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Abstract

Feature Markov Decision Processes (ΦMDPs)
[Hut09] are well-suited for learning agents in gen-
eral environments. Nevertheless, unstructured
(Φ)MDPs are limited to relatively simple environ-
ments. Structured MDPs like Dynamic Bayesian
Networks (DBNs) are used for large-scale real-
world problems. In this article I extend ΦMDP
to ΦDBN. The primary contribution is to derive a
cost criterion that allows to automatically extract
the most relevant features from the environment,
leading to the “best” DBN representation. I dis-
cuss all building blocks required for a complete
general learning algorithm.

Keywords: Reinforcement learning; dynamic
Bayesian network; structure learning; feature
learning; global vs. local reward; explore-exploit.

1 Introduction

Agents. The agent-environment setup in which an Agent
interacts with an Environment is a very general and preva-
lent framework for studying intelligent learning systems
[RN03]. In cycles t = 1,2,3,..., the environment provides
a (regular) observation ot ∈ O (e.g. a camera image) to
the agent; then the agent chooses an action at∈A (e.g. a
limb movement); finally the environment provides a real-
valued reward rt∈IR to the agent. The reward may be very
scarce, e.g. just +1 (-1) for winning (losing) a chess game,
and 0 at all other times [Hut05, Sec.6.3]. Then the next
cycle t+1 starts. The agent’s objective is to maximize his
reward.

Environments. For example, sequence prediction is con-
cerned with environments that do not react to the agents
actions (e.g. a weather-forecasting “action”) [Hut03], plan-
ning deals with the case where the environmental function
is known [RPPCd08], classification and regression is for
conditionally independent observations [Bis06], Markov
Decision Processes (MDPs) assume that ot and rt only
depend on at−1 and ot−1 [SB98], POMDPs deal with Par-
tially Observable MDPs [KLC98], and Dynamic Bayesian
Networks (DBNs) with structured MDPs [BDH99].

Feature MDPs [Hut09]. Concrete real-world prob-
lems can often be modeled as MDPs. For this purpose,
a designer extracts relevant features from the history
(e.g. position and velocity of all objects), i.e. the history
ht = a1o1r1...at−1ot−1rt−1ot is summarized by a feature
vector st := Φ(ht). The feature vectors are regarded as
states of an MDP and are assumed to be (approximately)
Markov.

Artificial General Intelligence (AGI) [GP07] is con-
cerned with designing agents that perform well in a very
large range of environments [LH07], including all of the
mentioned ones above and more. In this general situa-
tion, it is not a priori clear what the useful features are.
Indeed, any observation in the (far) past may be relevant
in the future. A solution suggested in [Hut09] is to learn
Φ itself.

If Φ keeps too much of the history (e.g. Φ(ht) = ht),
the resulting MDP is too large (infinite) and cannot be
learned. If Φ keeps too little, the resulting state sequence
is not Markov. The Cost criterion I develop formalizes this
tradeoff and is minimized for the “best” Φ. At any time
n, the best Φ is the one that minimizes the Markov code
length of s1...sn and r1...rn. This reminds but is actually
quite different from MDL, which minimizes model+data
code length [Grü07].

Dynamic Bayesian networks. The use of “unstruc-
tured” MDPs [Hut09], even our Φ-optimal ones, is clearly
limited to relatively simple tasks. Real-world problems
are structured and can often be represented by dynamic
Bayesian networks (DBNs) with a reasonable number of
nodes [DK89]. Bayesian networks in general and DBNs
in particular are powerful tools for modeling and solv-
ing complex real-world problems. Advances in theory and
increase in computation power constantly broaden their
range of applicability [BDH99, SDL07].

Main contribution. The primary contribution of this
work is to extend the Φ selection principle developed in
[Hut09] for MDPs to the conceptually much more demand-
ing DBN case. The major extra complications are approx-
imating, learning and coding the rewards, the dependence
of the Cost criterion on the DBN structure, learning the
DBN structure, and how to store and find the optimal
value function and policy.
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Although this article is self-contained, it is recom-
mended to read [Hut09] first.

2 Feature Dynamic Bayesian Networks
(ΦDBN)

In this section I recapitulate the definition of ΦMDP from
[Hut09], and adapt it to DBNs. While formally a DBN
is just a special case of an MDP, exploiting the additional
structure efficiently is a challenge. For generic MDPs, typ-
ical algorithms should be polynomial and can at best be
linear in the number of states |S|. For DBNs we want
algorithms that are polynomial in the number of features
m. Such DBNs have exponentially many states (2O(m)),
hence the standard MDP algorithms are exponential, not
polynomial, in m. Deriving poly-time (and poly-space!)
algorithms for DBNs by exploiting the additional DBN
structure is the challenge. The gain is that we can handle
exponentially large structured MDPs efficiently.

Notation. Throughout this article, log denotes the bi-
nary logarithm, and δx,y = δxy = 1 if x = y and 0 else is
the Kronecker symbol. I generally omit separating com-
mas if no confusion arises, in particular in indices. For
any z of suitable type (string,vector,set), I define string
z = z1:l = z1...zl, sum z+ =

∑
jzj , union z∗ =

⋃
jzj , and

vector z• = (z1,...,zl), where j ranges over the full range
{1,...,l} and l = |z| is the length or dimension or size of
z. ẑ denotes an estimate of z. The characteristic func-
tion 11B = 1 if B=true and 0 else. P(·) denotes a prob-
ability over states and rewards or parts thereof. I do
not distinguish between random variables Z and realiza-
tions z, and abbreviation P(z) := P[Z = z] never leads to
confusion. More specifically, m ∈ IN denotes the num-
ber of features, i∈ {1,...,m} any feature, n∈ IN the cur-
rent time, and t ∈ {1,...,n} any time. Further, in order
not to get distracted at several places I gloss over ini-
tial conditions or special cases where inessential. Also
0∗undefined=0∗infinity:=0.

ΦMDP definition. A ΦMDP consists of a 7 tu-
pel (O,A,R,Agent,Env,Φ,S) = (observation space, action
space, reward space, agent, environment, feature map,
state space). Without much loss of generality, I assume
that A and O are finite and R⊆ IR. Implicitly I assume
A to be small, while O may be huge.

Agent and Env are a pair or triple of interlocking func-
tions of the history H :=(O×A×R)∗×O:

Env : H×A×R ; O, on = Env(hn−1an−1rn−1),
Agent : H ; A, an = Agent(hn),

Env : H×A ; R, rn = Env(hnan).

where ; indicates that mappings → might be stochas-
tic. The informal goal of AI is to design an Agent() that
achieves high (expected) reward over the agent’s lifetime
in a large range of Env()ironments.

The feature map Φ maps histories to states

Φ : H → S, st = Φ(ht), ht = oar1:t−1ot ∈ H

The idea is that Φ shall extract the “relevant” aspects
of the history in the sense that “compressed” history
sar1:n≡s1a1r1...snanrn can well be described as a sample
from some MDP (S,A,T,R) = (state space, action space,
transition probability, reward function).

(Φ) Dynamic Bayesian Networks are structured
(Φ)MDPs. The state space is S={0,1}m, and each state
s≡ x≡ (x1,...,xm) ∈ S is interpreted as a feature vector
x=Φ(h), where xi =Φi(h) is the value of the ith binary
feature. In the following I will also refer to xi as feature
i, although strictly speaking it is its value. Since non-
binary features can be realized as a list of binary features,
I restrict myself to the latter.

Given xt−1=x, I assume that the features (x1
t ,...,x

m
t )=

x′ at time t are independent, and that each x′i depends
only on a subset of “parent” features ui⊆{x1,...,xm}, i.e.
the transition matrix has the structure

T a
xx′= P(xt = x′|xt−1 = x,at−1 = a) =

m∏
i=1

Pa(x′i|ui) (1)

This defines our ΦDBN model. It is just a ΦMDP with
special S and T . Explaining ΦDBN on an example is
easier than staying general.

3 ΦDBN Example

Consider an instantiation of the simple vacuum world
[RN03, Sec.3.6]. There are two rooms, A and B, and a
vacuum Robot that can observe whether the room he is
in is Clean or Dirty; Move to the other room, Suck, i.e.
clean the room he is in; or do Nothing. After 3 days a
room gets dirty again. Every clean room gives a reward
1, but a moving or sucking robot costs and hence reduces
the reward by 1. Hence O={A,B}×{C,D}, A={N,S,M},
R= {−1,0,1,2}, and the dynamics Env() (possible histo-
ries) is clear from the above description.

Dynamics as a DBN. We can model the dynamics by
a DBN as follows: The state is modeled by 3 features.
Feature R∈{A,B} stores in which room the robot is, and
feature A/B∈{0,1,2,3} remembers (capped at 3) how long
ago the robot has cleaned room A/B last time, hence S=
{0,1,2,3}×{A,B}×{0,1,2,3}. The state/feature transition
is as follows:

if (xR=A and a=S) then x′A=0 else x′A=min{xA+1, 3};
if (xR=B and a=S) then x′B=0 else x′B=min{xB+1, 3};
if a=M (if xR=B then x′R=A else x′R=B) else x′R=xR;

A DBN can be viewed as a two-layer Bayesian network
[BDH99]. The dependency structure of our example is
depicted in the right diagram.

t−1 t
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A′

����
R ����

R′

����
B ����

B′

x x′

-

-

-

�
��>
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Each feature consists of a (left,right)-
pair of nodes, and a node i ∈ {1,2,3 =
m}=̂{A,R,B} on the right is connected to
all and only the parent features ui on the
left. The reward is

r = 11xA<3 + 11xB<3 − 11a6=N
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The features map Φ = (ΦA,ΦR,ΦB) can also be written
down explicitly. It depends on the actions and observa-
tions of the last 3 time steps.

Discussion. Note that all nodes x′i can implicitly also de-
pend on the chosen action a. The optimal policies are rep-
etitions of action sequence S,N,M or S,M,N . One might
think that binary features xA/B ∈ {C,D} are sufficient,
but this would result in a POMDP (Partially Observable
MDP), since the cleanness of room A is not observed while
the robot is in room B. That is, x′ would not be a (proba-
bilistic) function of x and a alone. The quaternary feature
xA∈{0,1,2,3} can easily be converted into two binary fea-
tures, and similarly xB . The purely deterministic exam-
ple can easily be made stochastic. For instance, Sucking
and Moving may fail with a certain probability. Possible,
but more complicated is to model a probabilistic transi-
tion from Clean to Dirty. In the randomized versions the
agent needs to use its observations.

4 ΦDBN Coding and Evaluation

I now construct a code for s1:n given a1:n, and for r1:n

given s1:n and a1:n, which is optimal (minimal) if s1:nr1:n

given a1:n is sampled from some MDP. It constitutes our
cost function for Φ and is used to define the Φ selection
principle for DBNs. Compared to the MDP case, reward
coding is more complex, and there is an extra dependence
on the graphical structure of the DBN.

Recall [Hut09] that a sequence z1:n with counts n =
(n1,...,nm) can within an additive constant be coded in

CL(n) := n H(n/n)+ m′−1
2 logn if n>0 and 0 else (2)

bits, where n = n+ = n1+...+nm and m′ = |{i : ni > 0}|≤
m is the number of non-empty categories, and H(p) :=
−

∑m
i=1pilogpi is the entropy of probability distribution p.

The code is optimal (within +O(1)) for all i.i.d. sources.

State/Feature Coding. Similarly to the ΦMDP case,
we need to code the temporal “observed” state=feature
sequence x1:n. I do this by a frequency estimate of the
state/feature transition probability. (Within an additive
constant, MDL, MML, combinatorial, incremental, and
Bayesian coding all lead to the same result). In the fol-
lowing I will drop the prime in (ui,a,x′i) tuples and re-
lated situations if/since it does not lead to confusion. Let
T ia

uixi = {t≤ n : ut−1 = ui,at−1 = a,xi
t = xi} be the set of

times t−1 at which features that influence xi have val-
ues ui, and action is a, and which leads to feature i hav-
ing value xi. Let nia

uixi = |T ia
uixi | their number (ni+

++ = n
∀i). I estimate each feature probability separately by
P̂a(xi|ui)=nia

uixi/nia
ui+

. Using (1), this yields

P̂(x1:n|a1:n) =
n∏

t=1

T̂ at−1
xt−1xt

=
n∏

t=1

m∏
i=1

P̂at−1(xi
t|ui

t−1)

= ... = exp
[ ∑

i,ui,a

nia
ui+H

(
nia

ui•

nia
ui+

)]

The length of the Shannon-Fano code of x1:n is just the
logarithm of this expression. We also need to code each
non-zero count nia

uixi to accuracy O(1/
√

nia
ui+), which each

needs 1
2 log(nia

ui+
) bits. Together this gives a complete code

of length

CL(x1:n|a1:n) =
∑

i,ui,a

CL(nia
ui•) (3)

The rewards are more complicated.

Reward structure. Let Ra
xx′ be (a model of) the ob-

served reward when action a in state x results in state
x′. It is natural to assume that the structure of the re-
wards Ra

xx′ is related to the transition structure T a
xx′ . In-

deed, this is not restrictive, since one can always consider
a DBN with the union of transition and reward depen-
dencies. Usually it is assumed that the “global” reward
is a sum of “local” rewards Ria

uix′i , one for each feature
i [KP99]. For simplicity of exposition I assume that the
local reward Ri only depends on the feature value x′i and
not on ui and a. Even this is not restrictive and actually
may be advantageous as discussed in [Hut09] for MDPs.
So I assume

Ra
xx′ =

m∑
i=1

Ri
x′i =: R(x′)

For instance, in the example of Section 2, two local rewards
(RA

x′A =11x′A<3 and RB
x′B =11x′B<3) depend on x′ only, but

the third reward depends on the action (RR =−11a6=N ).
Often it is assumed that the local rewards are directly

observed or known [KP99], but we neither want nor can
do this here: Having to specify many local rewards is an
extra burden for the environment (e.g. the teacher), which
preferably should be avoided. In our case, it is not even
possible to pre-specify a local reward for each feature, since
the features Φi themselves are learned by the agent and
are not statically available. They are agent-internal and
not part of the ΦDBN interface. In case multiple rewards
are available, they can be modeled as part of the regular
observations o, and r only holds the overall reward. The
agent must and can learn to interpret and exploit the local
rewards in o by himself.

Learning the reward function. In analogy to the MDP
case for R and the DBN case for T above it is tempting to
estimate Ri

xi by
∑

r′r
′nir′

+xi/ni+
+xi but this makes no sense.

For instance if rt = 1∀t, then R̂i
xi ≡ 1, and R̂a

xx′ ≡m is
a gross mis-estimation of rt ≡ 1. The localization of the
global reward is somewhat more complicated. The goal is
to choose R1

x1 ,...,Rm
xm such that rt =R(xt)∀t.

Without loss we can set Ri
0≡0, since we can subtract a

constant from each local reward and absorb them into an
overall constant w0. This allows us to write

R(x) = w0x
0 + w1x

1 + ... + wmxm = w>x

where wi :=Ri
1 and x0 :≡1.
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In practice, the ΦDBN model will not be perfect, and
an approximate solution, e.g. a least squares fit, is the best
we can achieve. The square loss can be written as

Loss(w) :=
n∑

t=1

(R(xt)− rt)2 = w>Aw − 2b>w + c (4)

Aij :=
n∑

t=1

xi
tx

j
t , bi :=

n∑
t=1

rtx
i
t, c :=

n∑
t=1

r2
t

Note that Aij counts the number of times feature i and j
are “on” (=1) simultaneously, and bi sums all rewards for
which feature i is on. The loss is minimized for

ŵ := arg min
w

Loss(w) = A−1b, R̂(x) = ŵ>x

which involves an inversion of the (m+1)×(m+1) matrix
A. For singular A we take the pseudo-inverse.

Reward coding. The quadratic loss function suggests a
Gaussian model for the rewards:

P(r1:n|ŵ, σ) := exp(−Loss(ŵ)/2σ2)/(2πσ2)n/2

Maximizing this w.r.t. the variance σ2 yields the maximum
likelihood estimate

− log P(r1:n|ŵ, σ̂) = n
2 log(Loss(ŵ))− n

2 log ne
2π

where σ̂2 = Loss(ŵ)/n. Given ŵ and σ̂ this can be re-
garded as the (Shannon-Fano) code length of r1:n (there
are actually a few subtleties here which I gloss over). Each
weight ŵk and σ̂ need also be coded to accuracy O(1/

√
n),

which needs (m+2) 1
2 logn bits total. Together this gives a

complete code of length

CL(r1:n|x1:na1:n) = (5)

= n
2 log(Loss(ŵ)) + m+2

2 log n− n
2 log ne

2π

ΦDBN evaluation and selection is similar to the MDP
case. Let G denote the graphical structure of the DBN,
i.e. the set of parents Pai ⊆ {1,...,m} of each feature i.
(Remember ui are the parent values). Similarly to the
MDP case, the cost of (Φ,G) on hn is defined as

Cost(Φ, G|hn) := CL(x1:n|a1:n) + CL(r1:n|x1:n, a1:n),
(6)

and the best (Φ,G) minimizes this cost.

(Φbest, Gbest) := arg min
Φ,G

{Cost(Φ, G|hn)}

A general discussion why this is a good criterion can be
found in [Hut09]. In the following section I mainly high-
light the difference to the MDP case, in particular the
additional dependence on and optimization over G.

5 DBN Structure Learning & Updating

This section briefly discusses minimization of (6) w.r.t. G
given Φ and even briefer minimization w.r.t. Φ. For the
moment regard Φ as given and fixed.

Cost and DBN structure. For general structured local
rewards Ria

uix′i , (3) and (5) both depend on G, and (6)
represents a novel DBN structure learning criterion that
includes the rewards.

For our simple reward model Ri
xi , (5) is independent

of G, hence only (3) needs to be considered. This is a
standard MDL criterion, but I have not seen it used in
DBNs before. Further, the features i are independent in
the sense that we can search for the optimal parent sets
Pai⊆{1,...,m} for each feature i separately.

Complexity of structure search. Even in this case,
finding the optimal DBN structure is generally hard. In
principle we could rely on off-the-shelf heuristic search
methods for finding good G, but it is probably better to
use or develop some special purpose optimizer. One may
even restrict the space of considered graphs G to those for
which (6) can be minimized w.r.t. G efficiently, as long as
this restriction can be compensated by “smarter” Φ.

A brute force exhaustive search algorithm for Pai is to
consider all 2m subsets of {1,...,m} and select the one that
minimizes

∑
ui,aCL(nia

ui•). A reasonable and often em-
ployed assumption is to limit the number of parents to
some small value p, which reduces the search space size to
O(mp).

Indeed, since the Cost is exponential in the maximal
number of parents of a feature, but only linear in n, a
Cost minimizing Φ can usually not have more than a log-
arithmic number of parents, which leads to a search space
that is pseudo-polynomial in m.

Heuristic structure search. We could also replace the
well-founded criterion (3) by some heuristic. One such
heuristic has been developed in [SDL07]. The mutual in-
formation is another popular criterion for determining the
dependency of two random variables, so we could add j
as a parent of feature i if the mutual information of xj

and x′i is above a certain threshold. Overall this takes
time O(m2) to determine G. An MDL inspired threshold
for binary random variables is 1

2n logn. Since the mutual
information treats parents independently, T̂ has to be es-
timated accordingly, essentially as in naive Bayes classifi-
cation [Lew98] with feature selection, where x′i represents
the class label and ui are the features selected x. The
improved Tree-Augmented naive Bayes (TAN) classifier
[FGG97] could be used to model synchronous feature de-
pendencies (i.e. within a time slice). The Chow-Liu [CL68]
minimum spanning tree algorithm allows determining G in
time O(m3). A tree becomes a forest if we employ a lower
threshold for the mutual information.

Φ search is even harder than structure search, and re-
mains an art. Nevertheless the reduction of the complex
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(ill-defined) reinforcement learning problem to an inter-
nal feature search problem with well-defined objective is a
clear conceptual advance.

In principle (but not in practice) we could consider
the set of all (computable) functions {Φ : H → {0,1}}.
We then compute Cost(Φ|h) for every finite subset Φ =
{Φi1 ,...,Φim} and take the minimum (note that the order
is irrelevant).

Most practical search algorithms require the specifica-
tion of some neighborhood function, here for Φ. For in-
stance, stochastic search algorithms suggest and accept
a neighbor of Φ with a probability that depends on the
Cost reduction. See [Hut09] for more details. Here I will
only present some very simplistic ideas for features and
neighborhoods.

Assume binary observations O={0,1} and consider the
last m observations as features, i.e. Φi(hn) = on−i+1 and
Φ(hn)=(Φ1(hn),...,Φm(hn))=on−m+1:n. So the states are
the same as for ΦmMDP in [Hut09], but now S={0,1}m

is structured as m binary features. In the example here,
m=5 lead to a perfect ΦDBN. We can add a new feature
on−m (m;m+1) or remove the last feature (m;m−1),
which defines a natural neighborhood structure.

Note that the context trees of [McC96, Hut09] are more
flexible. To achieve this flexibility here we either have to
use smarter features within our framework (simply inter-
pret s=ΦS(h) as a feature vector of length m=dlog|S|e)
or use smarter (non-tabular) estimates of Pa(xi|ui) ex-
tending our framework (to tree dependencies).

For general purpose intelligent agents we clearly
need more powerful features. Logical expressions or
(non)accepting Turing machines or recursive sets can map
histories or parts thereof into true/false or accept/reject
or in/out, respectively, hence naturally represent binary
features. Randomly generating such expressions or pro-
grams with an appropriate bias towards simple ones is a
universal feature generator that eventually finds the opti-
mal feature map. The idea is known as Universal Search
[Gag07].

6 Value & Policy Learning in ΦDBN

Given an estimate Φ̂ of Φbest, the next step is to deter-
mine a good action for our agent. I mainly concentrate on
the difficulties one faces in adapting MDP algorithms and
discuss state of the art DBN algorithms. Value and policy
learning in known finite state MDPs is easy provided one is
satisfied with a polynomial time algorithm. Since a DBN
is just a special (structured) MDP, its (Q) Value function
respects the same Bellman equations [Hut09, Eq.(6)], and
the optimal policy is still given by an+1 :=argmaxaQ∗a

xn+1
.

Nevertheless, their solution is now a nightmare, since the
state space is exponential in the number of features. We
need algorithms that are polynomial in the number of fea-
tures, i.e. logarithmic in the number of states.

Value function approximation. The first problem is
that the optimal value and policy do not respect the struc-

ture of the DBN. They are usually complex functions of
the (exponentially many) states, which cannot even be
stored, not to mention computed [KP99]. It has been sug-
gested that the value can often be approximated well as a
sum of local values similarly to the rewards. Such a value
function can at least be stored.

Model-based learning. The default quality measure
for the approximate value is the ρ-weighted squared dif-
ference, where ρ is the stationary distribution.

Even for a fixed policy, value iteration does not con-
verge to the best approximation, but usually converges to
a fixed point close to it [BT96]. Value iteration requires ρ
explicitly. Since ρ is also too large to store, one has to ap-
proximate ρ as well. Another problem, as pointed out in
[KP00], is that policy iteration may not converge, since dif-
ferent policies have different (misleading) stationary dis-
tributions. Koller and Parr [KP00] devised algorithms for
general factored ρ, and Guestrin et al. [GKPV03] for max-
norm, alleviating this problem. Finally, general policies
cannot be stored exactly, and another restriction or ap-
proximation is necessary.

Model-free learning. Given the difficulties above, I sug-
gest to (re)consider a very simple class of algorithms, with-
out suggesting that it is better. The above model-based
algorithms exploit T̂ and R̂ directly. An alternative is to
sample from T̂ and use model-free “Temporal Difference
(TD)” learning algorithms based only on this internal vir-
tual sample [SB98]. We could use TD(λ) or Q-value vari-
ants with linear value function approximation.

Beside their simplicity, another advantage is that nei-
ther the stationary distribution nor the policy needs to be
stored or approximated. Once approximation Q̂∗ has been
obtained, it is trivial to determine the optimal (w.r.t. Q̂∗)
action via an+1 =argmaxaQ∗a

xn+1
for any state of interest

(namely xn+1) exactly.

Exploration. Optimal actions based on approximate
rather than exact values can lead to very poor behav-
ior due to lack of exploration. There are polynomially
optimal algorithms (Rmax,E3,OIM) for the exploration-
exploitation dilemma.

For model-based learning, extending E3 to DBNs is
straightforward, but E3 needs an oracle for planning in
a given DBN [KK99]. Recently, Strehl et al. [SDL07] ac-
complished the same for Rmax. They even learn the DBN
structure, albeit in a very simplistic way. Algorithm OIM
[SL08], which I described in [Hut09] for MDPs, can also
likely be generalized to DBNs, and I can imagine a model-
free version.

7 Incremental Updates

As discussed in Section 5, most search algorithms are lo-
cal in the sense that they produce a chain of “slightly”
modified candidate solutions, here Φ’s. This suggests a
potential speedup by computing quantities of interest in-
crementally.
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Cost. Computing CL(x|a) in (3) takes at most time
O(m2k|A|), where k is the maximal number of parents
of a feature. If we remove feature i, we can simply re-
move/subtract the contributions from i in the sum. If we
add a new feature m+1, we only need to search for the best
parent set um+1 for this new feature, and add the corre-
sponding code length. In practice, many transitions don’t
occur, i.e. nia

uixi =0, so CL(x|a) can actually be computed
much faster in time O(|{nia

uixi > 0}|), and incrementally
even faster.

Rewards. When adding a new feature, the current local
reward estimates may not change much. If we reassign a
fraction α≤1 of reward to the new feature xm+1, we get
the following ansatz1.

R̂(x1, ..., xm+1) = (1−α)R̂(x)+wm+1x
m+1 =: v>ψ(x)

v := (1−α, wm+1)>, ψ := (R̂(x), xm+1)>

Minimizing
∑n

t=1(R̂(x1
t ...x

m+1
t )−rt)2 w.r.t. v analogous

to (4) just requires a trivial 2×2 matrix inversion. The
minimum ṽ results in an initial new estimate w̃ = ((1−
α̃)ŵ0,...,(1− α̃)ŵm,w̃m+1)>, which can be improved by
some first order gradient decent algorithm in time O(m),
compared to the exact O(m3) algorithm. When removing
a feature, we simply redistribute its local reward to the
other features, e.g. uniformly, followed by improvement
steps that cost O(m) time.

Value. All iteration algorithms described in Section 6 for
computing (Q) Values need an initial value for V or Q. We
can take the estimate V̂ from a previous Φ as an initial
value for the new Φ. Similarly as for the rewards, we can
redistribute a fraction of the values by solving relatively
small systems of equations. The result is then used as
an initial value for the iteration algorithms in Section 6.
A further speedup can be obtained by using prioritized
iteration algorithms that concentrate their time on badly
estimated parameters, which are in our case the new values
[SB98].

Similarly, results from time t can be (re)used as initial
estimates for the next cycle t+1, followed by a fast im-
provement step.

8 Outlook

ΦDBN leaves much more questions open and room for
modifications and improvements than ΦMDP. Here are a
few.

• The cost function can be improved by integrating out
the states analogous to the ΦMDP case [Hut09]: The
likelihood P(r1:n|a1:n,Û) is unchanged, except that
Û≡ T̂ R̂ is now estimated locally, and the complexity
penalty becomes 1

2 (M +m+2)logn, where M is (es-
sentially) the number of non-zero counts nia

uixi , but
an efficient algorithm has yet to be found.

1An Ansatz is an initial mathematical or physical model
with some free parameters to be determined subsequently.
[http://en.wikipedia.org/wiki/Ansatz]

• It may be necessary to impose and exploit structure
on the conditional probability tables P a(xi|ui) them-
selves [BDH99].

• Real-valued observations and beliefs suggest to ex-
tend the binary feature model to [0,1] interval valued
features rather than coding them binary. Since any
continuous semantics that preserves the role of 0 and
1 is acceptable, there should be an efficient way to
generalize Cost and Value estimation procedures.

• I assumed that the reward/value is linear in local re-
wards/values. Is this sufficient for all practical pur-
poses? I also assumed a least squares and Gaussian
model for the local rewards. There are efficient algo-
rithms for much more flexible models. The least we
could do is to code w.r.t. the proper covariance A.

• I also barely discussed synchronous (within time-slice)
dependencies.

• I guess ΦDBN will often be able to work around too
restrictive DBN models, by finding features Φ that are
more compatible with the DBN and reward structure.

• Extra edges in the DBN can improve the linear value
function approximation. To give ΦDBN incentives to
do so, the Value would have to be included in the Cost
criterion.

• Implicitly I assumed that the action space A is small.
It is possible to extend ΦDBN to large structured
action spaces.

• Apart from the Φ-search, all parts of ΦDBN seem
to be poly-time approximable, which is satisfactory
in theory. In practice, this needs to be improved to
essentially linear time in n and m.

• Developing smart Φ generation and smart stochastic
search algorithms for Φ are the major open challenges.

• A more Bayesian Cost criterion would be desirable: a
likelihood of h given Φ and a prior over Φ leading to a
posterior of Φ given h, or so. Monte Carlo (search) al-
gorithms like Metropolis-Hastings could sample from
such a posterior. Currently probabilities (=̂2−CL) are
assigned only to rewards and states, but not to ob-
servations and feature maps.

Summary. In this work I introduced a powerful frame-
work (ΦDBN) for general-purpose intelligent learning
agents, and presented algorithms for all required building
blocks. The introduced cost criterion reduced the informal
reinforcement learning problem to an internal well-defined
search for “relevant” features.
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