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Abstract

We derive a very general regret bound in the framework of prediction

with expert advice, which challenges the best known regret bound for

Bayesian sequence prediction. Both bounds of the form√
Loss× complexity hold for any bounded loss-function, any prediction

and observation spaces, arbitrary expert/environment classes and

weights, and unknown sequence length.

Keywords

Bayesian sequence prediction;

Prediction with Expert Advice;

general weights, alphabet and loss.
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Sequential/online predictions

In sequential or online prediction, for t = 1, 2, 3, ...,

our predictor p makes a prediction yp
t ∈ Y

based on past observations x1, ..., xt−1.

Thereafter xt ∈ X is observed and p suffers loss `(xt, y
p
t ).

The goal is to design predictors with small total loss or cumulative

Loss1:T (p) :=
∑T

t=1 `(xt, y
p
t ).

Applications are abundant, e.g. weather or stock market forecasting.

Example:
Loss `(x, y) X = {sunny , rainy}

Y =
{

umbrella
sunglasses

}
0.1 0.3
0.0 1.0

Setup also includes: Classification and Regression problems.
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Bayesian Sequence Prediction
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Bayesian Sequence Prediction - Setup

• Assumption: Sequence x1...xT is sampled from some distribution µ,

i.e. the probability of x<t := x1...xt−1 is µ(x<t).

• The probability of the next symbol being xt, given x<t, is µ(xt|x<t)

• Goal: minimize the µ-expected-Loss =: L̄oss.

• More generally: Define the Bayesρ sequence prediction scheme

yρ
t := arg min

yt∈Y

∑
xt

ρ(xt|x<t)`(xt, yt),

which minimizes the ρ-expected loss.

• If µ is known, Bayesµ is obviously the best predictor in the sense of

achieving minimal expected loss: L̄oss1:T (Bayesµ) ≤ L̄oss1:T (Any p)
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The Bayes-mixture distribution ξ

• Assumption: The true (objective) environment µ is unknown.

• Bayesian approach: Replace true probability distribution µ by a

Bayes-mixture ξ.

• Assumption: We know that the true environment µ is contained in

some known (finite or countable) set M of environments.

• The Bayes-mixture ξ is defined as

ξ(x1:m) :=
∑

ν∈M
wνν(x1:m) with

∑

ν∈M
wν = 1, wν > 0 ∀ν

• The weights wν may be interpreted as the prior degree of belief that

the true environment is ν, or kν = ln w−1
ν as a complexity penalty

(prefix code length) of environment ν.

• Then ξ(x1:m) could be interpreted as the prior subjective belief

probability in observing x1:m.
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Bayesian Loss Bound

Under certain conditions, L̄oss1:T (Bayesξ) is bounded by L̄oss1:T (Any p)
(and hence by the loss of the best predictor in hindsight Bayesµ):

L̄oss1:T (Bayesξ) ≤ L̄oss1:T (Any p)+2
√

L̄oss1:T (Any p)·kµ+2kµ ∀µ∈M

Note that L̄oss1:T depends on µ. Proven for countable M and X , finite

Y, any kµ, and any bounded loss function ` : X × Y → [0, 1] [H’01–03]

For finite M, the uniform choice kν = ln |M| ∀ν ∈M is common.

For infinite M, kν = complexity of ν is common (Occam,Solomonoff).
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Prediction with Expert Advice
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Prediction with Expert Advice (PEA) - Setup

Given a countable class of E experts,

each Experte ∈ E at times t = 1, 2, ... makes a prediction ye
t .

The goal is to construct a master algorithm, which exploits the experts,

and predicts asymptotically as well as the best expert in hindsight.

More formally, a PEA-Master is defined as:

For t = 1, 2, ..., T

- Predict yPEA
t := PEA(x<t,yt, Loss)

- Observe xt := Env(y<t, x<t, y
PEA
<t ?)

- Receive Losst(Experte) := `(xt, y
e
t ) for each Experte ∈ E

- Suffer Losst(PEA) := `(xt, y
PEA
t )

Notation: x<t := (x1, ..., xt−1) and yt = (ye
t )e∈E .
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Goals

BEH := Best Expert in Hindsight = Expert of minimal total Loss.

Loss1:T (BEH) = mine∈E Loss1:T (Experte).

0) Regret := Loss1:T (PEA)− Loss1:T (BEH)
shall be small (O(

√
Loss1:T (BEH)).

1) Any bounded Loss function (w.l.g. 0 ≤ Losst ≤ 1).

Literature: Mostly specific Loss (absolute, 0/1, log, square)

2) Neither (non-trivial) upper bound on total Loss,

nor sequence length T is known. Solution: Adaptive learning rate.

3) Infinite number of Experts. Motivation:

- Experte = polynomial of degree e = 1, 2, 3, ... through data -or-

- E = class of all computable (or finite state or ...) Experts.
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Weighted Majority (WM)

Take expert which performed best in past with high probability

and others with smaller probability.

At time t, select Expert IWM
t with probability

P [IWM
t = e] ∝ we · exp[−ηt ·Loss<t(Experte)]

ηt = learning rate, we = initial weight.

[Littlestone&Warmuth’90 (Classical)]: 0/1 loss and ηt=const.

[Freund&Shapire’97 (Hedge)] and others: General Loss, but ηt=const.

[Cesa-Bianchi et al.’97]: Piecewise constant ηt. Only 1/we = |E| < ∞.

[Auer&Gentile’00, Yaroshinsky et al.’04]: Smooth ηt ↘ 0, but only 0/1 Loss

and 1/we = |E| < ∞.
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Follow the Perturbed Leader (FPL)
Select expert of minimal perturbed and penalized Loss.

Let Qe
t be i.i.d. random variables and ke complexity penalty.

Select expert IFPL
t := arg mine{ηtLoss<t(Experte) + ke+Qe

t}

[Hannan’57]: Qe
t

d.∼ Uniform[0, 1], [Kalai&V.’03]: P [Qe
t = u] = 1

2 exp(−|u|)
Both: ke = 0, |E| < ∞, ηt ∝ 1/

√
t =⇒ Regret=O(

√
|E|·T ).

[Hutter&Poland’04]: P [Qe
t = −u] = exp(−u) (u ≥ 0),

General ke and E and ηt ∝ 1/
√

Loss =⇒ Regret=O(
√

ke ·Loss).

For all PEA variants (WM & FPL & others) it holds:

P [It = e] = { large
small} if Experte has { small

large } Loss.

It
η→∞−→ Best Expert in Past (η = learning rate)

It
η→0−→ Uniform distribution among Experts.
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FPL Regret Bounds for |E| < ∞ and ke = ln |E|
Since FPL is randomized, we need to consider expected-Loss =: Loss.

Regret := Loss1:T (FPL)− Loss1:T (BEH).

Static ηt =
√

ln |E|
T =⇒ Regret ≤ 2

√
T ·ln |E|

Dynamic ηt =
√

ln |E|
2t =⇒ Regret ≤ 2

√
2T ·ln |E|

Self-confident ηt =
√

ln |E|
2(Loss<t(FPL)+1) =⇒

Regret ≤ 2
√

2(Loss1:T (BEH) + 1)·ln |E| + 8 ln |E|

Adaptive ηt =
√

1
2 min

{
1,

√
ln |E|

Loss<t(“BEH”)

}
=⇒

Regret ≤ 2
√

2Loss1:T (BEH)·ln |E|+ 5 ln |E|·ln Loss1:T (BEH)+3ln|E|+6

No hidden O() terms!
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FPL Regret Bounds for |E| = ∞ and general ke

Assume complexity penalty ke such that
∑

e∈E exp(−ke) ≤ 1.

We expect ln |E| Ã ke, i.e. Regret = O(
√

ke ·(Loss or T )).

Problem: Choice of ηt =
√

ke/... depends on e. Proofs break down.

Choose: ηt =
√

1/... ⇒ Regret ≤ ke
√
· · ·, i.e. ke not under

√
.

Solution: Two-Level Hierarchy of Experts:
Group all experts of (roughly) equal complexity.

• FPLK over subclass of experts with complexity ke ∈ (K − 1,K].
Choose ηK

t =
√

K/2Loss<t = constant within subclass.

• Regard each FPLK as a (meta)expert. Construct from them (meta)

F̃PL. Choose η̃t =
√

1/Loss<t and k̃K = 1
2 + 2 lnK.

=⇒ Regret ≤ 2
√

2 ke ·Loss1:T (Experte) · (1 + O( ln ke√
ke

)) + O(ke)
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PEA versus Bayes
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PEA versus Bayes Bounds – Formal

Formal similarity and duality between Bayes and PEA bounds is striking:

L̄oss1:T (Bayesξ) ≤ L̄oss1:T (Any p) + 2
√

L̄oss1:T (Any p)·kµ + 2kµ

Loss1:T (PEA) ≤ Loss1:T (Experte) + c·
√

Loss1:T (Experte)·ke + b·ke

c = 2
√

2 and b = 8 for PEA = FPL.

beats in environ- expectation function
predictors ment w.r.t. of

Bayes all p µ ∈M environment µ M
PEA Experte ∈ E any x1...xT prob. prediction E

Apart from these formal duality, there is a real connection between both

bounds.
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PEA Bound reduced to Bayes Bound

Regard class of Bayes-predictors {Bayesν : ν ∈M} as class of experts E .

The corresponding FPL algorithm then satisfies PEA bound

Loss1:T (PEA) ≤ Loss1:T (Bayesµ) + c·
√

Loss1:T (Bayesµ)kµ + b·kµ.

Take the µ-expectation, and use L̄oss1:T (Bayesµ) ≤ L̄oss1:T (Any p)
and Jensen’s inequality, to get a Bayes-like bound for PEA

L̄oss(PEA) ≤ L̄oss1:T (Any p) + c·
√

L̄oss1:T (Any p)·kµ + b·kµ ∀µ ∈M
Ignoring details, instead of using Bayesξ, one may use PEA with

same/similar performance guarantees as Bayesξ.

Additionally, PEA has worst-case guarantees, which Bayes lacks.

So why use Bayes at all?
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Open Problems

• We only compared bounds on PEA and Bayes. What about the

actual (practical or theoretical) relative performance?

• Can FPL regret constant c = 2
√

2 be improved to c = 2?

For Hedge/FPL? Conjecture: Yes for Hedge, since Bayes has c = 2.

• Generalize existing bounds for WM-type masters (e.g. Hedge) to

general X , Y, E , and ` ∈ [0, 1], similarly to FPL.

• Generalize FPL bound to infinite E and general ke without the

hierarchy trick (like for Bayes) (with expert dependent ηe
t ?)

• Try first to prove weaker regret bounds with
√

Loss1:T Ã
√

T .
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More on (PEA) Regret Constant

Constant c in Regret = c·
√

Loss·ke for various settings and algorithms.

η Loss Optimal LowBnd Upper Bound

static 0/1 1? 1?
√

2 [V’95]

static any
√

2 !
√

2 [V’95]
√

2 [FS’97], 2 [FPL]

dynamic 0/1
√

2 ? 1 [H’03]?
√

2 [YEYS’04], 2
√

2 [ACBG’02]

dynamic any 2 ?
√

2 [V’95] 2
√

2 [FPL], 2 [H’03]

Major open Problems

• Elimination of hierarchy (trick)

• Lower regret bound for infinite #Experts

• Same results (dynamic ηt, any Loss, |E| = ∞) for WM
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Some more FPL Results

Lower bound: Loss1:T (FPL) ≥ Loss1:T (BEH) + ln |E|
ηT

if ke = ln |E|.

Bounds with high probability (Chernoff-Hoeffding):

P [|Loss1:T − Loss1:T | ≥
√

3cLoss1:T ] ≤ 2 exp(−c) is tiny for e.g.

c = 5.

Computational aspects: It is trivial to generate the randomized decision

of FPL. If we want to explicitly compute the probability we need to

compute a 1D integral.

Deterministic prediction: FPL can be derandomized if prediction space

Y and loss-function Loss(x, y) are convex.
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Thanks!

Questions?

Details:

http://www.idsia.ch/˜marcus/ai/expert.htm [ALT 2004]

http://www.idsia.ch/˜marcus/ai/spupper.htm [IEEE-TIT 2003]


