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Abstract
Algorithmic information theory has a wide range of applications, despite

the fact that its core quantity, Kolmogorov complexity, is incomputable.

Most importantly, AIT allows to quantify Occam’s razor, the core

scientific paradigm that ”among two models that describe the data

equally well, the simpler one should be preferred”. This led to universal

theories of induction and action in the field of machine learning and

artificial intelligence, and practical versions like the Minimum Encoding

Length (MDL/MML) principles. The universal similarity metric probably

spawned the greatest practical success of AIT. Approximated by

standard compressors like Lempel-Ziv (zip) or bzip2 or PPMZ, it leads

to the normalized compression distance, which has been used to fully

automatically reconstruct language and phylogenetic trees, and many

other clustering problems. AIT has been applied in disciplines as remote

as Cognitive Sciences, Biology, Physics, and Economics.



- 3 - Marcus Hutter

Presented Applications of AIT

• Philosophy: problem of induction

• Machine learning: time-series forecasting

• Artificial intelligence: foundations [COMP4620/COMP8620]

• Probability theory: choice of priors

• Information theory: individual randomness/information

• Data mining: clustering, measuring similarity

• Bioinformatics: phylogeny tree reconstruction

• Linguistics: language tree reconstruction
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1 MINI-INTRODUCTION TO

KOLMOGOROV COMPLEXITY

• Kolmogorov Complexity K(x)

• Properties of Kolmogorov complexity

• Schematic Graph of Kolmogorov Complexity

• Relation to Shannon Entropy
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Kolmogorov Complexity K(x)
K. of string x is the length of the shortest (prefix) program producing x:

K(x|y) := minp{l(p) : U(y, p) = x}, U = universal TM

For non-string objects o (like numbers and functions) we define

K(o) := K(⟨o⟩), where ⟨o⟩ ∈ X ∗ is some standard code for o.

+ Simple strings like 000...0 have small K,

irregular (e.g. random) strings have large K.

• The definition is nearly independent of the choice of U .

+ K satisfies most properties an information measure should satisfy.

+ K shares many properties with Shannon entropy but is superior.

− K(x) is not computable, but only semi-computable from above.

Fazit:
K is an excellent universal complexity measure,

suitable for quantifying Occam’s razor.
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Properties of Kolmogorov Complexity

• Upper bound: K(x)
+
< ℓ(x) + 2log ℓ(x)

• Kraft inequality:
∑

x 2
−K(x) ≤ 1, K(x) ≥ ℓ(x) for ‘most’ x.

• Lower bound: K(x) ≥ ℓ(x) for ‘most’ x, K(n) → ∞ for n → ∞

• Extra information: K(x|y)
+
< K(x)

+
< K(x, y)

• Symmetry: K(x|y,K(y)) +K(y)
+
= K(x, y)

+
= K(y, x).

• Information non-increase: K(f(x))
+
< K(x) +K(f) for comp. f

• MDL bound: K(x)
+
< −logP (x) +K(P )

for computable P : {0, 1}∗ → [0, 1] and
∑

x P (x) ≤ 1

• K is upper semi-computable but not finitely computable.
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Schematic Graph of Kolmogorov Complexity
Although K(x) is incomputable, we can draw a schematic graph
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Relation to Shannon Entropy
Let X,Y ∈ X be discrete random variable with distribution P (X,Y ).

Definition 1.1 (Definition of Shannon entropy)

Entropy(X) ≡ H(X) := −
∑

x∈X P (x) logP (x)

Entropy(X|Y ) ≡ H(X|Y ) := −
∑

y∈Y P (y)
∑

x∈X P (x|y) logP (x|y)

Theorem 1.2 (Properties of Shannon entropy)

• Upper bound: H(X) ≤ log |X | = n for X = {0, 1}n

• Extra information: H(X|Y ) ≤ H(X) ≤ H(X,Y )

• Subadditivity: H(X,Y ) ≤ H(X) +H(Y )

• Symmetry: H(X|Y ) +H(Y ) = H(X,Y ) = H(Y,X)

• Information non-increase: H(f(X)) ≤ H(X) for any f

Relations for H are essentially expected versions of relations for K.
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2 UNIVERSAL A PRIORI PROBABILITY

• The Universal a Priori Probability M

• Relations between Complexities

• Fundamental Universality Property of M
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Philosophy & Notation

Occam’s razor: take simplest hy-

pothesis consistent with data.

Epicurus’ principle of multiple ex-

planations: Keep all theories con-

sistent with the data.

⇓ ⇓
We now combine both principles:

Take all consistent explanations into account,

but weight the simpler ones higher.

Formalization with Turing machines and Kolmogorov complexity

Notation: We denote binary strings of length ℓ(x) = n by

x = x1:n = x1x2...xn with xt ∈ {0, 1} and further abbreviate

x<n := x1...xn−1.
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The Universal a Priori Probability M

Solomonoff defined the universal probability distribution M(x) as the

probability that the output of a universal monotone Turing machine

starts with x when provided withfair coin flips on the input tape.

Definition 2.1 (Solomonoff distribution) Formally,

M(x) :=
∑

p : U(p)=x∗

2−ℓ(p)

The sum is over minimal programs p for which U outputs a string

starting with x.

Since the shortest programs p dominate the sum, M(x) is roughly

2−Km(x). More precisely ...
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Relations between Complexities

Theorem 2.2 (Relations between Complexities)

KM := −logM , Km, and K are ordered in the following way:

0 ≤ K(x|ℓ(x))
+
< KM(x) ≤ Km(x) ≤ K(x)

+
< ℓ(x) + 2logℓ(x)

Proof sketch:

The second inequality follows from the fact that,

given n and Kraft’s inequality
∑

x∈Xn M(x) ≤ 1,

there exists for x ∈ Xn a Shannon-Fano code of length −logM(x),

which is effective since M is enumerable.

Now use the MDL bound conditioned to n.

The other inequalities are obvious from the definitions.
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3 UNIVERSAL SEQUENCE PREDICTION

• Solomonoff, Occam, Epicurus

• Prediction

• Simple Deterministic Bound

• Solomonoff’s Major Result

• Implications of Solomonoff’s Result

• Universal Inductive Inference

• More Stuff / Critique / Problems
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Solomonoff, Occam, Epicurus

• In which sense does M incorporate Occam’s razor and Epicurus’

principle of multiple explanations?

• From M(x) ≈ 2−K(x) we see that M assigns high probability to

simple strings (Occam).

• More useful is to think of x as being the observed history.

• We see from Definition 2.1 that every program p consistent with

history x is allowed to contribute to M (Epicurus).

• On the other hand, shorter programs give significantly larger

contribution (Occam).
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Prediction

How does all this affect prediction?

If M(x) correctly describes our (subjective) prior belief in x, then

M(y|x) := M(xy)/M(x)

must be our posterior belief in y.

From the symmetry of algorithmic information

K(x, y)
+
= K(y|x,K(x)) +K(x), and assuming K(x, y) ≈ K(xy), and

approximating K(y|x,K(x)) ≈ K(y|x), M(x) ≈ 2−K(x), and

M(xy) ≈ 2−K(xy) we get:

M(y|x) ≈ 2−K(y|x)

This tells us that M predicts y with high probability iff y has an easy

explanation, given x (Occam & Epicurus).
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Simple Deterministic Bound

Sequence prediction algorithms try to predict the continuation

xt ∈ {0, 1} of a given sequence x1...xt−1. Simple deterministic bound:
∞∑
t=1

|1−M(xt|x<t)|
a
≤ −

∞∑
t=1

lnM(xt|x<t)
b
= − lnM(x1:∞)

c
≤ ln 2·Km(x1:∞)

(a) use |1− a| ≤ − ln a for 0 ≤ a ≤ 1.

(b) exchange sum with logarithm and eliminate product by chain rule.

(c) used Theorem 2.2.

If x1:∞ is a computable sequence, then Km(x1:∞) is finite,

which implies M(xt|x<t) → 1 (
∑∞

t=1 |1− at| < ∞ ⇒ at → 1).

⇒ if environment is a computable sequence (digits of π or Expert or ...),

after having seen the first few digits, M correctly predicts the next digit

with high probability, i.e. it recognizes the structure of the sequence.
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More Stuff / Critique / Problems

• Other results: M convergence rapidly also on stochastic sequences;

solves the zero-prior & old evidence & new theories problems;

can confirm universal hypotheses; is reparametrization invariant;

predicts better than all other predictors.

• Prior knowledge y can be incorporated by using “subjective” prior

wU
ν|y = 2−K(ν|y) or by prefixing observation x by y.

• Additive/multiplicative constant fudges and U -dependence is often

(but not always) harmless.

• Incomputability: K and M can serve as “gold standards” which

practitioners should aim at, but have to be (crudely) approximated

in practice (MDL [Ris89], MML [Wal05], LZW [LZ76], CTW [WSTT95],

NCD [CV05]).
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4 MARTIN-LÖF RANDOMNESS

• When is a Sequence Random? If it is incompressible!

• Motivation: For a fair coin 00000000 is as likely as 01100101,

but we “feel” that 00000000 is less random than 01100101.

• Martin-Löf randomness captures the important concept of

randomness of individual sequences.

• Martin-Löf random sequences pass all effective randomness tests.
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When is a Sequence Random?

a) Is 0110010100101101101001111011 generated by a fair coin flip?

b) Is 1111111111111111111111111111 generated by a fair coin flip?

c) Is 1100100100001111110110101010 generated by a fair coin flip?

d) Is 0101010101010101010101010101 generated by a fair coin flip?

• Intuitively: (a) and (c) look random, but (b) and (d) look unlikely.

• Problem: Formally (a-d) have equal probability ( 12 )
length.

• Classical solution: Consider hypothesis class H := {Bernoulli(p) :
p ∈ Θ ⊆ [0, 1]} and determine p for which sequence has maximum

likelihood =⇒ (a,c,d) are fair Bernoulli(12 ) coins, (b) not.

• Problem: (d) is non-random, also (c) is binary expansion of π.

• Solution: Choose H larger, but how large? Overfitting? MDL?

• AIT Solution: A sequence is random iff it is incompressible.
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Martin-Löf Random Sequences

Characterization equivalent to Martin-Löf’s original definition:

Theorem 4.1 (Martin-Löf random sequences)

A sequence x1:∞ is µ-random (in the sense of Martin-Löf)

⇐⇒ there is a constant c such that M(x1:n) ≤ c · µ(x1:n) for all n.

Equivalent formulation for computable µ:

x1:∞ is µ.M.L.-random ⇐⇒ Km(x1:n)
+
= −logµ(x1:n) ∀n, (4.2)

Theorem 4.1 follows from (4.2) by exponentiation, “using 2−Km ≈ M”

and noting that M
×
> µ follows from universality of M .



Martin-Löf Randomness - 22 - Marcus Hutter

Properties of ML-Random Sequences

• Special case of µ being a fair coin, i.e. µ(x1:n) = 2−n, then x1:∞ is

random ⇐⇒ Km(x1:n)
+
= n, i.e. iff x1:n is incompressible.

• For general µ, −logµ(x1:n) is the length of the Shannon-Fano code

of x1:n, hence x1:∞ is µ-random ⇐⇒ the Shannon-Fano code is

optimal.

• One can show that a µ-random sequence x1:∞ passes all thinkable

effective randomness tests, e.g. the law of large numbers, the law of

the iterated logarithm, etc.

• In particular, the set of all µ-random sequences has µ-measure 1.



Martin-Löf Randomness - 23 - Marcus Hutter

Summary
• Solomonoff’s universal a priori probability M(x)

= Occam + Epicurus + Turing + Bayes + Kolmogorov

= output probability of a universal TM with random input

= enum. semimeasure that dominates all enum. semimeasures

≈ 2−Kolmogorov complexity

• M(xt|x<t) → µ(xt|x<t) rapid w.p.1 ∀ computable µ.

• M solves/avoids/meliorates many if not all philosophical and

statistical problems around induction.

• Fazit: M is universal predictor.

• Matin-Löf /Kolmogorov define randomness of individual sequences:

A sequence is random iff it is incompressible.
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5 THE MINIMUM DESCRIPTION

LENGTH PRINCIPLE

• MDL as Approximation of Solomonoff’s M

• The Minimum Description Length Principle
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MDL as Approximation of Solomonoff’s M

• Approximation of Solomonoff, since M incomputable:

• M(x) ≈ 2−Km(x) (excellent approximation)

• Km(x) ≡ KmU (x) ≈ KmT (x)

(approximation quality depends on T and x)

• Predict y of highest M(y|x) is approximately same as

• MDL: Predict y of smallest complexity KmT (xy).

• Examples for x: Daily weather or stock market data.

• Example for T : Lempel-Ziv decompressor.
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The Minimum Description Length Principle
Identification of probabilistic model “best” describing data:

Probabilistic model(=hypothesis) Hν with ν ∈ M and data D.

Most probable model is νMDL = argmaxν∈M p(Hν |D).

Bayes’ rule: p(Hν |D) = p(D|Hν)·p(Hν)/p(D).

Occam’s razor: p(Hν) = 2−Kw(ν).

By definition: p(D|Hν) = ν(x), D = x =data-seq., p(D) =const.

Take logarithm:

Definition 5.1 (MDL) νMDL = arg min
ν∈M

{Kν(x) +Kw(ν)}

Kν(x) := −log ν(x) = length of Shannon-Fano code of x given Hν .

Kw(ν) = length of model Hν .

Names: Two-part MDL or MAP or MML (∃ slight/major differences)
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Application: Regression / Polynomial Fitting
• Data D = {(x1, y1), ..., (xn, yn)}

• Fit polynomial fd(x) := a0 + a1x+ a2x
2 + ...+ adx

d of degree d
through points D

• Measure of error: SQ(a0...ad) =
∑n

i=1(yi − fd(xi))
2

• Given d, minimize SQ(a0:d) w.r.t. parameters a0...ad.

• This classical approach does
not tell us how to choose d?
(d ≥ n− 1 gives perfect fit)
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6 THE UNIVERSAL SIMILARITY METRIC

• Conditional Kolmogorov Complexity

• The Universal Similarity Metric

• Tree-Based Clustering

• Genomics & Phylogeny: Mammals, SARS Virus & Others

• Classification of Different File Types

• Language Tree (Re)construction

• Classify Music w.r.t. Composer

• Further Applications

• Summary

Based on [Cilibrasi&Vitanyi’05]
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Conditional Kolmogorov Complexity

Question: When is object=string x similar to object=string y?

Universal solution: x similar y ⇔ x can be easily (re)constructed from y

⇔ Kolmogorov complexity K(x|y) := min{ℓ(p) : U(p, y) = x} is small

Examples:

1) x is very similar to itself (K(x|x) +
= 0)

2) A processed x is similar to x (K(f(x)|x) +
= 0 if K(f) = O(1)).

e.g. doubling, reverting, inverting, encrypting, partially deleting x.

3) A random string is with high probability not similar to any other

string (K(random|y) =length(random)).

The problem with K(x|y) as similarity=distance measure is that it is

neither symmetric nor normalized nor computable.
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The Universal Similarity Metric
• Symmetrization and normalization leads to a/the universal metric d:

0 ≤ d(x, y) :=
max{K(x|y),K(y|x)}
max{K(x),K(y)}

≤ 1

• Every effective similarity between x and y is detected by d

• Use K(x|y)≈K(xy)−K(y) (coding T) and K(x)≡KU (x)≈KT (x)
=⇒ computable approximation: Normalized compression distance:

d(x, y) ≈ KT (xy)−min{KT (x),KT (y)}
max{KT (x),KT (y)}

. 1

• For T choose Lempel-Ziv or gzip or bzip(2) (de)compressor in the
applications below.

• Theory: Lempel-Ziv compresses asymptotically better than any
probabilistic finite state automaton predictor/compressor.
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Tree-Based Clustering [CV’05]

• If many objects x1, ..., xn need to be compared, determine the

Similarity matrix: Mij= d(xi, xj) for 1 ≤ i, j ≤ n

• Now cluster similar objects.

• There are various clustering techniques.

• Tree-based clustering: Create a tree connecting similar objects,

• e.g. quartet method (for clustering)

• Applications: Phylogeny of 24 Mammal mtDNA,

50 Language Tree (based on declaration of human rights),

composers of music, authors of novels, SARS virus, fungi,

optical characters, galaxies, ... [Cilibrasi&Vitanyi’05]



The Universal Similarity Metric - 32 - Marcus Hutter

Genomics & Phylogeny: Mammals
Evolutionary tree built from complete mammalian mtDNA of 24 species:

Carp
Cow

BlueWhale
FinbackWhale

Cat
BrownBear
PolarBear
GreySeal

HarborSeal
Horse

WhiteRhino

Ferungulates

Gibbon
Gorilla

Human
Chimpanzee

PygmyChimp
Orangutan

SumatranOrangutan

Primates

Eutheria

HouseMouse
Rat

Eutheria - Rodents

Opossum
Wallaroo

Metatheria

Echidna
Platypus

Prototheria



Basque [Spain]
Hungarian [Hungary]
Polish [Poland]
Sorbian [Germany]
Slovak [Slovakia]
Czech [Czech Rep]
Slovenian [Slovenia]
Serbian [Serbia]
Bosnian [Bosnia]

Icelandic [Iceland]
Faroese [Denmark]
Norwegian Bokmal [Norway]
Danish [Denmark]
Norwegian Nynorsk [Norway]
Swedish [Sweden]
Afrikaans
Dutch [Netherlands]
Frisian [Netherlands]
Luxembourgish [Luxembourg]
German [Germany]
Irish Gaelic [UK]
Scottish Gaelic [UK]
Welsh [UK]
Romani Vlach [Macedonia]
Romanian [Romania]
Sardinian [Italy]
Corsican [France]
Sammarinese [Italy]
Italian [Italy]
Friulian [Italy]
Rhaeto Romance [Switzerland]
Occitan [France]
Catalan [Spain]
Galician [Spain]
Spanish [Spain]
Portuguese [Portugal]
Asturian [Spain]
French [France]
English [UK]
Walloon [Belgique]
OccitanAuvergnat [France]
Maltese [Malta]
Breton [France]
Uzbek [Utzbekistan]
Turkish [Turkey]
Latvian [Latvia]
Lithuanian [Lithuania]
Albanian [Albany]
Romani Balkan [East Europe]
Croatian [Croatia]

Finnish [Finland]
Estonian [Estonia]

ROMANCE

BALTIC

UGROFINNIC

CELTIC

GERMANIC

SLAVIC

ALTAIC

Language Tree (Re)construction

based on “The Universal Declaration of
Human Rights” in 50 languages.
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7 ARTIFICIAL INTELLIGENCE

• The Agent Model

• Universal Artificial Intelligence
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The Agent Model

Most if not all AI problems can be

formulated within the agent

framework

r1 | o1 r2 | o2 r3 | o3 r4 | o4 r5 | o5 r6 | o6 ...

a1 a2 a3 a4 a5 a6 ...

work
Agent

p
tape ... work

Environ-

ment q
tape ...

������ HHHHHY

�������1PPPPPPPq
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Formal Definition of Intelligence
• Agent follows policy π : (A×O×R)∗ ; A
• Environment reacts with µ : (A×O×R)∗×A ; O×R
• Performance of agent π in environment µ

= expected cumulative reward = V π
µ := Eµ[

∑∞
t=1 r

πµ
t ]

• True environment µ unknown
⇒ average over wide range of environments

• Ockham+Epicurus: Weigh each environment with its
Kolmogorov complexity K(µ) := minp{length(p) : U(p) = µ}

• Universal intelligence of agent π is Υ(π) :=
∑

µ 2
−K(µ)V π

µ .

• Compare to our informal definition: Intelligence measures an
agent’s ability to perform well in a wide range of environments.

• AIXI = argmaxπ Υ(π) = most intelligent agent.
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Computational Issues: Universal Search
• Levin search: Fastest algorithm for

inversion and optimization problems.

• Theoretical application:

Assume somebody found a non-constructive

proof of P=NP, then Levin-search is a polynomial

time algorithm for every NP (complete) problem.

• Practical applications (J. Schmidhuber)

Maze, towers of hanoi, robotics, ...

• FastPrg: The asymptotically fastest and shortest algorithm for all

well-defined problems.

• AIXItl and ΦMDP: Computable variants of AIXI.

• Human Knowledge Compression Prize: (50’000C=)
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8 MORE APPLICATIONS OF AIT/KC

• Computer science: string matching,

complexity/formal-language/automata theory

• Math: ∞ primes, quantitative Goedel incompleteness

• Physics: Boltzmann entropy, Maxwell daemon, reversible computing

• Operations research: universal search

• Others: Music, cognitive psychology, OCR



More Applications of AIT/KC - 39 - Marcus Hutter

Literature
[LV07] M. Li and P. M. B. Vitányi.
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