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Abstract

The Minimum Description Length principle for online sequence estima-
tion/prediction in a proper learning setup is studied. If the underlying model
class is discrete, then the total expected square loss is a particularly inter-
esting performance measure: (a) this quantity is finitely bounded, implying
convergence with probability one, and (b) it additionally specifies the con-
vergence speed. For MDL, in general one can only have loss bounds which
are finite but exponentially larger than those for Bayes mixtures. We show
that this is even the case if the model class contains only Bernoulli distribu-
tions. We derive a new upper bound on the prediction error for countable
Bernoulli classes. This implies a small bound (comparable to the one for
Bayes mixtures) for certain important model classes. We discuss the applica-
tion to Machine Learning tasks such as classification and hypothesis testing,
and generalization to countable classes of i.i.d. models.
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1 Introduction

“Bayes mixture”, “Solomonoff induction”, “marginalization”, all these terms refer
to a central induction principle: Obtain a predictive distribution by integrating
the product of prior and evidence over the model class. In many cases however, the
Bayes mixture is computationally infeasible, and even a sophisticated approximation
is expensive. The MDL or MAP (maximum a posteriori) estimator is both a common
approximation for the Bayes mixture and interesting for its own sake: Use the model
with the largest product of prior and evidence. (In practice, the MDL estimator is
usually being approximated too, since only a local maximum is determined.)

How good are the predictions by Bayes mixtures and MDL? This question has
attracted much attention. In many cases, an important quality measure is the
total or cumulative expected loss of a predictor. In particular the square loss is
often considered. Assume that the outcome space is finite, and the model class
is continuously parameterized. Then for Bayes mixture prediction, the cumulative
expected square loss is usually small but unbounded, growing with ln n, where n is
the sample size [CB90, Hut03b]. This corresponds to an instantaneous loss bound
of 1

n
. For the MDL predictor, the losses behave similarly [Ris96, BRY98] under

appropriate conditions, in particular with a specific prior. (Note that in order to do
MDL for continuous model classes, one needs to discretize the parameter space, see
also [BC91].)

On the other hand, if the model class is discrete, then Solomonoff’s theorem
[Sol78, Hut01] bounds the cumulative expected square loss for the Bayes mixture
predictions finitely, namely by ln w−1

µ , where wµ is the prior weight of the “true”
model µ. The only necessary assumption is that the true distribution µ is con-
tained in the model class, i.e. that we are dealing with proper learning. It has been
demonstrated [GL04], that for both Bayes mixture and MDL, the proper learning
assumption can be essential: If it is violated, then learning may fail very badly.

For MDL predictions in the proper learning case, it has been shown [PH04a]
that a bound of w−1

µ holds. This bound is exponentially larger than the Solomonoff
bound, and it is sharp in general. A finite bound on the total expected square loss
is particularly interesting:

1. It implies convergence of the predictive to the true probabilities with probabil-
ity one. In contrast, an instantaneous loss bound of 1

n
implies only convergence

in probability.

2. Additionally, it gives a convergence speed, in the sense that errors of a certain
magnitude cannot occur too often.

So for both, Bayes mixtures and MDL, convergence with probability one holds,
while the convergence speed is exponentially worse for MDL compared to the Bayes
mixture. (We avoid the term “convergence rate” here, since the order of convergence
is identical in both cases. It is e.g. o(1/n) if we additionally assume that the error
is monotonically decreasing, which is not necessarily true in general).
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It is therefore natural to ask if there are model classes where the cumulative loss
of MDL is comparable to that of Bayes mixture predictions. In the present work,
we concentrate on the simplest possible stochastic case, namely discrete Bernoulli
classes. (Note that then the MDL “predictor” just becomes an estimator, in that it
estimates the true parameter and directly uses that for prediction. Nevertheless, for
consistency of terminology, we keep the term predictor.) It might be surprising to
discover that in general the cumulative loss is still exponential. On the other hand,
we will give mild conditions on the prior guaranteeing a small bound. Moreover, it is
well-known that the instantaneous square loss of the Maximum Likelihood estimator
decays as 1

n
in the Bernoulli case. The same holds for MDL, as we will see. (If

convergence speed is measured in terms of instantaneous losses, then much more
general statements are possible [Li99, Zha04], this is briefly discussed in Section 4.)

A particular motivation to consider discrete model classes arises in Algorithmic
Information Theory. From a computational point of view, the largest relevant model
class is the class of all computable models on some fixed universal Turing machine,
precisely prefix machine [LV97]. Thus each model corresponds to a program, and
there are countably many programs. Moreover, the models are stochastic, precisely
they are semimeasures on strings (programs need not halt, otherwise the models
were even measures). Each model has a natural description length, namely the
length of the corresponding program. If we agree that programs are binary strings,
then a prior is defined by two to the negative description length. By the Kraft
inequality, the priors sum up to at most one.

Also the Bernoulli case can be studied in the view of Algorithmic Information
Theory. We call this the universal setup: Given a universal Turing machine, the
related class of Bernoulli distributions is isomorphic to the countable set of com-
putable reals in [0, 1]. The description length Kw(ϑ) of a parameter ϑ ∈ [0, 1] is then
given by the length of its shortest program. A prior weight may then be defined
by 2−Kw(ϑ). (If a string x = x1x2 . . . xt−1 is generated by a Bernoulli distribution
with computable parameter ϑ0 ∈ [0, 1], then with high probability the two-part
complexity of x with respect to the Bernoulli class does not exceed its algorithmic
complexity by more than a constant, as shown by Vovk [Vov97]. That is, the two-
part complexity with respect to the Bernoulli class is the shortest description, save
for an additive constant.)

Many Machine Learning tasks are or can be reduced to sequence prediction tasks.
An important example is classification. The task of classifying a new instance zn

after having seen (instance,class) pairs (z1, c1), ..., (zn−1, cn−1) can be phrased as
to predict the continuation of the sequence z1c1...zn−1cn−1zn. Typically the (in-
stance,class) pairs are i.i.d. Cumulative loss bounds for prediction usually generalize
to prediction conditionalized to some inputs [PH05]. Then we can solve classification
problems in the standard form. It is not obvious if and how the proofs in this paper
can be conditionalized.

Our main tool for obtaining results is the Kullback-Leibler divergence. Lemmata
for this quantity are stated in Section 2. Section 3 shows that the exponential error
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bound obtained in [PH04a] is sharp in general. In Section 4, we give an upper bound
on the instantaneous and the cumulative losses. The latter bound is small e.g. under
certain conditions on the distribution of the weights, this is the subject of Section
5. Section 6 treats the universal setup. Finally, in Section 7 we discuss the results
and give conclusions.

2 Kullback-Leibler Divergence

Let B = {0, 1} and consider finite strings x ∈ B∗ as well as infinite sequences
x<∞ ∈ B∞, with the first n bits denoted by x1:n. If we know that x is generated
by an i.i.d random variable, then P (xi = 1) = ϑ0 for all 1 ≤ i ≤ `(x) where `(x)
is the length of x. Then x is called a Bernoulli sequence, and ϑ0 ∈ Θ ⊂ [0, 1] the
true parameter. In the following we will consider only countable Θ, e.g. the set of
all computable numbers in [0, 1].

Associated with each ϑ ∈ Θ, there is a complexity or description length Kw(ϑ)
and a weight or (semi)probability wϑ = 2−Kw(ϑ). The complexity will often but
need not be a natural number. Typically, one assumes that the weights sum up
to at most one,

∑
ϑ∈Θ wϑ ≤ 1. Then, by the Kraft inequality, for all ϑ ∈ Θ there

exists a prefix-code of length Kw(ϑ). Because of this correspondence, it is only a
matter of convenience whether results are developed in terms of description lengths
or probabilities. We will choose the former way. We won’t even need the condition∑

ϑ wϑ ≤ 1 for most of the following results. This only means that Kw cannot be
interpreted as a prefix code length, but does not cause other problems.

Given a set of distributions Θ ⊂ [0, 1], complexities (Kw(ϑ))ϑ∈Θ, a true distribu-
tion ϑ0 ∈ Θ, and some observed string x ∈ B∗, we define an MDL estimator1:

ϑx = arg max
ϑ∈Θ

{wϑP (x|ϑ)}.

Here, P (x|ϑ) is the probability of observing x if ϑ is the true parameter. Clearly,
P (x|ϑ) = ϑ1I(x)(1− ϑ)`(x)−1I(x), where 1I(x) is the number of ones in x. Hence P (x|ϑ)
depends only on `(x) and 1I(x). We therefore see

ϑx = ϑ(α,n) = arg max
ϑ∈Θ

{wϑ

(
ϑα(1− ϑ)1−α

)n} (1)

= arg min
ϑ∈Θ

{n·D(α‖ϑ) + Kw(ϑ)· ln 2},

where n = `(x) and α := 1I(x)
`(x)

is the observed fraction of ones and

D(α‖ϑ) = α ln α
ϑ

+ (1− α) ln 1−α
1−ϑ

1Precisely, we define a MAP (maximum a posteriori) estimator. For two reasons, our definition
might not be considered as MDL in the strict sense. First, MDL is often associated with a specific
prior, while we admit arbitrary priors. Second and more importantly, when coding some data x,
one can exploit the fact that once the parameter ϑx is specified, only data which leads to this
ϑx needs to be considered. This allows for a description shorter than Kw(ϑx). Nevertheless, the
construction principle is commonly termed MDL, compare e.g. the “ideal MDL” in [VL00].
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is the Kullback-Leibler divergence. The second line of (1) also explains the name
MDL, since we choose the ϑ which minimizes the joint description of model ϑ and
the data x given the model.

We also define the extended Kullback-Leibler divergence

Dα(ϑ‖ϑ̃) = α ln
ϑ

ϑ̃
+ (1− α) ln

1− ϑ

1− ϑ̃
= D(α‖ϑ̃)−D(α‖ϑ). (2)

It is easy to see that Dα(ϑ‖ϑ̃) is linear in α, Dϑ(ϑ‖ϑ̃) = D(ϑ‖ϑ̃) and Dϑ̃(ϑ‖ϑ̃) =
−D(ϑ̃‖ϑ), and d

dα
Dα(ϑ‖ϑ̃) > 0 iff ϑ > ϑ̃. Note that Dα(ϑ‖ϑ̃) may be also defined

for the general i.i.d. case, i.e. if the alphabet has more than two symbols.
Let ϑ, ϑ̃ ∈ Θ be two parameters, then it follows from (1) that in the process of

choosing the MDL estimator, ϑ is being preferred to ϑ̃ iff

nDα(ϑ‖ϑ̃) ≥ ln 2 · (Kw(ϑ)−Kw(ϑ̃)) (3)

with n and α as before. We also say that then ϑ beats ϑ̃. It is immediate that for
increasing n the influence of the complexities on the selection of the maximizing
element decreases. We are now interested in the total expected square prediction
error (or cumulative square loss) of the MDL estimator

∞∑
n=1

E(ϑx1:n − ϑ0)
2.

In terms of [PH04a], this is the static MDL prediction loss, which means that a
predictor/estimator ϑx is chosen according to the current observation x. (As already
mentioned, the terms predictor and estimator coincide for static MDL and Bernoulli
classes.) The dynamic method on the other hand would consider both possible
continuations x0 and x1 and predict according to ϑx0 and ϑx1. In the following,
we concentrate on static predictions. They are also preferred in practice, since
computing only one model is more efficient.

Let An = { k
n

: 0 ≤ k ≤ n}. Given the true parameter ϑ0 and some n ∈ N, the
expectation of a function f (n) : {0, . . . , n} → R is given by

Ef (n) =
∑
α∈An

p(α|n)f(αn), where p(α|n) =

(
n

k

)(
ϑα

0 (1− ϑ0)
1−α

)n

. (4)

(Note that the probability p(α|n) depends on ϑ0, which we do not make explicit in
our notation.) Therefore,

∞∑
n=1

E(ϑx1:n − ϑ0)
2 =

∞∑
n=1

∑
α∈An

p(α|n)(ϑ(α,n) − ϑ0)
2, (5)

Denote the relation f = O(g) by f
×
≤ g. Analogously define “

×
≥” and “

×
=”. From

[PH04a, Corollary 12], we immediately obtain the following result.
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Theorem 1 The cumulative loss bound
∑

n E(ϑx1:n − ϑ0)
2
×
≤ 2Kw(ϑ0) holds.

This is the “slow” convergence result mentioned in the introduction. In con-
trast, for a Bayes mixture, the total expected error is bounded by Kw(ϑ0) rather
than 2Kw(ϑ0) (see [Sol78] or [Hut01, Th.1]). An upper bound on

∑
n E(ϑx1:n − ϑ0)

2

is termed as convergence in mean sum and implies convergence ϑx1:n → ϑ0 with
probability 1 (since otherwise the sum would be infinite).

We now establish relations between the Kullback-Leibler divergence and the
quadratic distance. We call bounds of this type entropy inequalities.

Lemma 2 Let ϑ, ϑ̃ ∈ (0, 1). Let ϑ∗ = arg min{|ϑ− 1
2
|, |ϑ̃− 1

2
|}, i.e. ϑ∗ is the element

from {ϑ, ϑ̃} which is closer to 1
2
. Then the following assertions hold.

(i) D(ϑ‖ϑ̃) ≥ 2 · (ϑ− ϑ̃)2 ∀ ϑ, ϑ̃ ∈ (0, 1),

(ii) D(ϑ‖ϑ̃) ≤ 8
3
(ϑ− ϑ̃)2 if ϑ, ϑ̃ ∈ [1

4
, 3

4
],

(iii) D(ϑ‖ϑ̃) ≥ (ϑ−ϑ̃)2

2ϑ∗(1−ϑ∗)
if ϑ, ϑ̃ ≤ 1

2
,

(iv) D(ϑ‖ϑ̃) ≤ 3(ϑ−ϑ̃)2

2ϑ∗(1−ϑ∗)
if ϑ ≤ 1

4
and ϑ̃ ∈ [ϑ

3
, 3ϑ],

(v) D(ϑ̃‖ϑ) ≥ ϑ̃(ln ϑ̃− ln ϑ− 1) ∀ ϑ, ϑ̃ ∈ (0, 1),

(vi) D(ϑ‖ϑ̃) ≤ 1
2
ϑ̃ if ϑ ≤ ϑ̃ ≤ 1

2
,

(vii) D(ϑ‖ϑ · 2−j) ≤ j · ϑ if ϑ ≤ 1
2

and j ≥ 1,

(viii) D(ϑ‖1− 2−j) ≤ j if ϑ ≤ 1
2

and j ≥ 1.

Statements (iii)− (viii) have symmetric counterparts for ϑ ≥ 1
2
.

The first two statements give upper and lower bounds for the Kullback-Leibler di-
vergence in terms of the quadratic distance. They express the fact that the Kullback-
Leibler divergence is locally quadratic. So do the next two statements, they will be
applied in particular if ϑ is located close to the boundary of [0, 1]. Statements (v) and
(vi) give bounds in terms of the absolute distance, i.e. “linear” instead of quadratic.
They are mainly used if ϑ̃ is relatively far from ϑ. Note that in (v), the position of
ϑ and ϑ̃ are inverted. The last two inequalities finally describe the behavior of the
Kullback-Leibler divergence as its second argument tends to the boundary of [0, 1].
Observe that this is logarithmic in the inverse distance to the boundary.

Proof. (i) This is standard, see e.g. [LV97]. It is shown similarly as (iii).
(ii) Let f(η) = D(ϑ‖η) − 8

3
(η − ϑ)2, then we show f(η) ≤ 0 for η ∈ [1

4
, 3

4
]. We

have that f(ϑ) = 0 and

f ′(η) =
η − ϑ

η(1− η)
− 16

3
(η − ϑ).

This difference is nonnegative if and only η−ϑ ≤ 0 since η(1−η) ≥ 3
16

. This implies
f(η) ≤ 0.
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(iii) Consider the function

f(η) = D(ϑ‖η)− (ϑ− η)2

2 max{ϑ, η}(1−max{ϑ, η})
.

We have to show that f(η) ≥ 0 for all η ∈ (0, 1
2
]. It is obvious that f(ϑ) = 0. For

η ≤ ϑ,

f ′(η) =
η − ϑ

η(1− η)
− η − ϑ

ϑ(1− ϑ)
≤ 0

holds since η − ϑ ≤ 0 and ϑ(1 − ϑ) ≥ η(1 − η). Thus, f(η) ≥ 0 must be valid for
η ≤ ϑ. On the other hand if η ≥ ϑ, then

f ′(η) =
η − ϑ

η(1− η)
−

[
η − ϑ

η(1− η)
− (η − ϑ)2(1− 2η)

2η2(1− η)2

]
≥ 0

is true. Thus f(η) ≥ 0 holds in this case, too.
(iv) We show that

f(η) = D(ϑ‖η)− 3(ϑ− η)2

2 max{ϑ, η}(1−max{ϑ, η})
≤ 0

for η ∈ [ϑ
3
, 3ϑ]. If η ≤ ϑ, then

f ′(η) =
η − ϑ

η(1− η)
− 3(η − ϑ)

ϑ(1− ϑ)
≥ 0

since 3η(1− η) ≥ ϑ(1− η) ≥ ϑ(1− ϑ). If η ≥ ϑ, then

f ′(η) =
η − ϑ

η(1− η)
− 3 ·

[
η − ϑ

η(1− η)
− (η − ϑ)2(1− 2η)

2η2(1− η)2

]
≤ 0

is equivalent to 4η(1− η) ≥ 3(η − ϑ)(1− 2η), which is fulfilled if ϑ ≤ 1
4

and η ≤ 3ϑ
as an elementary computation verifies.

(v) Using − ln(1−u) ≤ u
1−u

, one obtains

D(ϑ̃‖ϑ) = ϑ̃ ln
ϑ̃

ϑ
+ (1− ϑ̃) ln

1− ϑ̃

1− ϑ
≥ ϑ̃ ln

ϑ̃

ϑ
+ (1− ϑ̃) ln(1− ϑ̃)

≥ ϑ̃ ln
ϑ̃

ϑ
− ϑ̃ = ϑ̃(ln ϑ̃− ln ϑ− 1)

(vi) This follows from D(ϑ‖ϑ̃) ≤ − ln(1−ϑ̃) ≤ ϑ̃
1−ϑ̃

≤ ϑ̃
2
. The last two statements

(vii) and (viii) are even easier. 2

In the above entropy inequalities we have left out the extreme cases ϑ, ϑ̃ ∈ {0, 1}.
This is for simplicity and convenience only. Inequalities (i) − (iv) remain valid for
ϑ, ϑ̃ ∈ {0, 1} if the fraction 0

0
is properly defined. However, since the extreme
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cases will need to be considered separately anyway, there is no requirement for the
extension of the lemma. We won’t need (vi) and (viii) of Lemma 2 in the sequel.

We want to point out that although we have proven Lemma 2 only for the case
of binary alphabet, generalizations to arbitrary alphabet are likely to hold. In fact,
(i) does hold for arbitrary alphabet, as shown in [Hut01].

It is a well-known fact that the binomial distribution may be approximated by
a Gaussian. Our next goal is to establish upper and lower bounds for the binomial
distribution. Again we leave out the extreme cases.

Lemma 3 Let ϑ0 ∈ (0, 1) be the true parameter, n ≥ 2 and 1 ≤ k ≤ n − 1, and
α = k

n
. Then the following assertions hold.

(i) p(α|n) ≤ 1√
2πα(1− α)n

exp (− nD(α‖ϑ0)),

(ii) p(α|n) ≥ 1√
8α(1− α)n

exp (− nD(α‖ϑ0)).

The lemma gives a quantitative assertion about the Gaussian approximation to a
binomial distribution. The upper bound is sharp for n →∞ and fixed α. Lemma 3
can be easily combined with Lemma 2, yielding Gaussian estimates for the Binomial
distribution.

Proof. Stirling’s formula is a well-known result from calculus. In a refined version,
it states that for any n ≥ 1 the factorial n! can be bounded from below and above
by

√
2πn · nn exp

(
−n +

1

12n + 1

)
≤ n! ≤

√
2πn · nn exp

(
−n +

1

12n

)
.

Hence,

p(α, n) =
n!

k!(n− k)!
ϑk

0(1− ϑ0)
n−k

≤
√

n · nn exp
(

1
12n

)
ϑk

0(1− ϑ0)
n−k√

2πk(n− k) · kk(n− k)n−k exp
(

1
12k+1

+ 1
12(n−k)+1

)
=

1√
2πα(1− α)n

exp

(
−n ·D(α‖ϑ0) +

1

12n
− 1

12k + 1
− 1

12(n− k) + 1

)
≤ 1√

2πα(1− α)n
exp (− nD(α‖ϑ0)).

The last inequality is valid since 1
12n

− 1
12k+1

− 1
12(n−k)+1

< 0 for all n and k, which

is easily verified using elementary computations. This establishes (i).
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In order to show (ii), we observe

p(α, n) ≥ 1√
2πα(1− α)n

exp

(
−n ·D(α‖ϑ0) +

1

12n + 1
− 1

12k
− 1

12(n− k)

)
≥

exp( 1
37
− 1

8
)√

2πα(1− α)n
exp (− nD(α‖ϑ0)) for n ≥ 3.

Here the last inequality follows from the fact that 1
12n+1

− 1
12k

− 1
12(n−k)

is minimized

for n = 3 (and k = 1 or 2), if we exclude n = 2, and exp( 1
37
− 1

8
) ≥

√
π/2. For n = 2

a direct computation establishes the lower bound. 2

Lemma 4 Let z ∈ R+, then

(i)

√
π

2z3
− 1

z
√

2e
≤

∞∑
n=1

√
n · exp(−z2n) ≤

√
π

2z3
+

1

z
√

2e
and

(ii)
∞∑

n=1

n−
1
2 exp(−z2n) ≤

√
π/z.

Proof. (i) The function f(u) =
√

u exp(−z2u) increases for u ≤ 1
2z2 and decreases

for u ≥ 1
2z2 . Let N = max{n ∈ N : f(n) ≥ f(n− 1)}, then it is easy to see that

N−1∑
n=1

f(n) ≤
∫ N

0

f(u) du ≤
N∑

n=1

f(n) and

∞∑
n=N+1

f(n) ≤
∫ ∞

N

f(u) du ≤
∞∑

n=N

f(n) and thus

∞∑
n=1

f(n)− f(N) ≤
∫ ∞

0

f(u) du ≤
∞∑

n=1

f(n) + f(N)

holds. Moreover, f is the derivative of the function

F (u) = −
√

u exp(−z2u)

z2
+

1

z3

∫ z
√

u

0

exp(−v2) dv.

Observe f(N) ≤ f( 1
2z2 ) =

exp(− 1
2
)

z·
√

2
and

∫ ∞
0

exp(−v2)dv =
√

π
2

to obtain the assertion.

(ii) The function f(u) = u−
1
2 exp(−z2u) decreases monotonically on (0,∞) and

is the derivative of F (u) = 2z−1
∫ z

√
u

0
exp(−v2)dv. Therefore,

∞∑
n=1

f(n) ≤
∫ ∞

0

f(u) du =
√

π/z

holds. 2
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3 Lower Bound

We are now in the position to prove that even for Bernoulli classes the upper bound
from Theorem 1 is sharp in general.

Proposition 5 Let ϑ0 = 1
2

be the true parameter generating sequences of fair coin
flips. Assume Θ = {ϑ0, ϑ1, . . . , ϑ2N−1} where ϑk = 1

2
+ 2−k−1 for k ≥ 1. Let all

complexities be equal, i.e. Kw(ϑ0) = . . . = Kw(ϑ2N−1) = N . Then

∞∑
n=1

E(ϑ0 − ϑx)2 ≥ 1
84

(2N − 5)
×
= 2Kw(ϑ0).

Proof. Recall that ϑx = ϑ(α,n) the maximizing element for some observed sequence
x only depends on the length n and the observed fraction of ones α. In order
to obtain an estimate for the total prediction error

∑
n E(ϑ0 − ϑx)2, partition the

interval [0, 1] into 2N disjoint intervals Ik, such that
⋃2N−1

k=0 Ik = [0, 1]. Then consider
the contributions for the observed fraction α falling in Ik separately:

C(k) =
∞∑

n=1

∑
α∈An∩Ik

p(α|n)(ϑ(α,n) − ϑ0)
2 (6)

(compare (4)). Clearly,
∑

n E(ϑ0−ϑx)2 =
∑

k C(k) holds. We define the partitioning

(Ik) as I0 = [0, 1
2

+ 2−2N
) = [0, ϑ2N−1), I1 = [3

4
, 1] = [ϑ1, 1], and

Ik = [ϑk, ϑk−1) for all 2 ≤ k ≤ 2N − 1.

Fix k ∈ {2, . . . , 2N − 1} and assume α ∈ Ik. Then

ϑ(α,n) = arg min
ϑ
{nD(α‖ϑ) + Kw(ϑ) ln 2} = arg min

ϑ
{nD(α‖ϑ)} ∈ {ϑk, ϑk−1}

according to (1). So clearly (ϑ(α,n)−ϑ0)
2 ≥ (ϑk −ϑ0)

2 = 2−2k−2 holds. Since p(α|n)
decreases for increasing |α − ϑ0|, we have p(α|n) ≥ p(ϑk−1|n). The interval Ik has
length 2−k−1, so there are at least bn2−k−1c ≥ n2−k−1−1 observed fractions α falling
in the interval. From (6), the total contribution of α ∈ Ik can be estimated by

C(k) ≥
∞∑

n=1

2−2k−2(n2−k−1 − 1)p(ϑk−1|n).

Note that the terms in the sum even become negative for small n, which does not
cause any problems. We proceed with

p(ϑk−1|n) ≥ 1√
8 · 2−2n

exp [− nD(1
2

+ 2−k‖1
2
)] ≥ 1√

2n
exp [− n8

3
2−2k]

10



according to Lemma 3 and Lemma 2 (ii). By Lemma 4 (i) and (ii), we have

∞∑
n=1

√
n exp [− n8

3
2−2k] ≥

√
π

2

(
3

8

) 3
2

23k − 1√
2e

√
3

8
2k and

−
∞∑

n=1

n−
1
2 exp [− n8

3
2−2k] ≥ −

√
π

√
3

8
2k.

Considering only k ≥ 5, we thus obtain

C(k) ≥ 1√
2

√
3

8
2−2k−2

[
3
√

π

16
22k−1 − 1√

2e
2−1 −

√
π2k

]
≥

√
3

16

[
3
√

π2−5 − 1√
2e

2−2k−1 −
√

π2−k

]
≥
√

3π

8
2−5 −

√
3

16
√

2e
2−11 >

1

84
.

Ignoring the contributions for k ≤ 4, this implies the assertion. 2

This result shows that if the parameters and their weights are chosen in an
appropriate way, then the total expected error is of order w−1

0 instead of ln w−1
0 .

Interestingly, this outcome seems to depend on the arrangement and the weights
of the false parameters rather than on the weight of the true one. One can check
with moderate effort that the proposition still remains valid if e.g. w0 is twice as
large as the other weights. Actually, the proof of Proposition 5 shows even a slightly
more general result, namely admitting additional arbitrary parameters with larger
complexities:

Corollary 6 Let Θ = {ϑk : k ≥ 0}, ϑ0 = 1
2
, ϑk = 1

2
+ 2−k−1 for 1 ≤ k ≤ 2N − 2,

and ϑk ∈ [0, 1] arbitrary for k ≥ 2N − 1. Let Kw(ϑk) = N for 0 ≤ k ≤ 2N − 2 and
Kw(ϑk) > N for k ≥ 2N − 1. Then

∑
n E(ϑ0 − ϑx)2 ≥ 1

84
(2N − 6) holds.

We will use this result only for Example 16. Other and more general assertions
can be proven similarly.

4 Upper Bounds

Although the cumulative error may be large, as seen in the previous section, the
instantaneous error is always small. It is easy to demonstrate this for the Bernoulli
case, to which we restrict in this paper. Much more general results have been
obtained for arbitrary classes of i.i.d. models [Li99, Zha04]. Strong instantaneous
bounds hold in particular if MDL is modified by replacing the factor ln 2 in (1) by
something larger (e.g. (1 + ε) ln 2) such that complexity is penalized slightly more
than usually. Note that our cumulative bounds are incomparable to these and other
instantaneous bounds.

11



Proposition 7 For n ≥ 3, the expected instantaneous square loss is bounded as
follows:

E(ϑ0 − ϑ̂x1:n)2 ≤ (ln 2)Kw(ϑ0)

2n
+

√
2(ln 2)Kw(ϑ0) ln n

n
+

6 ln n

n
.

Proof. We give an elementary proof for the case ϑ0 ∈ (1
4
, 3

4
) only. Like in the

proof of Proposition 5, we consider the contributions of different α separately. By
Hoeffding’s inequality, P(|α− ϑ0| ≥ c√

n
) ≤ 2e−2c2 for any c > 0. Letting c =

√
ln n,

the contributions by these α are thus bounded by 2
n2 ≤ ln n

n
.

On the other hand, for |α − ϑ0| ≤ c√
n
, recall that ϑ0 beats any ϑ iff (3) holds.

According to Kw(ϑ) ≥ 0, |α − ϑ0| ≤ c√
n
, and Lemma 2 (i) and (ii), (3) is already

implied by |α−ϑ| ≥
√

1
2
(ln 2)Kw(ϑ0)+ 4

3
c2

n
. Clearly, a contribution only occurs if ϑ beats

ϑ0, therefore if the opposite inequality holds. Using |α − ϑ0| ≤ c√
n

again and the
triangle inequality, we obtain that

(ϑ− ϑ0)
2 ≤

5c2 + 1
2
(ln 2)Kw(ϑ0) +

√
2(ln 2)Kw(ϑ0)c2

n

in this case. Since we have chosen c =
√

ln n, this implies the assertion. 2

One can improve the bound in Proposition 7 to E(ϑ0 − ϑ̂x1:n)2
×
≤ Kw(ϑ0)

n
by a

refined argument, compare [BC91]. But the high-level assertion is the same: Even
if the cumulative upper bound may be infinite, the instantaneous error converges
rapidly to 0. Moreover, the convergence speed depends on Kw(ϑ0) as opposed to
2Kw(ϑ0). Thus ϑ̂ tends to ϑ0 rapidly in probability (recall that the assertion is not
strong enough to conclude almost sure convergence). The proof does not exploit∑

wϑ ≤ 1, but only wϑ ≤ 1, hence the assertion even holds for a maximum likelihood
estimator (i.e. wϑ = 1 for all ϑ ∈ Θ). The theorem generalizes to i.i.d. classes. For
the example in Proposition 5, the instantaneous bound implies that the bulk of
losses occurs very late. This does not hold for general (non-i.i.d.) model classes:
The total loss up to time n in [PH04a, Example 9] grows linearly in n.

We will now state our main positive result that upper bounds the cumulative
loss in terms of the negative logarithm of the true weight and the arrangement of
the false parameters. The proof is similar to that of Proposition 5. We will only
give the proof idea here and defer the lengthy and tedious technical details to the
appendix.

Consider the cumulated sum square error
∑

n E(ϑ(α,n) − ϑ0)
2. In order to upper

bound this quantity, we will partition the open unit interval (0, 1) into a sequence of
intervals (Ik)

∞
k=1, each of measure 2−k. (More precisely: Each Ik is either an interval

or a union of two intervals.) Then we will estimate the contribution of each interval
to the cumulated square error,

C(k) =
∞∑

n=1

∑
α∈An,ϑ(α,n)∈Ik

p(α|n)(ϑ(α,n) − ϑ0)
2

12
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Figure 1: Example of the first four intervals for ϑ0 = 3
16

. We have an l-step, a c-step,
an l-step and another c-step. All following steps will be also c-steps.

(compare (4) and (6)). Note that ϑ(α,n) ∈ Ik precisely reads ϑ(α,n) ∈ Ik ∩Θ, but for
convenience we generally assume ϑ ∈ Θ for all ϑ being considered. This partitioning
is also used for α, i.e. define the contribution C(k, j) of ϑ ∈ Ik where α ∈ Ij as

C(k, j) =
∞∑

n=1

∑
α∈An∩Ij ,ϑ(α,n)∈Ik

p(α|n)(ϑ(α,n) − ϑ0)
2.

We need to distinguish between α that are located close to ϑ0 and α that are located
far from ϑ0. “Close” will be roughly equivalent to j > k, “far” will be approximately
j ≤ k. So we get

∑
n E(ϑ(α,n) − ϑ0)

2 =
∑∞

k=1 C(k) =
∑

k

∑
j C(k, j). In the proof,

p(α|n)
×
≤ [nα(1− α)]−

1
2 exp [− nD(α‖ϑ0)]

is often applied, which holds by Lemma 3 (recall that f
×
≤ g stands for f = O(g)).

Terms like D(α‖ϑ0), arising in this context and others, can be further estimated
using Lemma 2. We now give the constructions of intervals Ik and complementary
intervals Jk.

Definition 8 Let ϑ0 ∈ Θ be given. Start with J0 = [0, 1). Let Jk−1 = [ϑl
k, ϑ

r
k)

and define dk = ϑr
k − ϑl

k = 2−k+1. Then Ik, Jk ⊂ Jk−1 are constructed from Jk−1

according to the following rules.

ϑ0 ∈ [ϑl
k, ϑ

l
k + 3

8
dk) ⇒ Jk = [ϑl

k, ϑ
l
k + 1

2
dk), Ik = [ϑl

k + 1
2
dk, ϑ

r
k), (7)

ϑ0 ∈ [ϑl
k + 3

8
dk, ϑ

l
k + 5

8
dk) ⇒ Jk = [ϑl

k + 1
4
dk, ϑ

l
k + 3

4
dk), (8)

Ik = [ϑl
k, ϑ

l
k + 1

4
dk) ∪ [ϑl

k + 3
4
dk, ϑ

r
k),

ϑ0 ∈ [ϑl
k + 5

8
dk, ϑ

r
k) ⇒ Jk = [ϑl

k + 1
2
dk, ϑ

r
k), Ik = [ϑl

k, ϑ
l
k + 1

2
dk). (9)
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We call the kth step of the interval construction an l-step if (7) applies, a c-step if
(8) applies, and an r-step if (9) applies, respectively. Fig. 1 shows an example for
the interval construction.

Clearly, this is not the only possible way to define an interval construction.
Maybe the reader wonders why we did not center the intervals around ϑ0. In fact,
this construction would equally work for the proof. However, its definition would
not be easier, since one still has to treat the case where ϑ0 is located close to the
boundary. Moreover, our construction has the nice property that the interval bounds
are finite binary fractions.

Given the interval construction, we can identify the ϑ ∈ Ik with lowest complex-
ity:

Definition 9 For ϑ0 ∈ Θ and the interval construction (Ik, Jk), let

ϑI
k = arg min{Kw(ϑ) : ϑ ∈ Ik ∩Θ},

ϑJ
k = arg min{Kw(ϑ) : ϑ ∈ Jk ∩Θ}, and

∆(k) = max {Kw(ϑI
k)−Kw(ϑJ

k ), 0}.

If there is no ϑ ∈ Ik ∩Θ, we set ∆(k) = Kw(ϑI
k) = ∞.

We can now state the main positive result of this paper. The detailed proof is
deferred to the appendix. Corollaries will be given in the next section.

Theorem 10 Let Θ ⊂ [0, 1] be countable, ϑ0 ∈ Θ, and wϑ = 2−Kw(ϑ), where Kw(ϑ)
is some complexity measure on Θ. Let ∆(k) be as introduced in Definition 9 and
recall that ϑx = ϑ(α,n) depends on x’s length and observed fractions of ones. Then

∞∑
n=1

E(ϑ0 − ϑx)2
×
≤ Kw(ϑ0) +

∞∑
k=1

2−∆(k)
√

∆(k).

5 Uniformly Distributed Weights

We are now able to state some positive results following from Theorem 10.

Theorem 11 Let Θ ⊂ [0, 1] be a countable class of parameters and ϑ0 ∈ Θ the true
parameter. Assume that there are constants a ≥ 1 and b ≥ 0 such that

min {Kw(ϑ) : ϑ ∈ [ϑ0 − 2−k, ϑ0 + 2−k] ∩Θ, ϑ 6= ϑ0} ≥
k − b

a
(10)

holds for all k > aKw(ϑ0) + b. Then we have

∞∑
n=1

E(ϑ0 − ϑx)2
×
≤ aKw(ϑ0) + b

×
≤ Kw(ϑ0).
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Proof. We have to show that

∞∑
k=1

2−∆(k)
√

∆(k)
×
≤ aKw(ϑ0) + b,

then the assertion follows from Theorem 10. Let k1 = daKw(ϑ0) + b + 1e and
k′ = k − k1. Then by Lemma 17 (iii) and (10) we have

∞∑
k=1

2−∆(k)
√

∆(k) ≤
k1∑

k=1

1 +
∞∑

k=k1+1

2−Kw(ϑI
k)+Kw(ϑ0)

√
Kw(ϑI

k)−Kw(ϑ0)

≤ k1 + 2Kw(ϑ0)

∞∑
k=k1+1

2−
k−b

a

√
k − b

a

≤ k1 + 2Kw(ϑ0)

∞∑
k′=1

2−
k′+k1−b

a

√
k′ + k1 − b

a

≤ aKw(ϑ0) + b + 2 +
∞∑

k′=1

2−
k′
a

√
k′

a
+ Kw(ϑ0).

As already seen in the proof of Theorem 10,
√

k′

a
+ Kw(ϑ0) ≤

√
k′

a
+

√
Kw(ϑ0),∑

k′ 2
− k′

a

×
≤ a, and

∑
k′ 2

− k′
a

√
k′

a

×
≤ a hold. The latter is by Lemma 4 (i). This

implies the assertion. 2

Letting j = k−b
a

, (10) asserts that parameters ϑ with complexity Kw(ϑ) = j
must have a minimum distance of 2−ja−b from ϑ0. That is, if parameters with equal
weights are (approximately) uniformly distributed in the neighborhood of ϑ0, in the
sense that they are not too close to each other, then fast convergence holds. The
next two results are special cases based on the set of all finite binary fractions,

QB∗ = {ϑ = 0.β1β2 . . . βn−11 : n ∈ N, βi ∈ B} ∪ {0, 1}.

If ϑ = 0.β1β2 . . . βn−11 ∈ QB∗ , its length is l(ϑ) = n. Moreover, there is a binary code
β′1 . . . β′n′ for n, having at most n′ ≤ blog2(n+1)c bits. Then 0β′10β

′
2 . . . 0β′n′1β1 . . . βn−1

is a prefix-code for ϑ. For completeness, we can define the codes for ϑ = 0, 1 to be
10 and 11, respectively. So we may define a complexity measure on QB∗ by

Kw(0) = 2, Kw(1) = 2, and Kw(ϑ) = l(ϑ) + 2blog2(l(ϑ) + 1)c for ϑ 6= 0, 1. (11)

There are other similar simple prefix codes on QB∗ with the property Kw(ϑ) ≥ l(ϑ).

Corollary 12 Let Θ = QB∗, ϑ0 ∈ Θ and Kw(ϑ) ≥ l(ϑ) for all ϑ ∈ Θ, and recall

ϑx = ϑ(α,n). Then
∑

n E(ϑ0 − ϑx)2
×
≤ Kw(ϑ0) holds.
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Proof. Condition (10) holds with a = 1 and b = 0. 2

This is a special case of a uniform distribution of parameters with equal complex-
ities. The next corollary is more general, it proves fast convergence if the uniform
distribution is distorted by some function ϕ.

Corollary 13 Let ϕ : [0, 1] → [0, 1] be an injective, N times continuously differen-
tiable function. Let Θ = ϕ(QB∗), Kw(ϕ(t)) ≥ l(t) for all t ∈ QB∗, and ϑ0 = ϕ(t0)
for a t0 ∈ QB∗. Assume that there is n ≤ N and ε > 0 such that∣∣∣∣dnϕ

dtn
(t)

∣∣∣∣ ≥ c > 0 for all t ∈ [t0 − ε, t0 + ε] and

dmϕ

dtm
(t0) = 0 for all 1 ≤ m < n.

Then we have∑
E(ϑ0 − ϑx)2

×
≤ nKw(ϑ0) + 2log2(n!)− 2log2c + nlog2ε

×
≤ nKw(ϑ0).

Proof. Fix j > Kw(ϑ0), then

Kw(ϕ(t)) ≥ j for all t ∈ [t0 − 2−j, t0 + 2−j] ∩QB∗ . (12)

Moreover, for all t ∈ [t0 − 2−j, t0 + 2−j], Taylor’s theorem asserts that

ϕ(t) = ϕ(t0) +
dnϕ
dtn

(t̃)

n!
(t− t0)

n (13)

for some t̃ in (t0, t) (or (t, t0) if t < t0). We request in addition 2−j ≤ ε, then
|dnϕ

dtn
| ≥ c by assumption. Apply (13) to t = t0 + 2−j and t = t0 − 2−j and define

k = djn + log2(n!)− log2ce in order to obtain |ϕ(t0 + 2−j)− ϑ0| ≥ 2−k and |ϕ(t0 −
2−j) − ϑ0| ≥ 2−k. By injectivity of ϕ, we see that ϕ(t) /∈ [ϑ0 − 2−k, ϑ0 + 2−k] if
t /∈ [t0 − 2−j, t0 + 2−j]. Together with (12), this implies

Kw(ϑ) ≥ j ≥ k − log2(n!) + log2c− 1

n
for all ϑ ∈ [ϑ0 − 2−k, ϑ0 + 2−k] ∩Θ.

This is condition (10) with a = n and b = log2(n!)−log2c+1. Finally, the assumption
2−j ≤ ε holds if k ≥ k1 = nlog2ε + log2(n!) − log2c + 1. This gives an additional
contribution to the error of at most k1. 2

Corollary 13 shows an implication of Theorem 10 for parameter identification:
A class of models is given by a set of parameters QB∗ and a mapping ϕ : QB∗ →
Θ. The task is to identify the true parameter t0 or its image ϑ0 = ϕ(t0). The
injectivity of ϕ is not necessary for fast convergence, but it facilitates the proof.
The assumptions of Corollary 13 are satisfied if ϕ is for example a polynomial. In
fact, it should be possible to prove fast convergence of MDL for many common
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parameter identification problems. For sets of parameters other than QB∗ , e.g. the
set of all rational numbers Q, similar corollaries can easily be proven.

How large is the constant hidden in “
×
≤”? When examining carefully the proof of

Theorem 10, the resulting constant is quite huge. This is mainly due to the frequent
“wasting” of small constants. The sharp bound is supposably small, perhaps 16. On
the other hand, for the actual true expectation (as opposed to its upper bound) and
complexities as in (11), numerical simulations show

∑
n E(ϑ0 − ϑx)2 ≤ 1

2
Kw(ϑ0).

Finally, we state an implication which almost trivially follows from Theorem 10
but may be very useful for practical purposes, e.g. for hypothesis testing (compare
[Ris99]).

Corollary 14 Let Θ contain N elements, Kw(·) be any complexity function on Θ,
and ϑ0 ∈ Θ. Then we have

∞∑
n=1

E(ϑ0 − ϑx)2
×
≤ N + Kw(ϑ0).

Proof.
∑

k 2−∆(k)
√

∆(k) ≤ N is obvious. 2

6 The Universal Case

We briefly discuss the important universal setup, where Kw(·) is (up to an additive
constant) equal to the prefix Kolmogorov complexity K (that is the length of the
shortest self-delimiting program printing ϑ on some universal Turing machine). Since∑

k 2−K(k)
√

K(k) = ∞ no matter how late the sum starts (otherwise there would
be a shorter code for large k), Theorem 10 does not yield a meaningful bound.
This means in particular that it does not even imply our previous result, Theorem
1. But probably the following strengthening of Theorem 10 holds under the same
conditions, which then easily implies Theorem 1 up to a constant.

Conjecture 15
∑

n E(ϑ0 − ϑx)2
×
≤ K(ϑ0) +

∑
k 2−∆(k).

Then, take an incompressible finite binary fraction ϑ0 ∈ QB∗ , i.e. K(ϑ0)
+
=

l(ϑ0) + K(l(ϑ0)). For k > l(ϑ0), we can reconstruct ϑ0 and k from ϑI
k and l(ϑ0) by

just truncating ϑI
k after l(ϑ0) bits. Thus K(ϑI

k)+K(l(ϑ0))
×
≥ K(ϑ0)+K(k|ϑ0, K(ϑ0))

holds. Using Conjecture 15, we obtain∑
n

E(ϑ0 − ϑx)2
×
≤ K(ϑ0) + 2K(l(ϑ0))

×
≤ l(ϑ0)(log2l(ϑ0))

2, (14)

where the last inequality follows from the example coding given in (11).
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So, under Conjecture 15, we obtain a bound which slightly exceeds the com-
plexity K(ϑ0) if ϑ0 has a certain structure. It is not obvious if the same holds for
all computable ϑ0. In order to answer this question positive, one could try to use
something like [Gác83, Eq.(2.1)]. This statement implies that as soon as K(k) ≥ K1

for all k ≥ k1, we have
∑

k≥k1
2−K(k)

×
≤ 2−K1K1(log2K1)

2. It is possible to prove

an analogous result for ϑI
k instead of k, however we have not found an appropriate

coding that does without knowing ϑ0. Since the resulting bound is exponential in
the code length, we therefore have not gained anything.

Another problem concerns the size of the multiplicative constant that is hidden
in the upper bound. Unlike in the case of uniformly distributed weights, it is now of
exponential size, i.e. 2O(1). This is no artifact of the proof, as the following example
shows.

Example 16 Let U be some universal Turing machine. We construct a second
universal Turing machine U ′ from U as follows: Let N ≥ 1. If the input of U ′ is
1Np, where 1N is the string consisting of N ones and p is some program, then U
will be executed on p. If the input of U ′ is 0N , then U ′ outputs 1

2
. Otherwise, if the

input of U ′ is x with x ∈ BN \ {0N , 1N}, then U ′ outputs 1
2
+2−x−1. For ϑ0 = 1

2
, the

conditions of Corollary 6 are satisfied (where the complexity is relative to U ′), thus∑
n E(ϑx − ϑ0)

2
×
≥ 2N .

Can this also happen if the underlying universal Turing machine is not “strange”
in some sense, like U ′, but “natural”? Again this is not obvious. One would have
to define first an appropriate notion of a “natural” universal Turing machine which
rules out cases like U ′. If N is of reasonable size, then one can even argue that U ′

is natural in the sense that its compiler constant relative to U is small.
There is a relation to the class of all deterministic (generally non-i.i.d.) measures.

Then MDL predicts the next symbol just according to the monotone complexity Km,
see [Hut03c]. According to [Hut03c, Theorem 5], 2−Km is very close to the universal
semimeasure M [ZL70, Lev73]. Then the total prediction error (which is defined
slightly differently in this case) can be shown to be bounded by 2O(1)Km(x<∞)3

[Hut04]. The similarity to the (unproven) bound (14) “huge constant × polynomial”
for the universal Bernoulli case is evident.

7 Discussion and Conclusions

We have discovered the fact that the instantaneous and the cumulative loss bounds
can be incompatible. On the one hand, the cumulative loss for MDL predictions
may be exponential, i.e. 2Kw(ϑ0). Thus it implies almost sure convergence at a
slow speed, even for arbitrary discrete model classes [PH04a]. On the other hand,
the instantaneous loss is always of order 1

n
Kw(ϑ0), implying fast convergence in
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probability and a cumulative loss bound of Kw(ϑ0) ln n. Similar logarithmic loss
bounds can be found in the literature for continuous model classes [Ris96].

A different approach to assess convergence speed is presented in [BC91]. There,
an index of resolvability is introduced, which can be interpreted as the difference of
the expected MDL code length and the expected code length under the true model.
For discrete model classes, they show that the index of resolvability converges to
zero as 1

n
Kw(ϑ0) [BC91, Equation (6.2)]. Moreover, they give a convergence of

the predictive distributions in terms of the Hellinger distance [BC91, Theorem 4].
This implies a cumulative (Hellinger) loss bound of Kw(ϑ0) ln n and therefore fast
convergence in probability.

If the prior weights are arranged nicely, we have proven a small finite loss bound
Kw(ϑ0) for MDL (Theorem 10). If parameters of equal complexity are uniformly
distributed or not too strongly distorted (Theorem 11 and Corollaries), then the
error is within a small multiplicative constant of the complexity Kw(ϑ0). This may
be applied e.g. for the case of parameter identification (Corollary 13). A similar
result holds if Θ is finite and contains only few parameters (Corollary 14), which
may be e.g. satisfied for hypothesis testing. In these cases and many others, one can
interpret the conditions for fast convergence as the presence of prior knowledge. One
can show that if a predictor converges to the correct model, then it performs also
well under arbitrarily chosen bounded loss-functions [Hut03a, Theorem 4]. From an
information theoretic viewpoint one may interpret the conditions for a small bound
in Theorem 10 as “good codes”.

We have proven our positive results only for Bernoulli classes, of course it would
be desirable to cover more general i.i.d. classes. At least for finite alphabet, our
assertions are likely to generalize, as this is the analog to Theorem 1 which also
holds for arbitrary finite alphabet. Proving this seems even more technical than
Theorem 10 and therefore not very interesting. (The interval construction has to
be replaced by a sequence of nested sets in this case. Compare also the proof of the
main result in [Ris96].) For small alphabets of size A, meaningful bounds can still
be obtained by chaining our bounds A− 1 times.

It seems more interesting to ask if our results can be conditionalized with respect
to inputs. That is, in each time step, we are given an input and have to predict a
label. This is a standard classification problem, for example a binary classification
in the Bernoulli case. While it is straightforward to show that Theorem 1 still holds
in this setup [PH05], it is not clear in which way the present proofs can be adapted.
We leave this interesting question open.

We conclude with another open question. In abstract terms, we have proven a
convergence result for the Bernoulli case by mainly exploiting the geometry of the
space of distributions. This has been quite easy in principle, since for Bernoulli this
space is just the unit interval (for i.i.d it is the space of probability vectors). It is not
at all obvious if this approach can be transferred to general (computable) measures.
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A Proof of Theorem 10

The proof of Theorem 10 requires some preparations. We start by showing assertions
on the interval construction from Definition 8.

Lemma 17 The interval construction has the following properties.

(i) |Jk| = 2−k,

(ii) d(ϑ0, Ik) ≥ 2−k−2,

(iii) max
ϑ∈Ik

|ϑ− ϑ0| ≤ 2−k+1,

(iv) d(Jk+5, Ik) ≥ 15 · 2−k−6.

By d(·, ·) we mean the Euclidean distance: d(ϑ̃, I) = min{|ϑ̃ − ϑ| : ϑ ∈ I} and
d(J, I) = min{d(ϑ̃, I) : ϑ̃ ∈ J}.
Proof. The first three equations are fairly obvious. The last estimate can be
justified as follows. Assume that kth step of the interval construction is a c-step,
the same argument applies if it is an l-step or an r-step. Let c be the center of Jk

and assume without loss of generality ϑ0 ≤ c. Define ϑI = max{ϑ ∈ Ik : ϑ < c} and
ϑJ = min{ϑ ∈ Jk+5} (recall the general assumption ϑ ∈ Θ for all ϑ that occur, i.e.
ϑI , ϑJ ∈ Θ). Then ϑI = c− 2−k−1 and ϑJ ≥ c− 2−k−2− 2−k−6, where equality holds
if ϑ0 = c− 2−k−2. Consequently, ϑJ −ϑI ≥ 2−k−1− 2−k−2− 2−k−6 = 15 · 2−k−6. This
establishes the claim. 2

Next we turn to the minimum complexity elements in the intervals.

Proposition 18 The following assertions hold for all k ≥ 1.

(i) Kw(ϑJ
k ) ≤ Kw(ϑ0),

(ii) Kw(ϑJ
k+6) ≥ Kw(ϑJ

k ),

(iii) Kw(ϑI
k+1) ≥ Kw(ϑJ

k ),

(iv)
∞∑

k=1

max {Kw(ϑJ
k+5)−Kw(ϑI

k), 0} ≤ 6Kw(ϑ0),

Proof. The first three inequalities follow from ϑ0 ∈ Jk and Jk+6, Ik+1 ⊂ Jk. This
implies

m∑
j=0

max {Kw(ϑJ
6j+6)−Kw(ϑI

6j+1), 0}

≤ max {Kw(ϑJ
6 )−Kw(ϑI

1), 0}+
m∑

j=1

max {Kw(ϑJ
6j+6)−Kw(ϑJ

6j), 0}

≤ Kw(ϑJ
6 ) +

m∑
j=1

[Kw(ϑJ
6j+6)−Kw(ϑJ

6j)] = Kw(ϑJ
6m+6) ≤ Kw(ϑ0)
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for all m ≥ 0. By the same argument, we have

m∑
j=0

max {Kw(ϑJ
6j+i+5)−Kw(ϑI

6j+i), 0} ≤ Kw(ϑ0)

for all 1 ≤ i ≤ 6 (use (iii) in the first inequality, (ii) in the second, and (i) in the
last). This implies (iv). Clearly, we could everywhere substitute 5 by some constant
k′ and 6 by k′ + 1, but we will need the assertion only for the special case. 2

Consider the case that ϑ0 is located close to the boundary of [0, 1]. Then the
interval construction involves for long time only l-steps, if we assume without loss
of generality ϑ0 ≤ 1

2
. We will need to treat this case separately, since the estimates

for the general situation work only as soon as at least one c-step has taken place.
Precisely, the interval construction consists only of l-steps as long as

ϑ0 < 3
4
2−k, i.e. k < −log2ϑ0 + log2(

3
4
).

We therefore define
k0 = max {0, b−log2ϑ0 + log2

3
4
c} (15)

and observe that the (k0 + 1)st step is the first c-step. We are now prepared to give
the main proof.

Proof of Theorem 10. Assume ϑ0 ∈ Θ \ {0, 1}, the case ϑ0 ∈ {0, 1} is handled
like Case 1a below and will be left to the reader.

Before we start, we will show that the contribution of ϑ = 1 to the total error is
bounded by 1

4
. This is immediate, since 1 cannot become the maximizing element

as soon as x 6= 1n. Therefore the contribution is bounded by

∞∑
n=1

(1− ϑ0)
2p(1n) = (1− ϑ0)

2

∞∑
n=1

ϑn
0 = ϑ0(1− ϑ0) ≤ 1

4
. (16)

The same is true for the contribution of ϑ = 0.
As already mentioned, we first estimate the contributions of ϑ ∈ Ik for small k

if the true parameter ϑ0 is located close to the boundary. To this aim, we assume
ϑ0 ≤ 1

2
without loss of generality. We know that the interval construction involves

only l-steps as long as k ≤ k0, see (15). The very last five of these k still require a
particular treatment, so we start with k ≤ k0−5 and α is far from ϑ0. (If k0−5 < 1,
then there is nothing to estimate.)

Case 1a: k ≤ k0 − 5, j ≤ k1, α ∈ Ij = [2−j, 2−j+1), where k1 = k + dlog2(k0 −
k − 3)e + 2. The probability of α does not exceed p(2−j). The squared error may
clearly be upper bounded by 2−2k+2 = O(2−2k). For n < 2j, no such fractions can
occur, so we may consider only n = 2j + n′, n′ ≥ 0. Finally, there are at most
dn · 2−j−1e = O(2−jn) fractions α ∈ Ij. This follows from the general fact that if
I ⊂ (0, 1) is any half-open or open interval of length at most l, then at most dnle
observed fractions can be located in I.
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We now derive an estimate for the probability which is

p(α|n) ≤ p(2−j|n)
×
≤ n−

1
2 2

j
2 exp [− n ·D(2−j‖ϑ0)]

according to Lemma 3. Then, Lemma 2 (v) implies

exp [− nD(2−j‖ϑ0)] ≤ exp [− (2j + n′)D(2−j‖2−k0)] ≤ exp [n′2−j(k0 − j − 1)].

Taking into account the upper bound for the squared error O(2−2k) and the maxi-
mum number of fractions O(2−jn), the contribution C(k, j) can be upper bounded
by

C(k, j)
×
≤

∞∑
n=2j

p(2−j|n)2−2k · 2−jn
×
≤

∞∑
n′=0

2−2k− j
2
√

n · exp [n′2−j(k0 − j − 1)].

Decompose the right hand side using
√

n ≤
√

2j +
√

n′. Then we have

∞∑
n′=0

2−2k− j
2

√
2j · exp [n′2−j(k0 − j − 1)]

×
≤ 2−2k+j(k0 − j − 1)−1 and

∞∑
n′=0

2−2k− j
2

√
n′ · exp [n′2−j(k0 − j − 1)]

×
≤ 2−2k+j(k0 − j − 1)−

3
2

where the first inequality is straightforward and the second holds by Lemma 4 (i).
Letting k′ = k0 − k − 3, we have k′ ≥ 2 and

(k0 − j − 1)−
3
2 ≤ (k0 − j − 1)−1 ≤ (k0 − k1 − 1)−1 = (k′ − dlog2k

′e)−1.

Thus we may conclude

C(k, ≤k1) :=

k1∑
j=1

C(k, j)
×
≤

k+dlog2k′e+2∑
j=1

2−2k+j

k′ − dlog2k
′e

(17)

×
≤ 2−k k′

k′ − dlog2k
′e

≤ 2−k

(
1 +

dlog2k
′e

k′ − dlog2k
′e

)
≤ 3 · 2−k

(the last inequality is sharp for k′ = 3).
Case 1b: k ≤ k0 − 5, α ≤ 2−k1 (recall k1 = k + dlog2(k0 − k − 3)e + 2). This

means that we consider α close to ϑ0. By (3) we know that ϑ0 beats ϑ ∈ Ik if

n ·Dα(ϑ0‖ϑ) ≥ ln 2(Kw(ϑ0)−Kw(ϑ))

holds. This happens certainly for n ≥ N1 := ln 2 · Kw(ϑ0) · 2k+4, since Lemma 20
below asserts Dα(ϑ0‖ϑ) ≥ 2−2−4. Thus only smaller n can contribute. The total
probability of all α ≤ 2−k1 is clearly bounded by means of∑

α

p(α|n) ≤ 1.
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The jump size, i.e. the squared error, is again O(2−2k). Hence the total contribution
caused in Ik by α ≤ 2−k1 can thus be upper bounded by

C(k, >k1)
×
≤

N1∑
n=1

2−2k
×
≤ Kw(ϑ0)2

−k,

where C(k, > k1) is the obvious abbreviation for this contribution. Together with

(17) this implies C(k)
×
≤ Kw(ϑ0)2

−k and therefore

k0−5∑
k=1

C(k)
×
≤ Kw(ϑ0). (18)

This finishes the estimates for k ≤ k0 − 5. We now will consider the indices

k0 − 4 ≤ k ≤ k0

and show that the contributions caused by these ϑ ∈ Ik is at most O(Kw(ϑ0)).
Case 2a: k0 − 4 ≤ k ≤ k0, j ≤ k + 5, α ∈ Ij. Assume that ϑ ∈ Ik starts

contributing only for n > n0. This is not relevant here, and we will set n0 = 0 for
the moment, but then we can reuse the following computations later. Consequently
we have n = n0 + n′, and from Lemma 3 we obtain

p(α|n)
×
≤ n−

1
2 2

k0
2 exp [− (n0 + n′) ·D(α‖ϑ0)]. (19)

Lemma 17 implies d(α, ϑ0) ≥ 2−j−2 and thus

D(α‖ϑ0) ≥
2−2j−4

2 · 2−k0
= 2−2j−5+k0 . (20)

according to Lemma 2 (iii). Therefore we obtain

exp [− (n0 + n′) ·D(α‖ϑ0)] ≤ exp [− n0 ·D(α‖ϑ0)] exp [− n′2−2j−5+k0 ]. (21)

Again the maximum square error is O(2−2k), the maximum number of fractions is
O(n2−j). Therefore

C(k, j)
×
≤ exp [− n0D(α‖ϑ0)]

∞∑
n′=1

2−2k−j+
k0
2

√
n0 + n′ exp [− n′2−2j−5+k0 ]. (22)

We have

∞∑
n′=1

2−2k−j+
k0
2 exp [− n′2−2j−5+k0 ]

×
≤ 2−2k+j− k0

2 ≤ 2−2k+j and (23)

∞∑
n′=1

2−2k−j+
k0
2

√
n′ exp [− n′2−2j−5+k0 ]

×
≤ 2−2k+2j−k0 ≤ 2−2k+2j, (24)
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where the first inequality is straightforward and the second follows from Lemma 4

(i). Observe
∑k+5

j=1 2j
×
≤ 2k,

∑k+5
j=1 22j

×
≤ 22k, and

√
n ≤ √

n0 +
√

n′ in order to obtain

C(k, ≤k + 5)
×
≤ exp [− n0D(α‖ϑ0)](1 + 2−k√n0). (25)

The right hand side depends not only on k and n0, but formally also on α and even
on ϑ, since n0 itself depends on α and ϑ. Recall that for this case we have agreed
on n0 = 0, thus C(k, ≤k + 5) = O(1).

Case 2b: k0 − 4 ≤ k ≤ k0, α ∈ Jk+5. As before, we will argue that then
ϑ ∈ Ik can be the maximizing element only for small n. Namely, ϑ0 beats ϑ if
n ·Dα(ϑ0‖ϑ) ≥ ln 2(Kw(ϑ0)−Kw(ϑ)) holds. Since Dα(ϑ0‖ϑ) ≥ 2−2k−5 as stated in
Lemma 20 below, this happens certainly for n ≥ N1 := ln 2 · Kw(ϑ0) · 22k+5, thus
only smaller n can contribute. Note that in order to apply Lemma 20, we need
k ≥ k0 − 4. Again the total probability of all α is at most 1 and the jump size is
O(2−2k), hence

C(k, >k + 5)
×
≤

N1∑
n=1

2−2k
×
≤ Kw(ϑ0).

Together with C(k, ≤k + 5) = O(1) this implies C(k)
×
≤ Kw(ϑ0) and thus

k0∑
k=k0−4

C(k)
×
≤ Kw(ϑ0). (26)

This completes the estimate for the initial l-steps. We now proceed with the
main part of the proof. At this point, we drop the general assumption ϑ0 ≤ 1

2
, so

that we can exploit the symmetry otherwise if convenient.
Case 3a: k ≥ k0 + 1, j ≤ k + 5, α ∈ Ij. For this case, we may repeat the

computations (19)-(25), arriving at

C(k, ≤k + 5)
×
≤ exp [− n0D(α‖ϑ0)](1 + 2−k√n0). (27)

The right hand side of (27) depends on k and n0 and formally also on α and ϑ. We
now come to the crucial point of this proof:

For most k, n0 is considerably larger than 0.

That is, for most k, ϑ ∈ Ik starts contributing late, i.e. for large n. This will cause
the right hand side of (27) to be small.

We know that ϑ0 beats ϑ ∈ Ik for any α ∈ [0, 1] as long as

nDα(ϑ‖ϑ0) ≤ ln 2(Kw(ϑ)−Kw(ϑ0)) (28)
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holds. We are interested in for which n this must happen regardless of α, so assume
that α is close enough to ϑ to make Dα(ϑ‖ϑ0) > 0. Since Kw(ϑ) ≥ Kw(ϑI

k), we see
that (28) holds if

n ≤ n0(k, α, ϑ) :=
ln 2 ·∆(k)

Dα(ϑ‖ϑ0)
.

We show the following two relations:

exp [− n0(k, α, ϑ)D(α‖ϑ0)] ≤ 2−∆(k) and (29)

exp [− n0(k, α, ϑ)D(α‖ϑ0)]2
−k

√
n0(k, α, ϑ)

×
≤ 2−∆(k)

√
∆(k), (30)

regardless of α and ϑ. Since D(α‖ϑ0) ≥ D(α‖ϑ0) − D(α‖ϑ) = Dα(ϑ‖ϑ0), (29) is
immediate. In order to verify (30), we observe that

D(α‖ϑ0) ≥ 2−2j−5+k0 ≥ 2−2k−15+k0 ≥ 2−2k−15

holds as in (20). So for those α and ϑ having

η :=
2−2k−15

Dα(ϑ‖ϑJ
k+5)

≥ 1, (31)

we obtain

exp [− n0(k, α, ϑ)D(α‖ϑ0)]2
−k

√
n0(k, α, ϑ) ≤ 2−∆(k)η2−k

√
ln 2 ·∆(k)η22k+15

×
≤ 2−∆(k)

√
∆(k).

since η ≥ 1. If on the other hand (31) is not valid, then Dα(ϑ‖ϑJ
k+5)

×
≤ 2−2k holds,

which together with D(α‖ϑ0) ≥ Dα(ϑ‖ϑ0) again implies (30).
So we conclude that the dependence on α and ϑ of the right hand side of (27) is

indeed only a formal one. So we obtain C(k, ≤k + 5)
×
≤ 2−∆(k)

√
∆(k), hence

∞∑
k=k0+1

C(k, ≤k + 5)
×
≤

∞∑
k=1

2−∆(k)
√

∆(k). (32)

Case 3b: k ≥ k0 + 1, α ∈ Jk+5. We know that ϑJ
k+5 beats ϑ if

n ≥ ln 2 ·max {Kw(ϑJ
k+5)−Kw(ϑ), 0} · 22k+5,

since Dα(ϑJ
k+5‖ϑ) ≥ 2−2k−5 according to Lemma 20. Since Kw(ϑ) ≥ Kw(ϑI

k), this
happens certainly for n ≥ N1 := ln 2 · max {Kw(ϑJ

k+5) − Kw(ϑI
k), 0} · 22k+5. Again

the total probability of all α is at most 1 and the jump size is O(2−2k). Therefore
we have

C(k, >k + 5)
×
≤

N1∑
n=1

2−2k
×
≤ max {Kw(ϑJ

k+5)−Kw(ϑI
k), 0}.
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Using Proposition 18 (iv), we conclude

∞∑
k=k0+1

C(k, >k + 5)
×
≤ Kw(ϑ0). (33)

Combining all estimates for C(k), namely (18), (26), (32) and (33), the assertion
follows. 2

Lemma 19 Let 1 ≤ k ≤ k0 − 5, k1 = k + dlog2(k0 − k − 3)e + 2, ϑ ≥ 2−k, and
α ≤ 2−k1. Then Dα(ϑ0‖ϑ) ≥ 2−k−4 holds.

Proof. By Lemma 2 (iii) and (vii), we have

D(α‖ϑ) ≥ D(2−k1‖2−k) ≥ (2−k − 2−k1)2

2 · 2k(1− 2k)

≥ 2−k−1(1− 2−dlog2(k0−k−3)e−2) ≥ 7 · 2−k−4 and

D(α‖ϑ0) ≤ D(2−k1‖2−k0−1) ≤ 2−k1(k0 + 1− k1)

≤ 2−k−2k0 − k − dlog2(k0 − k − 3)e − 1

k0 − k − 3
≤ 6 · 2−k−4

(the last inequality is sharp for k = k0 − 5). This implies Dα(ϑ0‖ϑ) = D(α‖ϑ) −
D(α‖ϑ0) ≥ 2−k−4. 2

Lemma 20 Let k ≥ k0 − 4, ϑ ∈ Ik, and α, ϑ̃ ∈ Jk+5. Then we have Dα(ϑ̃‖ϑ) ≥
2−2k−5.

Proof. Assume ϑ ≤ 1
2

without loss of generality. Moreover, we will only present

the case ϑ̃ ≤ ϑ ≤ 1
4
, the other cases are similar and simpler. From Lemma 2 (iii)

and (iv) and Lemma 17 we know that

D(α‖ϑ) ≥ (α− ϑ)2

2ϑ(1− ϑ)
≥ 1522−2k−12

2ϑ
and

D(α‖ϑ̃) ≤ 3(α− ϑ̃)2

2α(1− α)
≤ 4 · 3 · 2−2k−14

3 · 2α
≤ 2 · 128 · 2−2k−14

ϑ
.

Note that in order to apply Lemma 2 (iv) in the second line we need to know
that for k + 5 a c-step has already taken place, and the last estimate follows from
ϑ ≤ 128α which is a consequence of k ≥ k0 − 4. Now the assertion follows from
Dα(ϑ̃‖ϑ) = D(α‖ϑ)−D(α‖ϑ̃) ≥ 2−2k−6(1522−7 − 1)ϑ−1 ≥ 2−2k−5. 2
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