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Abstract

Decision theory formally solves the problem of rational agents in uncertain worlds
if the true environmental prior probability distribution is known. Solomonoff’s the-
ory of universal induction formally solves the problem of sequence prediction for
unknown prior distribution. We combine both ideas and get a parameterless theory
of universal Artificial Intelligence. We give strong arguments that the resulting AIξ
model is the most intelligent unbiased agent possible. We outline for a number of
problem classes, including sequence prediction, strategic games, function minimiza-
tion, reinforcement and supervised learning, how the AIξ model can formally solve
them. The major drawback of the AIξ model is that it is uncomputable. To over-
come this problem, we construct a modified algorithm AIξtl, which is still effectively
more intelligent than any other time t and space l bounded agent. The computation
time of AIξtl is of the order t ·2l. Other discussed topics are formal definitions of
intelligence order relations, the horizon problem and relations of the AIξ theory to
other AI approaches.

1Any response to marcus@hutter1.de is welcome.
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4 1 INTRODUCTION

1 Introduction

Artificial Intelligence: The science of Artificial Intelligence (AI) might be defined
as the construction of intelligent systems and their analysis. A natural definition of
systems is anything which has an input and an output stream. Intelligence is more
complicated. It can have many faces like creativity, solving problems, pattern recognition,
classification, learning, induction, deduction, building analogies, optimization, surviving
in an environment, language processing, knowledge and many more. A formal definition
incorporating every aspect of intelligence, however, seems difficult. Further, intelligence
is graded, there is a smooth transition between systems, which everyone would agree
to be not intelligent and truely intelligent systems. One simply has to look in nature,
starting with, for instance, inanimate crystals, then come amino-acids, then some RNA
fragments, then viruses, bacteria, plants, animals, apes, followed by the truly intelligent
homo sapiens, and possibly continued by AI systems or ET’s. So the best we can expect
to find is a partial or total order relation on the set of systems, which orders them w.r.t.
their degree of intelligence (like intelligence tests do for human systems, but for a limited
class of problems). Having this order we are, of course, interested in large elements, i.e.
highly intelligent systems. If a largest element exists, it would correspond to the most
intelligent system which could exist.

Most, if not all known facets of intelligence can be formulated as goal driven or, more
precisely, as maximizing some utility function. It is, therefore, sufficient to study goal
driven AI. E.g. the (biological) goal of animals and humans is to survive and spread.
The goal of AI systems should be to be useful to humans. The problem is that, except
for special cases, we know neither the utility function, nor the environment in which the
system will operate, in advance.

Main idea: We propose a theory which formally2 solves the problem of unknown goal
and environment. It might be viewed as a unification of the ideas of universal induction,
probabilistic planning and reinforcement learning or as a unification of sequential deci-
sion theory with algorithmic information theory. We apply this model to some of the
facets of intelligence, including induction, game playing, optimization, reinforcement and
supervised learning, and show how it solves these problem classes. This, together with
general convergence theorems motivates us to believe that the constructed universal AI
system is the best one in a sense to be clarified in the sequel, i.e. that it is the most
intelligent environment independent system possible. The intention of this work is to
introduce the universal AI model and give an in breadth analysis. Most arguments and
proofs are succinct and require slow reading or some additional pencil work.

Contents: Section 2: The general framework for AI might be viewed as the design and
study of intelligent agents [32]. An agent is a cybernetic system with some internal state,
which acts with output yk to some environment in cycle k, perceives some input xk from

2With a formal solution we mean a rigorous mathematically definition, uniquely specifying the solution.
In the following, a solution is always meant in this formal sense.
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the environment and updates its internal state. Then the next cycle follows. It operates
according to some function p. We split the input xk into a regular part x′k and a credit ck,
often called reinforcement feedback. From time to time the environment provides non-
zero credit to the system. The task of the system is to maximize its utility, defined as the
sum of future credits. A probabilistic environment is a probability distribution µ(q) over
deterministic environments q. Most, if not all environments are of this type. We give a
formal expression for the function p∗, which maximizes in every cycle the total µ expected
future credit. This model is called the AIµ model. As every AI problem can be brought
into this form, the problem of maximizing utility is hence being formally solved, if µ is
known. There is nothing remarkable here, it is the essence of sequential decision theory
[7, 28, 41], presented in a new form. Notation and formulas needed in later sections are
simply developed. There are two major remaining problems. The problem of the unknown
true prior probability µ, which is solved in section 4, and computational aspects, which
are addressed in section 10.

Section 3: Instead of talking about probability distributions µ(q) over functions, one could
describe the environment by the conditional probability of providing inputs x1...xn to the
system under the condition that the system outputs y1...yn. The definition of the optimal
p∗ system in this iterative form is shown to be equivalent to the previous functional form.
The functional form is more elegant and will be used to define an intelligence order relation
and the time-bounded model in section 10. The iterative form is more index intensive but
more suitable for explicit calculations and is used in most of the other sections. Further,
we introduce factorizable probability distributions.

Section 4: A special topic is the theory of induction. In which sense prediction of the
future is possible at all, is best summarized by the theory of Solomonoff. Given the initial
binary sequence x1...xk, what is the probability of the next bit being 1? It can be fairly well
predicted by using a universal probability distribution ξ invented and shown to converge to
the true prior probability µ by Solomonoff [36, 37] as long as µ (which needs not be known!)
is computable. The problem of unknown µ is hence solved for induction problems. All AI
problems where the system’s output does not influence the environment, i.e. all passive
systems are of this inductive form. Besides sequence prediction (SP), classification(CF)
is also of this type. Active systems, like game playing (SG) and optimization (FM), can
not be reduced to induction systems. The main idea of this work is to generalize
universal induction to the general cybernetic model described in sections 2 and 3. For
this, we generalize ξ to include conditions and replace µ by ξ in the rational agent model.
In this way the problem that the true prior probability µ is usually unknown is solved.
Universality of ξ and convergence of ξ→ µ will be shown. These are strong arguments
for the optimality of the resulting AIξ model. There are certain difficulties in proving
rigorously that and in which sense it is optimal, i.e. the most intelligent system. Further,
we introduce a universal order relation for intelligence.

Sections 5–9 show how a number of AI problem classes fit into the general AIξ model. All
these problems are formally solved by the AIξ model. The solution is, however, only formal
because the AIξ model developed thus far is uncomputable or, at best, approximable.
These sections should support the claim that every AI problem can be formulated within
(and formally solved) by the AIξ model. For some classes we give concrete examples to



6 1 INTRODUCTION

illuminate the scope of the problem class. We first formulate each problem class in its
natural way (when µproblem is known) and then construct a formulation within the AIµ
model and prove its equivalence. We then consider the consequences of replacing µ by ξ.
The main goal is to understand why and how the problems are solved by AIξ. We only
highlight special aspects of each problem class. Sections 5–9 together should give a better
picture of the AIξ model. We do not study every aspect for every problem class. The
sections might be read selectively. They are not necessary to understand the remaining
sections.

Section 5: Using the AIµ model for sequence prediction (SP) is identical to Baysian
sequence prediction SPΘµ. One might expect, when using the AIξ model for sequence
prediction, one would recover exactly the universal sequence prediction scheme SPΘξ, as
AIξ was a unification of the AIµ model and the idea of universal probability ξ. Unfor-
tunately this is not the case. One reason is that ξ is only a probability distribution in
the inputs x and not in the outputs y. This is also one of the origins of the difficulty
of proving error/credit bounds for AIξ. Nevertheless, we argue that AIξ is equally well
suited for sequence prediction as SPΘξ is. In a very limited setting we prove a (weak)
error bound for AIξ which gives hope that a general proof is attainable.

Section 6: A very important class of problems are strategic games (SG). We restrict our-
selves to deterministic strictly competitive strategic games like chess. If the environment
is a minimax player, the AIµ model itself reduces to a minimax strategy. Repeated games
of fixed lengths are a special case for factorizable µ. The consequences of variable game
length is sketched. The AIξ model has to learn the rules of the game under consideration,
as it has no prior information about these rules. We describe how AIξ actually learns
these rules.

Section 7: There are many problems that fall into the category ’resource bounded function
minimization’ (FM). They include the Traveling Salesman Problem, minimizing produc-
tion costs, inventing new materials or even producing, e.g. nice paintings, which are
(subjectively) judged by a human. The task is to (approximately) minimize some func-
tion f :Y →Z within minimal number of function calls. We will see that a greedy model
trying to minimize f in every cycle fails. Although the greedy model has nothing to
do with downhill or gradient techniques (there is nothing like a gradient or direction for
functions over Y ) which are known to fail, we discover the same difficulties. FM has
already nearly the full complexity of general AI. The reason being that FM can actively
influence the information gathering process by its trials yk (whereas SP and CF cannot).
We discuss in detail the optimal FMµ model and its inventiveness in choosing the y∈Y .
A discussion of the subtleties when using AIξ for function minimization, follows.

Section 8: Reinforcement learning, as the AIξ model does, is an important learning tech-
nique but not the only one. To improve the speed of learning, supervised learning, i.e.
learning by acquiring knowledge, or learning from a constructive teacher is necessary. We
show, how AIξ learns to learn supervised. It actually establishes supervised learning very
quickly within O(1) cycles.

Section 9 gives a brief survey of other general aspects, ideas and methods in AI, and their
connection to the AIξ model. Some aspects are directly included, others are or should be
emergent.
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Section 10: Up to now we have shown the universal character of the AIξ model but have
completely ignored computational aspects. Let us assume that there exists some algorithm
p̃ of size l̃ with computation time per cycle t̃, which behaves in a sufficiently intelligent
way (this assumption is the very basis of AI). The algorithm p∗ should run all algorithms
of length ≤ l̃ for t̃ time steps in every cycle and select the best output among them. So we
have an algorithm which runs in time l̃·2t̃ and is at least as good as p̃, i.e. it also serves our
needs apart from the (very large but) constant multiplicative factor in computation time.
This idea of the ’typing monkeys’, one of them eventually producing ’Shakespeare’, is well
known and widely used in theoretical computer science. The difficult part is the selection
of the algorithm with the best output. A further complication is that the selection process
itself must have only limited computation time. We present a suitable modification of
the AIξ model which solves these difficult problems. The solution is somewhat involved
from an implementational aspect. An implementation would include first order logic, the
definition of a Universal Turing machine within it and proof theory. The assumptions
behind this construction are discussed at the end.

Section 11 contains some discussion of otherwise unmentioned topics and some (personal)
remarks. It also serves as an outlook to further research.

Section 12 contains the conclusions.

History & References: Kolmogorov65 [18] suggested to define the information content
of an object as the length of the shortest program computing a representation of it.
Solomonoff64 [36] invented the closely related universal prior probability distribution and
used it for binary sequence prediction [36, 37] and function inversion and minimization
[38]. Together with Chaitin66&75 [4, 5] this was the invention of what is now called
Algorithmic Information theory. For further literature and many applications see [25].
Other interesting ’applications’ can be found in [6, 35, 44]. Related topics are the Weighted
Majority Algorithm invented by Littlestone and Warmuth89 [21], universal forecasting by
Vovk92 [43], Levin search73 [19], pac-learning introduced by Valiant84 [42] and Minimum
Description Length [23, 31]. Resource bounded complexity is discussed in [9, 10, 17, 30],
resource bounded universal probability in [22, 25]. Implementations are rare [8, 33, 34].
Excellent reviews with a philosophical touch are [24, 39]. For an older, but general review
of inductive inference see Angluin83 [1]. For an excellent introduction into algorithmic
information theory, further literature and many applications one should consult the book
of Li and Vitányi97 [25]. The survey [23] or the chapters 4 and 5 of [25] should be
sufficient to follow the arguments and proofs in this paper. The other ingredient in our
AIξ model is sequential decision theory. We do not need much more than the maximum
expected utility principle and the expecimax algorithm [26, 32]. The book of von Neumann
and Morgenstern44 [41] might be seen as the initiation of game theory, which already
contains the expectimax algorithm as a special case. The literature on decision theory
is vast and we only give two possibly interesting references with regard to this paper.
Cheeseman85&88 [7] is a defense of the use of probability theory in AI. Pearl88 [28] is a
good introduction and overview of probabilistic reasoning.
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2 The AIµ Model in Functional Form

The cybernetic or agent model: A good way to start thinking about intelligent
systems is to consider more generally cybernetic systems, in AI usually called agents.
This avoids having to struggle with the meaning of intelligence from the very beginning.
A cybernetic system is a control circuit with input y and output x and an internal state.
From an external input and the internal state the system calculates deterministically or
stochastically an output. This output (action) modifies the environment and leads to a
new input (reception). This continues ad infinitum or for a finite number of cycles. As
explained in the last section, we need some credit assignment to the cybernetic system.
The input x is divided into two parts, the standard input x′ and some credit input c.
If input and output are represented by strings, a deterministic cybernetic system can be
modeled by a Turing machine p. p is called the policy of the agent, which determines
the action to a receipt. If the environment is also computable it might be modeled by
a Turing machine q as well. The interaction of the agent with the environment can be
illustrated as follows:

c1 x′1 c2 x′2 c3 x′3 c4 x′4 c5 x′5 c6 x′6 ...

y1 y2 y3 y4 y5 y6 ...

working
System

p
tape ... working

Environ−
ment q

tape ...

���������) PPPPPPPPPi

���������1PPPPPPPPPq

p as well as q have unidirectional input and output tapes and bidirectional working tapes.
What entangles the agent with the environment, is the fact that the upper tape serves as
input tape for p, as well as output tape for q, and that the lower tape serves as output
tape for p as well as input tape for q. Further, the reading head must always be left of the
writing head, i.e. the symbols must first be written, before they are read. p and q have
their own mutually inaccessible working tapes containing their own ’secrets’. The heads
move in the following way. In the kth cycle p writes yk, q reads yk, q writes xk≡ ckx′k, p
reads xk≡ckx′k, followed by the (k + 1)th cycle and so on. The whole process starts with
the first cycle, all heads on tape start and working tapes being empty. We want to call
Turing machines behaving in this way, chronological Turing machines. Before continuing,
some notations on strings are appropriate.

Strings: We will denote strings over the alphabet X by s = x1x2...xn, with xk ∈ X,
where X is alternatively interpreted as a non-empty subset of IN or itself as a prefix free
set of binary strings. l(s) = l(x1)+ ...+l(xn) is the length of s. Analogous definitions hold
for yk∈Y . We call xk the kth input word and yk the kth output word (rather than letter).
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The string s = y1x1...ynxn represents the input/output in chronological order. Due to the
prefix property of the xk and yk, s can be uniquely separated into its words. The words
appearing in strings are always in chronological order. We further introduce the following
abbreviations: ε is the empty string, xn:m := xnxn+1...xm−1xm for n ≤ m and ε for n > m.
x<n := x1...xn−1. Analogously for y. Further, yxn := ynxn, yxn:m := ynxn...ymxm, and so
on.

AI model for known deterministic environment: Let us define for the chronolog-
ical Turing machine p a partial function also named p :X∗→Y ∗ with y1:k = p(x<k) where
y1:k is the output of Turing machine p on input x<k in cycle k, i.e. where p has read up to
xk−1 but no further. In an analogous way, we define q :Y ∗→X∗ with x1:k = q(y1:k). Con-
versely, for every partial recursive chronological function we can define a corresponding
chronological Turing machine. Each (system,environment) pair (p, q) produces a unique
I/O sequence ω(p, q) := ypq

1 x
pq
1 y

pq
2 x

pq
2 .... When we look at the definitions of p and q we

see a nice symmetry between the cybernetic system and the environment. Until now, not
much intelligence is in our system. Now the credit assignment comes into the game and
removes the symmetry somewhat. We split the input xk ∈ X := C×X ′ into a regular
part x′k ∈X ′ and a credit ck ∈C ⊂ IR. We define xk ≡ ckx′k and ck ≡ c(xk). The goal of
the system should be to maximize received credits. This is called reinforcement learning.
The reason for the asymmetry is, that eventually we (humans) will be the environment
with which the system will communicate and we want to dictate what is good and what
is wrong, not the other way round. This one way learning, the system learns from the
environment, and not conversely, neither prevents the system from becoming more in-
telligent than the environment, nor does it prevent the environment learning from the
system because the environment can itself interpret the outputs yk as a regular and a
credit part. The environment is just not forced to learn, whereas the system is. In cases
where we restrict the credit to two values c ∈ C = IB := {0, 1}, c = 1 is interpreted as
a positive feedback, called good or correct and c = 0 a negative feedback, called bad or
error. Further, let us restrict for a while the lifetime (number of cycles) T of the system
to a large, but finite value. Let Ckm(p, q) :=

∑m
i=k c(xi) be the total credit, the system p

receives from the environment q in the cycles k to m. It is now natural to call the system
p∗, which maximizes the total credit C1T , called utility, the best or most intelligent one3.

p∗ := maxarg
p

C1T (p, q) ⇒ CkT (p∗, q) ≥ CkT (p, q) ∀p : ypq
<k = yp∗q

<k

For k = 1 the condition on p is nil. For k > 1 it states that p shall be consistent with
p∗ in the sense that they have the same history. If X, Y and T are finite, the number
of different behaviors of the system, i.e. the search space is finite. Therefore, because
we have assumed that q is known, p∗ can effectively be determined (by pre-analyzing all
behaviours). The main reason for restricting to finite T was not to ensure computability of
p∗ but that the limit T→∞ might not exist. This is nothing special, just the (unrealistic)
assumption of a completely known deterministic environment q has trivialized everything.

3maxargp C(p) is the p which maximizes C(·). If there is more than one maximum we might choose
the lexicographically smallest one for definiteness.
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AI model for known prior probability: Let us now weaken our assumptions by
replacing the environment q with a probability distribution µ(q) over chronological func-
tions. µ might be interpreted in two ways. Either the environment itself behaves in a
probabilistic way defined by µ or the true environment is deterministic, but we only have
probabilistic information, of which environment being the true environment. Combina-
tions of both cases are also possible. The interpretation does not matter in the following.
We just assume that we know µ but no more about the environment whatever the inter-
pretation may be.

Let us assume we are in cycle k with history ẏẋ1...ẏẋk−1 and ask for the best output yk.
Further, let Q̇k :={q : q(ẏ<k) = ẋ<k} be the set of all environments producing the above
history. The expected credit for the next m−k+1 cycles (given the above history) is given
by a conditional probability:

Cµ
km(p|ẏẋ<k) :=

∑
q∈Q̇k

µ(q)Ckm(p, q)∑
q∈Q̇k

µ(q)
. (1)

We cannot simply determine maxargp(C
µ
1T ) unlike the deterministic case because the

history is no longer deterministically determined by p and q, but depends on p and µ
and on the outcome of a stochastic process. Every new cycle adds new information (ẋi)
to the system. This is indicated by the dots over the symbols. In cycle k we have to
maximize the expected future credit, taking into account the information in the history
ẏẋ<k. This information is not already present in p and q/µ at the system’s start unlike in
the deterministic case.

Further, we want to generalize the finite lifetime T to a dynamical (computable) farsight-
edness hk≡mk−k+1≥1, called horizon. For mk =T we have our original finite lifetime,
for hk =m the system maximizes in every cycle the next m expected credits. A discussion
of the choices for mk is delayed to section 4.

The next hk credits are maximized by

p∗k := maxarg
p∈Ṗk

Cµ
kmk

(p|ẏẋ<k),

where Ṗk := {p : ∃yk : p(ẋ<k) = ẏ<kyk} is the set of systems consistent with the current
history. p∗k depends on k and is used only in step k to determine ẏk by p∗k(ẋ<k|ẏ<k) =
ẏ<kẏk. After writing ẏk the environment replies with ẋk with (conditional) probability
µ(Q̇k+1)/µ(Q̇k). This probabilistic outcome provides new information to the system. The
cycle k+1 starts with determining ẏk+1 from p∗k+1 (which differs from p∗k as ẋk is now

fixed) and so on. Note that p∗k implicitly depends also on ẏ<k because Ṗk and Q̇k do so.
But recursively inserting p∗k−1 and so on, we can define

p∗(ẋ<k) := p∗k(ẋ<k|p∗k−1(ẋ<k−1|...p∗1))) (2)

It is a chronological function and computable if X, Y and mk are finite and µ is com-
putable. The policy p∗ defines our AIµ model. For deterministic4 µ this model reduces
to the deterministic case discussed in the last subsection.

4We call a probability distribution deterministic if it is 1 for exactly one argument and 0 for all others.
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It is important to maximize the sum of future credits and not, for instance, to be greedy
and only maximize the next credit, as is done e.g. in sequence prediction. For example,
let the environment be a sequence of chess games and each cycle corresponds to one move.
Only at the end of each game a positive credit c=1 is given to the system if it won the
game (and made no illegal move). For the system, maximizing all future credits means
trying to win as many games in as short as possible time (and avoiding illegal moves).
The same performance is reached, if we choose hk much larger than the typical game
lengths. Maximization of only the next credit would be a very bad chess playing system.
Even if we would make our credit c finer, e.g. by evaluating the number of chessmen, the
system would play very bad chess for hk =1, indeed.

The AIµ model still depends on µ and mk. mk is addressed in section 4. To get our final
universal AI model the idea is to replace µ by the universal probability ξ, defined later.
This is motivated by the fact that ξ converges to µ in a certain sense for any µ. With ξ
instead of µ our model no longer depends on any parameters, so it is truly universal. It
remains to show that it produces intelligent outputs. But let us continue step by step. In
the next section we develop an alternative but equivalent formulation of the AIµ model.
Whereas the functional form is more suitable for theoretical considerations, especially for
the development of a time bounded version in section 10, the iterative formulation of the
next section will be more appropriate for the explicit calculations in most of the other
sections.
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3 The AIµ Model in Recursive and Iterative Form

Probability distributions: Throughout the paper we deal with sequences/strings and
conditional probability distributions on strings. Some notations are therefore appropriate.

We use Greek letters for probability distributions and underline their arguments to in-
dicate that they are probability arguments. Let ρn(x1...xn) be the probability that an
(infinite) string starts with x1...xn. We drop the index on ρ if it is clear from its argu-
ments: ∑

xn∈X

ρ(x1:n) ≡
∑
xn

ρn(x1:n) = ρn−1(x<n) ≡ ρ(x<n), ρ(ε) ≡ ρ0(ε) = 1. (3)

We also need conditional probabilities derived from Bayes’ rule. We prefer a notation
which preserves the chronological order of the words, in contrast to the standard notation
ρ(·|·) which flips it. We extend the definition of ρ to the conditional case with the following
convention for its arguments: An underlined argument xk is a probability variable and
other non-underlined arguments xk represent conditions. With this convention, Bayes’
rule has the form ρ(x<nxn) = ρ(x1:n)/ρ(x<n). The equation states that the probability
that a string x1...xn−1 is followed by xn is equal to the probability of x1...xn∗ divided by
the probability of x1...xn−1∗. We use x∗ as a shortcut for ’strings starting with x’.

The introduced notation is also suitable for defining the conditional probability
ρ(y1x1...ynxn) that the environment reacts with x1...xn under the condition that the out-
put of the system is y1...yn. The environment is chronological, i.e. input xi depends
on yx<iyi only. In the probabilistic case this means that ρ(yx<kyk) :=

∑
xk
ρ(yx1:k) is in-

dependent of yk, hence a tailing yk in the arguments of ρ can be dropped. Probability
distributions with this property will be called chronological. The y are always conditions,
i.e. never underlined, whereas additional conditioning for the x can be obtained with
Bayes’ rule

ρ(yx<nyxn) = ρ(yx1:n)/ρ(yx<n) and

ρ(yx1:n) = ρ(yx1)·ρ(yx1yx2)· ... ·ρ(yx<nyxn)
(4)

The second equation is the first equation applied n times.

Alternative Formulation of the AIµ Model: Let us define the AIµ model p∗ in
a different way. In the next subsection we will show that the p∗ model defined here is
identical to the functional definition of p∗ given in the last section.

Let µ(yx<kyxk) be the true probability of input xk in cycle k, given the history yx<kyk.
µ(yx1:k) is the true chronological prior probability that the environment reacts with x1:k if
provided with actions y1:k from the system. We assume the cybernetic model depicted on
page 8 to be valid. Next we define C∗

k+1,m(yx1:k) to be the µ expected credit sum in cycles
k+1 to m with outputs yi generated by system p∗ and responses xi from the environment.
Adding c(xk) we get the credit including cycle k. The probability of xk, given yx<kyk, is
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given by the condition probability µ(yx<kyxk). So the expected credit sum in cycles k to
m given yx<kyk is

C∗µ
km(yx<kyk) :=

∑
xk

[c(xk) + C∗µ
k+1,m(yx1:k)]·µ(yx<kyxk) (5)

Now we ask about how p∗ chooses yk. It should choose yk as to maximize the future credit.
So the expected credit in cycles k to m given yx<k and yk chosen by p∗ is C∗µ

km(yx<k) :=
maxyk

C∗µ
km(yx<kyk). Together with the induction start

C∗µ
m+1,m(yx1:m) := 0 (6)

Ckm is completely defined. We might summarize one cycle into the formula

C∗µ
km(yx<k) = max

yk

∑
xk

[c(xk) + C∗µ
k+1,m(yx1:k)]·µ(yx<kyxk) (7)

If mk is our horizon function of p∗ and ẏẋ<k is the actual history in cycle k, the output
ẏk of the system is explicitly given by

ẏk = maxarg
yk

C∗µ
kmk

(ẏẋ<kyk) (8)

which in turn defines the policy p∗. Then the environment responds ẋk with probability
µ(ẏẋ<kẏẋk). Then cycle k+1 starts. We might unfold the recursion (7) further and give
ẏk non-recursively as

ẏk = maxarg
yk

∑
xk

max
yk+1

∑
xk+1

... max
ymk

∑
xmk

(c(xk)+ ...+c(xmk
))·µ(ẏẋ<kyxk:mk

) (9)

This has a direct interpretation: the probability of inputs xk:mk
in cycle k when the

system outputs yk:mk
with actual history ẏẋ<k is µ(ẏẋ<kyxk:mk

). The future credit in this
case is c(xk)+ ...+c(xmk

). The best expected credit is obtained by averaging over the xi

(
∑

xi
) and maximizing over the yi. This has to be done in chronological order to correctly

incorporate the dependency of xi and yi on the history. This is essentially the expectimax
algorithm/sequence [26, 32]. The AIµ model is optimal in the sense that no other policy
leads to higher expected credit.

These explicit as well as recursive definitions of the AIµ model are more index intensive
as compared to the functional form but are more suitable for explicit calculations.

Equivalence of Functional and Iterative AI model: The iterative environmental
probability µ relates to the functional form in the following way,

µ(yx1:k) =
∑

q:q(y1:k)=x1:k

µ(q) (10)

as is clear from their interpretations. We will prove the equivalence of (2) and (8) only
for k=2 and m2 =3. The proof of the general case is completely analogous except that
the notation becomes quite messy.
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Let us first evaluate (1) for fixed ẏ1ẋ1 and some p ∈ Ṗ2, i.e. p(ẋ1) = ẏ1y2 for some y2.
If the next input to the system is x2, p will respond with p(ẋ1x2) = ẏ1y2y3 for some y3

depending on x2. We write y3(x2) in the following5. The numerator of (1) simplifies to∑
q∈Q̇2

µ(q)C23(p, q) =
∑

q:q(ẏ1)=ẋ1

µ(q)C23(p, q) =
∑
x2x3

(c(x2)+c(x3))
∑

q:q(ẏ1y2y3(x2))=ẋ1x2x3

µ(q) =

=
∑
x2x3

(c(x2)+c(x3))·µ(ẏ1ẋ1y2x2y3(x2)x3)

In the first equality we inserted the definition of Q̇2. In the second equality we split the
sum over q by first summing over q with fixed x2x3. This allows us to pull C23 = c(x2)+c(x3)
out of the inner sum. Then we sum over x2x3. Further, we have inserted p, i.e. replaced
p by y2 and y3(·). In the last equality we used (10). The denominator reduces to∑

q∈Q̇2

µ(q) =
∑

q:q(ẏ1)=ẋ1

µ(q) = µ(ẏ1ẋ1).

For the quotient we get

Cµ
23(p|ẏ1ẋ1) =

∑
x2x3

(c(x2)+c(x3))·µ(ẏ1ẋ1y2x2y3(x2)x3)

We have seen that the relevant behaviour of p∈ Ṗ2 in cycle 2 and 3 is completely deter-
mined by y2 and the function y3(·)

max
p∈Ṗ2

Cµ
23(p|ẏ1ẋ1) = max

y2
max
y3(·)

∑
x2x3

(c(x2)+c(x3))·µ(ẏ1ẋ1y2x2y3(x2)x3) =

= max
y2

∑
x2

max
y3

∑
x3

(c(x2)+c(x3))·µ(ẏ1ẋ1y2x2y3x3)

In the last equality we have used the fact that the functional minimization over y3(·)
reduces to a simple minimization over the word y3 when interchanging with the sum
over its arguments (maxy3(·)

∑
x2
≡ ∑

x2
maxy3). In the functional case ẏ2 is therefore

determined by

ẏ2 = maxarg
y2

∑
x2

max
y3

∑
x3

(c(x2)+c(x3))·µ(ẏ1ẋ1y2x2y3x3)

This is identical to the iterative definition (9) with k=2 and m2 =3 ut.

Factorizable µ: Up to now we have made no restrictions on the form of the prior
probability µ apart from being a chronological probability distribution. On the other
hand, we will see that, in order to prove rigorous credit bounds, the prior probability
must satisfy some separability condition to be defined later. Here we introduce a very
strong form of separability, when µ factorizes into products. We start with a factorization
into two factors. Let us assume that µ is of the form

µ(yx1:n) = µ1(yx<l) · µ2(yxl:n) (11)

5Dependency on dotted words like ẋ1 is not shown as the dotted words are fixed.
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for some fixed l and sufficiently large n≥mk. For this µ the output ẏk in cycle k of the
AIµ system (9) for k≥ l depends on ẏẋl:k−1 and µ2 only and is independent of ẏẋ<l and
µ1. This is easily seen when inserting

µ(ẏẋ<kyxk:mk
) = µ1(ẏẋ<l)︸ ︷︷ ︸

≡1

·µ2(ẏẋl:k−1yxk:mk
) (12)

into (9). For k < l the output ẏk depends on ẏẋ<k (this is trivial) and µ1 only (trivial if
mk<l) and is independent of µ2. The non-trivial case, where the horizon mk≥ l reaches
into the region µ2, can be proved as follows (we abbreviate m := mk in the following).
Inserting (11) into the definition of C∗µ

lm(yx<l), the factor µ1 is 1 as in (12). We abbreviate
C∗µ

lm :=C∗µ
lm(yx<l) as it is independent of its arguments. One can decompose

C∗µ
km(yx<k) = C∗µ

k,l−1(yx<k) + C∗µ
lm (13)

For k= l this is true because the first term on the r.h.s. is zero. For k < l we prove the
decomposition by induction from k+1 to k.

C∗µ
km(yx<k) = max

yk

∑
xk

[c(xk) + C∗µ
k+1,l−1(yx1:k) + C∗µ

lm]·µ1(yx<kyxk) =

= max
yk

[∑
xk

(c(xk) + C∗µ
k+1,l−1(yx<k))·µ1(yx<kyxk) + C∗µ

lm

]
=

= C∗µ
k,l−1(yx<k) + C∗µ

lm

Inserting (13), valid for k+1 by induction hypothesis, into (7) gives the first equality.
In the second equality we have performed the xk sum for the C∗µ

lm ·µ1 term which is now
independent of yk. It can therefore be pulled out of maxyk

. In the last equality we used
again the definition (7). This completes the induction step and proves (13) for k< l. ẏk

can now be represented as

ẏk = maxarg
yk

C∗µ
km(ẏẋ<kyk) = maxarg

yk

C∗µ
k,l−1(ẏẋ<kyk) (14)

where (8) and (13) and the fact that an additive constant C∗µ
lm does not change maxargyk

has been used. C∗µ
k,l−1(ẏẋ<kyk) and hence ẏk is independent of µ2 for k< l. Note, that ẏk

is also independent of the choice of m, as long as m≥ l.

In the general case the cycles are grouped into independent episodes r=1, 2, 3, ..., where
each episode r consists of the cycles k=nr+1, ..., nr+1 for some 0 = n0 < n1 < ... < ns = n:

µ(yx1:n) =
s−1∏
r=0

µr(yxnr+1:nr+1
) (15)

In the simplest case, when all episodes have the same length l then nr = r·l. ẏk depends
on µr and x and y of episode r only, with r such that nr<k≤nr+1.

ẏk = maxarg
yk

∑
xk

...max
yt

∑
xt

(c(xk)+ ...+c(xt))·µr(ẏẋnr+1:k−1yxk:t) (16)
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with t :=min{mk, nr+1}. The different episodes are completely independent in the follow-
ing sense. The inputs xk of different episodes are statistically independent and depend
only on yk of the same episode. The outputs yk depend on the x and y of the corresponding
episode r only, and are independent of the actual I/O of the other episodes.

If all episodes have a length of at most l, i.e. nr+1−nr ≤ l and if we choose the horizon
hk to be at least l, then mk≥ k+l−1≥nr +l≥nr+1 and hence t = nr+1 independent of
mk. This means that for factorizable µ there is no problem in taking the limit mk→∞.
Maybe this limit can also be performed in the more general case of a sufficiently separable
µ. The (problem of the) choice of mk will be discussed in more detail later.

Although factorizable µ are too restrictive to cover all AI problems, it often occurs in
practice in the form of repeated problem solving, and hence, is worth being studied. For
example, if the system has to play games like chess repeatedly, or has to minimize dif-
ferent functions, the different games/functions might be completely independent, i.e. the
environmental probability factorizes, where each factor corresponds to a game/function
minimization. For details, see the appropriate sections on strategic games and function
minimization.

Further, for factorizable µ it is probably easier to derive suitable credit bounds for the
universal AIξ model defined in the next section, than for the separable cases which will be
introduced later. This could be a first step toward a definition and proof for the general
case of separable problems. One goal of this paragraph was to show, that the notion of a
factorizable µ could be the first step toward a definition and analysis of the general case
of separable µ.

Constants and Limits: We have in mind a universal system with complex interactions
that is as least as intelligent and complex as a human being. One might think of a system
whose input yk comes from a digital video camera, the output xk is some image to a
monitor6, only for the valuation we might restrict to the most primitive binary one, i.e.
ck∈ IB. So we think of the following constant sizes:

1 � 〈l(ykxk)〉 � k ≤ T � |Y ×X|
1 � 216 � 224 ≤ 232 � 265536

The first two limits say that the actual number k of inputs/outputs should be reasonably
large, compared to the typical size 〈l〉 of the input/output words, which itself should be
rather sizeable. The last limit expresses the fact that the total lifetime T (number of I/O
cycles) of the system is far too small to allow every possible input to occur, or to try
every possible output, or to make use of identically repeated inputs or outputs. We do
not expect any useful outputs for k ≤ 〈l〉. More interesting than the lengths of the inputs
is the complexity K(x1...xk) of all inputs until now, to be defined later. The environment
is usually not ”perfect”. The system could either interact with a non-perfect human or
tackle a non-deterministic world (due to quantum mechanics or chaos)7. In either case,

6Humans can only simulate a screen as output device by drawing pictures.
7Whether there exist truly stochastic processes at all is a difficult question. At least the quantum

indeterminacy comes very close to it.
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the sequence contains some noise, leading to K ∼ 〈l〉·k. The complexity of the probability
distribution of the input sequence is something different. We assume that this noisy world
operates according to some simple computable rules. K(µk) � 〈l〉 ·k, i.e. the rules of
the world can be highly compressed. We may allow environments in which new aspects
appear for k→∞ causing a non-bounded K(µk).

In the following we never use these limits, except when explicitly stated. In some simpler
models and examples the size of the constants will even violate these limits (e.g. l(xk) =
l(yk) = 1), but it is the limits above that the reader should bear in mind. We are only
interested in theorems which do not degenerate under the above limits.

Sequential decision theory: In the following we clarify the connection of (7) and (8)
to the Bellman equations [3] of sequential decision theory and discuss similarities and
differences. With probability Ma

ij, the system under consideration should reach (environ-
mental) state j ∈S when taking action a∈A in (the current) state i∈S. If the system
receives reward R(i), the optimal policy p∗, maximizing expected utility (defined as sum
of future rewards), and the utility U(i) of policy p∗ are

p∗(i) = maxarg
a

∑
j

Ma
ijU(j) , U(i) = R(i) + max

a

∑
j

Ma
ijU(j) (17)

See [32] for details and further references. Let us identify

S = (Y ×X)∗, A = Y, a = yk, Ma
ij = µ(yx<kyxk),

i = yx<k, R(i) = c(xk−1), U(i) = C∗
k−1,m(yx<k) = c(xk−1) + C∗

km(yx<k),

j = yx1:k, R(j) = c(xk), U(j) = C∗
km(yx1:k) = c(xk) + C∗

k+1,m(yx1:k),

where we further set Ma
ij =0 if i is not a starting substring of j or if a 6=yk. This ensures

the sum over j in (17) to reduce to a sum over xk. If we set mk =m and insert (5) into
(8), it is easy to see that (17) coincides with (7) and (8).

Note that despite of this formal equivalence, we were forced to use the complete history
yx<k as environmental state i. The AIµ model neither assumes stationarity, nor Markov
property, nor complete accessibility of the environment, as any assumption would restrict
the applicability of AIµ. The consequence is that every state occurs at most once in the
lifetime of the system. Every moment in the universe is unique! Even if the state space
could be identified with the input space X, inputs would usually not occur twice by the
assumption k�|X|, made in the last subsection. Further, there is no (obvious) universal
similarity relation on (X×Y )∗ allowing an effective reduction of the size of the state space.
Although many algorithms (like value and policy iteration) have problems in solving (17)
for huge or infinite state spaces in practice, there is no principle problem in determining
p∗ and U , as long as µ is known and computable and |X|, |Y | and m are finite.

Things dramatically change if µ is unknown. Reinforcement learning algorithms [16] are
commonly used in this case to learn the unknown µ. They succeed if the state space
is either small or has effectively been made small by so called generalization techniques.
In any case, the solutions are either ad hoc, or work in restricted domains only, or have
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serious problems with state space exploration versus exploitation, or have non-optimal
learning rate. There is no universal and optimal solution to this problem so far. In the
next section we present a new model and argue that it formally solves all these problems
in an optimal way. It will not concern with learning of µ directly. All we do is to replace
the true prior probability µ by a universal probability ξ, which is shown to converge to µ
in a sense.
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4 The Universal AIξ Model

Induction and Algorithmic Information theory: One very important and highly
non-trivial aspect of intelligence is inductive inference. Before formulating the AIξ model,
a short introduction to the history of induction is given, culminating into the sequence
prediction theory by Solomonoff. We emphasize only those aspects which will be of
importance for the development of our universal AIξ model.

Simply speaking, induction is the process of predicting the future from the past or, more
precisely, it is the process of finding rules in (past) data and using these rules to guess
future data. On the one hand, induction seems to happen in every day life by finding
regularities in past observations and using them to predict the future. On the other hand,
this procedure seems to add knowledge about the future from past observations. But how
can we know something about the future? This dilemma and the induction principle in
general have a long philosophical history

• Hume’s negation of Induction (1711-1776) [13],
• Epicurus’ principle of multiple explanations (342?-270? BC),
• Ockham’s razor (simplicity) princple (1290?-1349?),
• Bayes’ rule for conditional probabilites [2]

and a short but important mathematical history: a clever unification of all these aspects
into one formal theory of inductive inference has been done by Solomonoff [36] based on
Kolmogorov’s [18] definition of complexity. For an excellent introduction into Kolmogorov
complexity and Solomonoff induction one should consult the book of Li and Vitányi [25].
In the rest of this subsection we state all results which are needed or generalized later.

Let us choose some universal prefix Turing machine U with unidirectional binary input
and output tapes and a bidirectional working tape. We can then define the (conditional)
prefix Kolmogorov complexity [5, 12, 18, 20] as the shortest program p, for which U
outputs x=x1:n with xi ∈IB (given y):

K(x) := min
p
{l(p) : U(p) = x}, K(x|y) := min

p
{l(p) : U(p, y) = x}

The universal semimeasure ξ(x) is defined as the probability that the output of the uni-
versal Turing machine U starts with x when provided with fair coin flips on the input
tape [36, 37]. It is easy to see that this is equivalent to the formal definition

ξ(x) :=
∑

p : U(p)=x∗
2−l(p) (18)

where the sum is over minimal programs p for which U outputs a string starting with x.
U might be non-terminating. As the shortest programs dominate the sum, ξ is closely
related to K(x) (ξ(x) = 2−K(x)+O(K(l(x))). ξ has the important universality property [36],
that it majorizes every computable probability distribution ρ up to a multiplicative factor
depending only on ρ but not on x:

ξ(x)
×
≥ 2−K(ρ) ·ρ(x). (19)
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A ’×’ above an (in)equality denotes (in)equality within a universal multiplicative constant,
a ’+’ above an (in)equality denotes (in)equality within a universal additive constant, both
depending only on the choice of the universal reference machine U . The Kolmogorov
complexity of a function like ρ is defined as the length of the shortest self-delimiting coding
of a Turing machine computing this function. ξ itself is not a probability distribution8.
We have ξ(x0)+ξ(x1)<ξ(x) because there are programs p, which output just x, neither
followed by 0 nor 1. They just stop after printing x or continue forever without any further
output. We will call a function ρ ≥ 0 with the properties ρ(ε) ≤ 1 and

∑
xn
ρ(x1:n) ≤

ρ(x<n) a semimeasure. ξ is a semimeasure and (19) actually holds for all enumerable
semimeasures ρ.

(Binary) sequence prediction algorithms try to predict the continuation xn of a given
sequence x1...xn−1. In the following we will assume that the sequences are drawn according
to a probability distribution and that the true prior probability of x1:n is µ(x1...xn). The
probability of xn given x<n hence is µ(x<nxn). The best possible system predicts the
xn with higher probability. Usually µ is unknown and the system can only have some
belief ρ about the true prior probability µ. Let SPρ be a probabilistic sequence predictor,
predicting xn with probability ρ(x<nxn). If ρ is only a semimeasure the SPρ system
might refuse any output in some cycles n. Further we define a deterministic sequence
predictor SPΘρ predicting the xn with highest ρ probability. Θρ(x<nxn) := 1 for one xn

with ρ(x<nxn)≥ρ(x<nx
′
n)∀x′n and Θρ(x<nxn) :=0 otherwise. SPΘµ is the best prediction

scheme when µ is known.

If ρ(x<nxn) converges quickly to µ(x<nxn) the number of additional prediction errors
introduced by using Θρ instead of Θµ for prediction should be small in some sense. Now
the universal probability ξ comes into play as it has been proved by Solomonoff [37] that
the µ expected Euclidean distance between ξ and µ is finite

∞∑
k=1

∑
x1:k

µ(x1:k)(ξ(x<kxk)− µ(x<kxk))
2 +
< 1

2
ln 2·K(µ) (20)

The ’+’ atop ’<’ means up to additive terms of order 1. So the difference does tend to
zero, i.e. ξ(x<nxn)

n→∞−→ µ(x<nxn) with µ probability 1 for any computable probability
distribution µ. The reason for the astonishing property of a single (universal) function
to converge to any computable probability distribution lies in the fact that the set of
µ random sequences differ for different µ. The universality property (19) is the central
ingredient for proving (20).

Let us define the total number of expected erroneous predictions the SPρ system makes
for the first n bits

Enρ :=
n∑

k=1

∑
x1:k

µ(x1:k)(1−ρ(x<kxk)) (21)

The SPΘµ system is best in the sense that EnΘµ≤Enρ for any ρ. In [14] it has been shown
that SPΘξ is not much worse

EnΘξ
−Enρ ≤ H +

√
4EnρH +H2 = O(

√
Enρ) , H

+
< ln 2·K(µ) (22)

8It is possible to normalize ξ to a probability distribution as has been done in [45, 37, 14] by giving
up the enumerability of ξ. Error bounds (20) and (22) hold for both definitions.
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with the tightest bound for ρ=Θµ. For finite E∞Θµ , E∞Θξ
is finite too. For infinite E∞Θµ ,

EnΘξ
/EnΘµ

n→∞−→ 1 with rapid convergence. One can hardly imagine any better prediction
algorithm as SPΘξ without extra knowledge about the environment. In [15], (20) and
(22) have been generalized from binary to arbitrary alphabet. Apart from computational
aspects, which are of course very important, the problem of sequence prediction could be
viewed as essentially solved.

Definition of the AIξ Model: We have developed enough formalism to suggest our
universal AIξ model9. All we have to do is to suitably generalize the universal semimeasure
ξ from the last subsection and replace the true but unknown prior probability µAI in the
AIµ model by this generalized ξAI . In what sense this AIξ model is universal will be
discussed later.

In the functional formulation we define the universal probability ξAI of an environment q
just as 2−l(q)

ξ(q) := 2−l(q)

The definition could not be easier10!11 Collecting the formulas of section 2 and replacing
µ(q) by ξ(q) we get the definition of the AIξ system in functional form. Given the history
ẏẋ<k the functional AIξ system outputs

ẏk := maxarg
yk

max
p:p(ẋ<k)=ẏ<kyk

∑
q:q(ẏ<k)=ẋ<k

2−l(q) · Ckmk
(p, q) (23)

in cycle k, where Ckmk
(p, q) is the total credit of cycles k to mk when system p inter-

acts with environment q. We have dropped the denominator
∑

q µ(q) from (1) as it is

independent of the p∈ Ṗk and a constant multiplicative factor does not change maxargyk
.

For the iterative formulation the universal probability ξ can be obtained by inserting the
functional ξ(q) into (10)

ξ(yx1:k) =
∑

q:q(y1:k)=x1:k

2−l(q) (24)

Replacing µ by ξ in (9) the iterative AIξ system outputs

ẏk = maxarg
yk

∑
xk

max
yk+1

∑
xk+1

... max
ymk

∑
xmk

(c(xk)+ ...+c(xmk
))·ξ(ẏẋ<kyxk:mk

) (25)

in cycle k given the history ẏẋ<k.

One subtlety has been passed over. Like in the SP case, ξ is not a probability distribution
but satisfies only the weaker inequalities∑

xn

ξ(yx1:n) ≤ ξ(yx<n) , ξ(ε) ≤ 1 (26)

9Speak ’aixi’ and write AIXI without Greek letters.
10It is not necessary to use 2−K(q) or something similar as some reader may expect at this point. The

reason is that for every program q there exists a functionally equivalent program q′ with K(q′) = l(q′).
11Here and later we identify objects with their coding relative to some fixed Turing machine U . For

example, if q is a function K(q) := K(dqe) with dqe being a binary coding of q such that U(dqe, y) = q(y).
On the other hand, if q already is a binary string we define q(y) := U(q, y).
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Note, that the sum on the l.h.s. is not independent of yn unlike for chronological probability
distributions. Nevertheless, it is bounded by something (the r.h.s) which is independent
of yn. The reason is that the sum in (24) runs over (partial recursive) chronological
functions only and the functions q which satisfy q(y1:n) = x<n∗ are a subset of the functions
satisfying q(y<n) = x<n. We will in general call functions satisfying (26) chronological
semimeasures. The important point is that the conditional probabilities (4) are ≤ 1 like
for true probability distributions.

The equivalence of the functional and iterative AI model proven in section 3 is true for
every chronological semimeasure ρ, especially for ξ, hence we can talk about the AIξ model
in this respect. It (slightly) depends on the choice of the universal Turing machine. l(dqe)
is defined only up to an additive constant. The AIξ model also depends on the choice of
X=C×X ′ and Y , but we do not expect any bias when the spaces are chosen sufficiently
simple, e.g. all strings of length 216. Choosing IN as word space would be optimal, but
whether the maxima (suprema) exist in this case, has to be shown beforehand. The only
non-trivial dependence is on the horizon function mk which will be discussed later. So
apart from mk and unimportant details the AIξ system is uniquely defined by (23) or (25).
It doesn’t depend on any assumption about the environment apart from being generated
by some computable (but unknown!) probability distribution.

Universality of ξAI: In which sense the AIξ model is optimal will be clarified later.
In this and the next two subsections we show that ξAI defined in (24) is universal and
converges to µAI analogous to the SP case (19) and (20). The proofs are generalizations
from the SP case. The y are pure spectators and cause no difficulties in the generalization.
The replacement of the binary alphabet IB used in SP by the (possibly infinite) alphabet
X is possible, but needs to be done with care. In (19) U(p) = x∗ produces strings starting
with x, whereas in (24) we can demand q to output exactly n words x1:n as q knows n
from the number of input words y1...yn. For proofs of (19) and (20) see [37] and [23].

There is an alternative definition of ξ which coincides with (24) within a multiplicative
constant of O(1),

ξ(yx1:n)
×
=
∑
ρ

2−K(ρ)ρ(yx1:n) (27)

where the sum runs over all enumerable chronological semimeasures. The 2−K(ρ) weighted
sum over probabilistic environments ρ, coincides with the sum over 2−l(q) weighted de-
terministic environments q, as will be proved below. In the next subsection we show
that an enumeration of all enumerable functions can be converted into an enumeration of
enumerable chronological semimeasures ρ. K(ρ) is co-enumerable, therefore ξ defined in
(27) is itself enumerable. The representation (24) is also enumerable. As

∑
ρ 2−K(ρ) ≤ 1

and the ρ′s satisfy (26), ξ is a chronological semimeasure as well. If we pick one ρ in (27)
we get the universality property ”for free”

ξ(yx1:n)
×
≥ 2−K(ρ)ρ(yx1:n) (28)

ξ is a universal element in the sense of (28) in the set of all enumerable chronological
semimeasures.
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To prove universality of ξ in the form (24) we have to show that for every enumerable
chronological semimeasure ρ there exists a Turing machine T with

ρ(yx1:n) =
∑

q:T (qy1:n)=x1:n

2−l(q) and l(T )
+
= K(ρ). (29)

A proof of (29) will be given elsewhere. Given T the universality of ξ follows from

ξ(yx1:n) =
∑

q:U(qy1:n)=x1:n

2−l(q) ≥
∑

q:U(Tq′y1:n)=x1:n

2−l(Tq′) = 2−l(T )
∑

q:T (q′y1:n)=x1:n

2−l(q′) ×
= 2−K(ρ)ρ(yx1:n)

The first equality and (24) are identical by definition. In the inequality we have restricted
the sum over all q to q of the form q=Tq′. The third relation is true as running U on Tz
is a simulation of T on z. The last equality follows from (29). All enumerable, universal,
chronological semimeasures coincide up to a multiplicative constant, as they mutually
dominate each other. Hence, definitions (24) and (27) are, indeed, equivalent.

Converting general functions into chronological semi-measures: To complete
the proof of the universality (28) of ξ we need to convert enumerable functions ψ : IB∗→
IR+ into enumerable chronological semi-measures ρ : (Y ×X)∗→ IR+ with certain addi-
tional properties. Every enumerable function like ψ and ρ can be approximated from below
by definition12 by primitive recursive functions ϕ : IB∗×IN→IQ+ and φ : (Y×X)∗×IN→IQ+

with ψ(s) = supt ϕ(s, t) and ρ(s) = supt φ(s, t) and recursion parameter t. For arguments
of the form s=yx1:n we recursively (in n) construct φ from ϕ as follows:

ϕ′(yx1:n, t) :=

{
ϕ(yx1:n, t) for xn < t

0 for xn ≥ t
, ϕ′(ε, t) := ϕ(ε, t) (30)

φ(ε, t) := max
0≤i≤t

{
ϕ′(ε, i) : ϕ′(ε, i) ≤ 1

}
(31)

φ(yx1:n, t) := max
0≤i≤t

{
ϕ′(yx1:n, i) :

∑
xn
ϕ′(yx1:n, i) ≤ φ(yx<n, t)

}
(32)

With xn<t we mean that the natural number associated with string xn is smaller than
t. According to (30) with ϕ also ϕ′ as well as

∑
xn
ϕ′ are primitive recursive functions.

Further, if we allow t=0 we have ϕ′(s, 0) = 0. This ensures that φ is a total function.

In the following we prove by induction over n that φ is a primitive recursive chrono-
logical semimeasure monotone increasing in t. All necessary properties hold for n = 0
(yx1:0 = ε) according to (31). For general n assume that the induction hypothesis is true
for φ(yx<n, t). We can see from (32) that φ(yx1:n, t) is monotone increasing in t. φ is
total as ϕ′(yx1:n, i= 0) = 0 satisfies the inequality. By assumption φ(yx<n, t) is primitive
recursive, hence with

∑
xn
ϕ′ also the order relation

∑
ϕ′≤φ is primitive recursive. This

ensures that the non-empty finite set {ϕ′ : ∑ϕ′ ≤ φ}i and its maximum φ(yx1:n, t) are

12Defining enumerability as the supremum of total primitive recursive functions is more suitable for our
purpose than the equivalent definition as a limit of monotone increasing partial recursive functions. In
terms of Turing machines, the recursion parameter is the time after which a computation is terminated.
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primitive recursive. Further, φ(yx1:n, t)=ϕ′(yx1:n, i) for some i with i≤ t independent of
xn. Thus,

∑
xn
φ(yx1:n, t) =

∑
xn
ϕ′(yx1:n, i) ≤ φ(yx<n, t) which is the condition for φ being

a chronological semimeasure. Inductively we have proved that φ is indeed a primitive
recursive chronological semimeasure monotone increasing in t.

In the following we show that every (total)13 enumerable chronological semimeasure ρ can
be enumerated by some φ. By definition of enumerability there exist primitive recursive
functions ϕ̃ with ρ(s) = supt ϕ̃(s, t). The function ϕ(s, t) := (1− 1/t) ·maxi<t ϕ̃(s, i) also
enumerates ρ but has the additional advantage of being strictly monotone increasing in t.

ϕ′(yx1:n,∞)=ϕ(yx1:n,∞)=ρ(yx1:n) by definition (30). φ(ε, t)=ϕ′(ε, t) by (31) and the fact
that ϕ′(ε, i−1) < ϕ′(ε, i)≤ϕ(ε, i)≤ρ(ε)≤1, hence φ(ε,∞)=ρ(ε). φ(yx1:n, t)≤ϕ′(yx1:n, t) by
(32), hence φ(yx1:n,∞)≤ρ(yx1:n). We prove the opposite direction φ(yx1:n,∞)≥ρ(yx1:n)
by induction over n. We have∑

xn

ϕ′(yx1:n, i) ≤
∑
xn

ϕ(yx1:n, i) <
∑
xn

ϕ(yx1:n,∞) =
∑
xn

ρ(yx1:n) ≤ ρ(yx<n) (33)

The strict monotony of ϕ and the semimeasure property of ρ have been used. By in-
duction hypothesis limt→∞ φ(yx<n, t)≥ ρ(yx<n) and (33) for sufficiently large t we have
φ(yx<n, t) >

∑
xn
ϕ′(yx1:n, i). The condition in (32) is, hence, satisfied and therefore

φ(yx1:n, t)≥ϕ′(yx1:n, i) for sufficiently large t, especially φ(yx1:n,∞)≥ϕ′(yx1:n, i) for all i.
Taking the limit i→∞ we get φ(yx1:n,∞)≥ϕ′(yx1:n,∞)=ρ(yx1:n).

Combining all results, we have shown that the constructed φ(·, t) are primitive recursive
chronological semimeasures monotone increasing in t, which converge to the enumerable
chronological semimeasure ρ. This finally proves the enumerability of the set of enumer-
able chronological semimeasures.

Convergence of ξAI to µAI: In [15] the following inequality is proved

2
N∑

i=1

yi(yi−zi)
2 ≤

N∑
i=1

yi ln
yi

zi

with
N∑

i=1

yi = 1,
N∑

i=1

zi ≤ 1 (34)

If we identify N= |X|, i=xk, yi =µ(yx<kyxk) and zi =ξ(yx<kyxk), multiply both sides with
µ(yx<k), take the sum over x<k and k and use Bayes’ rule µ(yx<k)·µ(yx<kyxk) = µ(yx1:k)
we get

2
n∑

k=1

∑
x1:k

µ(yx1:k)
(
µ(yx<kxk)− ξ(yx<kxk)

)2
≤

n∑
k=1

∑
x1:k

µ(yx1:k) ln
µ(yx<kxk)

ξ(yx<kxk)
= ... (35)

In the r.h.s. we can replace
∑

x1:k
µ(yx1:k) by

∑
x1:n

µ(yx1:n) as the argument of the logarithm
is independent of xk+1:n. The k sum can now be brought into the logarithm and converts
to a product. Using Bayes’ rule (4) for µ and ξ we get

... =
∑
x1:n

µ(yx1:n) ln
n∏

k=1

µ(yx<kxk)

ξ(yx<kxk)
=

∑
x1:n

µ(yx1:n) ln
µ(yx1:n)

ξ(yx1:n)

+
< ln 2·K(µ) (36)

13Semimeasures are, by definition, total functions.
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where we have used the universality property (28) of ξ in the last step. The main compli-
cation for generalizing (20) to (35,36) was the generalization of (34) from N= |X|=2 to
a general alphabet, the y are, again, pure spectators. This will change when we analyze
error/credit bounds analogous to (22).

(35,36) shows that the µ expected squared difference of µ and ξ is finite for computable µ.
This, in turn, shows that ξ(yx<kyxk) converges to µ(yx<kyxk) for k→∞ with µ probability
1. If we take a finite product of ξ′s and use Bayes’ rule, we see that also ξ(yx<kyxk:k+r)
converges to µ(yx<kyxk:k+r). More generally, in case of a bounded horizon hk, it follows
that

ξ(yx<kyxk:mk
)

k→∞−→ µ(yx<kyxk:mk
) if hk ≡ mk−k+1 ≤ hmax <∞ (37)

This makes us confident that the outputs ẏk of the AIξ model (25) could converge to the
outputs ẏk from the AIµ model (9), at least for bounded horizon.

We want to call an AI model universal, if it is µ independent (unbiased, model-free) and
is able to solve any solvable problem and learn any learnable task. Further, we call a
universal model, universally optimal, if there is no program, which can solve or learn
significantly faster (in terms of interaction cycles). As the AIξ model is parameterless,
ξ converges to µ (37), the AIµ model is itself optimal, and we expect no other model to
converge faster to AIµ by analogy to SP (22),

we expect AIξ to be universally optimal.

This is our main claim. In a sense, the intention of the remaining (sub)sections is to
define this statement more rigorously and to give further support.

Intelligence order relation: We define the ξ expected credit in cycles k to m of a
policy p similar to (1) and (23). We extend the definition to programs p 6∈ Ṗk which are
not consistent with the current history.

Cξ
km(p|ẏẋ<k) :=

1

N
∑

q:q(ẏ<k)=ẋ<k

2−l(q) · Ckm(p̃, q) (38)

The normalization N is again only necessary for interpreting Ckm as the expected credit
but otherwise unneeded. For consistent policies p ∈ Ṗk we define p̃ := p. For p 6∈ Ṗk,
p̃ is a modification of p in such a way that its outputs are consistent with the current
history ẏẋ<k, hence p̃∈ Ṗk, but unaltered for the current and future cycles ≥k. Using this
definition of Ckm we could take the maximium over all systems p in (23), rather than only
the consistent ones.

We call p more or equally intelligent than p′ if

p � p′ :⇔ ∀k∀ẏẋ<k : Cξ
kmk

(p|ẏẋ<k) ≥ Cξ
kmk

(p′|ẏẋ<k) (39)

i.e. if p yields in any circumstance higher ξ expected credit than p′. As the algorithm p∗

behind the AIξ system maximizes Cξ
kmk

we have p∗�p for all p. The AIξ model is hence
the most intelligent system w.r.t. �. � is a universal order relation in the sense that it
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is free of any parameters (except mk) or specific assumptions about the environment. A
proof, that � is a reliable intelligence order (what we believe to be true), would prove that
AIξ is universally optimal. We could further ask: how useful is � for ordering policies
of practical interest with intermediate intelligence, or how can � help to guide toward
constructing more intelligent systems with reasonable computation time. An effective
intelligence order relation �c will be defined in section 10, which is more useful from a
practical point of view.

Credit bounds and separability concepts: The credits Ckm associated with the AI
systems correspond roughly to the negative error measure −Enρ of the SP systems. In
SP, we were interested in small bounds for the error excess EnΘξ

−Enρ. Unfortunately,
simple credit bounds for AIξ in terms of Ckm analogous to the error bound (22) do not
hold. We even have difficulties in specifying what we can expect to hold for AIξ or any
AI system which claims to be universally optimal. Consequently, we cannot have a proof
if we don’t know what to prove. In SP, the only important property of µ for proving
error bounds was its complexity K(µ). We will see that in the AI case, there are no
useful bounds in terms of K(µ) only. We either have to study restricted problem classes
or consider bounds depending on other properties of µ, rather than on its complexity
only. In the following, we will exhibit the difficulties by two examples and introduce
concepts which may be useful for proving credit bounds. Despite the difficulties in even
claiming useful credit bounds, we nevertheless, firmly believe that the order relation (39)
correctly formalizes the intuitive meaning of intelligence and, hence, that the AIξ system
is universally optimal.

In the following, we choose mk =T . We want to compare the true, i.e. µ expected credit
Cµ

1T of a µ independent universal policy pbest with any other policy p. Naively, we might
expect the existence of a policy pbest which maximizes Cµ

1T , apart from additive corrections
of lower order for T→∞

Cµ
1T (pbest) ≥ Cµ

1T (p)− o(...) ∀µ, p (40)

Note, that Cµ
1T (p∗µ)≥ Cµ

1T (p)∀p, but p∗µ is not a candidate for (a universal) pbest as it
depends on µ. On the other hand, the policy p∗ξ of the AIξ system maximizes Cξ

1T by
definition (p∗ξ � p). As Cξ

1T is thought to be a guess of Cµ
1T , we might expect pbest =p∗ξ

to approximately maximize Cµ
1T , i.e. (40) to hold. Let us consider the problem class (set

of environments) {µ0, µ1} with Y =C= {0, 1} and ck = δiy1 in environment µi. The first
output y1 decides whether you go to heaven with all future credits ck being 1 (good) or
to hell with all future credits being 0 (bad). It is clear, that if µi, i.e. i is known, the
optimal policy p∗µi is to output y1 = i in the first cycle with Cµ

1T (p∗µi)=T . On the other
hand, any unbiased policy pbest independent of the actual µ either outputs y1 =1 or y1 =0.
Independent of the actual choice y1, there is always an environment (µ=µ1−y1) for which
this choice is catastrophic (Cµ

1T (pbest) = 0). No single system can perform well in both
environments µ0 and µ1. The r.h.s. of (40) equals T−o(T ) for p=p∗µ. For all pbest there
is a µ for which the l.h.s. is zero. We have shown that no pbest can satisfy (40) for all µ
and p, so we cannot expect p∗ξ to do so. Nevertheless, there are problem classes for which
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(40) holds, for instance SP and CF. For SP, (40) is just a reformulation of (22) with an
appropriate choice for pbest (which differs from p∗ξ, see next section). We expect (40) to
hold for all inductive problems in which the environment is not influenced14 by the output
of the system. We want to call these µ, passive or inductive environments. Further, we
want to call µ satisfying (40) with pbest =p∗ξ pseudo passive. So we expect inductive µ to
be pseudo passive.

Let us give a further example to demonstrate the difficulties in establishing credit bounds.
Let C= {0, 1} and |Y | be large. We consider all (deterministic) environments in which a
single complex output y∗ is correct (c=1) and all others are wrong (c=0). The problem
class M is defined by

M := {µ : µ(yx<kyk1) = δyky∗ , y
∗∈Y, K(y∗)= b log2 |Y |c}

There are N
×
= |Y | such y∗. The only way a µ independent policy p can find the correct

y∗, is by trying one y after the other in a certain order. In the first N −1 cycles at
most, N−1 different y are tested. As there are N different possible y∗, there is always
a µ ∈M for which p gives erroneous outputs in the first N−1 cycles. The number of
errors are E∞p≥N−1

×
= |Y | ×= 2K(y∗) ×

= 2K(µ) for this µ. As this is true for any p, it is
also true for the AIξ model, hence Ekξ ≤ 2K(µ) is the best possible error bound we can
expect, which depends on K(µ) only. Actually, we will derive such a bound in section 5

for SP. Unfortunately, as we are mainly interested in the cycle region k � |Y | ×
= 2K(µ)

(see section 3) this bound is trivial. There are no interesting bounds for deterministic µ
depending on K(µ) only, unlike the SP case . Bounds must either depend on additional
properties of µ or we have to consider specialized bounds for restricted problem classes.
The case of probabilistic µ is similar. Whereas for SP there are useful bounds in terms of
EkΘµ and K(µ), there are no such bounds for AIξ. Again, this is not a drawback of AIξ
since for no unbiased AI system the errors/credits could be bound in terms of K(µ) and
the errors/credits of AIµ only.

There is a way to make use of gross (e.g. 2K(µ)) bounds. Assume that after a reasonable
number of cycles k, the information ẋ<k perceived by the AIξ system contains a lot of
information about the true environment µ. The information in ẋ<k might be coded in
any form. Let us assume that the complexity K(µ|ẋ<k) of µ under the condition that
ẋ<k is known, is of order 1. Consider a theorem, bounding the sum of credits or of other
quantities over cycles 1...∞ in terms of f(K(µ)) for a function f with f(O(1))=O(1), like
f(n)=2n. Then, there will be a bound for cycles k...∞ in terms of f(K(µ|ẋ<k))=O(1).
Hence, a bound like 2K(µ) can be replaced by small bound 2K(µ|ẋ<k) =O(1) after k cycles.
All one has to show/ensure/assume is that enough information about µ is presented (in
any form) in the first k cycles. In this way, even a gross bound could become useful. In
section 8 we use a similar argument to prove that AIξ is able to learn supervised.

In the following, we weaken (40) in the hope of getting a bound applicable to wider
problem classes than the passive one. Consider the I/O sequence ẏ1ẋ1...ẏnẋn caused by

14Of course, the credit feedback ck depends on the system’s output. What we have in mind is, like in
sequence prediction, that the true sequence is not influenced by the system
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AIξ. On history ẏẋ<k, AIξ will output ẏk≡ ẏξ
k in cycle k. Let us compare this to ẏµ

k what
AIµ would output, still on the same history ẏẋ<k produced by AIξ. As AIµ maximizes
the µ expected credit, AIξ causes lower (or at best equal) Cµ

kmk
, if ẏξ

k differs from ẏµ
k .

Let Dnµξ := 〈∑n
k=1 1−δẏµ

k
,ẏξ

k
〉µ be the µ expected number of suboptimal choices of AIξ,

i.e. outputs different from AIµ in the first n cycles. One might weigh the deviating cases
by their severity. Especially when the µ expected credits Cµ

kmk
for ẏξ

k and ẏµ
k are equal

or close to each other, this should be taken into account in a definition of Dnµξ. These
details do not matter in the following qualitative discussion. The important difference
to (40) is that here we stick on the history produced by AIξ and count a wrong decision
as, at most, one error. The wrong decision in the Heaven&Hell example in the first cycle
no longer counts as losing T credits, but counts as one wrong decision. In a sense, this
is fairer. One shouldn’t blame somebody too much who makes a single wrong decision
for which he just has too little information available, in order to make a correct decision.
The AIξ model would deserve to be called asymptotically optimal, if the probability of
making a wrong decision tends to zero, i.e. if

Dnµξ/n→ 0 for n→∞, i.e. Dnµξ = o(n). (41)

We say that µ can be asymptotically learned (by AIξ) if (41) is satisfied. We claim
that AIξ (for mk →∞) can asymptotically learn every problem µ of relevance, i.e. AIξ
is asymptotically optimal. We included the qualifier of relevance, as we are not sure
whether there could be strange µ spoiling (41) but we expect those µ to be irrelevant
from the perspective of AI. In the field of Learning, there are many asymptotic learnability
theorems, often not too difficult to prove. So a proof of (41) might also be accessible.
Unfortunately, asymptotic learnability theorems are often too weak to be useful from a
practical point. Nevertheless, they point in the right direction.

From the convergence (37) of µ→ξ we might expect Cξ
kmk

→Cµ
kmk

and hence, ẏξ
k defined in

(25) to converge to ẏµ
k defined in (9) with µ probability 1 for k→∞. The first problem is,

that if the Ckmk
for the different choices of yk are nearly equal, then even if Cξ

kmk
≈Cµ

kmk
,

ẏξ
k 6= ẏ

µ
k is possible due to the non-continuity of maxargyk

. This can be cured by a weighted
Dnµξ as described above. More serious is the second problem we explain for hk = 1 and

X=C={0, 1}. For ẏξ
k≡maxargyk

ξ(ẏċ<kyk1) to converge to ẏµ
k ≡maxargyk

µ(ẏċ<kyk1), it is
not sufficient to know that ξ(ẏċ<kẏċk)→µ(ẏċ<kẏċk) as proved in (37). We need convergence
not only for the true output ẏk and credit ċk, but also for alternate outputs yk and credit
1. ẏξ

k converges to ẏµ
k if ξ converges uniformly to µ, i.e. if in addition to (37)

|µ(yx<ky
′
kx

′
k)− ξ(yx<ky

′
kx

′
k)| < c·|µ(yx<kyxk)− ξ(yx<kyxk)| ∀y′kx′k (42)

holds for some constant c (at least in a µ expected sense). We call µ satisfying (42)
uniform. For uniform µ one can show (41) with appropriately weighted Dnµξ and bounded
horizon hk<hmax. Unfortunately there are relevant µ which are not uniform. Details will
be given elsewhere.

In the following, we briefly mention some further concepts. A Markovian µ is defined
as depending only on the last output, i.e. µ(yx<kyxk)=µk(yxk). We say µ is generalized
Markovian, if µ(yx<kyxk)=µk(yxk−l:k−1yxk) for fixed l. This property has some similarities
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to factorizable µ defined in (15). If further µk ≡ µ1∀k, µ is called stationary. Further,
for all enumerable µ, µ(yx<kyxk) and ξ(yx<kyxk) get independent of yx<l for fixed l and
k→∞ with µ probability 1. This property, which we want to call forgetfulness, will be
proved elsewhere. Further, we say µ is farsighted, if limmk→∞ ẏ

(mk)
k exists. More details

will be given in the next subsection, where we also give an example of a farsighted µ for
which nevertheless the limit mk→∞ makes no sense.

We have introduced several concepts, which might be useful for proving credit bounds,
including forgetful, relevant, asymptotically learnable, farsighted, uniform, (generalized)
Markovian, factorizable and (pseudo) passive µ. We have sorted them here, approximately
in the order of decreasing generality. We want to call them separability concepts. The more
general (like relevant, asymptotically learnable and farsighted) µ will be called weakly
separable, the more restrictive (like (pseudo) passive and factorizable) µ will be called
strongly separable, but we will use these qualifiers in a more qualitative, rather than rigid
sense. Other (non-separability) concepts are deterministic µ and, of course, the class of
all chronological µ.

The choice of the horizon: The only significant arbitrariness in the AIξ model lies
in the choice of the horizon function hk≡mk−k+1. We discuss some choices which seem
to be natural and give preliminary conclusions at the end. We will not discuss ad hoc
choices of hk for specific problems (like the discussion in section 6 in the context of finite
games). We are interested in universal choices of mk.

If the lifetime of the system is known to be T , which is in practice always large but finite,
then the choice mk =T maximizes correctly the expected future credit. T is usually not
known in advance, as in many cases the time we are willing to run a system depends
on the quality of its outputs. For this reason, it is often desirable that good outputs
are not delayed too much, if this results in a marginal credit increase only. This can be
incorporated by damping the future credits. If, for instance, we assume that the survival
of the system in each cycle is proportional to the past credit an exponential damping
ck := c′k ·e−λk is appropriate, where c′k are bounded, e.g. c′k ∈ [0, 1]. The expression (25)
converges for mk→∞ in this case15. But this does not solve the problem, as we introduced
a new arbitrary time-scale 1/λ. Every damping introduces a time-scale.

Even the time-scale invariant damping factor ck = c′k ·k−α introduces a dynamic time-
scale. In cycle k the contribution of cycle 21/α ·k is damped by a factor 1

2
. The effective

horizon hk in this case is ∼ k. The choice hk = β ·k with β ∼ 21/α qualitatively models
the same behaviour. We have not introduced an arbitrary time-scale T , but limited the
farsightedness to some multiple (or fraction) of the length of the current history. This
avoids the pre-selection of a global time-scale T or 1/λ. This choice has some appeal, as it
seems that humans of age k years usually do not plan their lives for more than, perhaps,
the next k years (βhuman ≈ 1). From a practical point of view this model might serve
all needs, but from a theoretical point we feel uncomfortable with such a limitation in

15More precisely ẏk = maxarg
yk

lim
mk→∞

C∗ξkmk
(ẏẋ<kyk) exists.
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the horizon from the very beginning. Note, that we have to choose β = O(1) because
otherwise we would again introduce a number β, which has to be justified.

The naive limit mk → ∞ in (25) may turn out to be well defined and the previous
discussion superfluous. In the following, we suggest a limit which is always well defined
(for finite Y ). Let ẏ

(mk)
k be defined as in (25) with dependence on mk made explicit.

Further, let Ẏ
(m)
k := { ẏ(mk)

k : mk ≥ m} be the set of outputs in cycle k for the choices

mk =m,m + 1,m + 2, .... Because Ẏ
(m)
k ⊇ Ẏ (m+1)

k 6= {}, we have Ẏ
(∞)
k :=

⋂∞
m=k Ẏ

(m)
k 6= {}.

We define the mk =∞ model to output any ẏ
(∞)
k ∈ Ẏ (∞)

k . This is the best output consistent

with some arbitrary large choice of mk. Choosing the lexicographically smallest ẏ
(∞)
k ∈

Ẏ
(∞)
k would correspond to the limes inferior limm→∞ẏ

(m)
k , which always exists (for finite

Y ). Generally ẏ
(∞)
k ∈ Ẏ (∞)

k is unique, i.e. |Ẏ (∞)
k |=1 iff the naive limit limm→∞ ẏ

(m)
k exists.

Note, that the limit limm→∞C∗
km(yx<k) needs not to exist for this construction.

The construction above leads to a mathematically elegant, no-parameter AIξ model. Un-
fortunately this is not the end of the story. The limit mk →∞ can cause undesirable
results in the AIµ model for special µ which might also happen in the AIξ model what-
ever we define mk →∞. Consider Y =X = C = {0, 1}. Output yk = 0 shall give credit
ck = 0 and output yk = 1 shall give ck = 1 iff ẏk−l−

√
l...ẏk−l = 0...0 for some l. I.e. the

system can achieve l consecutive positive credits if there was a sequence of length at least√
l with yk =ck =0. If the lifetime of the AIµ system is T , it outputs ẏk =0 in the first r

cycles and then ẏk =1 for the remaining r2 cycles with r such that r + r2 = T . This will

lead to the highest possible total credit C1T =r2 =T −
√
T +1/4 +1/2. Any fragmentation

of the 0 and 1 sequences would reduce C1T . For T→∞ the AIµ system can and will delay
the point r of switching to ẏk = 1 indefinitely and always output 0 with total credit 0,
obviously the worst possible behaviour. The AIξ system will explore the above rule after
a while of trying yk =0/1 and then applies the same behaviour as the AIµ system, since
the simplest rules covering past data dominate ξ. For finite T this is exactly what we
want, but for infinite T the AIξ model (probably) fails just as the AIµ model does. The
good point is, that this is not a weakness of the AIξ model, as AIµ fails too and no system
can be better than AIµ. The bad point is that mk →∞ has far reaching consequences,
even when starting from an already very large mk = T . The reason being that the µ of
this example is highly non-local in time, i.e. it may violate one of our weak separability
conditions.

In the last paragraph we have considered the consequences of mk→∞ in the AIµ model.
We now consider whether the AIξ model is a good approximation of the AIµ model for
large mk. Another objection against too large choices of mk is that ξ(yx<kyxk:mk

) has
been proved to be a good approximation of µ(yx<kyxk:mk

) only for k�hk, which is never
satisfied for mk =T→∞. We have seen that, for factorizable µ, the limit hk→∞ causes
no problem, as from a certain hk on the output ẏk is independent of hk. As ξ→ µ for
bounded hk, ξ will develop this separability property too. So, from a certain k0 on the
limit hk →∞ might also be safe for ξ if µ is factorizable. Therefore, taking the limit
hk→∞ for all k worsens the behaviour of AIξ maybe only for finitely many cycles k≤ k0,
which would be acceptable. We suppose that the valuations ck′ for k′� k, where ξ can
no longer be trusted as a good approximation to µ, are in some sense randomly disturbed
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with decreasing influence on the choice of ẏk. This claim is supported by the forgetfulness
property of ξ.

We are not sure whether the choice of mk is of marginal importance, as long as mk is
chosen sufficiently large and of low complexity, mk = 2216

for instance, or whether the
choice of mk will turn out to be a central topic for the AIξ model or for the planning
aspect of any AI system in general. We suppose that the limit mk→∞ for the AIξ model
results in correct behaviour for weakly separable µ, and that even the naive limit exists.
A proof of this supposition, if true, would probably give interesting insights.
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5 Sequence Prediction (SP)

We have introduced the AIξ model as a unification of the ideas of sequential decision
theory and universal probability distribution. We might expect AIξ to behave identically
to SPΘξ, when faced with a sequence prediction problem, but things are not that simple,
as we will see.

Using the AIµ Model for Sequence Prediction: We have seen in the last section
how to predict sequences for known and unknown prior distribution µSP . Here we consider
binary sequences16 z1z2z3... ∈ IB∞ with known prior probability µSP (z1z2z3...).

We want to show how the AIµ model can be used for sequence prediction. We will see
that it makes the same prediction as the SPΘµ system. First, we have to specify how the
AIµ model should be used for sequence prediction. The following choice is natural:

The systems output yk is interpreted as a prediction for the kth bit zk of the string
under consideration. This means that yk is binary (yk ∈ IB =: Y ). As a reaction of the
environment, the system receives credit ck = 1 if the prediction was correct (yk = zk), or
ck = 0 if the prediction was erroneous (yk 6= zk). The question is what the input x′k of
the next cycle should be. One choice would be to inform the system about the correct
kth bit of the string and set x′k = zk. But as from the credit ck in conjunction with
the prediction yk, the true bit zk = δykck

can be inferred, this information is redundant.
δ is the Kronecker symbol, defined as δab = 1 for a = b and 0 otherwise. There is no
need for this additional feedback. So we set x′k = ε∈X = {ε} thus having xk ≡ ck. The
system’s performance does not change when we include this redundant information, it
merely complicates the notation. The prior probability µAI of the AIµ model is

µAI(y1x1...ykxk) = µAI(y1c1...ykck) = µSP (δy1c1 ...δykck
) = µSP (z1...zk) (43)

In the following, we will drop the superscripts of µ because they are clear from the
arguments of µ and the µ equal in any case.

The formula (7) for the expected credit reduces to

C∗µ
km(yx<k) = max

yk

∑
ck

[ck + C∗µ
k+1,m(yx1:k)]·µ(δy1c1 ...δyk−1ck−1

δykck
) (44)

The first observation we can make, is that for this special µ, C∗µ
km only depends on δyici

, i.e.
replacing yi and ci simultaneously with their complements does not change the value of
C∗µ

km. We have a symmetry in yici. For k=m+1 this is definitely true as C∗µ
m+1,m =0 in this

case (see (6)). For k≤m we prove it by induction. The r.h.s. of (44) is symmetric in yici for
i<k because µ possesses this symmetry and C∗µ

k+1,m possesses it by induction hypothesis,
so the symmetry holds for the l.h.s., which completes the proof. The prediction ẏk is

ẏk = maxarg
yk

C∗µ
kmk

(ẏẋ<kyk) = maxarg
yk

∑
ck

[ck + C∗µ
k+1,mk

(yx1:k)]·µ(...δykck
) = (45)

16We use zk to avoid notational conflicts with the system’s inputs xk.
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= maxarg
yk

∑
ck

ck ·µ(δẏ1ċ1 ...δykck
) = maxarg

yk

µ(ż1...żk−1yk
) = maxarg

zk

µ(ż1...żk−1zk)

The first equation is the definition of the system’s prediction (8). In the second equation,
we have inserted (5) which gives the r.h.s. of (44) with maxyk

replaced by maxargyk
.∑

c f(...δyc...) is independent of y for any function, depending on the combination δyc only.
Therefore, the

∑
cC

∗µ term is independent of yk because C∗µ
k+1,m as well as µ depend on

δykck
only. In the third equation, we can therefore drop this term, as adding a constant to

the argument of maxargyk
does not change the location of the maximum. In the second

last equation we evaluated the
∑

ck
. Further, if the true credit to ẏi is ċi the true ith bit

of the string must be żi =δẏiċi
. The last equation is just a renaming.

So, the AIµ model predicts that zk that has maximal µ probability, given ż1...żk−1. This
prediction is independent of the choice of mk. It is exactly the prediction scheme of the
deterministic sequence prediction with known prior SPΘµ described in the last section.
As this model was optimal, AIµ is optimal, too, i.e. has minimal number of expected
errors (maximal µ expected credit) as compared to any other sequence prediction scheme.

From this, it is already clear that the total expected credit Ckm must be closely related
to the expected sequence prediction error EmΘµ (21). In the following we prove that
C1m(ε)∗µ = m−EmΘµ. We rewrite C∗µ

km in (44) as a function of zi instead of yici as
it is symmetric in yici. Further, we can pull C∗µ

k+1,m out of the maximization, as it is
independent of yk similar to (45). Renaming the bounded variables yk and ck we get

C∗µ
km(z<k) = max

zk
µ(z<kzk) +

∑
zk

C∗µ
k+1,m(z1:k)·µ(z<kzk) (46)

Recursively inserting the l.h.s. into the r.h.s. we get

C∗µ
km(z<k) =

m∑
i=k

∑
zk:i−1

max
zi

µ(z<kzk:i) (47)

This is most easily proven by induction. For k=m we have C∗µ
mm(z<m)=maxzm µ(z<mzm)

from (46) and (6), which equals (47). By induction hypothesis, we assume that (47) is
true for k+1. Inserting this into (46) we get

C∗µ
km(z<k) = max

zk
µ(z<kzk) +

∑
zk

 m∑
i=k+1

∑
zk+1:i−1

max
zi

µ(z1:kzk+1:i)

µ(z<kzk) =

= max
zk

µ(z<kzk) +
m∑

i=k+1

∑
zk:i−1

max
zi

µ(z<kzk:i)

which equals (47). This was the induction step and hence (47) is proven.

By setting k= 1 and slightly reformulating (47), we get the total expected credit in the
first m cycles

C∗µ
1:m(ε) =

m∑
i=1

∑
z<i

µ(z<i) max{µ(z<i0), µ(z<i1)} = m− EmΘµ

with EmΘµ defined in (21).
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Using the AIξ Model for Sequence Prediction: Now we want to use the universal
AIξ model instead of AIµ for sequence prediction and try to derive error bounds analogous
to (22). Like in the AIµ case, the system’s output yk in cycle k is interpreted as a
prediction for the kth bit zk of the string under consideration. The credit is ck = δykzk

and there are no other inputs xk = ε. What makes the analysis more difficult is that ξ
is not symmetric in yici ↔ (1 − yi)(1 − ci) and (43) does not hold for ξ. On the other
hand, ξAI converges to µAI in the limit (37), and (43) should hold asymptotically for ξ
in some sense. So we expect that everything proven for AIµ holds approximately for AIξ.
The AIξ model should behave similarly to SPΘξ, the deterministic variant of Solomonoff
prediction. Especially we expect error bounds similar to (22). Making this rigorous seems
difficult. Some general remarks have been made in the last section.

Here we concentrate on the special case of a deterministic computable environment, i.e.
the environment is a sequence ż= ż1ż2..., K(ż1...żn∗)≤K(ż)<∞. Furthermore, we only
consider the simplest horizon model mk = k, i.e. maximize only the next credit. This is
sufficient for sequence prediction, as the credit of cycle k only depends on output yk and
not on earlier decisions. This choice is in no way sufficient and satisfactory for the full
AIξ model, as one single choice of mk should serve for all AI problem classes. So AIξ
should allow good sequence prediction for some universal choice of mk and not only for
mk =k, which definitely does not suffice for more complicated AI problems. The analysis
of this general case is a challenge for the future. For mk = k the AIξ model (25) with
x′i =ε reduces to

ẏk = maxarg
yk

∑
ck

ck ·ξ(ẏċ<kyck) = maxarg
yk

ξ(ẏċ<kyk1) = maxarg
yk

ξ(ẏċ<kyk1) (48)

The environmental response ċk is given by δẏk żk
; it is 1 for a correct prediction (ẏk = żk)

and 0 otherwise. In the following, we want to bound the number of errors this prediction
scheme makes. We need the following inequality

ξ(yc1...yck) > 2−K(δy1c1 ...δykck
∗)−O(1) (49)

We have to find a short program in the sum (24) calculating c1...ck from y1...yk. If we
knew zi := δyici

for 1≤ i≤k a program of size O(1) could calculate c1...ck = δy1z1 ...δykzk
.

So combining this program with a shortest coding of z1...zk leads to a program q of size
l(q)=K(z1...zk∗)+O(1) with q(y1:k)=c1:k, which proves (49).

Let us now assume that we make a wrong prediction in cycle k, i.e. ċk =0, ẏk 6= żk. The
goal is to show that ξ̇ defined by

ξ̇k := ξ(ẏċ1:k) = ξ(ẏċ<kẏk0) ≤ ξ(ẏċ<k)− ξ(ẏċ<kẏk1) < ξ̇k−1 − α

decreases for every wrong prediction, at least by some α. The ≤ arose from the fact that
ξ is only a semimeasure.

ξ(ẏċ<kẏk1) > ξ(ẏ1ċ<k(1−ẏk)1)
×
> 2−K(δẏ1ċ1

...δ(1−ẏk)1∗) =

= 2−K(ż1...żk∗) > 2−K(ż)−O(1) =: α
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In the first inequality we have used the fact that ẏk maximizes by definition (48) the
argument, i.e. 1− ẏk has lower probability than ẏk. (49) has been applied in the second
inequality. The equality holds, because żi = δẏiċi

and δ(1−ẏk)1 = δẏk0 = δẏk ċk
= żk. The last

inequality follows from the definition of ż.

We have shown that each erroneous prediction reduces ξ̇ by at least the α defined above.
Together with ξ̇0 =1 and ξ̇k>0 for all k this shows that the system can make at most 1/α
errors, since otherwise ξ̇k would become negative. So the number of wrong predictions
EAI

nξ of system (48) is bounded by

EAI
nξ < 1

α
= 2K(ż)+O(1) < ∞ (50)

for a computable deterministic environment string ż1ż2.... The intuitive interpretation is

that each wrong prediction eliminates at least one program p of size l(p)
+
<K(ż). The

size is smaller than K(ż), as larger policies could not mislead the system to a wrong
prediction, since there is a program of size K(ż) making a correct prediction. There are
at most 2K(ż)+O(1) such policies, which bounds the total number of errors.

We have derived a finite bound for EAI
nξ , but unfortunately, a rather weak one as compared

to (22). The reason for the strong bound in the SP case was that every error at least
halves ξ̇ because the sum of the maxargxk

arguments was 1. Here we have

ξ(ẏ1ċ1...ẏk−1ċk−100) + ξ(ẏ1ċ1...ẏk−1ċk−101) = 1
ξ(ẏ1ċ1...ẏk−1ċk−110) + ξ(ẏ1ċ1...ẏk−1ċk−111) = 1

but maxargyk
runs over the right top and right bottom ξ, for which no sum criterion

holds.

The AIξ model would not be sufficient for realistic applications if the bound (50) were
sharp, but we have the strong feeling (but only weak arguments) that better bounds
proportional to K(ż) analogous to (22) exist. The technique used above may not be
appropriate for achieving this. One argument for a better bound is the formal similarity
between maxargzk

(ż<kzk) and (48), the other is that we were unable to construct an
example sequence for which (48) makes more than O(K(ż)) errors.
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6 Strategic Games (SG)

Introduction: A very important class of problems are strategic games, like chess. In
fact, what is subsumed under game theory, is so general, that it includes not only a huge
variety of games, from simple games of chance like roulette, combined with strategy like
Backgammon, up to purely strategic games like chess or checkers or go. Game theory can
also describe political and economic competitions and coalitions, Darwinism and many
more. It seems that nearly every AI problem could be brought into the form of a game.
Nevertheless, the intention of a game is that several players perform actions with (partial)
observable consequences. The goal of each player is to maximize some utility function
(e.g. to win the game). The players are assumed to be rational, taking into account all
information they posses. The different goals of the players are usually in conflict. For an
introduction into game theory, see [11, 27, 32, 41].

If we interpret the AI system as one player and the environment models the other ra-
tional player and the environment provides the reinforcement feedback ck, we see that
the system-environment configuration satisfies all criteria of a game. On the other hand,
the AI system can handle more general situations, since it interacts optimally with an
environment, even if the environment is not a rational player with conflicting goals.

Strictly competitive strategic games: In the following, we restrict ourselves to de-
terministic, strictly competitive strategic17 games with alternating moves. Player 1 makes
move y′k in round k, followed by the move x′k of player 2. So a game with n rounds consists
of a sequence of alternating moves y′1x

′
1y

′
2x

′
2...y

′
nx

′
n. At the end of the game in cycle n the

game or final board situation is evaluated with C(y′1x
′
1...y

′
nx

′
n). Player 1 tries to maximize

C, whereas player 2 tries to minimize C. In the simplest case, C is 1 if player 1 won the
game, C =−1 if player 2 won and C = 0 for a draw. We assume a fixed game length n
independent of the actual move sequence. For games with variable length but maximal
possible number of moves n, we could add dummy moves and pad the length to n. The
optimal strategy (Nash equilibrium) of both players is a minimax strategy

ẋ′k = minarg
x′

k

max
y′

k+1

min
x′

k+1

...max
y′n

min
x′n

C(ẏ′1ẋ
′
1...ẏ

′
kx

′
k...y

′
nx

′
n) (51)

ẏ′k = maxarg
y′

k

min
x′

k

...max
y′n

min
x′n

C(ẏ′1ẋ
′
1...ẏ

′
k−1ẋ

′
k−1y

′
kx

′
k...y

′
nx

′
n) (52)

But note, that the minimax strategy is only optimal if both players behave rationally.
If, for instance, player 2 has limited capabilites or makes errors and player 1 is able to
discover these (through past moves) he could exploit these and improve his performance
by deviating from the minimax strategy. At least, the classical game theory of Nash
equilibria does not take into account limited rationality, whereas the AIξ system should.

17In game theory, games like chess are often called ’extensive’, whereas ’strategic’ is reserved for a
different kind of game.



37

Using the AIµ model for game playing: In the following, we demonstrate the
applicability of the AI model to games. The AI system takes the position of player 1.
The environment provides the evaluation C. For a symmetric situation we could take a
second AI system as player 2, but for simplicity we take the environment as the second
player and assume that this environmental player behaves according to the minimax
strategy (51). The environment serves as a perfect player and as a teacher, albeit a very
crude one as it tells the system at the end of the game, only whether it won or lost.

The minimax behaviour of player 2 can be expressed by a (deterministic) probability
distribution µSG as the following

µSG(y′1x
′
1...y

′
nx

′
n) :=

 1 if x′k = minarg
x′′

k

...max
y′′n

min
x′′n

C(y′1x
′
1...y

′
kx

′′
k...y

′′
nx

′′
n) ∀ 1≤k≤n

0 otherwise
(53)

The probability that player 2 makes move x′k is µSG(ẏ′1ẋ
′
1...ẏ

′
kx

′
k) which is 1 for x′k = ẋ′k as

defined in (51) and 0 otherwise.

Clearly, the AI system receives no feedback, i.e. c1 = ... = cn−1 = 0, until the end of the
game, where it should receive positive/negative/neutral feedback on a win/loss/draw, i.e.
cn = C(...). The environmental prior probability is therefore

µAI(y1x1...ynxn) =

{
µSG(y′1x

′
1...y

′
nx

′
n) if c1 = ... =cn−1 =0 and cn = C(y′1x

′
1...y

′
nx

′
n)

0 otherwise
(54)

where yi = y′i and xi = cix
′
i. If the environment is a minimax player (51) plus a crude

teacher C, i.e. if µAI is the true prior probability, the question now is, what is the
behaviour ẏAI

k of the AIµ system. It turns out that if we set mk = n the AIµ system is
also a minimax player (52) and hence optimal

ẏAI
k = maxarg

yk

∑
x′

k

...max
yn

∑
x′n

C(ẏẋ′<kyx
′
k:n)·µSG(ẏẋ′<kyx

′
k:n) =

= maxarg
yk

∑
x′

k

...max
yn−1

∑
x′n−1

max
yn

min
x′n

C(ẏẋ′<kyx
′
k:n)·µSG(ẏẋ′<kyx

′
k:n−1) = (55)

= ... = maxarg
yk

min
x′

k+1

...max
yn

min
x′n

C(ẏẋ′<kyx
′
k:n) = ẏSG

k

In the first line we inserted mk = n and (54) into the definition (9) of ẏAI
k . This re-

moves all sums over the ci. Further, the sum over x′n gives only a contribution for
x′n =minargx′n

C(ẏ′1ẋ
′
1...y

′
nx

′′
n) by definition (53) of µSG. Inserting this x′n gives the second

line. Effectively, µSG is reduced to a lower number of arguments and the sum over x′n
replaced by minx′n . Repeating this procedure for x′n−1, ..., x

′
k+1 leads to the last line, which

is just the minimax strategy of player 1 defined in (52).

Let us now assume that the game under consideration is played s times. The prior
probability then is

µAI(yx1...yxsn) =
s−1∏
r=0

µAI
1 (yxrn+1...yx(r+1)n) (56)
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where we have renamed the prior probability (54) for one game to µAI
1 . (56) is a special

case of a factorizable µ (15) with identical factors µr = µAI
1 for all r and equal episode

lengths nr+1−nr = n. The AIµ system (56) for repeated game playing also implements
the minimax strategy,

ẏAI
k = maxarg

yk

min
x′

k

... max
y(r+1)n

min
x′
(r+1)n

C(ẏẋ′rn+1:k−1...yx
′
k:(r+1)n) (57)

with r such that rn<k≤ (r+1)n and for any choice of mk as long as the horizon hk≥n.
This can be proved by using (16) and (55). See Section 4 for a discussion on separable
and factorizable µ.

Games of variable length: We have argued that a single game of variable but bounded
length can be padded to a fixed length without effect. We now analyze in a sequence of
games the effect of replacing the games with fixed length by games of variable length.
The sequence y′1x

′
1...y

′
nx

′
n can still be grouped into episodes corresponding to the moves of

separated consecutive games, but now the length and total number of games that fit into
the n moves depend on the actual moves taken18. C(y′1x

′
1...y

′
nx

′
n) equals the number of

games where the system wins, minus the number of games where the environment wins.
Whenever a loss, win or draw has been achieved by the system or the environment, a new
game starts. The player whose turn it would next be, begins the next game. The games
are still separated in the sense that the behaviour and credit of the current game does
not influence the next game. On the other hand, they are slightly entangled, because the
length of the current game determines the time of start of the next. As the rules of the
game are time invariant, this does not influence the next game directly. If we play a fixed
number of games, the games are completely independent, but if we play a fixed number
of total moves n, the number of games depends on their lengths. This has the following
consequences: the better player tries to keep the games short, to win more games in the
given time n. The poorer player tries to draw the games out, in order to loose less games.
The better player might further prefer a quick draw, rather than to win a long game.
Formally, this entanglement is represented by the fact that the prior probability µ does
no longer factorize. The reduced form (57) of ẏAI

k to one episode is no longer valid. Also,
the behaviour ẏAI

k of the system depends on mk, even if the horizon hk is chosen larger
than the longest possible game. The important point is that the system realizes that
keeping games short/long can lead to increased credit. In practice, a horizon much larger
than the average game length should be sufficient to incorporate this effect. The details of
games in the distant future do not affect the current game and can, therefore, be ignored.
A more quantitative analysis could be interesting, but would lead us too far astray.

Using the AIξ model for game playing: When going from the specific AIµ model,
where the rules of the game have been explicitly modeled into the prior probability µAI ,
to the universal model AIξ we have to ask whether these rules can be learned from the
assigned credits ck. Here, another (actually the main) reason for studying the case of

18If the sum of game lengths do not fit exactly into n moves, we pad the last game appropriately.
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repeated games, rather than just one game arises. For a single game there is only one
cycle of non-trivial feedback namely the end of the game - too late to be useful except
when there are further games following.

Even in the case of repeated games, there is only very limited feedback, at most log2 3 bits
of information per game if the 3 outcomes win/loss/draw have the same frequency. So
there are at least O(K(game)) number of games necessary to learn a game of complexity
K(game). Apart from extremely simple games, even this estimate is far too optimistic.
As the AIξ system has no information about the game to begin with, its moves will be
more or less random and it can win the first few games merely by pure luck. So the
probability that the system loses is near to one and hence the information content I in
the feedback ck at the end of the game is much less than log2 3. This situation remains
for a very large number of games. But in principle, every game should be learnable after
a very long sequence of games even with this minimal feedback only, as long as I 6≡ 0.

The important point is that no other learning scheme with no extra information can learn
the game more quickly than AIξ. We expect this to be true as µAI factorizes in the
case of games of fixed length, i.e. µAI satisfies a strong separability condition. In the
case of variable game length the entanglement is also low. µAI should still be sufficiently
separable allowing to formulate and prove good credit bounds for AIξ.

To learn realistic games like tic-tac-toe (noughts and crosses) in realistic time one has to
provide more feedback. This could be achieved by intermediate help during the game. The
environment could give positive(negative) feedback for every good(bad) move the system
makes. The demand on whether a move is to be valued as good should be adopted to the
gained experience of the system in such a way that approximately half of the moves are
valuated as good and the other half as bad, in order to maximize the information content
of the feedback.

For more complicated games like chess, even more feedback is necessary from a practical
point of view. One way to increase the feedback far beyond a few bits per cycle is to train
the system by teaching it good moves. This is called supervised learning. Despite the fact
that the AI model has only a credit feedback ck, it is able to learn supervised, as will be
shown in section 8. Another way would be to start with more simple games containing
certain aspects of the true game and to switch to the true game when the system has
learned the simple game.

No other difficulties are expected when going from µ to ξ. Eventually ξAI will converge
to the minimax strategy µAI . In the more realistic case, where the environment is not a
perfect minimax player, AIξ can detect and exploit the weakness of the opponent.

Finally, we want to comment on the input/output space X/Y of the AI system. In
practical applications, Y will possibly include also illegal moves. If Y is the set of moves
of e.g. a robotic arm, the system could move a wrong figure or even knock over the figures.
A simple way to handle illegal moves yk is by interpreting them as losing moves, which
terminate the game. Further, if e.g. the input xk is the image of a video camera which
makes one shot per move, X is not the set of moves by the environment but includes the
set of states of the game board. The discussion in this section handles this case as well.
There is no need to explicitly design the systems I/O space X/Y for a specific game.
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The discussion above on the AIξ system was rather informal for the following reason:
game playing (the SGξ system) has (nearly) the same complexity as fully general AI, and
quantitative results for the AIξ system are difficult (but not impossible) to obtain.
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7 Function Minimization (FM)

Applications/Examples: There are many problems that can be reduced to a function
minimization problem (FM). The minimum of a (real valued) function f : Y → IR over
some domain Y or a good approximate to the minimum has to be found, usually with
some limited resources.

One popular example is the traveling salesman problem (TSP). Y is the set of different
routes between towns and f(y) the length of route y∈Y . The task is to find a route of
minimal length visiting all cities. This problem is NP hard. Getting good approximations
in limited time is of great importance in various applications. Another example is the
minimization of production costs (MPC), e.g. of a car, under several constraints. Y
is the set of all alternative car designs and production methods compatible with the
specifications and f(y) the overall cost of alternative y∈Y . A related example is finding
materials or (bio)molecules with certain properties (MAT). E.g. solids with minimal
electrical resistance or maximally efficient chlorophyll modifications or aromatic molecules
that taste as close as possible to strawberry. We can also ask for nice paintings (NPT). Y
is the set of all existing or imaginable paintings and f(y) characterizes how much person
A likes painting y. The system should present paintings, which A likes.

For now, these are enough examples. The TSP is very rigorous from a mathematical point
of view, as f , i.e. an algorithm of f , is usually known. In principle, the minimum could
be found by exhaustive search, were it not for computational resource limitations. For
MPC, f can often be modeled in a reliable and sufficiently accurate way. For MAT you
need very accurate physical models, which might be unavailable or too difficult to solve
or implement. For NPT all we have is the judgement of person A on every presented
painting. The evaluation function f cannot be implemented without scanning A′s brain,
which is not possible with todays technology.

So there are different limitations, some depending on the application we have in mind.
An implementation of f might not be available, f can only be tested at some arguments y
and f(y) is determined by the environment. We want to (approximately) minimize f with
as few function calls as possible or, conversely, find an as close as possible approximation
for the minimum within a fixed number of function evaluations. If f is available or can
quickly be inferred by the system and evaluation is quick, it is more important to minimize
the total time needed to imagine new trial minimum candidates plus the evaluation time
for f . As we do not consider computational aspects of AIξ till section 10 we concentrate
on the first case, where f is not available or dominates the computational requirements.

The Greedy Model FMGµ : The FM model consists of a sequence ẏ1ż1ẏ2ż2... where
ẏk is a trial of the FM system for a minimum of f and żk = f(ẏk) is the true function
value returned by the environment. We randomize the model by assuming a probability
distribution µ(f) over the functions. There are several reasons for doing this. We might
really not know the exact function f , as in the NPT example, and model our uncertainty
by the probability distribution µ. More importantly, we want to parallel the other AI
classes, like in the SPµ model, where we always started with a probability distribution µ
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that was finally replaced by ξ to get the universal Solomonoff prediction SPξ. We want to
do the same thing here. Further, the probabilistic case includes the deterministic case by
choosing µ(f)=δff0 , where f0 is the true function. A final reason is that the deterministic
case is trivial when µ and hence f0 is known, as the system can internally (virtually) check
all function arguments and output the correct minimum from the very beginning.

We will assume that Y is countable or finite and that µ is a discrete measure, e.g. by
taking only computable functions. The probability that the function values of y1, ..., yn

are z1, ..., zn is then given by

µFM(y1z1...ynzn) :=
∑

f :f(yi)=zi ∀1≤i≤n

µ(f) (58)

We start with a model that minimizes the expectation zk of the function value f for the
next output yk, taking into account previous information:

ẏk := minarg
yk

∑
zk

zk ·µ(ẏ1ż1...ẏk−1żk−1ykzk)

This type of greedy algorithm, just minimizing the next feedback, was sufficient for se-
quence prediction (SP) and is also sufficient for classification (CF). It is, however, not
sufficient for function minimization as the following example demonstrates.

Take f : {0, 1}→{1, 2, 3, 4}. There are 16 different functions which shall be equiprobable,
µ(f)= 1

16
. The function expectation in the first cycle

〈z1〉 :=
∑
z1

z1 ·µ(y1z1) = 1
4

∑
z1

z1 = 1
4
(1+2+3+4) = 2.5

is just the arithmetic average of the possible function values and is independent of y1.
Therefore, ẏ1 =0, as minarg is defined to take the lexicographically first minimum in an
ambiguous case. Let us assume that f0(0)=2, where f0 is the true environment function,
i.e. ż1 =2. The expectation of z2 is then

〈z2〉 :=
∑
z2

z2 ·µ(02y2z2) =

{
2 for y2 = 0

2.5 for y2 = 1

For y2 = 0 the system already knows f(0) = 2, for y2 = 1 the expectation is, again, the
arithmetic average. The system will again output ẏ2 =0 with feedback ż2 =2. This will
continue forever. The system is not motivated to explore other y′s as f(0) is already
smaller than the expectation of f(1). This is obviously not what we want. The greedy
model fails. The system ought to be inventive and try other outputs when given enough
time.

The general reason for the failure of the greedy approach is that the information contained
in the feedback zk depends on the output yk. A FM system can actively influence the
knowledge it receives from the environment by the choice in yk. It may be more advanta-
geous to first collect certain knowledge about f by an (in greedy sense) non-optimal choice
for yk, rather than to minimize the zk expectation immediately. The non-minimality of
zk might be over-compensated in the long run by exploiting this knowledge. In SP, the
received information is always the current bit of the sequence, independent of what SP
predicts for this bit. This is the reason why a greedy strategy in the SP case is already
optimal.
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The general FMµ/ξ Model: To get a useful model we have to think more carefully
about what we really want. Should the FM system output a good minimum in the last
output in a limited number of cycles T , or should the average of the z1, ..., zT values be
minimal, or does it suffice that just one of the z is as small as possible? Let us define the
FMµ model as to minimize the µ averaged weighted sum α1z1+ ...+αT zT for some given
αk≥0. Building the µ average by summation over the zi and minimizing w.r.t. the yi has
to be performed in the correct chronological order. With a similar reasoning as in (5) to
(9) we get

ẏFM
k = minarg

yk

∑
zk

...min
yT

∑
zT

(α1z1+ ...+αT zT )·µ(ẏ1ż1...ẏk−1żk−1ykzk...yT zT ) (59)

If we want the final output ẏT to be optimal we should choose αk = 0 for k < T and
αT = 1 (final model FMFµ). If we want to already have a good approximation during
intermediate cycles, we should demand that the output of all cycles together are optimal
in some average sense, so we should choose αk = 1 for all k (sum model FMSµ). If
we want to have something in between, for instance, increase the pressure to produce
good outputs, we could choose the αk = eγ(k−T ) exponentially increasing for some γ > 0
(exponential model FMEµ). For γ→∞ we get the FMFµ, for γ→0 the FMSµ model. If
we want to demand that the best of the outputs y1...yk is optimal, we must replace the α
weighted z-sum by min{z1, ..., zT} (minimum Model FMMµ). We expect the behaviour
to be very similar to the FMFµ model, and do not consider it further.

By construction, the FMµ models guarantee optimal results in the usual sense that no
other model knowing only µ can be expected to produce better results. The variety of
FM variants is not a fault of the theory. They just reflect the fact that there is some
interpretational freedom of what is meant by minimization within T function calls. In
most applications, probably FMF is appropriate. In the NPT application one might prefer
the FMS model.

The interesting case (in AI) is when µ is unknown. We define for this case, the FMξ model
by replacing µ(f) with some ξ(f), which should assign high probability to functions f of
low complexity. So we might define ξ(f) =

∑
q:∀x[U(qx)=f(x)] 2

−l(q). The problem with this
definition is that it is, in general, undecidable whether a TM q is an implementation of
a function f . ξ(f) defined in this way is uncomputable, not even approximable. As we
only need a ξ analogous to the l.h.s. of (58), the following definition is natural

ξFM(y1z1...ynzn) :=
∑

q:q(yi)=zi ∀1≤i≤n

2−l(q) (60)

ξFM is actually equivalent to inserting the uncomputable ξ(f) into (58). ξFM is an
enumerable semi-measure and universal, relative to all probability distributions of the
form (58). We will not prove this here.

Alternatively, we could have constrained the sum in (60) by q(y1...yn)=z1...zn analogous to
(24), but these two definitions are not equivalent. Definition (60) ensures the symmetry19

in its arguments and ξFM(...yz...yz′...)=0 for z 6= z′. It incorporates all general knowledge

19See [40] for a discussion on symmetric universal distributions on unordered data.
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we have about function minimization, whereas (24) does not. But this extra knowledge
has only low information content (complexity of O(1)), so we do not expect FMξ to
perform much worse when using (24) instead of (60). But there is no reason to deviate
from (60) at this point.

We can now define an ”error” measure EFM
Tµ as (59) with k=1 and minargy1

replaced by
miny1 and, additionally, µ replaced by ξ for EFM

Tξ . We expect |EFM
Tξ −EFM

Tµ | to be bounded
in a way that justifies the use of ξ instead of µ for computable µ, i.e. computable f0 in
the deterministic case. The arguments are the same as for the AIξ model.

Is the general model inventive? In the following we will show that FMξ will never
cease searching for minima, but will test an infinite set of different y′s for T→∞.

Let us assume that the system tests only a finite number of yi∈A⊂ Y , |A|<∞. Let t−1
be the cycle in which the last new y∈A is selected (or some later cycle). Selecting y′s in
cycles k≥ t a second time, the feedback z does not provide any new information, i.e. does
not modify the probability ξFM . The system can minimize EFM

Tξ by outputting in cycles
k ≥ t the best y∈A found so far (in the case αk =0, the output does not matter). Let us
fix f for a moment. Then we have

Ea := α1z1+ ...+αT zT =
t−1∑
k=1

αkf(yk) + f1 ·
T∑

k=t

αk , f1 := min
1≤k<t

f(yk)

Let us now assume that the system tests one additional yt 6∈A in cycle t, but no other
y 6∈ A. Again, it will keep to the best output for k > t, which is either the one of the
previous system or yt.

Eb =
t∑

k=1

αkf(yk) + min{f1, f(yt)}·
T∑

k=t+1

αk

The difference can be represented in the form

Ea − Eb =

(
T∑

k=t

αk

)
·f+ − αt ·f− , f± := max{0,±(f1−f(yt))} ≥ 0

As the true FM strategy is the one which minimizes E, assumption a is ruled out if
Ea > Eb. We will say that b is favored over a, which does not mean that b is the correct
strategy, only that a is not the true one. For probability distributed f , b is favored over
a when

Ea − Eb =

(
T∑

k=t

αk

)
·〈f+〉 − αt ·〈f−〉 > 0 ⇔

T∑
k=t

αk > αt
〈f−〉
〈f+〉

where 〈f±〉 is the ξ expectation of ±(f1−f(yt) under the condition that ±f1≥±f(yt) and
under the constrains imposed in cycles 1...t−1. As ξ assigns a strictly positive probability
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to every non-empty event, 〈f+〉 6=0. Inserting αk = eγ(k−T ), assumption a is ruled out in
model FMEξ if

T−t > 1

γ
ln

[
1 +

〈f−〉
〈f+〉

(eγ − 1)

]
−1 →

{
0 for γ →∞ (FMFξ model)

〈f−〉/〈f+〉 − 1 for γ → 0 (FMSξ model)

We see that if the condition is not satisfied for some t, it will remain wrong for all t′>t.
So the FMEξ system will test each y only once up to a point from which on it always
outputs the best found y. Further, for T→∞ the condition always gets satisfied. As this
is true for any finite A, the assumption of a finite A is wrong. For T→∞ the system tests
an increasing number of different y′s, provided Y is infinite. The FMFξ model will never
repeat any y except in the last cycle T where it chooses the best found y. The FMSξ
model will test a new yt for fixed T , only if the expected value of f(yt) is not too large.

The above does not necessarily hold for different choices of αk. The above also holds for
the FMFµ system if 〈f+〉 6= 0. 〈f+〉 = 0 if the system can already exclude that yt is a
better guess, so there is no reason to test it explicitly.

Nothing has been said about the quality of the guesses, but for the FMµ system they are
optimal by definition. If K(µ) for the true distribution µ is finite, we expect the FMξ
system to solve the ”exploration versus exploitation” problem in a universally optimal
way, as ξ converges to µ.

Using the AI models for Function Mininimization: The AI model can be used
for function minimization in the following way. The output yk of cycle k is a guess for
a minimum of f , like in the FM model. The credit ck should be high for small function
values zk =f(yk). The credit should also be weighted with αk to reflect the same strategy
as in the FM case. The choice of ck =−αkzk is natural. Here, the feedback is not binary
but ck ∈ C ⊂ IR, with C being a countable subset of IR, e.g. the computable reals or
all rational numbers. The feedback x′k should be the function value f(yk). So we set
x′k = zk. Note, that there is a redundancy if α() is a computable function with no zeros,
as ck = −αkx

′
k. So, for small K(α()) like in the FMS model, one might set xk ≡ ε. If we

keep x′k the AI prior probability is

µAI(y1x1...ynxn) =

{
µFM(y1z1...ynzn) for ck = −αkzk, x

′
k = zk, xk = ckx

′
k

0 else.
(61)

Inserting this into (9) with mk = T we get

ẏAI
k = maxarg

yk

∑
xk

...max
yT

∑
xT

(ck+ ...+cT )·µAI(ẏ1ẋ1...ykxk...yTxT ) =

= minarg
yk

∑
zk

...min
yT

∑
zT

(αkzk+ ...+αT zT )·µFM(ẏ1ż1...ykzk...yT zT ) = ẏFM
k

where ẏFM
k has been defined in (59). The proof of equivalence was so simple because the

FM model has already a rather general structure, which is similar to the full AI model.
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One might expect no problems when going from the already very general FMξ model to
the universal AIξ model (with mk = T ), but there is a pitfall in the case of the FMF
model. All credits ck are zero in this case, except for the last one being cT . Although
there is a feedback zk in every cycle, the AIξ system cannot learn from this feedback as
it is not told that in the final cycle cT will equal to −zT . There is no problem in the FMξ
model because in this case this knowledge is hardcoded into ξFM . The AIξ model must
first learn that it has to minimize a function but it can only learn if there is a non-trivial
credit assignment ck. FMF works for repeated minimization of (different) functions, such
as minimizing N functions in N ·T cycles. In this case there are N non-trivial feedbacks
and AIξ has time to learn that there is a relation between ck·T and x′k·T every Tth cycle.
This situation is similar to the case of strategic games discussed in section 6.

There is no problem in applying AIξ to FMS because the c feedback provides enough
information in this case. The only thing the AIξ model has to learn, is to ignore the x′

feedbacks as all information is already contained in c. Interestingly the same argument
holds for the FME model if K(γ) and K(T ) are small20. The AIξ model has additionally
only to learn the relation ck =−e−γ(k−T )x′k. This task is simple as every cycle provides
one data point for a simple function to learn. This argument is no longer valid for γ→∞
as K(γ)→∞ in this case.

Remark: TSP seems to be trivial in the AIµ model but non-trivial in the AIξ model.
The reason being that (59) just implements an internal complete search as µ(f)=δffTSP

contains all necessary information. AIµ outputs from the very beginning, the exact mini-
mum of fTSP . This ”solution” is, of course, unacceptable from performance perspective.
As long as we give no efficient approximation ξc of ξ, we have not contributed anything
to a solution of the TSP by using AIξc. The same is true for any other problem where f
is computable and easily accessible. Therefore, TSP is not (yet) a good example because
all we have done is to replace a NP complete problem with the uncomputable AIξ model
or by a computable AIξc model, for which we have said nothing about computation time
yet. It is simply an overkill to reduce simple problems to AIξ. TSP is a simple prob-
lem in this respect, until we consider the AIξc model seriously. For the other examples,
where f is inaccessible or complicated, an AIξc model would provide a true solution to
the minimization problem as an explicit definition of f is not needed for AIξ and AIξc.
A computable version of AIξ will be defined in section 10.

20If we set αk = eγk the condition on K(T ) can be dropped.
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8 Supervised Learning from Examples (EX)

The developed AI models provide a frame for reinforcement learning. The environment
provides feedback c, informing the system about the quality of its last (or earlier) output y;
it assigns credit c to output y. In this sense, reinforcement learning is explicitly integrated
into the AIρ model. AIµ maximizes the true expected credit, whereas the AIξ model is a
universal, environment independent, reinforcement learning algorithm.

There is another type of learning method: Supervised learning by presentation of examples
(EX). Many problems learned by this method are association problems of the following
type. Given some examples x∈R ⊂X, the system should reconstruct, from a partially
given x′, the missing or corrupted parts, i.e. complete x′ to x such that relation R contains
x. In many cases, X consists of pairs (z, v), where v is the possibly missing part.

Applications/Examples: Learning functions by presenting (z, f(z)) pairs and asking
for the function value of z by presenting (z, ?) falls into this category.

A basic example is learning properties of geometrical objects coded in some way. E.g. if
there are 18 different objects characterized by their size (small or big), their colors (red,
green or blue) and their shapes (square, triange, circle), then (object, property)∈R if the
object possesses the property. Here, R is a relation which is not the graph of a single
valued function.

When teaching a child, by pointing to objects and saying ”this is a tree” or ”look how
green” or ”how beautiful”, one establishes a relation of (object, property) pairs in R.
Pointing to a (possibly different) tree later and asking ”what is this ?” corresponds to a
partially given pair (object, ?), where the missing part ”?” should be completed by the
child saying ”tree”.

A final example we want to give is chess. We have seen that, in principle, chess can be
learned by reinforcement learning. In the extreme case the environment only provides
credit c = 1 when the system wins. The learning rate is completely inacceptable from
a practical point of view. The reason is the very low amount of information feedback.
A more practical method of teaching chess is to present example games in the form of
sensible (board-state,move) sequences. They contain information about legal and good
moves (but without any explanation). After several games have been presented, the
teacher could ask the system to make its own move by presenting (board-state, ?) and
then evaluate the answer of the system.

Supervised learning with the AIµ/ξ model: Let us define the EX model as follows:
The environment presents inputs x′k−1 = zkvk ≡ (zk, vk) ∈ R∪(Z×{?}) ⊂ Z×(Y∪{?}) = X ′

to the system in cycle k−1. The system is expected to output yk in the next cycle, which is
evaluated with ck =1 if (zk, yk)∈R and 0 otherwise. To simplify the discussion, an output
yk is expected and evaluated even when vk(6=?) is given. To complete the description of
the environment, the probability distribution µR(x′1...x

′
n) of the examples and questions
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x′i (depending on R) has to be given. Wrong examples should not occur, i.e. µR should
be 0 if x′i 6∈R∪(Z×{?}) for some 1≤ i≤ n. The relations R might also be probability
distributed with σ(R). The example prior probability in this case is

µ(x′1...x
′
n) =

∑
R

µR(x′1...x
′
n)·σ(R) (62)

The knowledge of the valuation ck on output yk restricts the possible relations R, con-
sistent with R(zk, yk) = ck, where R(z, y) := 1 if (z, y) ∈ R and 0 otherwise. The prior
probability for the input sequence x1...xn if the output sequence is y1...yn, is therefore

µAI(y1x1...ynxn) =
∑

R:∀1<i≤n[R(zi,yi)=ci]

µR(x′1...x
′
n)·σ(R)

where xi = cix
′
i and x′i−1 = zivi with vi ∈ Y ∪{?}. In the I/O sequence y1x1y2x2... =

y1c1z2v2y2c2z3v3... the c1y1 are dummies, after which regular behaviour starts with exam-
ple (z2, v2).

The AIµ model is optimal by construction of µAI . For computable prior µR and σ, we
expect a near optimal behavior of the universal AIξ model if µR additionally satisfies
some separability property. In the following, we give some motivation why the AIξ model
takes into account the supervisor information contained in the examples and why it learns
faster than by reinforcement.

We keep R fixed and assume µR(x′1...x
′
n)=µR(x′1)· ... ·µR(x′n) 6=0 ⇔ x′i∈R∪(Z×{?}) ∀i

to simplify the discussion. Short codes q contribute most to ξAI(y1x1...ynxn). As x′1...x
′
n

is distributed according to the computable probability distribution µR, a short code of
x′1...x

′
n for large enough n is a Huffman code w.r.t. the distribution µR. So we expect

µR and hence R to be coded in the dominant contributions to ξAI in some way, where
the plausible assumption was made that the y on the input tape do not matter. Much
more than one bit per cycle will usually be learned, i.e. relation R will be learned in
n�K(R) cycles by appropriate examples. This coding of R in q evolves independently of
the feedbacks c. To maximize the feedback ck, the system has to learn to output a yk with
(zk, yk)∈R. The system has to invent a program extension q′ to q, which extracts zk from
xk−1 =(zk, ?) and searches for and outputs a yk with (zk, yk)∈R. As R is already coded
in q, q′ can re-use this coding of R in q. The size of the extension q′ is, therefore, of order
1. To learn this q′, the system requires feedback c with information content O(1)=K(q′)
only.

Let us compare this with reinforcement learning, where only x′k = (zk, ?) pairs are pre-
sented. A coding of R in a short code q for x′1...x

′
n is of no use and will therefore be absent.

Only the credits c force the system to learn R. q′ is therefore expected to be of size K(R).
The information content in the c′s must be of the order K(R). In practice, there are
often only very few ck = 1 at the beginning of the learning phase and the information
content in c1...cn is much less than n bits. The required number of cycles to learn R by
reinforcement is, therefore, at least but in many cases much larger than K(R).

Although AIξ was never designed or told to learn supervised, it learns how to take advan-
tage of the examples from the supervisor. µR and R are learned from the examples, the
credits c are not necessary for this process. The remaining task of learning how to learn
supervised is then a simple task of complexity O(1), for which the credits c are necessary.
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9 Other AI Classes

Other aspects of intelligence: In AI, a variety of general ideas and methods have
been developed. In the last sections, we have seen how several problem classes can be
formulated within AIξ. As we claim universality of the AIξ model, we want to enlight
which of, and how the other AI methods are incorporated in the AIξ model, by looking
at its structure. Some methods are directly included, others are or should be emergent.
We do not claim the following list to be complete.

Probability theory and utility theory are the heart of the AIµ/ξ models. The probabilities
are the true/universal behaviours of the environment. The utility function is what we
called total credit, which should be maximized. Maximization of an expected utility
function in a probabilistic environment is usually called sequential decision theory, and is
explicitly integrated in full generality in our model. In a sense this includes probabilistic
(a generalization of deterministic) reasoning, where the object of reasoning are not true
and false statements, but the prediction of the environmental behaviour. Reinforcement
Learning is explicitly built in, due to the credits. Supervised learning is an emergent
phenomenon (section 8). Algorithmic information theory leads us to use ξ as a universal
estimate for the prior probability µ.

For horizon >1, the expectimax series in (9) and the process of selecting maximal values
may be interpreted as abstract planning. The expectimax series is a form of informed
search, in the case of AIµ, and heuristic search, for AIξ, where ξ could be interpreted as
a heuristic for µ. The minimax strategy of game playing in case of AIµ is also subsumed.
The AIξ model converges to the minimax strategy if the environment is a minimax player
but it can also take advantage of environmental players with limited rationality. Problem
solving occurs (only) in the form of how to maximize the expected future credit.

Knowledge is accumulated by AIξ and is stored in some form not specified further on the
working tape. Any kind of information in any representation on the inputs y is exploited.
The problem of knowledge engineering and representation appears in the form of how to
train the AIξ model. More practical aspects, like language or image processing have to
be learned by AIξ from scratch.

Other theories, like fuzzy logic, possibility theory, Dempster-Shafer theory, ... are partly
outdated and partly reducible to Bayesian probability theory [7]. The interpretation and
consequences of the evidence gap g :=1−∑xk

ξ(yx<kyxk)>0 in ξ may be similar to those
in Dempster-Shafer theory. Boolean logical reasoning about the external world plays, at
best, an emergent role in the AIξ model.

Other methods, which don’t seem to be contained in the AIξ model might also be emergent
phenomena. The AIξ model has to construct short codes of the environmental behaviour,
the AIξ t̃l̃ (see next section) has to construct short action programs. If we would analyze
and interpret these programs for realistic environments, we might find some of the un-
mentioned or unused or new AI methods at work in these programs. This is, however,
pure speculation at this point. More important: when trying to make AIξ practically
usable, some other AI methods, like genetic algorithms or neural nets, may be useful.
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The main thing we wanted to point out is that the AIξ model does not lack any important
known property of intelligence or known AI methodology. What is missing, however, are
computational aspects, which are addressed, in the next section.
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10 Time Bounds and Effectiveness

Introduction: Until now, we have not bothered with the non-computability of the
universal probability distribution ξ. As all universal models in this paper are based on ξ,
they are not effective in this form. In this section, We will outline how the previous models
and results can be modified/generalized to the time-bounded case. Indeed, the situation
is not as bad as it could be. ξ is enumerable and ẏk is still approximable or computable
in the limit. There exists an algorithm that will produce a sequence of outputs eventually
converging to the exact output ẏk, but we can never be sure whether we have already
reached it. Besides this, the convergence is extremely slow, so this type of asymptotic
computability is of no direct (practical) use, but will nevertheless, be important later.

Let p̃ be a program which calculates within a reasonable time t̃ per cycle, a reasonable
intelligent output, i.e. p̃(ẋ<k)= ẏ1:k. This sort of computability assumption, that a general
purpose computer of sufficient power is able to behave in an intelligent way, is the very
basis of AI, justifying the hope to be able to construct systems which eventually reach
and outperform human intelligence. For a contrary viewpoint see [29]. It is not necessary
to discuss here, what is meant by ’reasonable time/intelligence’ and ’sufficient power’.
What we are interested in, in this section, is whether there is a computable version AIξ t̃

of the AIξ system which is superior or equal to any p with computation time per cycle
of at most t̃. With ’superior’, we mean ’more intelligent’, so what we need is an order
relation (like) (39) for intelligence.

The best result we could think of would be an AIξ t̃ with computation time ≤ t̃ at least
as intelligent as any p with computation time ≤ t̃. If AI is possible at all, we would have
reached the final goal, the construction of the most intelligent algorithm with computation
time ≤ t̃. Just as there is no universal measure in the set of computable measures (within
time t̃), such an AIξ t̃ may neither exist.

What we can realistically hope to construct, is an AIξ t̃ system of computation time c· t̃
per cycle for some constant c. The idea is to run all programs p of length ≤ l̃ := l(p̃) and

time ≤ t̃ per cycle and pick the best output. The total computation time is c·̃t with c = 2l̃.
This sort of idea of ’typing monkeys’ with one of them eventually writing Shakespeare,
has been applied in various forms and contexts in theoretical computer science. The
realization of this best vote idea, in our case, is not straightforward and will be outlined
in this section. An idea related to this, is that of basing the decision on the majority of
algorithms. This ’democratic vote’ idea has been used in [21, 43] for sequence prediction,
and is referred to as ’weighted majority’ there.

Time limited probability distributions: In the literature one can find time limited
versions of Kolmogorov complexity [9, 17] and the time limited universal semimeasure [22,
25]. In the following, we utilize and adapt the latter and see how far we get. One way to
define a time-limited universal chronological semimeasure is as a sum over all enumerable
chronological semimeasures similar to the unbounded case (27) but computable within
time t̃ and of size at most l̃.

ξ t̃l̃(yx1:n) :=
∑

ρ : l(ρ)≤l̃ ∧ t(ρ)≤t̃

2−l(ρ)ρ(yx1:n) (63)
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Let us assume that the true environmental prior probability µAI is equal to or sufficiently
accurately approximated by a ρ with l(ρ) ≤ l̃ and t(ρ) ≤ t̃ with t̃ and l̃ of reasonable
size. There are several AI problems that fall into this class. In function minimization of
section 7, the computation of f and µFM are often feasible. In many cases, the sequences
of section 5 which should be predicted, can be easily calculated when µSP is known. In
a classifier problem, the probability distribution µCF , according to which examples are
presented, is, in many cases, also elementary. But not all AI problems are of this ’easy’
type. For the strategic games of section 6, the environment is usually, itself, a highly
complex strategic player with a µSG that is difficult to calculate, although one might
argue that the environmental player may have limited capabilities too. But it is easy to
think of a difficult to calculate physical (probabilistic) environment like the chemistry of
biomolecules.

The number of interesting applications makes this restricted class of AI problems, with
time and space bounded environment µt̃l̃, worth being studied. Superscripts to a prob-
ability distribution except for ξ t̃l̃ indicate their length and maximal computation time.
ξ t̃l̃ defined in (63), with a yet to be determined computation time, multiplicatively domi-

nates all µt̃l̃ of this type. Hence, an AIξ t̃l̃ model, where we use ξ t̃l̃ as prior probability, is
universal, relative to all AIµt̃l̃ models in the same way as AIξ is universal to AIµ for all
enumerable chronological semimeasures µ. The maxargyk

in (25) selects a yk for which

ξ t̃l̃ has the highest expected utility Ckmk
, where ξ t̃l̃ is the weighted average over the ρt̃l̃.

ẏAIξt̃l̃

k is determined by a weighted majority. We expect AIξ t̃l̃ to outperform all (bounded)

AIρt̃l̃, analogous to the unrestricted case.

In the following we analyze the computability properties of ξ t̃l̃ and AIξ t̃l̃, i.e. of ẏAIξt̃l̃

k .

To compute ξ t̃l̃ according to the definition (63) we have to enumerate all chronological

enumerable semimeasures ρt̃l̃ of length ≤ l̃ and computation time ≤ t̃. This can be done
similarly to the unbounded case (30-32). All 2l̃ enumerable functions of length ≤ l̃,
computable within time t̃ have to be converted to chronological probability distributions.
For this, one has to evaluate each function for |X| ·k different arguments. Hence, ξ t̃l̃ is

computable within time21 t(ξ t̃l̃(yx1:k)) =O(|X| ·k ·2l̃ · t̃). The computation time of ẏAIξt̃l̃

k

depends on the size of X, Y and mk. ξ
t̃l̃ has to be evaluated |Y |hk |X|hk times in (25). It

is possible to optimize the algorithm and perform the computation within time

t(ẏAIξt̃l̃

k ) = O(|Y |hk |X|hk ·2l̃ · t̃) (64)

per cycle. If we assume that the computation time of µt̃l̃ is exactly t̃ for all arguments,

the brute force time t̄ for calculating the sums and maxs in (9) is t̄(ẏAIµt̃l̃

k )≥|Y |hk |X|hk ·t̃.
Combining this with (64), we get

t(ẏAIξt̃l̃

k ) = O(2l̃ · t̄(ẏAIµt̃l̃

k ))

This result has the proposed structure, that there is a universal AIξ t̃l̃ system with com-
putation time 2l̃ times the computation time of a special AIµt̃l̃ system.

21We assume that a TM can be simulated by another in linear time.
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Unfortunately, the class of AIµt̃l̃ systems with brute force evaluation of ẏk, according to
(9) is completely uninteresting from a practical point of view. E.g. in the context of

chess, the above result says that the AIξ t̃l̃ is superior within time 2l̃ · t̃ to any brute force
minimax strategy of computation time t̃. Even if the factor of 2l̃ in computation time
would not matter, the AIξ t̃l̃ system is, nevertheless practically useless, as a brute force
minimax chess player with reasonable time t̃ is a very poor player.

Note, that in the case of binary sequence prediction (hk =1, |Y |= |X|=2) the computation

time of ρ coincides with that of ẏAIρ
k within a factor of 2. The class AIρt̃l̃ includes all non-

incremental sequence prediction algorithms of size ≤ l̃ and computation time ≤ t̃/2. With
non-incremental, we mean that no information of previous cycles is taken into account
for speeding up the computation of ẏk of the current cycle.

The shortcomings (mentioned and unmentioned ones) of this approach are cured in the
next subsection, by deviating from the standard way of defining a time bounded ξ as a
sum over functions or programs.

The idea of the best vote algorithm: A general cybernetic or AI system is a chrono-
logical program p(x<k) = y1:k. This form, introduced in section 2, is general enough to
include any AI system (and also less intelligent systems). In the following, we are inter-
ested in programs p of length ≤ l̃ and computation time ≤ t̃ per cycle. One important
point in the time-limited setting is that p should be incremental, i.e. when computing
yk in cycle k, the information of the previous cycles stored on the working tape can be
re-used. Indeed, there is probably no practically interesting, non-incremental AI system
at all.

In the following, we construct a policy p∗, or more precisely, policies p∗k for every cycle

k that outperform all time and length limited AI systems p. In cycle k, p∗k runs all 2l̃

programs p and selects the one with the best output yk. This is a ’best vote’ type of
algorithm, as compared to the ’weighted majority’ like algorithm of the last subsection.
The ideal measure for the quality of the output would be the ξ expected future credit

Cξ
km(p|ẏẋ<k) :=

∑
q∈Q̇k

2−l(q)Ckm(p, q) , Ckm(p, q) := c(xpq
k ) + ...+ c(xpq

m) (65)

The program p which maximizes Cξ
kmk

should be selected. We have dropped the nor-
malization N unlike in (38), as it is independent of p and does not change the order
relation which we are solely interested in here. Furthermore, without normalization, Ckm

is enumerable, which will be important later.

Extended chronological programs: In the (functional form of the) AIξ model it was
convenient to maximize Ckmk

over all p∈ Ṗk, i.e. all p consistent with the current history
ẏẋ<k. This was no restriction, because for every possibly inconsistent program p there
exists a program p′ ∈ Ṗk consistent with the current history and identical to p for all
future cycles ≥k. For the time limited best vote algorithm p∗ it would be too restrictive



54 10 TIME BOUNDS AND EFFECTIVENESS

to demand p∈ Ṗk. To prove universality, one has to compare all 2l̃ algorithms in every
cycle, not just the consistent ones. An inconsistent algorithm may become the best one
in later cycles. For inconsistent programs we have to include the ẏk into the input, i.e.
p(ẏẋ<k) = yp

1:k with ẏi 6= yp
i possible. For p ∈ Ṗk this was not necessary, as p knows the

output ẏk ≡ yp
k in this case. The cpq

i in the definition of Ckm are the valuations emerging in
the I/O sequence, starting with ẏẋ<k (emerging from p∗) and then continued by applying
p and q with ẏi :=y

p
i for i≥k.

Another problem is that we need Ckmk
to select the best policy, but unfortunately Ckmk

is uncomputable. Indeed, the structure of the definition of Ckmk
is very similar to that

of ẏk, hence a brute force approach to approximate Ckmk
requires too much computation

time as for ẏk. We solve this problem in a similar way, by supplementing each p with a
program that estimates Ckmk

by wp
k within time t̃. We combine the calculation of yp

k and
wp

k and extend the notion of a chronological program once again to

p(ẏẋ<k) = wp
1y

p
1...w

p
ky

p
k (66)

with chronological order wp
1y

p
1 ẏ1ẋ1w

p
2y

p
2 ẏ2ẋ2....

Valid approximations: p might suggest any output yp
k but it is not allowed to rate it

with an arbitrarily high wp
k if we want wp

k to be a reliable criterion for selecting the best
p. We demand that no policy is allowed to claim that it is better than it actually is. We
define a (logical) predicate VA(p) called valid approximation, which is true if, and only if,
p always satisfies wp

k≤C
ξ
kmk

(p), i.e. never overrates itself.

VA(p) ≡ ∀k∀wp
1y

p
1 ẏ1ẋ1...w

p
ky

p
k : p(ẏẋ<k)=wp

1y
p
1...w

p
ky

p
k ⇒ wp

k≤C
ξ
kmk

(p|ẏẋ<k) (67)

In the following, we restrict our attention to programs p, for which VA(p) can be proved
in some formal axiomatic system. In the following we assume ck ≥ 0. A very important
consequence is that Cξ

kmk
is enumerable. This ensures the existence of sequences of pro-

gram p1, p2, p3, ... for which VA(pi) can be proved and limi→∞wpi
k =Cξ

kmk
(p) for all k and

all I/O sequences. This ensures that Cξ
kmk

, which we claimed to be a universal measure
for the quality of the outputs, can be approximated by p with provable V A(p) arbitrarily
well, when given enough time. The approximation is not uniform in k, but this does not
matter as the selected p is allowed to change from cycle to cycle.

Another possibility would be to consider only those p which check wp
k ≤Cξ

kmk
(p) online

in every cycle, instead of the pre-check VA(p), either by constructing a proof (on the
working tape) for this special case, or wp

k≤C
ξ
kmk

(p) is already evident by the construction

of wp
k. In cases where p cannot guarantee wp

k≤C
ξ
kmk

(p) it sets wk =0 and, hence, trivially

satisfies wp
k≤C

ξ
kmk

(p). On the other hand, for these p it is also no problem to prove VA(p)
as one has simply to analyze the internal structure of p and recognize that p shows the
validity internally itself, cycle by cycle, which is easy by assumption on p. The cycle by
cycle check is, therefore, a special case of the pre-proof of VA(p).
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Effective intelligence order relation: In section 4 we have introduced an intelligence
order relation � on AI systems, based on the expected credit Cξ

kmk
(p). In the following

we need an order relation �c based on the claimed credit wp
k which might be interpreted

as an approximation to �. We call p effectively more or equally intelligent than p′ if

p �c p′ :⇔ ∀k∀ẏẋ<k∃w1:nw
′
1:n :

p(ẏẋ<k)=w1∗ ...wk∗ ∧ p′(ẏẋ<k)=w′
1∗ ...w′

k∗ ∧ wk≥w′
k

(68)

i.e. if p always claims higher credit estimate w than p′. �c is a co-enumerable partial
order relation on extended chronological programs. Restricted to valid approximations
it orders the policies w.r.t. the quality of their outputs and their ability to justify their
outputs with high wk.

The universal time bounded AIξ t̃l̃ system: In the following, we describe the algo-
rithm p∗ underlying the universal time bounded AIξ t̃l̃ system. It is essentially based on
the selection of the best algorithms p∗k out of the time t̃ and length l̃ bounded p, for which
there exists a proof of VA(p) with length ≤ lP .

1. Create all binary strings of length lP and interpret each as a coding of a mathe-
matical proof in the same formal logic system in which VA(·) has been formulated.
Take those strings which are proofs of VA(p) for some p and keep the corresponding
programs p.

2. Eliminate all p of length >l̃.
3. Modify all p in the following way: all output wp

ky
p
k is temporarily written on an

auxiliary tape. If p stops in t̃ steps the internal ’output’ is copied to the output
tape. If p does not stop after t̃ steps a stop is forced and wk =0 and some arbitrary
yk is written on the output tape. Let P be the set of all those modified programs.

4. Start first cycle: k :=1.
5. Run every p∈P on extended input ẏẋ<k, where all outputs are redirected to some

auxiliary tape: p(ẏẋ<k) = wp
1y

p
1...w

p
ky

p
k. This step is performed incrementally by

adding yxk−1 for k > 1 to the input tape and continuing the computation of the
previous cycle.

6. Select the program p with highest claimed credit wp
k: p

∗
k :=maxargpw

p
k.

7. Write ẏk :=y
p∗k
k to the output tape.

8. Receive input ẋk from the environment.
9. Begin next cycle: k :=k+1, goto step 5.

It is easy to see that the following theorem holds.

Main theorem: Let p be any extended chronological (incremental) program like (66)
of length l(p)≤ l̃ and computation time per cycle t(p)≤ t̃, for which there exists a proof of
VA(p) defined in (67) of length ≤ lP . The algorithm p∗ constructed in the last subsection,
depending on l̃, t̃ and lP but not on p, is effectively more or equally intelligent, according
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to �c defined in (68) than any such p. The size of p∗ is l(p∗)=O(log(l̃·̃t·lP )), the setup-time

is tsetup(p
∗)=O(lP ·2lP ) and the computation time per cycle is tcycle(p

∗)=O(2l̃ · t̃).

Roughly speaking, the theorem says, that if there exists a computable solution to some
(or all) AI problem(s) at all, the explicitly constructed algorithm p∗ is such a solution.
Although this theorem is quite general, there are some limitations and open questions
which we discuss in the following.

Limitations and open questions:

• Formally, the total computation time of p∗ for cycles 1...k increases linearly with
k, i.e. is of order O(k) with a coefficient 2l̃ · t̃. The unreasonably large factor 2l̃ is
a well known drawback in best/democratic vote models and will be taken without
further comments, whereas the factor t̃ can be assumed to be of reasonable size. If
we don’t take the limit k→∞ but consider reasonable k, the practical usefulness of
the time bound on p∗ is somewhat limited, due to the additional additive constant
O(lP ·2lP ). It is much larger than k ·2l̃ · t̃ as typically lP � l(VA(p))≥ l(p)≡ l̃.

• p∗ is superior only to those p which justify their outputs (by large wp
k). It might be

possible that there are p which produce good outputs yp
k within reasonable time, but

it takes an unreasonably long time to justify their outputs by sufficiently high wp
k.

We do not think that (from a certain complexity level onwards) there are policies
where the process of constructing a good output is completely separated from some
sort of justification process. But this justification might not be translatable (at least
within reasonable time) into a reasonable estimate of Cξ

kmk
(p).

• The (inconsistent) programs p must be able to continue strategies started by other
policies. It might happen that a policy p steers the environment to a direction for
which p is specialized. A ’foreign’ policy might be able to displace p only between
loosely bounded episodes. There is probably no problem for factorizable µ. Think
of a chess game, where it is usually very difficult to continue the game/strategy of
a different player. When the game is over, it is usually advantageous to replace
a player by a better one for the next game. There might also be no problem for
sufficiently separable µ.

• There might be (efficient) valid approximations p for which VA(p) is true but not
provable, or for which only a very long (>lP ) proof exists.

Remarks:

• The idea of suggesting outputs and justifying them by proving credit bounds im-
plements one aspect of human thinking. There are several possible reactions to an
input. Each reaction possibly has far reaching consequences. Within a limited time
one tries to estimate the consequences as well as possible. Finally, each reaction is
valued and the best one is selected. What is inferior to human thinking is, that the
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estimates wp
k must be rigorously proved and the proofs are constructed by blind ex-

tensive search, further, that all behaviours p of length ≤ l̃ are checked. It is inferior
’only’ in the sense of necessary computation time but not in the sense of the quality
of the outputs.

• In practical applications there are often cases with short and slow programs ps

performing some task T , e.g. the computation of the digits of π, for which there
exist long but quick programs pl too. If it is not too difficult to prove that this long

program is equivalent to the short one, then it is possible to prove Kt(pl)(T )
+
≤ l(ps)

with Kt being the time bounded Kolmogorov complexity. Similarly, the method of
proving bounds wk for Ckmk

can give high lower bounds without explicitly executing
these short and slow programs, which mainly contribute to Ckmk

.

• Dovetailing all length and time-limited programs is a well known elementary idea
(typing monkeys). The crucial part which has been developed here, is the selection
criterion for the most intelligent system.

• By construction of AIξ t̃l̃ and due to the enumerability of Ckmk
, ensuring arbitrary

close approximations of Ckmk
we expect that the behaviour of AIξ t̃l̃ converges to the

behaviour of AIξ in the limit t̃, l̃, lP →∞ in a sense.

• Depending on what you know/assume that a program p of size l̃ and computation

time per cycle t̃ is able to achieve, the computable AIξ t̃l̃ model will have the same
capabilities. For the strongest assumption of the existence of a Turing machine,
which outperforms human intelligence, the AIξ t̃l̃ will do too, within the same time
frame up to a (unfortunately very large) constant factor.
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11 Outlook & Discussion

This section contains some discussion of otherwise unmentioned topics and some (more
personal) remarks. It also serves as an outlook to further research.

Miscellaneous:

• In game theory [27] one often wants to model the situation of simultaneous actions,
whereas the AIξ models has serial I/O. Simultaneity can be simulated by withhold-
ing the environment from the current system’s output yk, until xk has been received
by the system. Formally, this means that µ(yx<kyxk) is independent of the last out-
put yk. The AIξ system is already of simultaneous type in an abstract view if the
behaviour p is interpreted as the action. In this sense, AIξ is the action p∗ which
maximizes the utility function (credit), under the assumption that the environment
acts according to ξ. The situation is different from game theory as the environment
is not modeled to be a second ’player’ that tries to optimize his own utility although
it might actually be a rational player (see section 6).

• In various examples we have chosen differently specialized input and output spaces
X and Y . It should be clear that, in principle, this is unnecessary, as large enough
spaces X and Y , e.g. 232 bit, serve every need and can always be Turing reduced to
the specific presentation needed internally by the AIξ system itself. But it is clear
that using a generic interface, such as camera and monitor for, learning tic-tac-toe
for example, adds the task of learning vision and drawing.

Outlook:

• Rigorous proofs for credit bounds are the major theoretical challenge – general ones
as well as tighter bounds for special environments µ. Of special importance are
suitable (and acceptable) conditions to µ, under which ẏk and finite credit bounds
exist for infinite Y , X and mk.

• A direct implementation of the AIξ t̃l̃ model is ,at best, possible for toy environments
due to the large factor 2l̃ in computation time. But there are other applications of
the AIξ theory. We have seen in several examples how to integrate problem classes
into the AIξ model. Conversely, one can downscale the AIξ model by using more
restricted forms of ξ. This could be done in the same way as the theory of univer-
sal induction has been downscaled with many insights to the Minimum Description
Length principle [23, 31] or to the domain of finite automata [10]. The AIξ model
might similarly serve as a super model or as the very definition of (universal unbi-
ased) intelligence, from which specialized models could be derived.
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• With a reasonable computation time, the AIξ model would be a solution of AI (see

next point if you disagree). The AIξ t̃l̃ model was the first step, but the elimination

of the factor 2l̃ without giving up universality will (almost certainly) be a very
difficult task. One could try to select programs p and prove VA(p) in a more
clever way than by mere enumeration, to improve performance without destroying
universality. All kinds of ideas like, genetic algorithms, advanced theorem provers
and many more could be incorporated. But now we are in trouble. We seem to have
transferred the AI problem just to a different level. This shift has some advantages
(and also some disadvantages) but presents, in no way, a solution. Nevertheless,
we want to stress that we have reduced the AI problem to (mere) computational
questions. Even the most general other systems the author is aware of, depend
on some (more than complexity) assumptions about the environment or it is far
from clear whether they are, indeed, universally optimal. Although computational
questions are themselves highly complicated, this reduction is a non-trivial result.
A formal theory of something, even if not computable, is often a great step toward
solving a problem and has also merits of its own, and AI should not be different
(see previous item).

• Many researchers in AI believe that intelligence is something complicated and cannot
be condensed into a few formulas. It is more a combining of enough methods and
much explicit knowledge in the right way. From a theoretical point of view, we
disagree as the AIξ model is simple and seems to serve all needs. From a practical
point of view we agree to the following extent. To reduce the computational burden
one should provide special purpose algorithms (methods) from the very beginning,
probably many of them related to reduce the complexity of the input and output
spaces X and Y by appropriate pre/post-processing methods.

• There is no need to incorporate extra knowledge from the very beginning. It can be
presented in the first few cycles in any format. As long as the algorithm to interpret
the data is of size O(1), the AIξ system will ’understand’ the data after a few cycles
(see section 8). If the environment µ is complicated but extra knowledge z makes
K(µ|z) small, one can show that the bound (35,36) reduces to 1

2
ln 2·K(µ|z) when

x1 ≡ z, i.e. when z is presented in the first cycle. The special purpose algorithms
could be presented in x1, too, but it would be cheating to say that no special purpose
algorithms had been implemented in AIξ. The boundary between implementation
and training is unsharp in the AIξ model.

• We have not said much about the training process itself, as it is not specific to the
AIξ model and has been discussed in literature in various forms and disciplines.
A serious discussion would be out of place. To repeat a truism, it is, of course,
important to present enough knowledge x′k and evaluate the system output yk with
ck in a reasonable way. To maximize the information content in the credit, one
should start with simple tasks and give positive reward ck =1 to approximately the
better half of the outputs yk.
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The big questions: This subsection is devoted to the big questions of AI in general
and the AIξ model in particular with a personal touch.

• There are two possible objections to AI in general and, therefore, also against AIξ
in particular we want to comment on briefly. Non-computable physics (which is
not too weird) could make Turing computable AI impossible. As at least the world
that is relevant for humans seems mainly to be computable we do not believe that
it is necessary to integrate non-computable devices into an AI system. The (clever
and nearly convincing) ’Gödel’ argument by Penrose [29] that non-computational
physics must exist and is relevant to the brain, has (in our opinion convincing)
loopholes.

• A more serious problem is the evolutionary information gathering process. It has
been shown that the ’number of wisdom’ Ω contains a very compact tabulation
of 2n undecidable problems in its first n binary digits [6]. Ω is only enumerable
with computation time increasing more rapidly with n, than any recursive function.
The enormous computational power of evolution could have developed and coded
something like Ω into our genes, which significantly guides human reasoning. In
short: Intelligence could be something complicated and evolution toward it from an
even cleverly designed algorithm of size O(1) could be too slow. As evolution has
already taken place, we could add the information from our genes or brain structure
to any/our AI system, but this means that the important part is still missing and
that it is principally impossible to derive an efficient algorithm from a simple formal
definition of AI.

• For the probably biggest question about consciousness we want to give a physical
analogy. Quantum (field) theory is the most accurate and universal physical theory
ever invented. Although already developed in the 1930¿s the big question regarding
the interpretation of the wave function collapse is still open. Although extremely
interesting from a philosophical point of view, it is completely irrelevant from a
practical point of view22. We believe the same to be true for consciousness in
the field of Artificial Intelligence. Philosophically highly interesting but practically
unimportant. Whether consciousness will be explained some day is another question.

22In the theory of everything, the collapse might become of ’practical’ importance and must or will be
solved.
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12 Conclusions

All tasks which require intelligence to be solved can naturally be formulated as a maxi-
mization of some expected utility in the framework of agents. We gave a functional (2) and
an iterative (9) formulation of such a decision theoretic agent, which is general enough to
cover all AI problem classes, as has been demonstrated by several examples. The main re-
maining problem is the unknown prior probability distribution µAI of the environment(s).
Conventional learning algorithms are unsuitable, because they can neither handle large
(unstructured) state spaces, nor do they converge in the theoretically minimal number
of cycles, nor can they handle non-stationary environments appropriately. On the other
hand, the universal semimeasure ξ (18), based on ideas from algorithmic information the-
ory, solves the problem of the unknown prior distribution for induction problems. No
explicit learning procedure is necessary, as ξ automatically converges to µ. We unified the
theory of universal sequence prediction with the decision theoretic agent by replacing the
unknown true prior µAI by an appropriately generalized universal semimeasure ξAI . We
gave strong arguments that the resulting AIξ model is the most intelligent, parameterless
and environmental/application independent model possible. We defined an intelligence
order relation (39) to give a rigorous meaning to this claim. Furthermore, possible solu-
tions to the horizon problem have been discussed. We outlined for a number of problem
classes in sections 5–8, how the AIξ model can solve them. They include sequence pre-
diction, strategic games, function minimization and, especially, how AIξ learns to learn
supervised. The list could easily be extended to other problem classes like classification,
function inversion and many others. The major drawback of the AIξ model is that it is
uncomputable, or more precisely, only asymptotically computable, which makes an im-
plementation impossible. To overcome this problem, we constructed a modified model
AIξ t̃l̃, which is still effectively more intelligent than any other time t̃ and space l̃ bounded
algorithm. The computation time of AIξ t̃l̃ is of the order t̃·2l̃. Possible further research has
been discussed. The main directions could be to prove general and special credit bounds,
use AIξ as a super model and explore its relation to other specialized models and finally
improve performance with or without giving up universality.
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