Vkγ → α then U1m → α (∀γ).

For instance, power or faster and

geometric discounts satisfy the condition,

but harmonic does not.

Proof slices U1m in “curves” to a weighted

mixture of discounted values Vkγ .

The condition is necessary in the sense that

Proposition 7 (V∞γ 6⇒ U1∞) ∀γ with hquasi
k 6=O(k)

∃r for which V∞γ exists, but not U1∞.



Marcus Hutter - 16 - General Discounting versus Average Reward

Average Equals Discounted Value

Theorem 4 and 6 nearly imply

Theorem 1 (U1∞ = V∞γ)

Assume U1∞ and V∞γ exist. Then U1∞ = V∞γ .

Missing case to prove: Oscillating quasi-horizon hquasi
k /k ∈ [0,∞]:

limhquasi
k /k = 0 < ∞ = lim hquasi

k /k

Reminder: Theorem 1 holds for arbitrary monotone discount sequences

(interesting since geometric discount leads to agents with bounded

horizon) and arbitrary bounded reward sequences (important since

reality is neither ergodic nor MDP).
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Appeal and Key Role of Power Discounting

• separates the cases where existence of U1∞ implies/is-implied-by

existence of V∞γ (U1∞ exists iff V∞γ exists),

• has linearly increasing effective/quasi horizon,

• neither requires nor introduces any artificial global time-scale,

• results in an increasingly farsighted agent with horizon proportional

to its own age (realistic model for humans?)

• In particular I advocate using quadratic discounting γk = 1/k2.
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Outlook

• All proofs in the paper provide convergence rates.

• Generalization to probabilistic environments possible.

• Monotonicity of γ and boundedness of rewards can possibly be

somewhat relaxed.

• Is there an easier direct way of proving Theorem 1 w/o separation

of the two (discount) cases?

• A formal relation between effective horizon and the introduced

quasi-horizon may be interesting.
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Thanks! Questions? Details:

• M. Hutter, General Discounting versus Average Reward. Proc. 17th
International Conf. on Algorithmic Learning Theory (ALT 2006)
http://arxiv.org/abs/cs.LG/0605040

• M. Hutter, Self-optimizing and Pareto-Optimal Policies in General
Environments. In Proc. 15th International Conf. on Computational
Learning Theory (COLT 2002) 364–379, Springer.
http://arxiv.org/abs/cs.AI/0204040

• M. Hutter, Universal Artificial Intelligence:
Sequential Decisions based on Algorithmic Probability.
EATCS, Springer, 300 pages, 2005.
http://www.idsia.ch/˜marcus/ai/uaibook.htm

Decision Theory = Probability + Utility Theory
+ +

Universal Induction = Ockham + Bayes + Turing
= =

A Unified View of Artificial Intelligence


