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Abstract

General-purpose, intelligent, learning agents cycle through sequences of
observations, actions, and rewards that are complex, uncertain, unknown, and
non-Markovian. On the other hand, reinforcement learning is well-developed
for small finite state Markov decision processes (MDPs). Up to now, extract-
ing the right state representations out of bare observations, that is, reducing
the general agent setup to the MDP framework, is an art that involves signif-
icant effort by designers. The primary goal of this work is to automate the
reduction process and thereby significantly expand the scope of many existing
reinforcement learning algorithms and the agents that employ them. Before
we can think of mechanizing this search for suitable MDPs, we need a formal
objective criterion. The main contribution of this article is to develop such a
criterion. I also integrate the various parts into one learning algorithm. Ex-
tensions to more realistic dynamic Bayesian networks are developed in Part
II [Hut09c]. The role of POMDPs is also considered there.
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“Approximations, after all, may be made in two places - in the construc-
tion of the model and in the solution of the associated equations. It is
not at all clear which yields a more judicious approximation.”

— Richard Bellman (1961)

1 Introduction

Background & motivation. Artificial General Intelligence (AGI) is concerned
with designing agents that perform well in a wide range of environments [GP07,
LH07]. Among the well-established “narrow” Artificial Intelligence (AI) approaches
[RN03], arguably Reinforcement Learning (RL) [SB98] pursues most directly the
same goal. RL considers the general agent-environment setup in which an agent
interacts with an environment (acts and observes in cycles) and receives (occasional)
rewards. The agent’s objective is to collect as much reward as possible. Most if not
all AI problems can be formulated in this framework. Since the future is generally
unknown and uncertain, the agent needs to learn a model of the environment based
on past experience, which allows to predict future rewards and use this to maximize
expected long-term reward.

The simplest interesting environmental class consists of finite state fully observ-
able Markov Decision Processes (MDPs) [Put94, SB98], which is reasonably well
understood. Extensions to continuous states with (non)linear function approxima-
tion [SB98, Gor99], partial observability (POMDP) [KLC98, RPPCd08], structured
MDPs (DBNs) [SDL07], and others have been considered, but the algorithms are
much more brittle.

A way to tackle complex real-world problems is to reduce them to finite MDPs
which we know how to deal with efficiently. This approach leaves a lot of work to
the designer, namely to extract the right state representation (“features”) out of
the bare observations in the initial (formal or informal) problem description. Even
if potentially useful representations have been found, it is usually not clear which
ones will turn out to be better, except in situations where we already know a perfect
model. Think of a mobile robot equipped with a camera plunged into an unknown
environment. While we can imagine which image features will potentially be useful,
we cannot know in advance which ones will actually be useful.

Main contribution. The primary goal of this paper is to develop and investigate
a method that automatically selects those features that are necessary and sufficient
for reducing a complex real-world problem to a computationally tractable MDP.

Formally, we consider maps Φ from the past observation-reward-action history h
of the agent to an MDP state. Histories not worth being distinguished are mapped
to the same state, i.e. Φ−1 induces a partition on the set of histories. We call this
model ΦMDP. A state may be simply an abstract label of the partition, but more
often is itself a structured object like a discrete vector. Each vector component
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describes one feature of the history [Hut09a, Hut09c]. For example, the state may
be a 3-vector containing (shape,color,size) of the object a robot tracks. For this
reason, we call the reduction, Feature RL, although in this Part I only the simpler
unstructured case is considered.

Φ maps the agent’s experience over time into a sequence of MDP states. Rather
than informally constructing Φ by hand, our goal is to develop a formal objective
criterion Cost(Φ|h) for evaluating different reductions Φ. Obviously, at any point
in time, if we want the criterion to be effective it can only depend on the agent’s
past experience h and possibly generic background knowledge. The “Cost” of Φ
shall be small iff it leads to a “good” MDP representation. The establishment
of such a criterion transforms the, in general, ill-defined RL problem to a formal
optimization problem (minimizing Cost) for which efficient algorithms need to be
developed. Another important question is which problems can profitably be reduced
to MDPs [Hut09a, Hut09c].

The real world does not conform itself to nice models: Reality is a non-ergodic
partially observable uncertain unknown environment in which acquiring experience
can be expensive. So we should exploit the data (past experience) at hand as well
as possible, cannot generate virtual samples since the model is not given (need to
be learned itself), and there is no reset-option. No criterion for this general setup
exists. Of course, there is previous work which is in one or another way related to
ΦMDP.

ΦMDP in perspective. As partly detailed later, the suggested ΦMDP model has
interesting connections to many important ideas and approaches in RL and beyond:

• ΦMDP side-steps the open problem of learning POMDPs [KLC98],
• Unlike Bayesian RL algorithms [DFA99, Duf02, PVHR06, RP08], ΦMDP

avoids learning a (complete stochastic) observation model,
• ΦMDP is a scaled-down practical instantiation of AIXI [Hut05, Hut07],
• ΦMDP extends the idea of state-aggregation from planning (based on bi-

simulation metrics [GDG03]) to RL (based on information),
• ΦMDP generalizes U-Tree [McC96] to arbitrary features,
• ΦMDP extends model selection criteria to general RL problems [Grü07],
• ΦMDP is an alternative to PSRs [SLJ+03] for which proper learning algorithms

have yet to be developed,
• ΦMDP extends feature selection from supervised learning to RL [GE03].

Learning in agents via rewards is a much more demanding task than “classical” ma-
chine learning on independently and identically distributed (i.i.d.) data, largely due
to the temporal credit assignment and exploration problem. Nevertheless, RL (and
the closely related adaptive control theory in engineering) has been applied (often
unrivaled) to a variety of real-world problems, occasionally with stunning success
(Backgammon, Checkers, [SB98, Chp.11], helicopter control [NCD+04]). ΦMDP
overcomes several of the limitations of the approaches in the items above and thus
broadens the applicability of RL.
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ΦMDP owes its general-purpose learning and planning ability to its information
and complexity theoretical foundations. The implementation of ΦMDP is based on
(specialized and general) search and optimization algorithms used for finding good
reductions Φ. Given that ΦMDP aims at general AI problems, one may wonder
about the role of other aspects traditionally considered in AI [RN03]: knowledge
representation (KR) and logic may be useful for representing complex reductions
Φ(h). Agent interface fields like robotics, computer vision, and natural language
processing can speedup learning by pre&post-processing the raw observations and
actions into more structured formats. These representational and interface aspects
will only barely be discussed in this paper. The following diagram illustrates ΦMDP
in perspective.
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Contents. Section 2 formalizes our ΦMDP setup, which consists of the agent model
with a map Φ from observation-reward-action histories to MDP states. Section 3
develops our core Φ selection principle, which is illustrated in Section 4 on a tiny
example. Section 5 discusses general search algorithms for finding (approximations
of) the optimal Φ, concretized for context tree MDPs. In Section 6 I find the
optimal action for ΦMDP, and present the overall algorithm. Section 7 improves
the Φ selection criterion by “integrating” out the states. Section 8 contains a brief
discussion of ΦMDP, including relations to prior work, incremental algorithms, and
an outlook to more realistic structured MDPs (dynamic Bayesian networks, ΦDBN)
treated in Part II.

Rather than leaving parts of ΦMDP vague and unspecified, I decided to give at
the very least a simplistic concrete algorithm for each building block, which may be
assembled to one sound system on which one can build on.

Notation. Throughout this article, log denotes the binary logarithm, ε the empty
string, and δx,y = δxy = 1 if x = y and 0 else is the Kronecker symbol. I generally

4



omit separating commas if no confusion arises, in particular in indices. For any x
of suitable type (string,vector,set), I define string x=x1:l =x1...xl, sum x+ =

∑
jxj,

union x∗=
⋃

jxj, and vector x•=(x1,...,xl), where j ranges over the full range {1,...,l}
and l= |x| is the length or dimension or size of x. x̂ denotes an estimate of x. P(·)
denotes a probability over states and rewards or parts thereof. I do not distinguish
between random variables X and realizations x, and abbreviation P(x) :=P[X =x]
never leads to confusion. More specifically, m∈ IN denotes the number of states,
i∈{1,...,m} any state index, n∈ IN the current time, and t∈{1,...,n} any time in
history. Further, in order not to get distracted at several places I gloss over initial
conditions or special cases where inessential. Also 0∗undefined=0∗infinity:=0.

2 Feature Markov Decision Process (ΦMDP)

This section describes our formal setup. It consists of the agent-environment frame-
work and maps Φ from observation-reward-action histories to MDP states. I call
this arrangement “Feature MDP” or short ΦMDP.

Agent-environment setup. I consider the standard agent-environment setup
[RN03] in which an Agent interacts with an Environment The agent can choose
from actions a∈A (e.g. limb movements) and the environment provides (regular)
observations o∈O (e.g. camera images) and real-valued rewards r∈R⊆ IR to the
agent. The reward may be very scarce, e.g. just +1 (−1) for winning (losing) a chess
game, and 0 at all other times [Hut05, Sec.6.3]. This happens in cycles t=1,2,3,...:
At time t, after observing ot and receiving reward rt, the agent takes action at based
on history ht :=o1r1a1...ot−1rt−1at−1otrt. Then the next cycle t+1 starts. The agent’s
objective is to maximize his long-term reward. Without much loss of generality, I
assume that R is finite. Finiteness of R is lifted in [Hut09a, Hut09c]. I also as-
sume that A is finite and small, which is restrictive. Part II deals with large state
spaces, and large (structured) action spaces can be dealt with in a similar way. No
assumptions are made on O; it may be huge or even infinite. Indeed, ΦMDP has
been specifically designed to cope with huge observation spaces, e.g. camera images,
which are mapped to a small space of relevant states.

The agent and environment may be viewed as a pair or triple of interlocking
functions of the history H :=(O×A×R)∗×O×R:

Env : H×A ; O ×R, onrn = Env(hn−1an−1),

Agent : H ; A, an = Agent(hn),
�
 �	Agent

�
 �	Env()
action 6

reward?

observation

?

where ; indicates that mappings → might be stochastic.
The goal of AI is to design agents that achieve high (expected) reward over the

agent’s lifetime.

(Un)known environments. For known Env(), finding the reward maximizing
agent is a well-defined and formally solvable problem [Hut05, Chp.4], with com-
putational efficiency being the “only” matter of concern. For most real-world AI
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problems Env() is at best partially known. For unknown Env(), the meaning of
expected reward maximizing is even conceptually a challenge [Hut05, Chp.5].

Narrow AI considers the case where function Env() is either known (like planning
in blocks world), or essentially known (like in chess, where one can safely model the
opponent as a perfect minimax player), or Env() belongs to a relatively small class
of environments (e.g. elevator or traffic control).

The goal of AGI is to design agents that perform well in a large range of environ-
ments [LH07], i.e. achieve high reward over their lifetime with as little as possible
assumptions about Env(). A minimal necessary assumption is that the environment
possesses some structure or pattern [WM97].

From real-life experience (and from the examples below) we know that usually we
do not need to know the complete history of events in order to determine (sufficiently
well) what will happen next and to be able to perform well. Let Φ(h) be such a
“useful” summary of history h.

Generality of ΦMDP. The following examples show that many problems can be
reduced (approximately) to finite MDPs, thus showing that ΦMDP can deal with
a large variety of problems: In full-information games (like chess) with a static op-
ponent, it is sufficient to know the current state of the game (board configuration)
to play well (the history plays no role), hence Φ(ht) = ot is a sufficient summary
(Markov condition). Classical physics is essentially predictable from the position
and velocity of objects at a single time, or equivalently from the locations at two
consecutive times, hence Φ(ht)=ot−1ot is a sufficient summary (2nd order Markov).
For i.i.d. processes of unknown probability (e.g. clinical trials ' Bandits), the fre-
quency of observations Φ(hn)=(

∑n
t=1δoto)o∈O is a sufficient statistic. In a POMDP

planning problem, the so-called belief vector at time t can be written down explicitly
as some function of the complete history ht (by integrating out the hidden states).
Φ(ht) could be chosen as (a discretized version of) this belief vector, showing that
ΦMDP generalizes POMDPs. Obviously, the identity Φ(h)=h is always sufficient
but not very useful, since Env() as a function of H is hard to impossible to “learn”.

This suggests to look for Φ with small codomain, which allow to
learn/estimate/approximate Env by Ênv such that otrt≈ Ênv(Φ(ht−1)) for t=1...n.

Example. Consider a robot equipped with a camera, i.e. o is a pixel image. Com-
puter vision algorithms usually extract a set of features from ot−1 (or ht−1), from
low-level patterns to high-level objects with their spatial relation. Neither is it pos-
sible nor necessary to make a precise prediction of ot from summary Φ(ht−1). An
approximate prediction must and will do. The difficulty is that the similarity mea-
sure “≈” needs to be context dependent. Minor image nuances are irrelevant when
driving a car, but when buying a painting it makes a huge difference in price whether
it’s an original or a copy. Essentially only a bijection Φ would be able to extract all
potentially interesting features, but such a Φ defeats its original purpose.

From histories to states. It is of utmost importance to properly formalize the
meaning of “≈” in a general, domain-independent way. Let st :=Φ(ht) summarize all
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relevant information in history ht. I call s a state or feature (vector) of h. “Relevant”
means that the future is predictable from st (and at) alone, and that the relevant
future is coded in st+1st+2.... So we pass from the complete (and known) history
o1r1a1...onrnan to a “compressed” history sra1:n≡ s1r1a1...snrnan and seek Φ such
that st+1 is (approximately a stochastic) function of st (and at). Since the goal of
the agent is to maximize his rewards, the rewards rt are always relevant, so they
(have to) stay untouched (this will become clearer below).

The ΦMDP. The structure derived above is a classical Markov Decision Process
(MDP), but the primary question I ask is not the usual one of finding the value
function or best action or comparing different models of a given state sequence. I
ask how well can the state-action-reward sequence generated by Φ be modeled as an
MDP compared to other sequences resulting from different Φ. A good Φ leads to a
good model for predicting future rewards, which can be used to find good actions
that maximize the agent’s expected long-term reward.

3 ΦMDP Coding and Evaluation

I first review a few standard codes and model selection methods for i.i.d. sequences,
subsequently adapt them to our situation, and show that they are suitable in our
context. I state my Cost function for Φ, and the Φ selection principle, and compare
it to the Minimum Description Length (MDL) philosophy.

I.i.d. processes. Consider i.i.d. x1...xn ∈X n for finite X = {1,...,m}. For known
θi = P[xt = i] we have P(x1:n|θ) = θx1 · ... ·θxn . It is well-known that there exists
a code (e.g. arithmetic or Shannon-Fano) for x1:n of length −logP(x1:n|θ), which
is asymptotically optimal with probability one [Bar85, Thm.3.1]. This also easily
follows from [CT06, Thm.5.10.1].

MDL/MML code [Grü07, Wal05]: For unknown θ we may use a frequency
estimate θ̂i = ni/n, where ni = |{t ≤ n : xt = i}|. Then it is easy to see that
−logP(x1:n|θ̂)=n H(θ̂), where

H(θ̂) := −
m∑

i=1

θ̂i log θ̂i is the entropy of θ̂

(0log0:=0=:0log 0
0
). We also need to code θ̂, or equivalently (ni), which naively needs

logn bits for each i. In general, a sample size of n allows estimating parameters only
to accuracy O(1/

√
n), which is essentially equivalent to the fact that logP(x1:n|θ̂±

O(1/
√

n))−logP(x1:n|θ̂)=O(1). This shows that it is sufficient to code each θ̂i to
accuracy O(1/

√
n), which requires only 1

2
logn+O(1) bits each. Hence, given n and

ignoring O(1) terms, the overall code length (CL) of x1:n for unknown frequencies is

CL(x1:n) ≡ CL(n) := n H(n/n) + m−1
2

log n for n > 0 and 0 else, (1)
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where n=(n1,...,nm) and n=n+ =n1+...+nm. We have assumed that n is given,
hence only m−1 of the ni need to be coded, since the mth one can be reconstructed
from them and n. The above is an exact code of x1:n, which is optimal (within
+O(1)) for all i.i.d. sources. This code may further be optimized by only coding θ̂i

for the m′= |{i :ni >0}|≤m non-empty categories, resulting in a code of length

CL′(n) := n H(n/n) + m′−1
2

log n + m, (2)

where the m bits are needed to indicate which of the θ̂i are coded. We refer to this
improvement as sparse code.

Combinatorial code [LV08]: A second way to code the data is to code n exactly,
and then, since there are n!/n1!...nm! sequences x1:n with counts n, we can easily
construct a code of length log(n!/n1!...nm!) given n by enumeration, i.e.

CL′′(n) := log(n!/n1!...nm!) + (m−1) log n

Within ±O(1) this code length also coincides with (1).
Incremental code [WST97]: A third way is to use a sequential estimate θ̂t+1

i =
ti+α
t+mα

based on known past counts ti=|{t′≤t:xt′=i}|, where α>0 is some regularizer.
Then

P(x1:n) = θ̂1
x1
· ... · θ̂n

xn
= Cα

∏m
i=1 Γ(ni + α)

Γ(n + mα)
, Cα :=

Γ(mα)

Γ(α)m
(3)

where Γ is the Gamma function. The logarithm of this expression again essentially
reduces to (1) (for any α>0, typically 1

2
or 1), which can also be written as

CL′′′(n) =
∑

i:ni>0

ln Γ(ni)− ln Γ(n) + O(1) if n > 0 and 0 else.

Bayesian code [Sch78, Mac03]: A fourth (the Bayesian) way is to assume a
Dirichlet(α) prior over θ. The marginal distribution (evidence) is identical to (3)
and the Bayesian Information Criterion (BIC) approximation leads to code (1).

Conclusion: All four methods lead to essentially the same code length. The
references above contain rigorous derivations. In the following I will ignore the O(1)
terms and refer to (1) simply as the code length. Note that x1:n is coded exactly
(lossless). Similarly (see MDP below) sampling models more complex than i.i.d.
may be considered, and the one that leads to the shortest code is selected as the
best model [Grü07].

MDP definitions. Recall that a sequence sra1:n is said to be sampled from an
MDP (S,A,T,R) iff the probability of st only depends on st−1 and at−1; and rt only
on st−1, at−1, and st. That is,

P(st|ht−1at−1) = P(st|st−1, at−1) =: T at−1
st−1st

P(rt|ht) = P(rt|st−1, at−1, st) =: Rat−1rt
st−1st
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In our case, we can identify the state-space S with the states s1,...,sn “observed”
so far. Hence S={s1,...,sm} is finite and typically m�n, since states repeat. Let
s

a→s′(r′) be shorthand for “action a in state s resulted in state s′ (reward r′)”. Let
T ar′

ss′ :={t≤n :st−1=s,at−1=a,st=s′,rt=r′} be the set of times t−1 at which s
a→s′r′,

and nar′

ss′ := |T ar′

ss′ | their number (n++
++ =n).

Coding MDP sequences. For some fixed s and a, consider the subsequence
st1 ...stn′

of states reached from s via a (s
a→sti), i.e. {t1,...,tn′}=T a∗

s∗ , where n′=na+
s+ .

By definition of an MDP, this sequence is i.i.d. with s′ occurring n′s′ :=na+

ss′ times.
By (1) we can code this sequence in CL(n′) bits. The whole sequence s1:n consists
of |S×A| i.i.d. sequences, one for each (s,a)∈S×A. We can join their codes and
get a total code length

CL(s1:n|a1:n) =
∑
s,a

CL(na+

s• ) (4)

If instead of (1) we use the improved sparse code (2), non-occurring transitions
s

a→s′r′ will contribute only one bit rather than 1
2
logn bits to the code, so that large

but sparse MDPs get penalized less.

Similarly to the states we code the rewards. There are different “standard”
reward models. I consider only the simplest case of a small discrete reward set R
like {0,1} or {−1,0,+1} here and defer generalizations to IR and a discussion of
variants to the ΦDBN model [Hut09a]. By the MDP assumption, for each (s,a,s′)
triple, the rewards at times T a∗

ss′ are i.i.d. Hence they can be coded in

CL(r1:n|s1:n, a1:n) =
∑
s,a,s′

CL(na•
ss′) (5)

bits. In order to increase the statistics it might be better to treat rt as a function of
st only. This is not restrictive, since dependence on st−1 and at−1 can be mimicked
by coding aspects into an enlarged state space.

Reward↔state trade-off. Note that the code for r depends on s. Indeed we
may interpret the construction as follows: Ultimately we/the agent cares about the
reward, so we want to measure how well we can predict the rewards, which we do
with (5). But this code depends on s, so we need a code for s too, which is (4). To
see that we need both parts consider two extremes.

A simplistic state transition model (small |S|) results in a short code for s. For
instance, for |S|=1, nothing needs to be coded and (4) is identically zero. But this
obscures potential structure in the reward sequence, leading to a long code for r.

On the other hand, the more detailed the state transition model (large |S|) the
easier it is to predict and hence compress r. But a large model is hard to learn,
i.e. the code for s will be large. For instance for Φ(h)=h, no state repeats and the
frequency-based coding breaks down.
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Φ selection principle. Let us define the Cost of Φ:H→S on hn as the length of
the ΦMDP code for sr given a plus a complexity penalty CL(Φ) for Φ:

Cost(Φ|hn) := CL(s1:n|a1:n) + CL(r1:n|s1:n, a1:n) + CL(Φ), (6)

where st = Φ(ht) and ht = ora1:t−1otrt

The discussion above suggests that the minimum of the joint code length (4) and (5)
is attained for a Φ that keeps all and only relevant information for predicting rewards.
Such a Φ may be regarded as best explaining the rewards. I added an additional
complexity penalty CL(Φ) for Φ such that from the set of Φ that minimize (4)+(5)
(e.g. Φ’s identical on (O×R×A)n but different on longer histories) the simplest
one is selected. The penalty is usually some code-length or log-index of Φ. This
conforms with Ockham’s razor and the MDL philosophy. So we are looking for a Φ
of minimal cost:

Φbest := arg min
Φ
{Cost(Φ|hn)} (7)

If the minimization is restricted to some small class of reasonably simple Φ, CL(Φ)
in (6) may be dropped. The state sequence generated by Φbest (or approximations
thereof) will usually only be approximately MDP. While Cost(Φ|h) is an optimal
code only for MDP sequences, it still yields good codes for approximate MDP se-
quences. Indeed, Φbest balances closeness to MDP with simplicity. The primary
purpose of the simplicity bias is not computational tractability, but generalization
ability [Leg08, Hut05].

Relation to MDL et al. In unsupervised learning (clustering and density es-
timation) and supervised learning (regression and classification), penalized maxi-
mum likelihood criteria [HTF01, Chp.7] like BIC [Sch78], MDL [Grü07], and MML
[Wal05] have successfully been used for semi-parametric model selection. It is far
from obvious how to apply them in RL. Indeed, our derived Cost function cannot
be interpreted as a usual model+data code length. The problem is the following:

Ultimately we do not care about the observations but the rewards. The re-
wards depend on the states, but the states are arbitrary in the sense that they are
model-dependent functions of the bare data (observations). The existence of these
unobserved states is what complicates matters, but their introduction is necessary
in order to model the rewards. For instance, Φ is actually not needed for coding
rs|a, so from a strict coding/MDL perspective, CL(Φ) in (6) is redundant. Since
s is some “arbitrary” construct of Φ, it is better to regard (6) as a code of r only.
Since the agent chooses his actions, a need not be coded, and o is not coded, because
they are only of indirect importance.

The Cost() criterion is strongly motivated by the rigorous MDL principle, but
invoked outside the usual induction/modeling/prediction context.
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4 A Tiny Example

The purpose of the tiny example in this section is to provide enough insight into
how and why ΦMDP works to convince the reader that our Φ selection principle is
reasonable.

Example setup. I assume a simplified MDP model in which reward rt only depends
on st, i.e.

CL(r1:n|s1:n, a1:n) =
∑

s′

CL(n+•
+s′) (8)

This allows us to illustrate ΦMDP on a tiny example. The same insight is gained
using (5) if an analogous larger example is considered. Furthermore I set CL(Φ)≡0.

Consider binary observation space O = {0,1}, quaternary reward space R =
{0,1,2,3}, and a single action A= {0}. Observations ot are independent fair coin
flips, i.e. Bernoulli(1

2
), and reward rt =2ot−1+ot a deterministic function of the two

most recent observations.

Considered features. As features Φ I consider Φk :H→Ok with Φk(ht)=ot−k+1...ot

for various k=0,1,2,... which regard the last k observations as “relevant”. Intuitively
Φ2 is the best observation summary, which I confirm below. The state space S =
{0,1}k (for sufficiently large n). The ΦMDPs for k=0,1,2 are as follows.

Φ0MDP

��
��

ε

r=0|1|2|3

� �
?

Φ1MDP

��
��

0
r=0|2

� �
?

-� ��
��

1
r=1|3

� �
?

Φ2MDP

��
��
00

r=0

�
-

��
��
11

r=3�	�

��
��
01 r=1

��
��
10r=2

-

?

�

6 �
��

�
�	

Φ2MDP with all non-zero transition probabilities being 50% is an exact represen-
tation of our data source. The missing arrow (directions) are due to the fact that
s = ot−1ot can only lead to s′ = o′to

′
t+1 for which o′t = ot, denoted by s∗= ∗s′ in the

following. Note that ΦMDP does not “know” this and has to learn the (non)zero
transition probabilities. Each state has two successor states with equal probabil-
ity, hence generates (see previous paragraph) a Bernoulli(1

2
) state subsequence and

a constant reward sequence, since the reward can be computed from the state =
last two observations. Asymptotically, all four states occur equally often, hence the
sequences have approximately the same length n/4.

In general, if s (and similarly r) consists of x∈ IN i.i.d. subsequences of equal
length n/x over y∈IN symbols, the code length (4) (and similarly (8)) is

CL(s|a; xy) = n log y + x |S|−1
2

log n
x

CL(r|s, a; xy) = n log y + x |R|−1
2

log n
x
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where the extra argument xy just indicates the sequence property. So for Φ2MDP
we get

CL(s|a; 42) = n + 6 log n
4

and CL(r|s, a; 41) = 6 log n
4

The log-terms reflect the required memory to code the MDP structure and proba-
bilities. Since each state has only 2 realized/possible successors, we need n bits to
code the state sequence. The reward is a deterministic function of the state, hence
needs no memory to code given s.

The Φ0MDP throws away all observations (left figure above), hence CL(s|a;11)=0.
While the reward sequence is not i.i.d. (e.g. rt+1 =3 cannot follow rt =0), Φ0MDP
has no choice regarding them as i.i.d., resulting in CL(s|a;14)=2n+ 3

2
logn.

The Φ1MDP model is an interesting compromise (middle figure above). The state
allows a partial prediction of the reward: State 0 allows rewards 0 and 2; state 1
allows rewards 1 and 3. Each of the two states creates a Bernoulli(1

2
) state successor

subsequence and a binary reward sequence, wrongly presumed to be Bernoulli(1
2
).

Hence CL(s|a;22)=n+logn
2

and CL(r|s,a;22)=n+3logn
2
.

Summary. The following table summarizes the results for general k = 0,1,2 and
beyond:

k S |S| n0+

ss′ n+r′

+s′ n0+
s+=n++

+s′ s+r CL(s|a) CL(r|s,a) Cost(Φ|h)
0 {ε} 1 n n/4 n 11+14 0 2n+3

2 logn 2n+3
2 logn

1 {0,1} 2 n/4 n
4 δr′−s′=0|1 n/2 22+22 n+logn

2 n+3logn
2 2n+4logn

2

2 {00,01
10,11} 4 n

8 δs∗,∗s′
n
4 δr′ b=s′ n/4 42+41 n+6logn

4 6logn
4 n+12logn

4

≥2 {0,1}k 2k nδs∗,∗s′

2k+1
n
4 δr′ b=s′ n/2k 2k

2+2k
2 n+ 2k−1

21−k logn
2k

3
22klog n

sk n+ 2k+2
21−k logn

2k

The notation of the s+r column follows the one used above in the text (xy for s
and r). r′=̂s′ means that r′ is the correct reward for state s′. The last column is
the sum of the two preceding columns. The part linear in n is the code length for
the state/reward sequence. The part logarithmic in n is the code length for the
transition/reward probabilities of the MDP; each parameter needs 1

2
logn bits. For

large n, Φ2 results in the shortest code, as anticipated. The “approximate” model
Φ1 is just not good enough to beat the vacuous model Φ0, but in more realistic
examples some approximate model usually has the shortest code. In [Hut09a] I
show on a more complex example how Φbest will store long-term information in a
POMDP environment.

5 Cost(Φ) Minimization

So far I have reduced the reinforcement learning problem to a formal Φ-optimization
problem. This section briefly explains what we have gained by this reduction, and
provide some general information about problem representations, stochastic search,
and Φ neighborhoods. Finally I present a simplistic but concrete algorithm for
searching context tree MDPs.
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Φ search. I now discuss how to find good summaries Φ. The introduced generic
cost function Cost(Φ|hn), based on only the known history hn, makes this a well-
defined task that is completely decoupled from the complex (ill-defined) reinforce-
ment learning objective. This reduction should not be under-estimated. We can
employ a wide range of optimizers and do not even have to worry about overfitting.
The most challenging task is to come up with creative algorithms proposing Φ’s.

There are many optimization methods: Most of them are search-based: random,
blind, informed, adaptive, local, global, population based, exhaustive, heuristic, and
other search methods [AL97]. Most are or can be adapted to the structure of the
objective function, here Cost(·|hn). Some exploit the structure more directly (e.g.
gradient methods for convex functions). Only in very simple cases can the minimum
be found analytically (without search).

Most search algorithms require the specification of a neighborhood relation or
distance between candidate Φ, which I define in the 2nd next paragraph.

Problem representation can be important: Since Φ is a discrete function,
searching through (a large subset of) all computable functions, is a non-restrictive
approach. Variants of Levin search [Sch04, Hut05] and genetic programming
[Koz92, BNKF98] and recurrent neural networks [Pea89, RHHM08] are the major
approaches in this direction.

A different representation is as follows: Φ effectively partitions the history space
H and identifies each partition with a state. Conversely any partition of H can (up
to a renaming of states) uniquely be characterized by a function Φ. Formally, Φ
induces a (finite) partition

⋃
s{h′ :Φ(h′)=s} of H, where s ranges over the codomain

of Φ. Conversely, any partition of H = B1∪̇...∪̇Bm induces a function Ψ(h′) = i
iff h′ ∈ Bi, which is equivalent to Φ apart from an irrelevant permutation of the
codomain (renaming of states).

State aggregation methods have been suggested earlier for solving large-scale
MDP planning problems by grouping (partitioning) similar states together, resulting
in (much) smaller block MDPs [GDG03]. But the used bi-simulation metrics require
knowledge of the MDP transition probabilities, while our Cost criterion does not.

Decision trees/lists/grids/etc. are essentially space partitioners. The most pow-
erful versions are rule-based, in which logical expressions recursively divide domain
H into “true/false” regions [DdRD01, SB09].

Φ neighborhood relation. A natural “minimal” change of a partition is to subdi-
vide=split a partition or merge (two) partitions. Moving elements from one partition
to another can be implemented as a split and merge operation. In our case this cor-
responds to splitting and merging states (state refinement and coarsening). Let Φ′

split some state sa∈S of Φ into sb,sc 6∈S

Φ′(h) :=

{
Φ(h) if Φ(h) 6= sa

sb or sc if Φ(h) = sa

where the histories mapped to state sa are distributed among sb and sc according
to some splitting rule (e.g. randomly). The new state space is S ′=S\{sa}∪{sb,sc}.
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Similarly Φ′ merges states sb,sc∈S into sa 6∈S if

Φ′(h) :=

{
Φ(h) if Φ(h) 6= sa

sa if Φ(h) = sb or sc

where S ′=S\{sb,sc}∪{ss}. We can regard Φ′ as being a neighbor of or similar to
Φ.

Stochastic Φ search. Stochastic search is the method of choice for high-
dimensional unstructured problems. Monte Carlo methods can actually be highly
effective, despite their simplicity [Liu02, Fis03]. The general idea is to randomly
choose a neighbor Φ′ of Φ and replace Φ by Φ′ if it is better, i.e. has smaller Cost.
Even if Cost(Φ′|h) > Cost(Φ|h) we may keep Φ′, but only with some (in the cost
difference exponentially) small probability. Simulated annealing is a version which
minimizes Cost(Φ|h). Apparently, Φ of small cost are (much) more likely to occur
than high cost Φ.

Context tree example. The Φk in Section 4 depended on the last k observations.
Let us generalize this to a context dependent variable length: Consider a finite
complete suffix free set of strings (= prefix tree of reversed strings) S ⊂ O∗ as
our state space (e.g. S = {0,01,011,111} for binary O), and define ΦS(hn) := s iff
on−|s|+1:n=s∈S, i.e. s is the part of the history regarded as relevant. State splitting
and merging works as follows: For binary O, if history part s∈S of hn is deemed
too short, we replace s by 0s and 1s in S, i.e. S ′ = S\{s}∪{0s,1s}. If histories
1s,0s ∈ S are deemed too long, we replace them by s, i.e. S ′ = S \{0s,1s}∪{s}.
Large O might be coded binary and then treated similarly. For small O we have
the following simple Φ-optimizer:

ΦImprove(ΦS,hn)

d Randomly choose a state s∈S;
Let p and q be uniform random numbers in [0,1];
if (p>1/2) then split s i.e. S ′=S\{s}∪{os :o∈O}
else if {os′ :o∈O}⊆S (s′ is s without the first symbol)
then merge them, i.e. S ′=S\{os′ :o∈O}∪{s′};
if (Cost(ΦS |hn)−Cost(ΦS′|hn)> log(q)) then S :=S ′;

b return (ΦS);

Example tree
on−2 on−1 on

S=
{0,01,011,111}

HHH

�
��

0

1
rr

r
HHH

�
��

0

1
rr

r
H

HH

���

0

1
rr

r

The idea of using suffix trees as state space is from [McC96] (see also [Rin94]).
It might be interesting to compare the local split/merge criterion of [McC96] with
our general global Cost criterion. On the other hand, due to their limitation, suffix
trees are currently out of vogue.
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6 Exploration & Exploitation

Having obtained a good estimate Φ̂ of Φbest in the previous section, we can/must
now determine a good action for our agent. For a finite MDP with known transi-
tion probabilities, finding the optimal action is routine. For estimated probabilities
we run into the infamous exploration-exploitation problem, for which promising ap-
proximate solutions have recently been suggested [SL08]. At the end of this section
I present the overall algorithm for our ΦMDP agent.

Optimal actions for known MDPs. For a known finite MDP (S,A,T,R,γ), the
maximal achievable (“optimal”) expected future discounted reward sum, called (Q)
Value (of action a) in state s, satisfies the following (Bellman) equations [SB98]

Q∗a
s =

∑
s′

T a
ss′ [R

a
ss′ + γV ∗

s′ ] and V ∗
s = max

a
Q∗a

s (9)

where 0 < γ < 1 is a discount parameter, typically close to 1. See [Hut05, Sec.5.7]
for proper choices. The equations can be solved by a simple (e.g. value or policy)
iteration process or various other methods or in guaranteed polynomial time by
dynamic programming [Put94]. The optimal next action is

an := arg max
a

Q∗a
sn

(10)

Estimating the MDP. We can estimate the transition probability T by

T̂ a
ss′ :=

na+

ss′

na+
s+

if na+

s+ > 0 and 0 else. (11)

It is easy to see that the Shannon-Fano code of s1:n based on PT̂ (s1:n|a1:n) =∏n
t=1T̂

at−1
st−1st

plus the code of the (non-zero) transition probabilities T̂ a
ss′ to relevant

accuracy O(1/
√

na+
s+) has length (4), i.e. the frequency estimate (11) is consistent

with the attributed code length. The expected reward can be estimated as

R̂a
ss′ :=

∑
r′∈R

R̂ar′

ss′ r
′, R̂ar′

ss′ :=
nar′

ss′

na+

ss′
(12)

Exploration. Simply replacing T and R in (9) and (10) by their estimates (11)
and (12) can lead to very poor behavior, since parts of the state space may never
be explored, causing the estimates to stay poor.

Estimate T̂ improves with increasing na+
s+ , which can (only) be ensured by trying

all actions a in all states s sufficiently often. But the greedy policy above has no
incentive to explore, which may cause the agent to perform very poorly: The agent
stays with what he believes to be optimal without trying to solidify his belief. For
instance, if treatment A cured the first patient, and treatment B killed the second,
the greedy agent will stick to treatment A and not explore the possibility that B
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may just have failed due to bad luck. Trading off exploration versus exploitation op-
timally is computationally intractable [Hut05, PVHR06, RP08] in all but extremely
simple cases (e.g. Bandits [BF85, KV86]). Recently, polynomially optimal algo-
rithms (Rmax,E3,OIM) have been invented [KS98, BT02, SL08]: An agent is more
explorative if he expects a high reward in the unexplored regions. We can “deceive”
the agent to believe this by adding another “absorbing” high-reward state se to S,
not in the range of Φ(h), i.e. never observed. Henceforth, S denotes the extended
state space. For instance + in (11) now includes se. We set

na
sse = 1, na

ses = δses, Ra
sse = Re

max (13)

for all s,a, where exploration bonus Re
max is polynomially (in (1−γ)−1 and |S×A|)

larger than maxR [SL08].
Now compute the agent’s action by (9)-(12) but for the extended S. The optimal

policy p∗ tries to find a chain of actions and states that likely leads to the high reward
absorbing state se. Transition T̂ a

sse = 1/na
s+ is only “large” for small na

s+, hence p∗

has a bias towards unexplored (state,action) regions. It can be shown that this
algorithm makes only a polynomial number of sub-optimal actions.

The overall algorithm for our ΦMDP agent is as follows.

ΦMDP-Agent(A,R)

d Initialize Φ≡Φ′≡ε; S={ε}; h0 =a0 =r0 =ε;
for n=1,2,3,...

d Choose e.g. γ =1−1/n;
Set Re

max =Polynomial((1−γ)−1,|S×A|)·maxR;
While waiting for on and rn

d Φ′ :=ΦImprove(Φ′,hn−1);
b If Cost(Φ′|hn−1)<Cost(Φ|hn−1) then Φ:=Φ′;

Observe on and rn; hn :=hn−1an−1rn−1onrn;
sn :=Φ(hn); S :=S∪{sn};
Compute action an from Equations (9)-(13);

b b Output action an;

7 Improved Cost Function

As discussed, we ultimately only care about (modeling) the rewards, but this en-
deavor required introducing and coding states. The resulting Cost(Φ|h) function is
a code length of not only the rewards but also the “spurious” states. This likely
leads to a too strong penalty of models Φ with large state spaces S. The proper
Bayesian formulation developed in this section allows to “integrate” out the states.
This leads to a code for the rewards only, which better trades off accuracy of the
reward model and state space size.
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For an MDP with transition and reward probabilities T a
ss′ and Rar′

ss′ , the proba-
bilities of the state and reward sequences are

PT (s1:n|a1:n) =
n∏

t=1

T at−1
st−1st

, PR(r1:n|s1:na1:n) =
n∏

t=1

Rat−1rt
st−1st

The probability of r|a can be obtained by taking the product and marginalizing s:

PU(r1:n|a1:n) =
∑
s1:n

PT (s1:n|a1:n)PR(r1:n|s1:na1:n)

=
∑
s1:n

n∏
t=1

Uat−1rt
st−1st

=
∑
sn

[Ua0r1 · · · Uan−1rn ]s0sn

where for each a∈A and r′∈R, matrix Uar′∈IRm×m is defined as [Uar′ ]ss′≡Uar′

ss′ :=
T a

ss′R
ar′

ss′ . The right n-fold matrix product can be evaluated in time O(m2n). This
shows that r given a and U can be coded in −logPU bits. The unknown U needs to
be estimated, e.g. by the relative frequency Ûar′

ss′ :=nar′

ss′/n
a+
s+ . Note that PU completely

ignores the observations o1:n and is essentially independent of Φ. Map Φ and hence
o1:n enter PÛ (only and crucially) via the estimate Û . The M :=m(m−1)|A|(|R|−1)
(independent) elements of Û can be coded to sufficient accuracy in 1

2
M logn bits,

and Φ will be coded in CL(Φ) bits. Together this leads to a code for r|a of length

ICost(Φ|hn) := − log PÛ(r1:n|a1:n) + 1
2
M log n + CL(Φ) (14)

In practice, M can and should be chosen smaller like done in the original Cost
function, and/or by using the restrictive model (8) for R, and/or by considering
only non-zero frequencies (2). Analogous to (7) we seek a Φ that minimizes ICost().

Since action evaluation is based on (discounted) reward sums, not individual
rewards, one may think of marginalizing PU(r|a,Φ) even further, or coding rewards
only approximately. Unfortunately, the algorithms in Section 6 that learn, explore,
and exploit MDPs require knowledge of the (exact) individual rewards, so this im-
provement is not feasible.

8 Discussion

This section summarizes ΦMDP, relates it to previous work, and hints at more
efficient incremental implementations and more realistic structured MDPs (dynamic
Bayesian networks).

Summary. Learning from rewards in general environments is an immensely com-
plex problem. In this paper I have developed a generic reinforcement learning algo-
rithm based on sound principles. The key idea was to reduce general learning prob-
lems to finite state MDPs for which efficient learning, exploration, and exploitation
algorithms exist. For this purpose I have developed a formal criterion for evaluating
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and selecting good “feature” maps Φ from histories to states. One crucial property
of ΦMDP is that it neither requires nor learns a model of the complete observation
space, but only for the reward-relevant observations as summarized in the states.
The developed criterion has been inspired by MDL, which recommends to select the
(coding) model that minimizes the length of a suitable code for the data at hand
plus the complexity of the model itself. The novel and tricky part in ΦMDP was
to deal with the states, since they are not bare observations, but model-dependent
processed data. An improved Bayesian criterion, which integrates out the states,
has also been derived. Finally, I presented a complete feature reinforcement learning
algorithm ΦMDP-Agent(). The building blocks and computational flow are depicted
in the following diagram:

Environment

�
�

�
�History h

�
�

�
�Feature Vec. Φ̂

�
�

�
�Transition Pr. T̂

Reward est. R̂

�
�

�
�T̂ e, R̂e

�
�

�
�(Q̂) V̂alue

�
�

�
�Best Policy p̂

6
reward r observation o

6
Cost(Φ|h) minimization

�
�

��
frequency estimate

-exploration
bonus

@
@

@R
Bellman

?
implicit

?
action a

Relation to previous work. As already indicated here and there, ΦMDP can be
regarded as extending the frontier of many previous important approaches to RL
and beyond: Partially Observable MDPs (POMDPs) are a very important general-
ization of MDPs [KLC98]. Nature is still assumed to be an MDP, but the states
of nature are only partially observed via some non-injective or probabilistic func-
tion. Even for finite state space and known observation and transition functions,
finding and even only approximating the optimal action is (harder than NP) hard
[LGM01, MHC03]. Lifting any of the assumptions causes conceptual problems, and
when lifting more than one we enter scientific terra nullius. Assume a POMDP
environment: POMDPs can formally (but not yet practically) be reduced to MDPs
over so-called (continuous) belief states. Since ΦMDP reduces every problem to
an MDP, it is conceivable that it reduces the POMDP to (an approximation of)
its belief MDP. This would be a profound relation between ΦMDP and POMDP,
likely leading to valuable insights into ΦMDP and proper algorithms for learning
POMDPs. It may also help us to restrict the space of potentially interesting features
Φ. Predictive State Representations (PSRs) are very interesting, but to this date in
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an even less developed stage [SLJ+03] than POMDPs. Universal AI [Hut05] is able
to optimally deal with arbitrary environments, but the resulting AIXI agent is com-
putationally intractable [Hut07] and hard to approximate [Pan08, PH06]. Bayesian
RL algorithms [DFA99, Duf02, PVHR06, RP08] (see also [KV86, Chp.11]) can be
regarded as implementations of the AIξ models [PH06], which are down-scaled ver-
sions of AIXI, but the enormous computational demand still severely limits this
approach. ΦMDP essentially differs from “generative” Bayesian RL and AIξ in that
it neither requires to specify nor to learn a (complete stochastic) observation model.
It is a more “discriminative” approach [LJ08]. Since ΦMDP “automatically” mod-
els only the relevant aspects of the environment, it should be computationally less
demanding than full Bayesian RL. State aggregation methods have been suggested
earlier for solving large-scale MDP planning problems by grouping (partitioning)
similar states together, resulting in (much) smaller block MDPs [GDG03]. But the
bi-simulation metrics used require knowledge of the MDP transition probabilities.
ΦMDP might be regarded as an approach that lifts this assumption. Suffix trees
[McC96] are a simple class of features Φ. ΦMDP combined with a local search func-
tion that expands and deletes leaf nodes is closely related to McCallum’s U-Tree
algorithm [McC96], with a related but likely different split&merge criterion. Mis-
cellaneous: ΦMDP also extends the theory of model selection (e.g. MDL [Grü07])
from passive to active learning.

Incremental updates. As discussed in Section 5, most search algorithms are local
in the sense that they produce a chain of “slightly” modified candidate solutions,
here Φ. This suggests a potential speedup by computing quantities of interest incre-
mentally, which becomes even more important in the ΦDBN case [Hut09a, Hut09c].

Computing Cost(Φ) takes at most time O(|S|2|A||R|). If we split or merge
two states, we can incrementally update the cost in time O(|S||A||R|), rather than
computing it again from scratch. In practice, many transition T a

ss′ don’t occur,
and Cost(Φ) can actually be computed much faster in time O(|{nar

ss′ > 0}|), and
incrementally even faster.

Iteration algorithms for (9) need an initial value for V or Q. We can take the
estimate V̂ from a previous Φ as an initial value for the new Φ. For a merge operation
we can average the value of both states, for a split operation we could give them the
same initial value. A significant further speedup can be obtained by using prioritized
iteration algorithms that concentrate their time on badly estimated states, which
are in our case (states close to) the new ones [SB98].

Similarly, results from cycle n can be (re)used for the next cycle n+1. For
instance, V̂ can simply be reused as an initial value in the Bellman equations, and
ICost(Φ) can be updated in time O(|S|2) or even faster if U is sparse.

Feature dynamic Bayesian networks. The use of “unstructured” MDPs, even
our Φ-optimal ones, is clearly limited to very simple tasks. Real world problems
are structured and can often be represented by dynamic Bayesian networks (DBNs)
with a reasonable number of nodes. Our Φ selection principle can be adapted from

19



MDPs to the conceptually much more complex DBN case. The primary purpose
of this Part I was to explain the key concepts on an as simple model as possible,
namely unstructured finite MDPs, to set the stage for developing the more realistic
ΦDBN in Part II [Hut09c].

Outlook. The major open problems are to develop smart Φ generation and smart
stochastic search algorithms for Φbest, and to determine whether minimizing (14) is
the right criterion.

Acknowledgements. My thanks go to Pedro Ortega, Sergey Pankov, Scott Sanner,
Jürgen Schmidhuber, and Hanna Suominen for feedback on earlier drafts.
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A List of Notation

Interface structures

O = finite or infinite set of possible observations

A = (small) finite set of actions

R = {0,1} or [0,Rmax] or other set of rewards

n∈IN = current time

otrtat = orat∈O×R×A = true observation, reward, action at time t

Internal structures for ΦMDP

log = binary logarithm

t∈{1,...,n} = any time

i∈{1,...,m} = any state index

x=x1:n = x1...xn (any x)

x+,x∗,x• =
∑

jxj,
⋃

jxj, (x1,...,xl) (any x,j,l)

X̂ = estimate of X (any X)

H = (O×R×A)∗×O×R = possible histories

hn = ora1:n−1onrn = actual history at time n

S = {s1,...,sm} = internal finite state space (can vary with n)

Φ:H→S = state or feature summary of history

st = Φ(ht)∈S = realized state at time t

P(·) = probability over states and rewards or parts thereof

CL(·) = code length

MDP = (S,A,T,R) = Markov Decision Process

T a
ss′ = P(st =s′|st−1 =s,at−1 =a) = transition matrix

s
a→s′(r′) = action a in state s resulted in state s′ (and reward r′)

T ar′

ss′ = set of times t∈{1,...,n} at which s
a→s′r′

nar′

ss′ = |T ar′

ss′ | = number of times t∈{1,...,n} at which s
a→s′r′

Cost(Φ|h) = cost (evaluation function) of Φ based on history h

ICost(Φ|h) = improved cost function

Q∗a
s ,V ∗

s = optimal (Q) Value (of action a) in state s

γ∈ [0;1) = discount factor ((1−γ)−1 is effective horizon)
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