
Technical Report IDSIA-01-01, 17 January 2001

ftp://ftp.idsia.ch/pub/techrep/IDSIA-01-01.ps.gz

Fitness Uniform Selection to
Preserve Genetic Diversity

Marcus Hutter

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland
marcus@idsia.ch http://www.idsia.ch/∼marcus

Keywords

Evolutionary algorithms, fitness uniform selection strategy, preserve diversity, lo-
cal optima, evolution, correlated recombination, crossover.

Abstract

In evolutionary algorithms, the fitness of a population increases with time by
mutating and recombining individuals and by a biased selection of more fit indi-
viduals. The right selection pressure is critical in ensuring sufficient optimization
progress on the one hand and in preserving genetic diversity to be able to es-
cape from local optima on the other. We propose a new selection scheme, which
is uniform in the fitness values. It generates selection pressure towards sparsely
populated fitness regions, not necessarily towards higher fitness, as is the case for
all other selection schemes. We show that the new selection scheme can be much
more effective than standard selection schemes.



1 Introduction

Evolutionary algorithms (EA): Evolutionary algorithms are capable of solving com-
plicated optimization tasks in which an objective function f :I→IR shall be maximized.
i ∈ I is an individual from the set I of feasible solutions. Infeasible solutions due to
constraints my also be considered by reducing f for each violated constraint. A popula-
tion P ⊆I of individuals is maintained and updated as follows: one or more individuals
are selected according to some selection strategy. In generation based EAs, the selected
individuals are recombined (e.g. crossover) and mutated, and constitute the new popu-
lation. We prefer the more incremental, steady-state population update, which selects
(and possibly delets) only one or two individuals from the current population and adds
the newly recombined and mutated individuals to it. We are interested in finding a
single individual of maximal objective value f for difficult multimodal and deceptive
problems.

Standard selection schemes (STD): The standard selection schemes (abbreviated
by STD in the following), proportionate, truncation, ranking and tournament selection
all favor individuals of higher fitness [Gol89, GD91, BT95, BT97]. This is also true for
less common schemes, like Boltzmann selection [MT93]. The fitness function is identi-
fied with the objective function (possibly after a monotone transformation). In linear
proportionate selection the probability of selecting an individual depends linearly on its
fitness [Hol75]. In truncation selection the α% fittest individuals are selected, usually
with multiplicity 1

α%
in order to keep the population size fixed [MSV94]. (Linear) rank-

ing selection orders the individuals according to their fitness. The selection probability
is, then, a (linear) function of the rank [Whi89]. Tournament selection [Bak85], which
selects the best l out of k individuals has primarily developed for steady-state EAs, but
can be adapted to generation based EAs. All these selection schemes have the property
(and goal!) to increase the average fitness of a population, i.e. to evolve the popula-
tion towards higher fitness. For a population with a Gaussian fitness distribution, the
probability of selecting an individual and the effect of selection is shown in Figure 1.

The problem of the right selection pressure: The standard selection schemes
STD, together with mutation and recombination, evolve the population towards higher
fitness. If the selection pressure is too high, the EA gets stuck in a local optimum, since
the genetic diversity rapidly decreases. The suboptimal genetic material which might
help in finding the global optimum is deleted too rapidly (premature convergence). On
the other hand, the selection pressure cannot be chosen arbitrarily low if we want EA to
be effective. In difficult optimization problems, suitable population sizes, mutation and
recombination rates, and selection parameters, which influence the selection intensity,
are usually not known beforehand. Often, constant values are not sufficient at all. There
are various suggestions to dynamically determine and adapt the parameters [Esh91,
BHS91, Her92, SVM94]. Other approaches to preserve genetic diversity are fitness
sharing [GR87], crowding [Jon75] and local mating [CJ91]. They depend on the proper
design of a neighborhood function based on the specific problem structure and/or coding.
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The main idea: Here, we propose a new selection scheme, based on the insight that
we are not primarily interested in a population converging to maximal fitness, but only
in a single individual of maximal fitness. The scheme automatically creates a suit-
able selection pressure and preserves genetic diversity better than STD. The proposed
fitness uniform selection scheme FUSS (see also Figure 1) is defined as follows: if the
lowest/highest fitness values in the current population P are fmin/max, we select a fitness
value f uniformly in the interval [fmin, fmax]. Then, the individual i ∈ P with fitness
nearest to f is selected and a copy is added to P , possibly after mutation and recombi-
nation. We will see that FUSS maintains genetic diversity much better than STD, since
a distribution over the fitness values is used, unlike STD, which all use a distribution
over individuals. Premature convergence is avoided in FUSS by abandoning convergence
at all. Nevertheless there is a selection pressure in FUSS towards higher fitness. The
probability of selecting a specific individual is proportional to the distance to its nearest
fitness neighbor. In a population with a high density of unfit and low density of fit
individuals, the fitter ones are effectively favored.

Contents: In Section 2 we discuss the problems of local optima and exponential
takeover [GD91] in STD. Motivated by the need to preserve genetic diversity, we define
the fitness uniform selection scheme FUSS. We discuss under which circumstances FUSS
leads to an (approximate) fitness uniform population.

Further properties of FUSS are discussed in Section 3, especially, how FUSS creates
selection pressure towards higher fitness and how it preserves diversity better than STD.
Further topics are the equilibrium distribution and the transformation properties of
FUSS under linear and non-linear transformations.

In Section 4 we demonstrate by way of a simple optimization example that an EA with
FUSS can optimize much faster than with STD. We show that crossover can be effective
in FUSS, even when ineffective in STD. Furthermore, FUSS and STD are compared to
random search with and without crossover.

There is a possible slowdown when including recombination, as discussed in Section
5, which can be avoided by using a scale independent pair selection. It is a “best”
compromise between unrestricted recombination and recombination of individuals with
similar fitness only.

To simplify the discussion we have concentrated on the case of discrete, equi-spaced
fitness values. In many practical problems, the fitness function is continuously valued.
FUSS and some of the discussion of the previous sections is generalized to the continuous
case in Section 6.

A summary, conclusions and further discussions can be found in Section 7.

The focus of this work is on a theoretical analysis of FUSS. Implementation details and
numerical results for various test-functions and for real-world problems will be presented
elsewhere.
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2 Fitness Uniform Selection Strategy (FUSS)

The problem of local optima: Proportionate, truncation, ranking and tournament
are the standard (STD) selection algorithms used in evolutionary optimization. They
have the following property: if a local optimum ilopt has been found, the number of
individuals with fitness f lopt = f(ilopt) increases exponentially. Assume a low mutation
and recombination rate, or, for instance, truncation selection after mutation and recom-
bination. Further, assume that it is very difficult to find an individual more fit than
ilopt. The population will then degenerate and will consist mostly of ilopt after a few
rounds. This decreased diversity makes it even more unlikely that f lopt gets improved.
The suboptimal genetic material which might help in finding the global optimum has
been deleted too rapidly. On the other hand, too high mutation and recombination
rates convert the EA into an inefficient random search. In the following we suggest a
new a new selection scheme, which automatically generates a suitably adapting selection
pressure.

The fitness uniform selection scheme (FUSS): For simplicity we start with a
fitness function f : I → F with discrete equi-spaced values F = {fmin, fmin+ε, fmin+
2ε, ..., fmax−ε, fmax}. The continuous valued case F = [fmin, fmax] is considered later.
The fitness uniform selection scheme (FUSS) is defined as follows: randomly select a
fitness value f uniformly from the fitness values F . Randomly (uniformly) select an
individual i from population P with fitness f . Add another copy of i to P .

Note the two stage uniform selection process which is very different from a one step
uniform selection of an individual of P (see Figure 1). In STD, inertia increases with
population size. A large mass of unfit individuals reduces the probability of selecting
fit individuals. This is not the case for FUSS. Hence, without loss of performance,
we can define a pure model, in which no individual is ever deleted; the population
size increases with time. No genetic material is ever discarded and no fine-tuning in
population size is necessary. What may prevent the pure model from being applied to
practical problems are not computation time issues, but memory problems. If space
gets a problem we delete individuals from the most occupied fitness levels. Most of the
following statements remain valid with this modification.

Asymptotically fitness uniform population: The expected number of individuals
per fitness level f after t selections is nt(f) = n0(f) + t/|F |, where n0(f) is the ini-
tial distribution. Hence, asymptotically the fitness levels get uniformly occupied by a
population fraction

nt(f)

|Pt(f)|
=

n0(f) + t/|F |
|P0(f)|+ t

→ 1

|F |
for t → ∞,

where Pt(f) is the set of individuals at time t with fitness f .

Fitness gaps and continuous fitness: We made two unrealistic assumptions. First,
we assumed that each fitness level is initially occupied. If the smallest/largest fitness
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Figure 1: Effects of proportionate, truncation, ranking & tournament, uniform, and
fitness uniform (FUSS) selection on the fitness distribution in a generation based EA.
The left/right diagrams depict fitness distributions before/after applying the selection
schemes depicted in the middle diagrams.

values in Pt are f t
min/max we extend the definition of FUSS by selecting a fitness value

f uniformly in the interval [f t
min − 1

2
ε, f t

max +
1
2
ε] and an individual i∈Pt with fitness

nearest to f . This also covers the case when there are missing intermediate fitness
values, and also works for continuous valued fitness functions (ε → 0).

Mutation and recombination: The second assumption was that there is no muta-
tion and recombination. In the presence of small mutation and/or recombination rates
eventually each fitness level will become occupied and the occupation fraction is still
asymptotically approximately uniform. For larger rates the distribution will be no longer
uniform, but the important point is that the occupation fraction of no fitness level de-
creases to zero for t→∞, unlike for STD. Furthermore, FUSS selects by construction
uniformly in the fitness levels, even if the levels are not uniformly occupied. We will see
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that this is the more important property.

3 Properties of Fuss

FUSS effectively favors fit individuals: FUSS preserves diversity better than STD,
but the latter have a (higher) selection pressure towards higher fitness, which is neces-
sary for optimization. At first glance it seems that there is no such pressure at all in
FUSS, but this is deceiving. As FUSS selects uniformly in the fitness levels, individuals
of low populated fitness levels are effectively favored. The probability of selecting a
specific individual with fitness f is inverse proportional to nt(f) (see Figure 1). In a
typical (FUSS) population there are many unfit and only a few fit individuals. Hence,
fit individuals are effectively favored until the population becomes fitness uniform. Oc-
casionally, a new higher fitness level is discovered and occupied by a new individual,
which then, again, is favored.

No takeover in FUSS:With FUSS, takeover of the highest fitness level never happens.
The concept of takeover time [GD91] is meaningless for FUSS. The fraction of fittest
individuals in a population is always small. This implies that the average population
fitness is always much lower than the best fitness. Actually, a large number of fit
individuals is usually not the true optimization goal. A single fittest individual usually
suffices to having solved the optimization task.

FUSS may also favor unfit individuals: Note, if it is also difficult to find individuals
of low fitness, i.e. if there are only few individuals of low fitness, FUSS will also favor
these individuals. Half of the time is “wasted” in searching on the wrong end of the
fitness scale. This possible slowdown by a factor of 2 is usually acceptable. In Section 4
we will see that in certain circumstances this behaviour can actually speedup the search.
In general, fitness levels which are difficult to reach, are favored.

Distribution within a fitness level: Within a fitness level there is no selection
pressure which could further exponentially decrease the population in certain regions of
the individual space. This (exponential) reduction is the major enemy of diversity, which
is suppressed by FUSS. Within a fitness level, the individuals freely drift around (by
mutation). Furthermore, there is a steady stream of individuals into and out of a level
by (d)evolution from (higher)lower levels. Consequently, FUSS develops an equilibrium
distribution which is nowhere zero. We expect FUSS to somewhat lower (but not to
solve) the problems associated with genetic drift. The above does also not mean that the
distribution within a level is uniform. For instance, if there are two (local) maxima of
same height, a very broad one and a very narrow one, the broad one may be populated
much more than the narrow one, since it is much easier to “find”.

Steady creation of individuals from every fitness level: In STD, a wrong step
(mutation) at some point in evolution might cause further evolution in the wrong direc-
tion. Once a local optimum has been found and all unfit individuals were eliminated it
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is very difficult to undo the wrong step. In FUSS, all fitness levels remain occupied from
which new mutants are steadily created, occasionally one leading to further evolution
in a more promising direction.

Transformation properties of FUSS: FUSS (with continuous fitness) is indepen-
dent of a scaling and a shift of the fitness function, i.e. FUSS(f̃) with f̃(i) := a·f(i) + b
is identical to FUSS(f). This is true even for a < 0, since FUSS searches for max-
ima and minima, as we have seen. It is not independent of a non-linear (monotone)
transformation unlike tournament, ranking and truncation selection. The non-linear
transformation properties are more like the ones of proportionate selection.

4 A Simple Example

In the following we compare the performance of fitness uniform selection (FUSS), ran-
dom search (RAND) and standard selection (STD) with and without recombination
on a simple test example. We regard it as a prototype for deceptive multimodal func-
tions. The example should demonstrate why FUSS can be superior to RAND and STD.
Numerical results are briefly discussed at the end of the section.

Simple 2D example: Consider individuals (x, y)∈ I := [0, 1]×[0, 1], which are tupels
of real numbers, each coordinate in the interval [0, 1]. The example models individuals
possessing up to 2 “features”. Individual i possesses feature I1 if i∈I1 := [a, a+∆]×[0, 1],
and feature I2 if i∈I2 := [0, 1]×[b, b+∆]. The fitness function f : I→{1, 2, 3} is defined
as

f(x, y) =


1 if (x, y) ∈ I1\I2,
2 if (x, y) ∈ I2\I1,
3 if (x, y) ̸∈ I1 ∪ I2,
4 if (x, y) ∈ I1 ∩ I2.
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We assume ∆≪1. Individuals with none of the two features (i∈I\(I1∪I2)) have fitness
f = 3. These “local f = 3 optima” occupy most of the individual space I, namely a
fraction (1−∆)2. It is disadvantageous for an individual to possess only one of the two
features (i∈(I1\I2)∪ (I2\I1)), since f=1/f=2 in this case. In combination (i∈I1∩I2)),
the two features lead to the highest fitness, but the global maximum f=4 occupies the
smallest fraction ∆2 of the individual space I. With a fraction ∆(1−∆), the f=1/f=2
minima are in between.

Random search: Individuals are created uniformly in the unit square. The “local
optimum” f =3 is easy to “find”, since it occupies nearly the whole space. The global
optimum f = 4 is difficult to find, since it occupies only ∆2 ≪ 1 of the space. The
expected time, i.e. the expected number of individuals created and tested until one with
f=4 is found, is TRAND = 1

∆2 . Here and in the following, the “time” T is defined as the
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number of created individuals until the first optimal individual (with f = 4) is found.
T is neither a takeover time nor the number of generations (we consider steady-state
EAs).

Random search with crossover: Let us occasionally perform a recombination of
individuals in the current population. We combine the x-coordinate of one uniformly
selected individual i1 with the y coordinate of another individual i2. This crossover
operation maintains a uniform distribution of individuals in [0, 1]2. It leads to the
global optimum if i1∈ I1 and i2∈ I2. The probability of selecting an individual in Ii is
∆(1−∆) ≈ ∆ (we assumed that the global optimum has not yet been found). Hence,
the probability that I1 crosses with I2 is ∆2. The time to find the global optimum by
random search including crossover is still ∼ 1

∆2 .

Mutation: The result remains valid (to leading order in 1
∆
) if, instead of a random

search, we uniformly select an individual and mutate it according to some probabilistic,
sufficiently mixing rule, which preserves uniformity in [0, 1]. One popular such mutation
operator is to use a sufficiently long binary representation of each coordinate, like in
genetic algorithms, and flip a single bit. In the following, we assume a mutation operator
which mutates with probability 1

2
/1
2
the first/second coordinate, preserves uniformity,

is sufficiently mixing, and leaves the other coordinate unchanged, like the single-bit-flip
operator.

Standard selection with crossover: The f =1 and f =2 individuals contain useful
building blocks, which could speedup the search by a suitable selection and crossover
scheme. Unfortunately, the standard selection schemes favor individuals of higher fit-
ness and will diminish the f=1/f=2 population fraction. The probability of selecting
f=1/f=2 individuals is even smaller than in random search. Hence TSTD ∼ 1

∆2 . Stan-
dard selection does not improve performance, even not in combination with crossover,
although crossover is well suited to produce the needed recombination.

FUSS: At the beginning, only the f=3 level is occupied and individuals are uniformly
selected and mutated. The expected time till an f = 1/f = 2 individual in I1 ∪ I2 is
created is T1 ≈ 1

∆
(not 1

2∆
, since only one coordinate is mutated). From this time

on FUSS will select one half(!) of the time the f = 1/f = 2 individual(s) and only
the remaining half the abundant f = 3 individuals. When level f = 1 and level f = 2
are occupied, the selection probability is 1

3
+ 1

3
for these levels. With probability 1

2
the

mutation operator will mutate the y coordinate of an individual in I1 or the x coordinate
of an individual in I2 and produces a new f=1/2/4 individual. The relative probability
of creating an f = 4 individual is ∆. The expected time to find this global optimum
from the f =1/f =2 individuals, hence, is T2 = [(1

2
...2

3
)× 1

2
×∆]−1. The total expected

time is TFUSS ≈ T1+T2=
4
∆
... 5

∆
≪ 1

∆2 ∼ TSTD. FUSS is much faster by exploiting unfit
f =1/f =2 individuals. This is an example where (local) minima can help the search.
Examples where a low local maxima can help in finding the global maximum, but where
standard selection sweeps over too quickly to higher but useless local maxima, can also
be constructed.
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FUSS with crossover: The expected time till an f =1 individual in I1 and an f =2
individual in I2 is found is T1 ≈ 1

∆
, even with crossover. The probability of selecting an

f = 1/f =2 individual is 1
3
/1
3
. Thus, the probability that a crossing operation crosses

I1 with I2 is (1
3
)2. The expected time to find the global optimum from the f =1/f =2

individuals, hence, is T2 = 9 · O(1), where the O(1) factor depends on the frequency
of crossover operations. This is far faster than by STD, even if the f = 1/f = 2 levels
were local maxima, since to get a high standard selection probability, the level has first
to be taken over, which itself needs some time depending on the population size. In
FUSS a single f =1 and a single f =2 individual suffice to guarantee a high selection
probability and an effective crossover. Crossover does not significantly decrease the total
time TFUSSX ≈ T1+T2 =

1
∆
+ O(9), but for a suitable 3D generalization we get a large

speedup by a factor of 1
∆
.

Simple 3D example: We generalize the 2D example to D-dimensional individuals
x∈ [0, 1]D and a fitness function

f(x) := (D+1)·
D∏

d=1

χd(x) − max
1≤d≤D

d·χd(x) + d+ 1,

where χd(x) is the characteristic function of feature Id

χd(x) :=

{
1 if ai ≤ xi ≤ ai +∆,
0 else.

For D= 2, f coincides with the 2D example. For D= 3, the fractions of [0, 1]3 where
f = 1/2/3/4/5 are approximately ∆2/∆2/∆2/1/∆3. With the same line of reasoning
we get the following expected search times for the global optimum:

TRAND ∼ TSTD ∼ 1

∆3
,

TFUSS ∼ 1

∆2
, TFUSSX ∼ 1

∆
.

This demonstrates the existence of problems, where FUSS is much faster than RAND
and STD, and that crossover can give a further boost in FUSS, even when ineffective in
combination with STD.

Numerical results: An EA with FUSS and STD has been implemented. First ex-
periments confirm the superiority of FUSS also for other complicated multimodal and
deceptive fitness functions. The asymptotic behavior of the convergence times T for
∆→ 0 for the previous example has been verified. We got similar results for the func-
tion f(x+a, y+b) = 2 x2

x2+∆2 +
y2

y2+∆2 +4e−(x2+y2)/∆2
, which is a continuous version of the

2D example. We further applied FUSS to the Traveling Salesman Problem. We con-
sidered 101..3 cities with random matrix distances, random initial paths, random 1-Opt
and 2.5-Opt mutation operators, inverse length as fitness, but no crossover yet. The
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solutions found by FUSS are consistently and significantly better than those found by
STD. The current implementation can in no way compete with up-to-date TSP-solvers
[JM97, ACR00], but this was not the intention of the comparison. The results are
very preliminary yet. Implementation details and detailed simulation results will be
presented in a forthcoming publication.

5 Recombination

Worst case analysis without recombination: We now want to estimate the maxi-
mal possible slowdown of FUSS compared to STD. Let us assume that all individuals in
STD have fitness f , and once one individual with fitness f+ε has been found, takeover
of level f +ε is quick. Let us assume that this quick takeover is actually good (e.g.
if there are no local maxima). The selection probability of individuals of same fitness
is equal. For FUSS we assume individuals in the range of fmin and f . Uniformity is
not necessary. In the worst case, a selection of an individual of fitness <f never leads
to an individual of fitness ≥ f , i.e. is always useless. The probability of selecting an
individual with fitness f is ≥ 1

|F | . At least every |F |th FUSS selection corresponds to a

STD selection. Hence, we expect a maximal slowdown by a factor of |F |, since FUSS
“simulates” STD statistically every |F |th selection. It is possible to artificially construct
problems where this slowdown occurs (unimodal function, local mutation x→x±ε, no
crossover). We have never observed this large slowdown in our experiments. For the
more complicated multimodal and deceptive objective functions we were interested in,
FUSS often outperformed STD in solution quality and time.

Quadratic slowdown due to recombination: We have seen that TFUSS≤|F |·TSTD.
In the presence of recombination, a pair of individuals has to be selected. The probability
that FUSS selects two individuals with fitness f is ≥ 1

|F |2 . Hence, in the worst case,

there could be a slowdown by a factor of |F |2 — for independent selection we expect
TFUSS≤|F |2 ·TSTD. This potential quadratic slowdown can be avoided by selecting one
fitness value at random, and then two individuals of this single fitness value. For this
dependent selection, we expect TFUSS ≤ |F | ·TSTD. One the other hand, crossing two
individuals of different fitness can also be advantageous, like the crossing of f =1 with
f=2 individuals in the 2D example of Section 4.

Scale independent pair selection: It is possible to (nearly) have the best of inde-
pendent and dependent selection: a high selection probability p(f, f ′) ∼ 1

|F | if f ≈ f ′

and p(f, f ′) ∼ 1
|F |2 otherwise, with uniform marginal p(f) = 1

|F | . The idea is to use a
strongly correlated joint distribution for selecting a fitness pair. A “scale independent”
probability distribution p(f, f ′) ∼ 1

|f−f ′| is appropriate. We define the joint probability

p̃(f, f ′) of selecting two individuals of fitness f and f ′ and the marginal p̃(f) as

p̃(f, f ′) :=
1

2|F | ln |F |
· 1

1
ε
|f−f ′|+ 1

, (1)

9



p̃(f) :=
∑
f ′∈F

p̃(f, f ′) =
∑
f ′∈F

p̃(f ′, f).

We assume |F | ≥ 3 in the following. The +1 in the denominator has been added to reg-
ularize the expression for f=f ′. The factor (2|F | ln |F |)−1 ensures correct normalization
for |F |→∞. More precisely, using ln b+1

a
≤ ∑b

i=a
1
i
≤ ln b

a−1
, one can show that

1− 1
ln |F | ≤

∑
f,f ′∈F

p̃(f, f ′) ≤ 1, 1
2

≤ |F |·p̃(f) ≤ 1

i.e. p̃ is not strictly normalized to 1 and the marginal p̃(f) is only approximately (within
a factor of 2) uniform. The first defect can be corrected by appropriately increasing the
diagonal probabilities p̃(f, f). This also solves the second problem.

p(f, f ′) :=

{
p̃(f, f ′) for f ̸= f ′

p̃(f, f ′) + [ 1
|F | − p̃(f)] for f = f ′ (2)

Properties of p(f, f ′): p is normalized to 1 with uniform marginal

p(f) :=
∑
f ′∈F

p(f, f ′) =
1

|F |
, p(f, f ′) ≥ p̃(f, f ′),

∑
f,f ′∈F

p(f, f ′) =
∑
f∈F

p(f) = 1,

Apart from a minor additional logarithmic suppression of order ln |F | we have the desired
behaviour p(f, f ′) ∼ 1

|F | for f ≈ f ′ and p(f, f ′) ∼ 1
|F |2 otherwise:

p(f, f ±mε) ≥ 1

2 ln |F |
· 1

m+ 1
· 1

|F |
,

p(f, f ′) ≥ 1

2 ln |F |
· 1

|F |2
.

During optimization, the minimal/maximal fitness of an individual in population Pt is
f t
min/max. In the definition of p one has to use Ft := {f t

min, f
t
min+ε, ..., f t

max} instead of

F , i.e. |F | ↪→ |Ft| = 1
ε
(f t

max−f t
min) + 1 ≤ |F |.

6 Continuous Fitness Functions

Effective discretization scale: Up to now we have considered a discrete valued fitness
function with values in F = {fmin, fmin+ε, ..., fmax}. In many practical problems, the
fitness function is continuous valued with F = [fmin, fmax]. We generalize FUSS, and
some of the discussion of the previous sections to the continuous case by replacing
the discretization scale ε by an effective (time-dependent) discretization scale ε̂. By
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construction, FUSS shifts the population towards a more uniform one. Although the
fitness values are no longer equi-spaced, they still form a discrete set for finite population
P . For a fitness uniform distribution, the average distance between (fitness) neighboring
individuals is 1

|Pt|−1
(f t

max−f t
min) =: ε̂. We define F̂t := {f t

min, f
t
min+ ε̂, ..., f t

max}. |F̂t| =
1
ε̂
(f t

max−f t
min) + 1 = |Pt|.

FUSS: Fitness uniform selection for a continuous valued function has already been
mentioned in Section 2. We just take a uniform random fitness f in the interval [f t

min−
1
2
ε̂, f t

max+
1
2
ε̂]. One may even take the limit ε̂→0 in this case probably without harming

FUSS. Independent and dependent fitness pair selection as described in the last section
works analogously. An ε̂=0 version of correlated selection does not exist; a non-zero ε̂
is important. A discrete pair (f, f ′) is drawn with probability p(f, f ′) as defined in (1)
and (2) with ε and F replaced by ε̂ and F̂t. The additional suppression ln |F̂t|=ln |Pt|
is small for all practical population sizes.

In all cases an individual with fitness nearest to f (f ′) is selected from the population
P (randomly if there is more than one nearest individual).

Discussion: If we assume a fitness uniform distribution, a worst case bound
TFUSS

<∼
∑TSTD

t=1 |Pt| seems plausible, since the probability of selecting the best individual
is approximately |Pt|. For constant population size we get a bound TFUSS

<∼|P | ·TSTD.
For the preferred non-deletion case with population size |Pt|= t the bound gets much
worse TFUSS

<∼
1
2
T 2
STD. This possible (but not necessary!) slowdown has similarities to

the slowdown problems of proportionate selection in later optimization stages. Larger
choices of ε̂ may be favorable if the standard choice causes problems.

7 Summary & Conclusions

We have addressed the problem of balancing the selection intensity in EAs, which de-
termines speed versus quality of a solution. We invented a new fitness uniform selection
scheme FUSS. It generates a selection pressure towards sparsely populated fitness lev-
els. This property is unique to FUSS as compared to other selection schemes (STD).
It results in the desired high selection pressure towards higher fitness if there are only
a few fit individuals. The selection pressure is automatically reduced when the number
of fit individuals increases. A joint pair selection scheme for recombination has been
defined, but not yet implemented. A heuristic worst case analysis of FUSS compared to
STD has been given. FUSS solves the problem of exponential takeover and the resulting
loss of genetic diversity of STD, while still generating enough selection pressure. It does
not help in getting a more uniform distribution within a fitness level. We showed ana-
lytically by way of a simple example that FUSS can be much more effective than STD.
FUSS should be compared to STD on other problems to further explore its efficacy
and limitations. First results look encouraging. Of special interest is whether FUSS
could improve up-to-date EAs that solve difficult combinatoric optimization problems,

11



like TSPs. We expect FUSS to be superior to STD in cases where an EA with STD
effectively gets trapped into local optima.
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