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Abstract
Given i.i.d. data from an unknown distribution, we consider the problem

of predicting future items. An adaptive way to estimate the probability

density is to recursively subdivide the domain to an appropriate

data-dependent granularity. A Bayesian would assign a

data-independent prior probability to “subdivide”, which leads to a prior

over infinite(ly many) trees. We derive an exact, fast, and simple

inference algorithm for such a prior, for the data evidence, the predictive

distribution, the effective model dimension, and other quantities. We

illustrate the behavior of our model on some prototypical functions.

Keywords
Bayesian density estimation, exact linear time algorithm, non-parametric

inference, adaptive infinite tree, Polya tree, scale invariance
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Inference

Given: i.i.d. data D sampled from unknown distribution q.

Goal: Infer/estimate probability density q from data D

=⇒ All other quantities of interest can be derived

Many methods ...
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(Non)Parametric Estimation

• Density q assumed to belong to an (in)finite-dimensional family.

(e.g. family of Gaussians parameterized by mean and (co)variance)

• Maximum Likelihood (ML) estimate (can overfit if the family is

large)

• Penalize complex distributions by assigning a prior (2nd order)

probability to the densities q.

• Maximize the model posterior (MAP ≈ MDL ≈ MML)

• Bayesians keep the complete posterior for inference

(MAP can fail while Bayes works [PH’04])

• How to choose the prior?
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Interval-bins: Frequency Estimate

Most simple non-parametric model class

Drawbacks:

• Distributions are discontinuous

• Restricted to one (or low) dimension

• Uniform (or fixed or heuristic) discretization

• Heuristic choice of the number of bins.

We present a full Bayesian solution/improvement to most these problems
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Setup and Basic Quantities of Interest

• Given: i.i.d. data D = (x1, ..., xn) ∈ Γn from domain Γ,

sampled from unknown probability density q : Γ → IR.

• Standard inference: Estimate q from D -or- predict next xn+1 ∈ Γ.

• Data likelihood under model q is p(D|q) ≡ q(x1) · ... · q(xn)

• Assume prior p(q) over models q ∈ Q

• Data evidence: p(D) =
∫

Q
p(D|q)p(q)dq

⇒ posterior: p(q|D) = p(D|q)p(q)/p(D) from Bayes’ rule

⇒ Predictive distribution: p(x|D) = p(D, x)/p(D)

⇒ Expected q-prob. of x: E[q(x)|D] :=
∫

q(x)p(q|D)dq = p(x|D)

⇒ Similarly for (co)variances
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Hierarchical Tree Partitioning

Recursively (sub)partition Γz = Γz0∪̇Γz1 for z ∈ IB∗

Γε = Γ, where ε is the empty string.

Examples for Γ: Interval [0, 1), tree, volume,

finite strings IB∗ or infinite sequences IB∞, ...

Classification: Γ = class+feature-space

z1 ∈ IB is class-label

z2 ∈ IB is most important feature

z3 ∈ IB is 2nd most important feature

...

or independent real-valued features.
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The New Tree Mixture Model

• Probability of branching left in tree-node Γz is qz0 := P [Γz0|Γz, q]

• All branching probabilities: ~qz∗ := (qzy : y ∈ IB∗ \ {ε})
• The prior p(q) follows from specifying a prior over ~q∗,

since q(x) ∝ qx1 · qx1x2 · qx1x2x3 ... (chain rule)

a) With probability 1
2 , choose q uniform on Γz .

b) With probability 1
2 , split Γz into two the parts Γz0 and Γz1,

and assign recursively a prior to each part,

i.e. in each part again either uniform or split, etc.

p(~qz∗) =

uniform︷ ︸︸ ︷
1
2

∏

y∈IB∗\{ε}
δ(qzy− 1

2 )+

split︷ ︸︸ ︷
1
2δ(qz0+qz1−1) p(~qz0∗)p(~qz1∗)︸ ︷︷ ︸

recursion



Marcus Hutter - 10 - Fast Bayesian Inference on Trees

Properties of the Tree Mixture Model

• Any probability measure q can be represented

• Scale invariance

• Symmetry

• Continuous predictive probability density for n →∞
• No tunable parameters (or at most two)

None of these desirable properties would satisfied for a finite tree model!
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The Evidence Recursion

Notation: Dz := {x ∈ D : x ∈ Γz}, and nz := |Dz|,
pz ∝ p restricted to Γz, and ∆z := nz0

nz
− 1

2 .

pz(Dz) =
∫

pz(Dz|~qz∗)p(~qz∗)d~qz∗
...= 1

2

[
1︸︷︷︸

uniform

+
pz0(Dz0)pz1(Dz1)

wnz (∆z)
]

︸ ︷︷ ︸
split

wnz (∆z) = 2−nz
(nz+1)!
nz0!nz1!

≈
{

Θ(
√

nz)
nz→∞−→ ∞ if q̇z0 = q̇z1,

e−Θ(nz) nz→∞−→ 0 if q̇z0 6= q̇z1.

Weight wz is large/small for uniform/non-uniform qz(),
correctly causing uniform/split.
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Asymptotic convergence/consistency (n → ∞)

• posterior pz(~qz∗|D) concentrates around the true distribution ~̇qz∗
for n →∞.

⇒ posterior pz(x|Dz) → q̇z(x) for all x ∈ Γz.

• Evidence pz(Dz) → const. for uniform q̇z(),
and increases exponentially with nz for non-uniform q̇z().
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Model Dimension and Number of Bins
Effective model dimension N~qz∗ = #{q ∈ ~qz∗ : q 6= 1

2} of ~qz∗ can be

given recursively as N~qz∗ =





0 if qz0 = 1
2

1 + N~qz0∗ + N~qz1∗ if qz0 6= 1
2

Pz[N~qz∗ = k + 1|Dz] = gz(Dz)
k∑

i=0

Pz0[N~qz0∗ = i|Dz0]·Pz1[N~qz1∗ =k−i|Dz1],

Splitting probability: gz(Dz) := 1
2

pz0(Dz0)pz1(Dz1)
pz(Dz)w(nz0, nz1)

= 1− 1
2pz(Dz)

Interpretation: The probability that Γz has dimension k + 1 equals

• the posterior probability gz(Dz) of splitting Γz,

• times the probability that left subtree has dimension i,

• times the probability that right subtree has dimension k − i,

• summed over all possible i.

Number of bins ≡ 1 + model dimension (due to probability constraint)
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Tree Height and Bin Size

Effective tree height ~qz∗ at x ∈ Γz is given recursively as

h~qz∗(x) =





0 if qz0 = 1
2

1 + h~qzxl+1∗
(x) if qz0 6= 1

2

Ez[h~qz∗(x)|Dz] = gz(Dz)
[
1 + Ezxl+1 [h~qzxl+1∗

(x)|Dzxl+1 ]

Average cell/bin size or volume: v~q∗ = 2−h̄~q∗
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Fast BayesTree Algorithm

• Recurse down the tree until Dz = φ is empty or

Dz = (xi) ∈ Γz is a singleton (data separation level)

• Subdividing empty or singleton cells further,

remain empty or singletons.

⇒ Solve quadratic

self-consistent equation

• which can be done analytically ...
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Solution of Self-Consistency Equations

• Evidence pz(φ) = pz(xi) = 1 (trivial)

• Effective tree height Ez[h~qz∗(x)|φ or x] = 1 (easy)

• Effective model dimension Pz[N~qz∗ = k|φ or x] = ak with

ak+1 = 1
2

k∑

i=0

ai ·ak−i with a0 = 1
2

ak =
1

2(k+1)4k

(
2k

k

)
∼ 1

2
√

π
k−3/2

• This is exactly how a proper non-informative prior on IN should

look like: as uniform as possible, i.e. slowly decreasing.

• Conclusion: Finite O(n =data size) procedure for exactly computing

all quantities of interest in infinite BayesTree model.



BayesTree(D[], n, x) – Algorithm in Pseudo Code
d if (n ≤ 1 and (n == 0 or D[0] == x or x 6∈ [0, 1)))

d if (x ∈ [0, 1)) then h = 1; else h = 0;

b p = 1; for(k = 0, .., Nmax) p̃[k] = ak;

else

d n0 = n1 = 0;

for(i = 0, .., n− 1)

d if (D[i] < 1
2
) then[ D0[n0] = 2D[i]; n0 = n0 + 1;]

b else [D1[n1] = 2D[i]− 1; n1 = n1 + 1;]

(p0, h0, p̃0[])=BayesTree(D0[], n0, 2x);

(p1, h1, p̃1[])=BayesTree(D1[], n1, 2x− 1);

p = 1
2
[1 + p0 · p1/ ln w(n0, n1)];

g = 1− 1/2p;

if (x ∈ [0, 1)) then h = g · (1 + h0 + h1); else h = 0;

p̃[0] = 1− g;

b for(k = 0, .., Nmax) p̃[k + 1] = g ·∑k

i=0
p̃0[i] · p̃1[k − i];

b return (p, h, p̃[]);
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Numerical Examples: General observations

• The posteriors p(x|D) clearly converge for n →∞ to the true

distribution q̇(),

• accompanied by a (necessary) moderate growth of the effective

dimension (except for Jump-at-1/2).

• For n = 10 we show the data points. It is visible how each data

point pulls the posterior up, as it should be (“one sample seldom

comes alone”).

• Optimal bin-number O(n1/3) is nicely consistent with the

BayesTree model dimension.

• The expected tree height E[h(x)|D] at x correctly reflects the local

needs for (non)splits.
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Singular Distribution q̇(x) = 2/
√

1 − x

Posterior p(x|D)
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Singular Distribution q̇(x) = 2/
√

1 − x

Dimension P[N|D]
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Singular Distribution q̇(x) = 2/
√

1 − x

Height E[h(x)|D]
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Tree height is necessarily larger near the singularity at x = 1.
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Jump-at-1/2 Distribution: Finite Bayes Tree

Posterior p(x|D)
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Jump-at-1/2 Distribution: Finite Bayes Tree

Dimension P[N|D]
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Finite model dimension and tree height. All quantities converge rapidly.
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Jump-at-1/3 Distribution

Posterior p(x|D)
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Jump-at-1/3 Distribution

Height E[h(x)|D]
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Only one branch of the tree has to grow to infinity. Singularity at 1/3.
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Jump-at-1/3 Distribution

Dimension P[N|D]
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Slow(er) increase of dimension.
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Extensions

• Multi-Points (xi ≡ xj): Important for higher moments

⇒ New interesting phenomena!

• Splitting probability 6= 1
2 ⇒ New interesting phenomena!

• Uniform prior over branching mass qz0 could be generalized to a

Dirichlet distribution ⇒ Allows informative prior.

• Expected entropy can be computed similar to [WW’96,H’01]

• A sort of maximum a posteriori (MAP) tree skeleton can also easily

be extracted.
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Summary

• We presented a Bayesian model on infinite trees, where we split a

node into two subtrees with prior probability 1
2 , and uniform choice

of the probability assigned to each subtree.

• We devised closed form expressions for various inferential quantities

of interest at the data separation level, which led to an exact

algorithm with runtime essentially linear in the data size.

• The theoretical and numerical model behavior was very reasonable,

e.g. consistency (no underfitting) and finite effective dimension (no

overfitting).

• A challenge is to generalize the model from piecewise constant to

piecewise linear continuous functions
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Thanks! Questions? Details:

Jobs: PostDoc and PhD positions at IDSIA, Switzerland

Projects at http://www.idsia.ch/˜marcus

A Unified View of Artificial Intelligence
= =

Decision Theory = Probability + Utility Theory

+ +

Universal Induction = Ockham + Bayes + Turing

Open research problems at www.idsia.ch/∼marcus/ai/uaibook.htm


