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Abstract

1 Suppose we are given two probability measures on the set of one-way
infinite finite-alphabet sequences. Consider the question when one of the
measures predicts the other, that is, when conditional probabilities converge
(in a certain sense), if one of the measures is chosen to generate the sequence.
This question may be considered a refinement of the problem of sequence
prediction in its most general formulation: for a given class of probability
measures, does there exist a measure which predicts all of the measures in
the class? To address this problem, we find some conditions on local absolute
continuity which are sufficient for prediction and generalize several different
notions that are known to be sufficient for prediction. We also formulate some
open questions to outline a direction for finding the conditions on classes of
measures for which prediction is possible.
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1 Introduction

Let a sequence z;, t € IN of letters from some finite alphabet X be generated by
some probability measure p on X*°. Having observed the first n letters we want
to predict what is the probability of the next letter being x, for each x € X’. This
task is motivated by numerous applications — from weather forecasting and stock
market prediction to source coding and data compression.

If the measure p is known then the best forecasts one can make for the (n+ 1)st
outcome is p-conditional probabilities of x,.1 being x € X given x4,...,x,. How-
ever, it is clear that if nothing is known about the distribution p then no prediction
is possible, since for any predictor there is a measure on which it errs (gives grossly
wrong probability forecasts) on every step. Thus one has to restrict the attention
to some class of measures. Laplace was perhaps the first to address the question
of sequence prediction, asking the question of what is the probability that the Sun
will rise tomorrow given that it has risen every day for 5000 years. He suggested
to assume that the probability that the Sun rises is the same every day and the
trials are independent of each other. Thus Laplace considered the task of sequence
prediction when the true generating measure belongs to the family of Bernoulli i.i.d.
measures with binary alphabet X = {0,1}. The predicting measure hi suggested
was pr(Tpp1 = lz1,...,2,) = S—i; where k is the number of 1s in x1,...,2,. The
conditional probabilities of p; converge to the true conditional probabilities pu-as.
under any Bernoulli i.i.d measure pu. This approach generalizes to the problem of
predicting any finite-memory (e.g. Markovian) measure. Moreover, in [9] a measure
pr was constructed for predicting an arbitrary stationary measure. The conditional
probabilities of pgr converge to the true ones on average, where the average is taken
over time steps p-a.s. for any stationary measure p. However, as it was shown in the
same work, there is no measure for which conditional probabilities converge to the
true ones p-a.s. for every stationary p. Thus already for the problem of predicting
outcomes of a stationary measure two criteria of prediction arise: prediction in the
average (or in Cesaro sense) and prediction on each step, and the solution exists
only for the former problem.

What if the measure generating the sequence is not stationary? Another pos-
sible assumption is that the measure p generating the sequence is computable.
Solomonoff [11, Eq.(13)] suggested a measure ¢ for predicting any computable prob-
ability measure. Observe that the class of all computable probability measures is
countable; denote it by (;);ev. A Bayesian predictor £ for such a class is given by
§(A) = > 2, wivi(A) for any measurable set A, where the weights w; are positive
and sum to one?. It was shown in [12] that &-conditional probabilities converge to
pu-conditional probabilities almost surely for any computable measure p. In fact
this is a special case of a more general (though without convergence rate) result of

2Tt is not necessary for prediction that the weights sum to one. In [12] and [13] w; = 27 K®)
where K stands for the prefix Kolmogorov complexity, and so the weights do not sum to 1. Further,
the v and £ are only semi-measures.



Blackwell and Dubins [2]: if a measure y is absolutely continuous w.r. to a measure
p then the conditional measure p given xy, ..., x, converges to u given xy,...,x, in
total variation pu-a.s.

Thus the problem of sequence prediction for certain classes of measures was of-
ten addressed in the literature. Although the mentioned classes of measures are
sufficiently interesting, it is often hard to decide in applications with which assump-
tions does a problem at hand comply; not to mention such practical issues as that
a predicting measure for all computable measures is necessarily non-computable it-
self. Also the general approach may be easier to extend to the problems of active
learning, which is a rather hard problem itself (see e.g. [7]).

In this work we start to address the following general questions: For which
classes of measures is sequence prediction possible? Under which conditions does a
measure p predict a measure 7

Extensive as the literature on sequence prediction is, these questions have not
been formulated, and so in the general problem posed has not received much atten-
tion. One line of research which exhibits this kind of generality consists in extending
the result of Blackwell and Dubins mentioned above, which states that if y is abso-
lutely continuous with respect to p, then p predicts p in total variation distance. In
[5] a question of whether, given a class of measures C and a prior (“meta”-measure)
A over this class of measures, the conditional probabilities of a Bayesian mixture of
the class C w.r.t. A converge to the true p-probabilities (weakly merge, in terminol-
ogy of [5]) for A-almost any measure p in C. This question can be considered solved,
since the authors provide necessary and sufficient conditions on the measure given
by the mixture of the class C w.r.t. A under which prediction is possible. The major
difference from the general questions we posed above is that we do not wish to as-
sume that we have a measure on our class of measures. For large (non-parametric)
classes of measures it may not be intuitive which measure over it is natural; rather,
the question is whether a “natural” measure which can be used for prediction exists.

We start with the following observation. For a Bayesian mixture £ of a countable
class of measures v;, i € IN, we have £(A) > w;v;(A) for any i and any measurable
set A, where w; is a constant. This condition is stronger than the assumption of
absolute continuity and is sufficient for prediction in a very strong sense (in total
variation). Since we are willing to be satisfied with prediction in a weaker sense (e.g.
convergence of conditional probabilities), we make a weaker assumption: Say that
a measure p dominates a measure p with coefficients ¢, > 0 if

p(xy, .. ) = cap(Tr, ..., xy) (1)

for all x1,...,x,.

The concrete question we pose is, under what conditions on ¢, does (1)
imply that p predicts u? Observe that if p(z1,...,z,) > 0 for any x1,...,z, then
any measure p is locally absolutely continuous with respect to p, and moreover, for
any measure g some constants ¢, can be found that satisfy (1). For example, if p
is Bernoulli i.i.d. measure with parameter % and p is any other measure, then (1) is
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(trivially) satisfied with ¢, = 27". Thus if ¢, = ¢ then p predicts p in a very strong
sense, whereas exponentially decreasing c¢,, are not enough for prediction. We will
show that dominance with any subexponentially decreasing coefficients is sufficient
for prediction, in a weak sense of convergence of expected averages. Dominance with
any polynomially decreasing coefficients (and some others),is sufficient for (almost
sure) prediction on time-average. However, for prediction on every step we have a
negative result: for any dominance coefficients that go to zero there exists a pair
of measures p and p which satisfy (1) but p does not predict p in this sense. Thus
the situation is similar to that for predicting any stationary measure: prediction is
possible in the average but not on every step.

Note also that for Laplace’s measure py, it can be shown that p; dominates any
i.i.d. measure p with linearly decreasing coefficients ¢, = n+r1 Thus dominance
with decreasing coefficients generalizes (in a sense) predicting countable classes of
measures (where we have dominance with a constant), absolute continuity (via local
absolute continuity), and predicting i.i.d. and finite-memory measures.

2 Main results

We consider processes on the set of one-way infinite sequences X* where & is a
finite set (alphabet). We use ., for zi,...,z, and z—, for xy,...,x, 1, 7, € X.
The symbol p is reserved for the “true” measure generating examples. The symbol
E, stands for expectation with respect to a measure v and E is for E,, (expectation
with respect to the “true” measure).

For two measures p and p define the following measures of divergence.

(d) Kullback-Leibler (KL) divergence dpn(u, ple<n) = D cxmlz, =

M(in:$|$<n)
x|rop)log ey

(d) average KL divergence d, (i, plz1:n) = = >y di(p, plrcy),
(a) absolute distance a, (p, plr<n) = Y cx |70 = T|T<p) — p(27 = 2|2 20)],
(a) average absolute distance @y, (1, plz1:n) = = D1 ar(p, plrs).

The argument z;., will be often omitted. The following implications hold (and
are complete):

d = d Ed
NS I N2
a = a = FEa

to be understood as e.g.: if d, — 0 a.s. then @, — 0 as, or, if Ed, — 0 then
Ea, — 0. The horizontal implications = follow immediately from the definitions,
and the |} follow from the following Lemma:

Lemma 1 (a® < gd) For all measures p and p and sequences 1., we have:
a? < 2d; and a® < 2d,, and (Ea,)* < 2Ed,.
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Proof. Pinsker’s inequality [3, Lem.3.11a] implies a? < 2d;. Using this and Jensen’s
inequality for the average = 7" | [...] we get

2
. 1 < 1< 1 <
n n n
t=1 t=1 t=1

Using this and Jensen’s inequality for the expectation E we get 2Ed, > Ea? >
(Ea,)?. O

The main concept we introduce is the following.

Definition 2. We say that a measure p dominates a measure p with coefficients
cn >0 iff p(x1m) > cap(xry). for all xi.,.

Suppose that p dominates p with decreasing coefficients ¢,. Does p predict i in
(expected, expected average) KL divergence (absolute distance)? First let us give
an example.

Proposition 3. Let p;, be the Laplace measure pp(Tni1 = al|z1.,) = nﬁ)lq for any

a € X and any x1., € X", where k is the number of occurrences of a in xy.,. Then
pr(x1n) > Wm p(x1.y) for any Bernoulli i.i.d. p. This bound is sharp.

The proof is only technical and can be found in [8]. Thus for p; and binary
X we have ¢, = O(%). As mentioned above, in general, exponentially decreasing
coefficients ¢,, are not sufficient for prediction. On the other hand, in a weak sense
of convergence in expected average KL divergence (or absolute distance) the prop-
erty (1) with subexponentially decreasing ¢, is sufficient. We also remind that if
¢, are bounded from below then prediction in the strong sense of total variation is
possible.

Theorem 4. Let p and p be two measures on X°° and suppose that p(x1.,) >
Copi(x1.0) for any 1., where ¢, are positive constants satisfying %log ot — 0.
Then p predicts p in expected average KL divergence E,ﬂn(u, p) — 0 and in expected
average absolute distance E,a, (1, p) — 0.

The proof can be found in [8]; it is based on the same idea as the proof of
convergence of Solomonoff predictor to any of its summands in [9], see also [3].

With a stronger condition on ¢, prediction in average KL divergence can be
established.

Theorem 5 (d — 0 and @ — 0). Let yu and p be two measures on X and suppose
that p(x1.,) > cppi(T1.) for every xi.,, where ¢, are positive constants satisfying

0 1 —1\2
yolosa ) )
n=1 n

Then p predicts p in average KL divergence d,(p,p) — 0 p-a.s. and in average
absolute distance a,(p,p) — 0 p-a.s.



In particular, the condition (2) on the coefficients is satisfied for polynomially
decreasing coefficients, or for ¢, = exp(—+/n/logn).

Proof. Again the second statement (about absolute distance) follows from the first
one and Lemma 1, so that we only have to prove the statement about KL divergence.

Introduce the symbol E™ for u-expectation over x,, conditional on x,,. Consider
random variables [,, = log % and [,, = %Z?:l l;. Observe that d, = E"l,, so
that the random variables m,, = [,, — d,, form a martingale difference sequence (that
is, E"m,, = 0) with respect to the standard filtration defined by @1,...,@p,.... Let
also m,, = + Zt 1 M. We will show that m,, — 0 p-a.s. and l, — 0 [-a.s. Wthh
implies d,, — 0 j-a.s.

Note that

l_n — llOg N(xlzn) < log Cr_Ll
n 7 p(in) n
Thus to show that [,, goes to 0 we need to bound it from below. It is easy to see
that nl, is (u-a.s.) bounded from below by a constant, since % is a positive
p-martingale whose expectation is 1, and so it converges to a finite fimit p-a.s. by
Doob’s submartingale convergence theorem, see e.g. [10, p.508]. Next we will show
that m,, — 0 p-a.s. We have

— 0.

_ log /’L('xlin) . lOg /,L($<n) — E"» log /’L(:Cl:n> + E® log /L(l’<n>

Mn p((xlm)) p(x<,(L) | p(x1.0) p(T<n)
— 1o M T1n) — op o H\T1:n '
=1 & ,0<371:n> B & p(xlzn)

Let f(n) be some function monotonically increasing to infinity such that

5 (og LT 5

For a sequence of random variables \,, define

0 otherwise

p(xl ) (371 n)
m, = my, —m; and the averages m,” and m, . Observe that m; is a martingale

difference sequence. Hence to establish the convergence m.” — 0 we can use the
martingale strong law of large numbers [10, p.501], which states that, for a martin-
gale difference sequence v, if E(ny,)? < oo and Y -~ Ey2/n? < co then 4, — 0
a.s. Indeed, for m} the first condition is trivially satisfied (since the expectation in
question is a finite sum of finite numbers), and the second follows from the fact that
Im;t| < loge,' + f(n) and (3).

+(f) +(f)
and A\, = X\, = AT Introduce also m! = <log <x1n>> _Er <log "(M)) ,



_ N(xl ) _( ) xl ) _(f) .
Furthermore, we have m,, = (log o ”)) —E" (log ”)> . As it was
w(z1:n)

mentioned before, log £ DLy converges ji-a.s. either to (posmve) infinity or to a finite

)
number. Hence <log %) is non-zero only a finite number of times, and so its

D)
average goes to zero. To see that E" <log %) — 0 we write

En (log u(xm))—(f) _ S el (log IE og w)—m

,O(xlzn) TnEX p(l‘<n) p(l’n’l’<n)
=(f)

> 3 sanlo) (108 452 4 0g (o))

and note that the first term in brackets is bounded from below, and so for the sum in
brackets to be less than — f(n) (which is unbounded) the second term log p(z,|x<y)
has to go to —oo, but then the expectation goes to zero since lim,_,oulogu = 0.
Thus m,, — 0 p-a.s., which together with m;t — 0 p-a.s. implies m,, — 0 p-a.s.,
which, ﬁnally, together Wlth l, — 0 p-a.s. implies d, — 0 p-a.s. D

However, no form of dominance with decreasing coefficients is sufficient for pre-
diction in absolute distance or KL divergence:

Proposition 6 (d /4 0 and a 4 0). For each sequence of positive numbers
cn, that goes to 0 there exist measures p and p and a number € > 0 such that
p(x1.0) > cup(x1.y) for all xy1.,, yet an(w, plr1,) > € and d,(u, plz1.,) > € infinitely
often p-a.s.

Proof. Let p be concentrated on the sequence 11111... (that is u(x, = 1) =1 for
all n), and let p(x,, = 1) = 1 for all n except for a subsequence of steps n = ny,
k € IN on which p(z,, = 1) = 1/2 independently of each other. It is easy to see that
choosing ny sparse enough we can make p(1;...1,) decrease to 0 arbitrary slowly;
vet [u(xn, ) — p(zn,)| = 1/2 for all k. O

Following is the table of conditions on dominance coefficients and answers to the
questions whether these conditions are sufficient for prediction (coefficients bounded
from below are included for the sake of completeness).

Ed, | d, | d, | Ea, | a, | a,

logc, ! = o(n) + [ ?2 =] + | ?7]-
S kel oo | £ [+ -]+ [+ ] -
[ >0 [+ [+[+] + [+]+]

An open question is to find whether log ¢! = o(n) is sufficient for prediction in d,, or
at least in a,. Another problem is to find out whether any conditions on dominance



coefficients are necessary for prediction; so far we only have some sufficient condi-
tions. On the one hand, the obtained results suggest that some form of dominance
with decreasing coefficients may be necessary for prediction, at least in the sense of
convergence of averages. On the other hand, the condition (1) is uniform over all
sequences which probably is not necessary for prediction. As for prediction in the
sense of almost sure convergence, perhaps more subtle behavior of the ratio %
should be analyzed, since dominance with decreasing coefficients is not sufficient for
prediction in this sense.
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