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Reinforcement learning problem

The agent framework is general enough to allow modelling nearly any
kind of (intelligent) system.

In cycle k, an agent performs action yk ∈ {0, 1} (output) which results in
observation xk ∈ O and reward rk ∈ R, followed by cycle k + 1 and so on.

Cycle k
Environment: observation xk

Agent: action yk

Environment: reward rk

The agent seeks to maximize the cumulative reward.
Observations, rewards and actions may depend on the whole previous
history x0, y0, r0, . . . , xk−1, yk−1, rk−1.
If xk , yk , rk depends only on xk−1, yk−1, rk−1 then we get a MDP.
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The action space {0, 1}, the observation space O, and the reward space
R ⊂ IR are finite.

An agent is identified with a (probabilistic) policy π. Given history z<k ,
the probability that agent π acts yk in cycle k is (by definition) π(yk |z<k).
Thereafter, environment µ provides (probabilistic) reward rk and
observation ok , i.e. the probability that the agent perceives xk is (by
definition) µ(xk |z<kyk).
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Sequence prediction generalized

Reinforcement learning generalizes sequence prediction:
In cycle k, an agent outputs a prediction yk ∈ X and perceives the
observation xk ∈ X

Define the reward rk = 1 if xk = yk and rk=0 otherwise. The agent seeks
to maximize the number of correct predictions. The observations yk are
generated according to some probability distribution independent of
predictions.

Theorem (Solomonoff 78)

There exists a policy (a measure) ξ such that for any computable
measure µ

|ξ(xk = 1|x<k)− µ(xk = 1|x<k)| → 0
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Does there exist a universal policy for the class of all computable
environments? No.
Consider an example.

ν1
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��*action y0 = a

all rewards ri = 1
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action y0 = b

all rewards ri = 0

ν2
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���
��*action y0 = a

all rewards ri = 0

HH
HHH

Hj
action y0 = b

all rewards ri = 1

Already for the class C = {ν1, ν2} there is no policy which attains the best
value in both environments νi ∈ C, even asymptotically.
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The scope

For which classes of environments does a universal (self-optimizing) policy
exist?

The aim is to find as general as possible classes of environments which
“forgive” wrong steps.
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Slowly forgiving
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Define the problem more formally.

For an environment ν and a policy p define

V (ν, p) := lim sup
m

{
1
m rpν

1..m

}
and V (ν, p) := lim inf

m

{
1
m rpν

1..m

}
where r1..m := r1 + ... + rm. If there exists a constant V such that

V (ν, p) = V (ν, p) = V a.s.

then we say that there is a limiting average value V (ν, p) =: V .
An environment ν is explorable if there exists a policy pν such that
V (ν, pν) exists and V (ν, p) ≤ V (ν, pν) with probability 1 for every policy
p. In this case define V ∗

ν := V (ν, pν).
A policy p is self-optimizing for a set of explorable environments C if
V (ν, p) = V ∗

ν for every ν ∈ C.
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Positive examples

Self-optimizing policies exist for the class of finite ergodic MDPs (probably
the most popular class of environments in reinforcement learning), for the
class of sequence prediction problems, and for some others. We try to
identify the general requirements for the existence of self-optimizing
policies.
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Definition (value-stable environments)

An explorable environment ν is value-stable if there exist a sequence of
numbers rν

i ∈ [0, rmax ] and two functions dν(k, ε) and ϕν(n, ε) such that
1
n rν

1..n → V ∗
ν , dν(k, ε) = o(k),

∑∞
n=1 ϕν(n, ε) < ∞ for every fixed ε, and

for every k and every history z<k there exists a policy p = p
z<k
ν such that

P
(
rν
k..k+n − rpν

k..k+n > dν(k, ε) + nε | z<k

)
≤ ϕν(n, ε).

Suppose that a person A has made k possibly suboptimal actions and after
that “realized” how to act optimally. A person B was from the beginning
taking only optimal actions. We want to compare the performance of A
and B on first n steps after the step k. An environment is strongly value
stable if A can catch up with B except for o(k) gain. The numbers rν

i can
be thought of as expected rewards of B; A can catch up with B up to the
reward loss dν(k, ε) with probability ϕν(n, ε), where the latter does not
depend on past actions and observations
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The main theorem

Theorem (value-stable⇒self-optimizing)

For any countable class C of strongly value-stable environments, there
exists a policy which is self-optimizing for C.
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Examples

Finite ergodic Markov decision processes (MDPs) and some classes of
finite partially observable MDPs are value-stable. Certain mixing
conditions imply value-stability. There are many value-stable environments
beyond finite (PO)MDPs.

For an ergodic MDP d(n, ε) ≡ 0, ri = const, ϕ(n, ε) decay exponentially
fast.
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non-markovian value-stable environments: an example

Infinitely armed bandit:

There is a countable family {ζi : i ∈ IN} of arms, that is, sources
generating i.i.d. rewards 0 and 1 (and, say, empty observations) with some
probability δi of the reward being 1. The action space Y is {g , u, d}. To
get the next reward from the current arm ζi an agent can use the action
g . At the beginning the current arm is ζ0 and then the agent can move
between arms as follows: it can move one arm “up” using the action u or
move “down” to the first environment using the action d . The reward for
u and d is 0.
It is easy to see that the environment ν just constructed is value-stable
with d(k, ε) = 1.
Moreover, if we change the reaction to action d so that it moves the agent
not to the arm 0 but some d(k) arms down, where k is the current
position, we can make d(k) as close to linear in k as desired.
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Necessity of the conditions

d(n, ε) = o(n) can not be relaxed to O(n).
ϕ(n, ε) can not be allowed to depend arbitrary on the history z<k .
Examples are easy to construct.
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Open questions

To find necessary and sufficient conditions: ϕ(n, ε) can be allowed to
depend on past observations in some way.

To find conditions on not necessarily countable classes C which would
guarantee the existence of self-optimizing policies.
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