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Abstract

The information content or complexity of an object can be measured
by the length of its shortest description. For instance the string
‘01010101010101010101010101010101° has the short description “16 repeti-
tions of 01”7, while ‘11001000011000011101111011101100” presumably has no
simpler description other than writing down the string itself. More formally,
the Algorithmic “Kolmogorov” Complexity (AC) of a string x is defined as
the length of the shortest program that computes or outputs x, where the
program is run on some fixed reference universal computer.
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1 Overview

Section 2 introduces the notion of the complexity of an effective code in general and
the concept of algorithmic “Kolmogorov” complexity in particular. The section is
deliberately vague about the precise underlying Turing machine model, its input and
output tape (alphabet) and their interpretation. There are many “minor” variants
of algorithmic complexity, based on “minor” variants of the Turing machine model,
whether the tape heads are monotone or not, there are blank symbol or not, halting
requirement or not, etc. References for some of them can be found in Section 6. The
subtle differences are beyond the scope of this article, so only the most popular one,
the prefix “Chaitin” complexity, is described in more detail in Section 3, together
with its most important properties in Section 4. Section 5 briefly describes other
complexities, related concepts, and major variants, and points to other Scholarpedia
articles for details.

2 Kolmogorov Complexity

Kolmogorov complexity formalizes the concept of simplicity and/or complexity. In-
tuitively, a string is simple if it can be described in a few words, like “the string of one
million ones”, and is complex if there is no such short description, like for a random
string whose shortest description is specifying it bit by bit. Typically one is only
interested in descriptions or codes that are effective in the sense that decoders are
algorithms on some computer. According to Church’s Thesis, the intuitive notion of
‘computability’ in its widest sense is captured by the formal notion of ‘computable
by a Turing machine’, and no formal mechanism can define a stronger notion of
‘computable.” The function K(-) below, though defined in terms of a particular
machine model, is machine-independent up to an additive constant and acquires
an asymptotically universal and absolute character through Church’s thesis, from
the ability of universal machines to simulate one another and execute any effective
process.

More formally, we say that (program) p is a description of string = on Turing
machine 7" if T'(p) = x. The length of the shortest description is denoted by

Kop(z) := min{{(p) : T(p) = x}
where {(p) is the length of p measured in bits. This complexity measure depends
on 7', and one may ask whether there exists a Turing machine which leads to the
shortest codes among all Turing machines for all x. Remarkably, there exists a
Turing machine (the universal one, U) which “nearly” has this property: If p is the
shortest description of x on T' = T;, then (i)p is a description of x under U, where
(i) is some binary (prefix) code of i. Hence

Ky(z) < Kp(x) + cru
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with eppy = €((i)), and similarly for other choices of universal Turing machines. The
shortest description of z under U is at most a constant number of bits longer than the
shortest description under 7. The statement and proof of this invariance theorem
in Solomonoff (1964), Kolmogorov (1965) and Chaitin (1969) is often regarded as
the birth of Algorithmic Information Theory. Furthermore, for each pair of univer-
sal Turing machines U" and U” satisfying the invariance theorem, the complexities
coincide up to an additive constant:

| Ky (z) — Kyo(x)| < cprom

Since cyryr is essentially a compiler/interpreter constant, it is “small” for “natural”
universal Turing machines U’ and U”. Therefore, it is customary to write O(1) for
terms like ¢y that only depend on the choice of universal Turing machines, but
which are independent of the strings under consideration.

The two bounds above may be termed ‘Kolmogorov’s Thesis: The intuitive
notion of ‘shortest effective code’ in its widest sense is captured by the formal notion
of Kolmogorov complexity, and no formal mechanism can yield an essentially shorter
code. Note that the shortest code is one for which there is a general decompressor:
The Kolmogorov complexity establishes the ultimate limit on how short a file can
be compressed by a general purpose compressor.

3 Prefix Complexity

There are many variants of algorithmic complexity, mainly for technical reasons: The
historically first “plain” complexity, the now more important “prefix” complexity,
and many others. Most of them coincide within an additive term logarithmic in the
length of the involved strings. In this article, K is used for the prefix complexity
variant based on the universal prefix Turing machine.

Prefix Turing machine. A prefix Turing machine is defined as a Turing machine
with one unidirectional input tape, one unidirectional output tape, and some bidi-
rectional work tapes. Input tapes are read only, output tapes are write only, and
unidirectional tapes are those where the head can only move from left to right. All
tapes are binary (no blank symbol), work tapes initially filled with zeros. We say T'
halts on input p with output z, and write T'(p) = x if p is to the left of the input
head and x is to the left of the output head after T" halts. The set of p on which T’
halts forms a prefix code. Such codes p are called self-delimiting programs.

The table of rules of a Turing machine 7" can be encoded in a canonical way as a
binary string, which we denote by (T"). Hence, the set of Turing machines {73, T5, ...}
can be effectively enumerated. There are so-called universal Turing machines that
can “simulate” all other Turing machines. We define a particular one below, which
also allows for side information y.

Universal prefix Turing machine. There exists a universal prefix Turing machine
U which simulates prefix Turing machine T; with input ¢/q if fed with input y'i'q,



i.e.
Uy'i'q) =T;(y'q) Vi,q.

where 2’ = () is a prefix code of z with ¢(2') < l(x) + 2log {(z) + O(1).

We call this particular U the reference universal Turing machine. Note that for p
not of the form y'7’q, U(p) does not halt. The price one has to pay for the existence
of a universal Turing machine is the undecidability of the halting problem (Turing
1936).

Prefix complexity. The (conditional) prefix Kolmogorov complexity is defined as
the shortest program p, for which the universal prefix Turing machine U outputs x

(given y):
K@) = min{t(p): Up) = 2}, K(aly) = min{t(p) : U(y/p) = 2}

For general (non-string) objects (like computable functions) one can specify some
default coding (-) and define K (object) := K ((object)), especially for numbers and
pairs, e.g. we abbreviate K (z,y) := K({x,y)) = K(z'y).

4 Properties of Prefix Complexity

The most important information-theoretic properties of K are:
(1) Incomputability:

K :{0,1} — IN is approximable from above in the limit, but not computable

(2) Upper bounds: K(z) < {(z)+ 2log ¢(x), K(n) < logn+ 2loglog n
(3) Kraft’s inequality implies: 3, 275@) < 1,

(4) Lower bounds: K(x) > {(z) for ‘most’ z, K(n)— oo for n — oo

(5) Extra information: K(z|y) < K(x) < K(z,y)

(6) Subadditivity: K(zy) < K(z,y) < K(z)+ K(ylz) < K(z)+ K(y)

(7) Symmetry of information: K(z,y) = K(z|ly, K(y)) + K(y) = K(y,z)

(8)

Information non-increase:

K(f(x)) < K(z)+ K(f) for computable f:{0,1}* — {0,1}"
(9) Coding relative to probability distribution / MDL bound:
K(z) < —logP(x)+ K(P) if P:{0,1}* — [0,1] is comp. and >, P(z) <1
where log is the binary logarithm and all (in)equalities hold within an additive

constant.

Explanation. All (in)equalities remain valid if K is (further) conditioned under
some z, i.e. K(...) ~ K(...|z) and K(...|ly) ~ K(...]ly,z). Those stated are all
valid within an additive constant of size O(1), but there are others that are only
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N log(x)+2log(log(x)).

v

Figure 1: Schematic graph of prefix Kolmogorov complexity K(x) with string z
interpreted as integer. K (x) > logz for ‘most’ z and K(z) < logx + 2loglogz + ¢
for all = for suitable constant c.

valid to logarithmic accuracy. K has many properties in common with Shannon
entropy as it should be, since both measure the information content of a string.
Property (2) gives an upper bound on K, and property (3) is Kraft’s inequality
which implies a lower bound (4) on K valid for ‘most’ n, where ‘most’ means that
there are only o(NN) exceptions for n € {1,..., N} These bounds allow us to draw
a schematic graph of K as depicted in Figure 1. Providing side information y can
never increase code length, requiring extra information y can never decrease code
length (5). Coding x and y separately never helps (6), and transforming = does
not increase its information content (8). Property (8) also shows that if = codes
some object o, switching from one coding scheme to another by means of a recursive
bijection f leaves K unchanged within additive O(1) terms. The first nontrivial
result is the symmetry of information (7), which is the analogue of the product rule
for probabilities. Property (9) is at the heart of the MDL principle (Rissanen 1989),
which approximates K (z) by —log P(x) + K(P).

Proof ideas. All upper bounds on K(z) are easily proven by devising some (ef-
fective) code for z of the length of the right-hand side of the inequality and by
noting that K(z) is the length of the shortest code among all possible effective
codes. For instance, if T} with j = O(1) is a Turing machine with 7;(¢’z’) = z, then
U(e'j'a’) = x; hence K(z) < l(e'j'2x") = L(2') + O(1) < l(x) + 2logl(x) + O(1),
which proves (2). In (9) one uses the Shannon-Fano code based on probability dis-

tribution P. Lower bounds are usually proven by counting arguments (easy for (4)
and harder for (7)).



5 Other Complexities and Related Concepts

A notion closely related to Kolmogorov complexity is the probability that a univer-
sal computer outputs some string x when fed with a program chosen at random.
This Algorithmic “Solomonoff” Probability (AP) is key in addressing the old philo-
sophical problem of induction in a formal way (Solomonoff 1964, Hutter 2007).

The major drawback of AC and AP are their incomputability. Time-bounded
“Levin” complexity penalizes a slow program by adding the logarithm of its run-
ning time to its length. This leads to computable variants of AC and AP, and
Universal “Levin” Search (US) that solves all inversion problems in optimal time,
apart from a huge multiplicative time constant (Levin 1973).

AC and AP also allow a formal and rigorous definition of random-
ness of individual strings that does not depend on physical or philosoph-
ical intuitions about nondeterminism or likelihood. Roughly, a string is
Algorithmically “Martin-Loef” Random (AR) if it is incompressible in the sense
that its algorithmic complexity is equal to its length (Martin-Loef 1966).

AC, AP, US, and AR are the core subdisciplines of
Algorithmic Information Theory (AIT), but AIT spans into and has applications in
many other areas. It serves as the foundation of the Minimum Description Length
(MDL) principle, can simplify proofs in computational complexity theory, has been
used to define a universal similarity metric between objects, solves the Maxwell
demon problem, and many others.

6 History

The general theory of coding and prefix codes can be found in Gallager (1968), and
the important Kraft inequality is due to Kraft (1949).

Kolmogorov complexity. A coarse picture of the early history of algorithmic in-
formation theory could be drawn as follows: Kolmogorov (1965) and Chaitin (1966)
suggested defining the information content of an object as the length of the short-
est program computing a representation of it. Solomonoff (1964) independently
invented the closely related universal a priori probability distribution. Levin (1970)
worked out most of the mathematical details. These papers may be regarded as the
invention of (what is now called) Algorithmic Information Theory. The invariance
in Section 2 is due to Solomonoff (1964), Kolmogorov (1965) and Chaitin (1969);
properties (4) and (9) are due to Levin (1974); the symmetry of information (7)
is due to Zvonkin & Levin (1970), Gacs (1974) and Kolmogorov (1983); the other
parts are elementary.

Other complexities and related concepts. There are many variants of “Kol-
mogorov” complexity. The prefix Kolmogorov complexity K defined here (Levin
1974, Gacs 1974, Chaitin 1975), the earliest form, “plain” Kolmogorov complex-
ity C' (Kolmogorov 1965), process complexity (Schnorr 1973), monotone complexity
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Km (Levin 1973), and uniform complexity (Loveland 1969), Chaitin’s complexity
Ke (Chaitin 1975), Solomonoff’s universal prior M = 275 (Solomonoff 1964,1978),
extension semimeasure Mc (Cover 1974), and some others. They often differ from
K only by O(log K), but otherwise have similar properties. For an introduction to
Shannon’s (1948) information theory and its relation to Kolmogorov complexity, see
Kolmogorov (1965,1983), Zvonkin & Levin (1970) and Cover (1991).

Resource-bounded complexity. The main drawback of all these variants of Kol-
mogorov complexity is that they are not finitely computable (Kolmogorov 1965,
Solomonoff 1964). They may be approximated from above (Kolmogorov 1965,
Solomonoff 1964), but no accuracy guarantee can be given, and what is worse,
the best upper bound for the runtime until one has reasonable accuracy for K(n)
grows faster than any computable function in n. This led to the development
of time-bounded complexity/probability that is finitely computable, or more gen-
eral resource-bounded complexity /probability (e.g. Daley 1973,1977, Feder 1992, Ko
1986, Pintado 1997, Schmidhuber 2002).
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8 Recommended Reading

For an excellent introduction to Kolmogorov complexity, and a more accurate treat-
ment of its history and detailed references (more than 500), and many applications
one should consult the authoritative book of Li and Vitanyi (1997).
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