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Abstract. Decision theory formally solves the problem of rational agents
in uncertain worlds if the true environmental probability distribution is
known. Solomonoff’s theory of universal induction formally solves the
problem of sequence prediction for unknown distributions. We unify both
theories and give strong arguments that the resulting universal AIξ model
behaves optimally in any computable environment. The major drawback
of the AIξ model is that it is uncomputable. To overcome this problem,
we construct a modified algorithm AIξtl, which is still superior to any
other time t and length l bounded agent. The computation time of AIξtl

is of the order t·2l.

1 Introduction

The most general framework for Artificial Intelligence is the picture of an agent
interacting with an environment [RN95]. If the goal is not pre-specified, the agent
has to learn by occasional reinforcement feedback [SB98]. If the agent shall be
universal, no assumption about the environment may be made, besides that
there exists some exploitable structure at all. We may ask for the most intelli-
gent way an agent could behave, or, about the optimal way of learning in terms
of real world interaction cycles. Decision theory formally1 solves this problem
only if the true environmental probability distribution is known (e.g. Blackjack)
[Bel57, BT96, SB98]. On the other hand, there is a universal theory for a subset
of machine learning, namely, passively predicting unseen data after exposure to
training examples. [Sol64, Sol78] formally solved this induction problem if the
true distribution is unknown, but only if the agent cannot influence the envi-
ronment (e.g. weather forecasts) [LV97]. Here, we combine both ideas to obtain
a universal machine learner for the general case where the learner can actively
influence its world. We claim that the resulting parameterless model AIξ behaves
optimally in any computable environment (e.g. prisoner or auction problems,
poker, car driving). To get an effective solution, a modification AIξtl, superior to

? This work was supported by SNF grant 2000-61847.00 to Jürgen Schmidhuber.
1 With a formal solution we mean a rigorous mathematically definition, uniquely spec-

ifying the solution. For problems considered here this always implies the existence
of an algorithm which asymptotically converges to the correct solution.
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any other time t and length l bounded agent, is constructed. The computation
time of AIξtl per interaction cycle is of the order t·2l. The computation time is
still not practical, but AIξtl represents the first learning algorithm with general-
ization capability at all which makes no specific assumptions (Markov property,
known transition matrix, observablility, similarity relations, ...) on the structure
of the environment. The AIξ and AIξtl models lead to many new insights into
learning agents. The main goal of this work is to derive and discuss both models,
and to clarify the meanings of universal, optimal, superior, etc. It summarizes
a long report and is necessarily succinct. Details can be found in the technical
report [Hut00].

2 Rational Agents & Sequential Decisions

Agents in probabilistic environments: A very general framework for intel-
ligent systems is that of rational agents [RN95]. In cycle k, an agent performs
action yk ∈Y (output word) which results in a perception xk ∈X (input word),
followed by cycle k+1 and so on. If agent and environment are deterministic
and computable, the entanglement of both can be modeled by two Turing ma-
chines with two common tapes (and some private tapes) containing the action
stream y1y2y3... and the perception stream x1x2x3... (The meaning of xk≡x′krk

is explained in the next paragraph):
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The program p is called the policy of the agent interacting with environment
q. We write p(x<k) = y1:k to denote the output y1:k ≡ y1...yk of the agent p on
input x<k≡x1...xk−1 and similarly q(y1:k)=x1:k for the environment q. We call
Turing machines p and q behaving in this way chronological. In the more general
case of a probabilistic environment, given the history yx<kyk ≡ yx1...yxk−1yk ≡
y1x1...yk−1xk−1yk, the probability that the environment leads to perception xk

in cycle k is (by definition) µ(yx<kyxk). The underlined argument xk in µ is
a random variable and the other non-underlined arguments yx<kyk represent
conditions. We call probability distributions like µ chronological. Details on the
notation can be found in [Hut00].
The AIµ Model: The goal of the agent is to maximize future rewards, which
are provided by the environment through the inputs xk. The inputs xk ≡ x′krk

are divided into a regular part x′k and some (possibly empty or delayed) reward
rk. The µ-expected reward sum of future cycles k to m (called the value) with
outputs yk:m≡yp

k:m generated by the agent’s policy p can be written compactly
as

V p
µ (ẏẋ<k) :=

∑
xk...xm

(rk+ ... +rm)µ(ẏẋ<kyxk:m), (1)
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where m is the lifespan of the agent, and the dots above ẏẋ<k indicate the actual
action and perception history. The value with outputs yi generated by the ideal
agent which maximizes the expected future rewards is

V ∗
µ (ẏẋ<k) := max

yk

∑
xk

...max
ym

∑
xm

(rk+ ... +rm)µ(ẏẋ<kyxk:m), (2)

i.e. the best expected reward is obtained by averaging over the xi and maximizing
over the yi. This has to be done in chronological order to correctly incorporate
the dependency of xi and yi on the history. The output ẏk, which achieves the
maximal value defines the AIµ model:

ẏk := arg max
yk

∑
xk

...max
ym

∑
xm

(rk+ ... +rm)µ(ẏẋ<kyxk:m). (3)

The AIµ model is optimal in the sense that no other policy leads to higher
µ-expected reward. A detailed derivation and other recursive and functional
versions can be found in [Hut00].
Sequential decision theory: Eq. (3) is essentially an Expectimax algorithm/
sequence. One can relate (3) to the Bellman equations [Bel57] of sequential
decision theory by identifying complete histories yx<k with states, µ(yx<kyxk)
with the state transition matrix, V ∗

µ (yx<k) with the value of history/state yx<k,
and yk with the action in cycle k [BT96, RN95, Hut00]. Due to the use of
complete histories as state space, the AIµ model neither assumes stationarity,
nor the Markov property, nor complete accessibility of the environment. Every
state occurs at most once in the lifetime of the system. For this and other reasons
the explicit formulation (3) is much more useful here than to enforce a pseudo-
recursive Bellman equation form. As we have in mind a universal system with
complex interactions, the action and perception spaces Y and X are huge (e.g.
video images), and every action or perception itself occurs usually only once in
the lifespan m of the agent. As there is no (obvious) universal similarity relation
on the state space, an effective reduction of its size is impossible, but there is no
principle problem in determining ẏk as long as µ is known and computable and
X, Y and m are finite.
Reinforcement learning: Things dramatically change if µ is unknown. Rein-
forcement learning algorithms [KLM96, SB98, BT96] are commonly used in this
case to learn the unknown µ. They succeed if the state space is either small or has
effectively been made small by generalization or function approximation tech-
niques. In any case, the solutions are either ad hoc, work in restricted domains
only, have serious problems with state space exploration versus exploitation, or
have non-optimal learning rate. There is no universal and optimal solution to this
problem so far. In Section 4 we present a new model and argue that it formally
solves all these problems in an optimal way. The true probability distribution µ
will not be learned directly, but will be replaced by a universal prior ξ, which is
shown to converge to µ in a sense.

3 Algorithmic Complexity and Universal Induction

The problem of the unknown environment: We have argued that currently
there is no universal and optimal solution to solving reinforcement learning prob-



4

lems. On the other hand, [Sol64] defined a universal scheme of inductive infer-
ence, based on Epicurus’ principle of multiple explanations, Ockham’s razor,
and Bayes’ rule for conditional probabilities. For an excellent introduction one
should consult the book of [LV97]. In the following we outline the theory and
the basic results.
Kolmogorov complexity and universal probability: Let us choose some
universal prefix Turing machine U with unidirectional binary input and output
tapes and a bidirectional working tape. We can then define the (conditional)
prefix Kolmogorov complexity [Cha75, Gác74, Kol65, Lev74] as the length l of
the shortest program p, for which U outputs the binary string x = x1:n with
xi ∈{0, 1}:

K(x) := min
p
{l(p) : U(p) = x},

and given y
K(x|y) := min

p
{l(p) : U(p, y) = x}.

The universal semimeasure ξ̂(x) is defined as the probability that the output of U
starts with x when provided with fair coin flips on the input tape [Sol64, Sol78].
It is easy to see that this is equivalent to the formal definition

ξ̂(x) :=
∑

p : ∃ω:U(p)=xω

2−l(p) (4)

where the sum is over minimal programs p for which U outputs a string starting
with x. U might be non-terminating. As the short programs dominate the sum,
ξ̂ is closely related to K(x) as ξ̂(x) = 2−K(x)+O(K(l(x)). ξ̂ has the important
universality property [Sol64] that it dominates every computable probability
distribution ρ̂ up to a multiplicative factor depending only on ρ̂ but not on x:

ξ̂(x) ≥ 2−K(ρ̂)−O(1) ·ρ̂(x). (5)

The Kolmogorov complexity of a function like ρ̂ is defined as the length of the
shortest self-delimiting coding of a Turing machine computing this function. ξ̂

itself is not a probability distribution2. We have ξ̂(x0)+ ξ̂(x1) < ξ̂(x) because
there are programs p which output just x, neither followed by 0 nor 1. They just
stop after printing x or continue forever without any further output. We will call
a function 0≤ ρ̂≤1 with the property

∑
xn

ρ̂(x1:n)≤ ρ̂(x<n) a semimeasure. ξ̂ is
a semimeasure and (5) actually holds for all enumerable semimeasures ρ̂.
Universal sequence prediction: (Binary) sequence prediction algorithms try
to predict the continuation xn of a given sequence x1...xn−1. In the following we
will assume that the sequences are drawn from a probability distribution and that
the true probability of a string starting with x1...xn is µ̂(x1:n). The probability of
xn given x<n hence is µ̂(x<nxn). Usually µ̂ is unknown and the system can only
have some belief ρ̂ about the true distribution µ̂. Now the universal probability

2 It is possible to normalize ξ̂ to a probability distribution as has been done in

[Sol78, Hut99] by giving up the enumerability of ξ̂. Bounds (6) and (8) hold for
both definitions.
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ξ̂ comes into play: [Sol78] has proved that the mean squared difference between
ξ̂ and µ̂ is finite for computable µ̂:

∞∑
k=1

∑
x1:k

µ̂(x<k)(ξ̂(x<kxk)− µ̂(x<kxk))2 < ln 2·K(µ̂) + O(1). (6)

A simplified proof can be found in [Hut99]. So the difference between ξ̂(x<nxn)
and µ̂(x<nxn) rapidly tends to zero n→∞ with µ̂ probability 1 for any com-
putable probability distribution µ̂. The reason for the astonishing property of a
single (universal) function to converge to any computable probability distribu-
tion lies in the fact that the sets of µ̂-random sequences differ for different µ̂.
Past data x<n are exploited to get a (with n→∞) improving estimate ξ̂(x<nxn)
of µ̂(x<nxn). The learning rule is deeply hidden in the Bayesian mechanism. The
universality property (5) is the central ingredient for proving (6).
Error bounds: If we measure prediction quality as the number of correct pre-
dictions, the best possible system predicts the xn with the highest probability.
Let SPρ be a probabilistic sequence predictor, predicting xn with probability
ρ̂(x<nxn). If ρ̂ is only a semimeasure the SPρ system might refuse any output
in some cycles n. Further, we define a deterministic sequence predictor SPΘρ

predicting the xn with highest ρ̂ probability. Θρ(x<nxn) := 1 for one xn with
ρ̂(x<nxn)≥ ρ̂(x<nx′n)∀x′n and Θρ(x<nxn) :=0 otherwise. SPΘµ is the best pre-
diction scheme when µ̂ is known. If ρ̂(x<nxn) converges quickly to µ̂(x<nxn)
the number of additional prediction errors introduced by using Θρ instead of Θµ

for prediction should be small in some sense. Let us define the total number of
expected erroneous predictions the SPρ system makes for the first n bits:

Enρ :=
n∑

k=1

∑
x1:k

µ̂(x1:k)(1−ρ̂(x<kxk)). (7)

The SPΘµ system is best in the sense that EnΘµ ≤Enρ for any ρ̂. In [Hut99] it
has been shown that SPΘξ is not much worse

EnΘξ
−Enρ ≤ H +

√
4EnρH + H2 = O(

√
Enρ) (8)

with H < ln 2·K(µ̂) + O(1)

and the tightest bound for ρ̂=Θµ. For finite E∞Θµ , E∞Θξ
is finite too. For infi-

nite E∞Θµ , EnΘξ
/EnΘµ

n→∞−→ 1 with rapid convergence. One can hardly imagine
any better prediction algorithm as SPΘξ without extra knowledge about the
environment. The values of the O(1) terms in the bounds (6) and (8) depend on
the chosen universal Turing machine [LV97]. For real-sized problems (but not
for toy problems), K(µ̂) � O(1). Therefore the bounds, and hence the predic-
tion quality, is only marginally effected by different Turing machine choices. In
[Hut01], (6) and (8) have been generalized from binary to arbitrary alphabet
and to general loss functions. Apart from computational aspects, which are of
course very important, the problem of sequence prediction could be viewed as
essentially solved.
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4 The Universal AIξ Model

Definition of the AIξ Model: We have developed enough formalism to sug-
gest our universal AIξ model. All we have to do is to suitably generalize the
universal semimeasure ξ̂ from the last section and to replace the true but un-
known probability µ̂ in the AIµ model by this generalized ξ. In what sense this
AIξ model is universal and optimal will be discussed thereafter.

We define the generalized universal probability ξ as the 2−l(q) weighted sum
over all chronological programs (environments) q which output x1:k, similar to
(4) but with y1:k provided on the “input” tape:

ξ(yx1:k) :=
∑

q:q(y1:k)=x1:k

2−l(q). (9)

Replacing µ by ξ in (3) the AIξ system outputs

ẏk := arg max
yk

∑
xk

...max
ym

∑
xm

(rk+ ... +rm)ξ(ẏẋ<kyxk:m). (10)

in cycle k given the history ẏẋ<k.
(Non)parameters of AIξ: The AIξ model and its behaviour is completely
defined by (9) and (10). It (slightly) depends on the choice of the universal
Turing machine, because K() and l() are defined only up to terms of order 1
[LV97]. The AIξ model also depends on the choice of X and Y , but we do not
expect any bias when the spaces are chosen sufficiently large and simple, e.g. all
strings of length 216. Choosing IN as word space would be ideal, but whether
the maxima (or suprema) exist in this case, has to be shown beforehand. The
only non-trivial dependence is on the horizon m. Ideally we would like to chose
m =∞, but there are several subtleties to be discussed later, which prevent at
least a naive limit m→∞. So apart from m and unimportant details, the AIξ
system is uniquely defined by (10) and (9) without adjustable parameters. It
does not depend on any assumption about the environment apart from being
generated by some computable (but unknown!) probability distribution, as we
will see.
Universality of ξ: It can be shown that ξ defined in (9) is universal and
converges to µ analogously to the SP case (5) and (6). The proofs are gener-
alizations from the SP case. The actions y are pure spectators and cause no
difficulties in the generalization. This will change when we analyze error/value
bounds analogously to (8). The major difference when incorporating y is that in
(4), U(p) = xω produces strings starting with x, whereas in (9) we can demand
q to output exactly n words x1:n as q knows n from the number of input words
y1...yn. ξ dominates all chronological enumerable semimeasures [Hut00]

ξ(yx1:n) ≥ 2−K(ρ̂)−O(1)ρ̂(yx1:n). (11)

ξ is a universal element in the sense of (11) in the set of all enumerable chrono-
logical semimeasures. This can be proved even for infinite (countable) alphabet
[Hut00].
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Convergence of ξ to µ: From (11) one can show

n∑
k=1

∑
x1:k

µ(yx<k)
(
µ(yx<kyxk)− ξ(yx<kyxk)

)2

< ln 2·K(µ) + O(1) (12)

for computable chronological measures µ. The main complication in generalizing
(6) to (12) is the generalization to non-binary alphabet [Hut01]. The y are, again,
pure spectators. (12) shows that the µ-expected squared difference of µ and ξ
is finite for computable µ. This, in turn, shows that ξ(yx<kyxk) converges to
µ(yx<kyxk) for k→∞ with µ probability 1. If we take a finite product of ξ-s and
use Bayes’ rule, we see that also ξ(yx<kyxk:k+r) converges to µ(yx<kyxk:k+r).
More generally, in the case of a bounded horizon hk ≡ mk−k+1 ≤ hmax <∞, it
follows that

ξ(yx<kyxk:mk
) k→∞−→ µ(yx<kyxk:mk

) (13)

with µ-probability 1. Eq. (13) does not guarantee ẏξ
k→ ẏµ

k , since ẏ
µ/ξ
k are discon-

tinuous functions of µ/ξ due to the discontinuous arg max operation in (3/10).
This gap is already present in the SPΘρ models, but nevertheless good error
bounds could be proved. This gives confidence that the outputs ẏξ

k of the AIξ
model (10) could converge to the outputs ẏµ

k of the AIµ model (3), at least for a
bounded horizon hk. The problems with a fixed horizon mk =m and especially
m→∞ will be discussed later.
Universally optimal AI systems: We want to call an AI model universal, if it
is µ-independent (unbiased, model-free) and is able to solve any solvable problem
and learn any learnable task. Further, we call a universal model, universally
optimal, if there is no program, which can solve or learn significantly faster (in
terms of interaction cycles). As the AIξ model is parameterless, ξ converges to µ
in the sense of (12,13), the AIµ model is itself optimal, and we expect no other
model to converge faster to AIµ by analogy to SP (8),

we expect AIξ to be universally optimal.

This is our main claim. Further support is given in [Hut00] by a detailed analysis
of the behaviour of AIξ for various problem classes, including prediction, opti-
mization, games, and supervised learning. The difficulties in obtaining a precise
formulation and a general proof, as well as suggestions to overcome them, are
analyzed in detail. A first (weak) bound for the passive case is proven.
The choice of the horizon: The only significant arbitrariness in the AIξ model
lies in the choice of the lifespan m or the hk ≡ mk−k+1 if we allow a cycle
dependent m. We will not discuss ad hoc choices of hk for specific problems. We
are interested in universal choices. The book of [Ber95] thoroughly discusses the
mathematical problems regarding infinite horizon systems.

In many cases the time we are willing to run a system depends on the quality
of its actions. Hence, the lifetime, if finite at all, is not known in advance. Expo-
nential discounting rk ; rk ·γk solves the mathematical problem of m→∞ but
is no real solution, since an effective horizon h ∼ ln 1

γ has been introduced. The
scale invariant discounting rk ;rk·k−α has a dynamic horizon h∼k. This choice
has some appeal, as it seems that humans of age k years usually do not plan
their lives for more than the next ∼k years. From a practical point of view this
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model might serve all needs, but from a theoretical point we feel uncomfortable
with such a limitation in the horizon from the very beginning. A possible way
of taking the limit m→∞ without discounting and its problems can be found
in [Hut00].

Another objection against too large choices of mk is that ξ(yx<kyxk:mk
) has

been proved to be a good approximation of µ(yx<kyxk:mk
) only for k � hk,

which is never satisfied for mk = m→∞. On the other hand it may turn out
that the rewards rk′ for k′ � k, where ξ may no longer be trusted as a good
approximation of µ, are in a sense randomly disturbed with decreasing influence
on the choice of ẏk. This claim is supported by the forgetfulness property of ξ (see
next paragraph) and can be proved when restricting to factorizable environments
[Hut00].

We are not sure whether the choice of mk is of marginal importance, as long
as mk is chosen sufficiently large and of low complexity, mk = 2216

for instance,
or whether the choice of mk will turn out to be a central topic for the AIξ model
or for the planning aspect of any universal AI system in general. Most if not all
problems in agent design of balancing exploration and exploitation vanish by a
sufficiently large choice of the (effective) horizon and a sufficiently general prior.
We suppose that the limit mk→∞ for the AIξ model results in correct behaviour
for weakly separable (defined in the next paragraph) µ, and that even the naive
limit m→∞ may exist.
Value bounds and separability concepts: The values V ∗

ρ associated with the
AIρ systems correspond roughly to the negative error measure −Enρ of the SPρ
systems. In the SP case we were interested in small bounds for the error excess
EnΘξ

−Enρ. Unfortunately, simple value bounds for AIξ or any other AI system
in terms of V ∗ analogously to the error bound (8) cannot hold [Hut00]. We even
have difficulties in specifying what we can expect to hold for AIξ or any AI system
which claims to be universally optimal. In SP, the only important property of µ
for proving error bounds was its complexity K(µ). In the AI case, there are no
useful bounds in terms of K(µ) only. We either have to study restricted problem
classes or consider bounds depending on other properties of µ, rather than on its
complexity only. In [Hut00] the difficulties are exhibited by two examples. Several
concepts, which might be useful for proving value bounds are introduced and
discussed. They include forgetful, relevant, asymptotically learnable, farsighted,
uniform, (generalized) Markovian, factorizable and (pseudo) passive µ. They
are approximately sorted in the order of decreasing generality and are called
separability concepts. A first weak bound for passive µ has been proven.

5 Time Bounds and Effectiveness

Non-effectiveness of AIξ: ξ is not a computable but only an enumerable
semimeasure. Hence, the output ẏk of the AIξ model is only asymptotically
computable. AIξ yields an algorithm that produces a sequence of trial outputs
eventually converging to the correct output ẏk, but one can never be sure whether
one has already reached it. Besides this, convergence is extremely slow, so this
type of asymptotic computability is of no direct practical use. Furthermore, the
replacement of ξ by time-limited versions [LV97], which is suitable for sequence
prediction, has been shown to fail for the AIξ model [Hut00]. This leads to the
issues addressed next.
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Time bounds and effectiveness: Let p̃ be a policy which calculates an ac-
ceptable output within a reasonable time t̃ per cycle. This sort of computability
assumption, namely, that a general purpose computer of sufficient power and
appropriate program is able to behave in an intelligent way, is the very basis
of AI research. Here it is not necessary to discuss what exactly is meant by
’reasonable time/intelligence’ and ’sufficient power’. What we are interested in
is whether there is a computable version of the AIξ system which is superior or
equal to any policy p with computation time per cycle of at most t̃.

What one can realistically hope to construct is an AIξ t̃l̃ system of computa-
tion time c·t̃ per cycle for some constant c. The idea is to run all programs p of
length ≤ l̃ := l(p̃) and time ≤ t̃ per cycle and pick the best output in the sense
of maximizing the universal value V ∗

ξ . The total computation time is c · t̃ with

c≈2l̃. Unfortunately V ∗
ξ cannot be used directly since this measure is itself only

semi-computable and the approximation quality by using computable versions
of ξ given a time of order c·t̃ is crude [LV97, Hut00]. On the other hand, we have
to use a measure which converges to V ∗

ξ for t̃, l̃→∞, since we want the AIξ t̃l̃

model to converge to the AIξ model in that case.
Valid approximations: A solution satisfying the above conditions is suggested
in [Hut00]. The main idea is to consider extended chronological incremental poli-
cies p, which in addition to the regular output yp

k rate their own output with wp
k.

The AIξ t̃l̃ model selects the output ẏk = yp
k of the policy p with highest rating

wp
k. p might suggest any output yp

k but it is not allowed to rate itself with an
arbitrarily high wp

k if one wants wp
k to be a reliable criterion for selecting the best

p. One must demand that no policy p is allowed to claim that it is better than
it actually is. In [Hut00] a logical predicate VA(p), called valid approximation, is
defined, which is true if, and only if, p always satisfies wp

k≤V p
ξ (yx<k), i.e. never

overrates itself. V p
ξ (yx<k) is the ξ expected future reward under policy p. Valid

policies p can then be (partially) ordered w.r.t. their rating wp
k.

The universal time bounded AIξ t̃l̃ system: In the following, we describe the
algorithm p∗ underlying the AIξ t̃l̃ system. It is essentially based on the selection
of the best algorithms p∗k out of the time t̃ and length l̃ bounded policies p, for
which there exists a proof P of VA(p) with length ≤ lP .

1. Create all binary strings of length lP and interpret each as a coding of a
mathematical proof in the same formal logic system in which VA(·) has
been formulated. Take those strings which are proofs of VA(p) for some p
and keep the corresponding programs p.

2. Eliminate all p of length >l̃.
3. Modify all p in the following way: all output wp

kyp
k is temporarily written on

an auxiliary tape. If p stops in t̃ steps the internal ’output’ is copied to the
output tape. If p does not stop after t̃ steps a stop is forced and wp

k :=−∞
and some arbitrary yp

k is written on the output tape. Let P be the set of all
those modified programs.

4. Start first cycle: k :=1.
5. Run every p∈P on extended input ẏẋ<k, where all outputs are redirected

to some auxiliary tape: p(ẏẋ<k) = wp
1yp

1 ...wp
kyp

k. This step is performed in-



10

crementally by adding ẏẋk−1 for k>1 to the input tape and continuing the
computation of the previous cycle.

6. Select the program p with highest rating wp
k: p∗k :=arg maxp wp

k.

7. Write ẏk :=y
p∗k
k to the output tape.

8. Receive input ẋk from the environment.
9. Begin next cycle: k :=k+1, goto step 5.

Properties of the p∗ algorithm: Let p be any extended chronological (incre-
mental) policy of length l(p) ≤ l̃ and computation time per cycle t(p) ≤ t̃, for
which there exists a proof of VA(p) of length ≤ lP . The algorithm p∗, depending
on l̃, t̃ and lP but not on p, has always higher rating than any such p. The
setup time of p∗ is tsetup(p∗) = O(l2P ·2lP ) and the computation time per cycle
is tcycle(p∗) = O(2l̃ · t̃). Furthermore, for lP , t̃, l̃→∞, policy p∗ converges to the
behavior of the AIξ model.

Roughly speaking, this means that if there exists a computable solution to
some AI problem at all, then the explicitly constructed algorithm p∗ is such a
solution. This claim is quite general, but there are some limitations and open
questions, regarding the setup time, regarding the necessity that the policies
must rate their own output, regarding true but not (efficiently) provable VA(p),
and regarding “inconsistent” policies [Hut00].

6 Outlook & Discussion

This section contains some discussion and remarks on otherwise unmentioned
topics.
Value bounds: Rigorous proofs of value bounds for the AIξ theory are the
major theoretical challenge – general ones as well as tighter bounds for special
environments µ. Of special importance are suitable (and acceptable) conditions
to µ, under which ẏk and finite value bounds exist for infinite Y , X and m.
Scaling AIξ down: [Hut00] shows for several examples how to integrate prob-
lem classes into the AIξ model. Conversely, one can downscale the AIξ model
by using more restricted forms of ξ. This could be done in a similar way as the
theory of universal induction has been downscaled with many insights to the
Minimum Description Length principle [Ris89] or to the domain of finite au-
tomata [FMG92]. The AIξ model might similarly serve as a super model, from
which specialized models could be derived.
Applications: [Hut00] shows how a number of AI problem classes, including
sequence prediction, strategic games, function minimization and supervised learn-
ing fit into the general AIξ model. All problems are claimed to be formally solved
by the AIξ model. The solution is, however, only formal, because the AIξ model
is uncomputable or, at best, approximable. First, each problem class is formu-
lated in its natural way (when µproblem is known) and then a formulation within
the AIµ model is constructed and their equivalence is proven. Then, the conse-
quences of replacing µ by ξ are considered. The main goal is to understand how
the problems are solved by AIξ.
Implementation and approximation: The AIξ t̃l̃ model suffers from the same
large factor 2l̃ in computation time as Levin search for inversion problems
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[Lev73]. Nevertheless, Levin search has been implemented and successfully ap-
plied to a variety of problems [Sch97, SZW97]. Hence, a direct implementation of
the AIξ t̃l̃ model may also be successful, at least in toy environments, e.g. prisoner
problems. The AIξ t̃l̃ algorithm should be regarded only as the first step toward
a computable universal AI model. Elimination of the factor 2l̃ without giving
up universality will probably be a very difficult task. One could try to select
programs p and prove VA(p) in a more clever way than by mere enumeration.
All kinds of ideas like, heuristic search, genetic algorithms, advanced theorem
provers, and many more could be incorporated. But now we have a problem.
Computability: We seem to have transferred the AI problem just to a dif-
ferent level. This shift has some advantages (and also some disadvantages) but
presents, in no way, a solution. Nevertheless, we want to stress that we have re-
duced the AI problem to (mere) computational questions. Even the most general
other systems the author is aware of, depend on some (more than complexity)
assumptions about the environment, or it is far from clear whether they are,
indeed, universally optimal. Although computational questions are themselves
highly complicated, this reduction is a non-trivial result. A formal theory of
something, even if not computable, is often a great step toward solving a prob-
lem and has also merits of its own (see previous paragraphs).
Elegance: Many researchers in AI believe that intelligence is something com-
plicated and cannot be condensed into a few formulas. They believe it is more
a combining of enough methods and much explicit knowledge in the right way.
From a theoretical point of view, we disagree as the AIξ model is simple and
seems to serve all needs. From a practical point of view we agree to the following
extent. To reduce the computational burden one should provide special purpose
algorithms (methods) from the very beginning, probably many of them related to
reduce the complexity of the input and output spaces X and Y by appropriate
pre/post-processing methods.
Extra knowledge: There is no need to incorporate extra knowledge from the
very beginning. It can be presented in the first few cycles in any format. As long
as the algorithm that interprets the data is of size O(1), the AIξ system will
“understand” the data after a few cycles (see [Hut00]). If the environment µ is
complicated but extra knowledge z makes K(µ|z) small, one can show that the
bound (12) reduces to ln 2·K(µ|z) when x1≡ z, i.e. when z is presented in the
first cycle. Special purpose algorithms could also be presented in x1, but it would
be cheating to say that no special purpose algorithms have been implemented in
AIξ. The boundary between implementation and training is blurred in the AIξ
model.
Training: We have not said much about the training process itself, as it is not
specific to the AIξ model and has been discussed in literature in various forms
and disciplines. A serious discussion would be out of place. To repeat a truism, it
is, of course, important to present enough knowledge x′k and evaluate the system
output yk with rk in a reasonable way. To maximize the information content
in the reward, one should start with simple tasks and give positive reward to
approximately the better half of the outputs yk, for instance.
The big questions: [Hut00] contains a discussion of the “big” questions con-
cerning the mere existence of any computable, fast, and elegant universal theory
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of intelligence, related to Penrose’s non-computable environments, and Chaitin’s
‘number of wisdom’ Ω.
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