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Abstract

Consider an agent interacting with an environment in cycles. In every in-
teraction cycle the agent is rewarded for its performance. We compare the
average reward U from cycle 1 to m (average value) with the future discounted
reward V from cycle k to ∞ (discounted value). We consider essentially ar-
bitrary (non-geometric) discount sequences and arbitrary reward sequences
(non-MDP environments). We show that asymptotically U for m→∞ and
V for k→∞ are equal, provided both limits exist. Further, if the effective
horizon grows linearly with k or faster, then the existence of the limit of U
implies that the limit of V exists. Conversely, if the effective horizon grows
linearly with k or slower, then existence of the limit of V implies that the
limit of U exists.
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1 Introduction

We consider the reinforcement learning setup [RN03, Hut05], where an agent inter-
acts with an environment in cycles. In cycle k, the agent outputs (acts) ak, then
it makes observation ok and receives reward rk, both provided by the environment.
Then the next cycle k+1 starts. For simplicity we assume that agent and environ-
ment are deterministic.

Typically one is interested in action sequences, called plans or policies, for agents
that result in high reward. The simplest reasonable measure of performance is the
total reward sum or equivalently the average reward, called average value U1m :=
1
m

[r1+...+rm], where m should be the lifespan of the agent. One problem is that
the lifetime is often not known in advance, e.g. often the time one is willing to let a
system run depends on its displayed performance. More serious is that the measure
is indifferent to whether an agent receives high rewards early or late if the values
are the same.

A natural (non-arbitrary) choice for m is to consider the limit m→∞. While
the indifference may be acceptable for finite m, it can be catastrophic for m=∞.
Consider an agent that receives no reward until its first action is ak = b, and then
once receives reward k−1

k
. For finite m, the optimal k to switch from action a to b

is kopt =m. Hence kopt→∞ for m→∞, so the reward maximizing agent for m→∞
actually always acts with a, and hence has zero reward, although a value arbitrarily
close to 1 would be achievable. (Immortal agents are lazy [Hut05, Sec.5.7]). More
seriously, in general the limit U1∞ may not even exist.

Another approach is to consider a moving horizon. In cycle k, the agent tries to
maximize Ukm := 1

m−k+1
[rk+...+rm], where m increases with k, e.g. m=k+h−1 with

h being the horizon. This naive truncation is often used in games like chess (plus a
heuristic reward in cycle m) to get a reasonably small search tree. While this can
work in practice, it can lead to inconsistent optimal strategies, i.e. to agents that
change their mind. Consider the example above with h=2. In every cycle k it is
better first to act a and then b (Ukm =rk+rk+1 =0+ k

k+1
), rather than immediately

b (Ukm =rk+rk+1 = k−1
k

+0), or a,a (Ukm =0+0). But entering the next cycle k+1,
the agent throws its original plan overboard, to now choose a in favor of b, followed
by b. This pattern repeats, resulting in no reward at all.

The standard solution to the above problems is to consider geometri-
cally=exponentially discounted reward [Sam37, BT96, SB98]. One discounts the
reward for every cycle of delay by a factor γ < 1, i.e. one considers the future dis-
counted reward sum Vkγ := (1−γ)

∑∞
i=kγ

i−kri, which models a preference towards
early rewards. The V1γ maximizing policy is consistent in the sense that its actions
ak,ak+1,... coincide with the optimal policy based on Vkγ. At first glance, there seems
to be no arbitrary lifetime m or horizon h, but this is an illusion. Vkγ is dominated by
contributions from rewards rk...rk+O(lnγ−1), so has an effective horizon heff ≈ lnγ−1.
While such a sliding effective horizon does not cause inconsistent policies, it can
nevertheless lead to suboptimal behavior. For every (effective) horizon, there is a
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task that needs a larger horizon to be solved. For instance, while heff =5 is sufficient
for tic-tac-toe, it is definitely insufficient for chess. There are elegant closed form
solutions for Bandit problems, which show that for any γ < 1, the Bayes-optimal
policy can get stuck with a suboptimal arm (is not self-optimizing) [BF85, KV86].

For γ→ 1, heff →∞, and the defect decreases. There are various deep papers
considering the limit γ→1 [Kel81], and comparing it to the limit m→∞ [Kak01].
The analysis is typically restricted to ergodic MDPs for which the limits limγ→1V1γ

and limm→∞U1m exist. But like the limit policy for m→∞, the limit policy for γ→1
can display very poor performance, i.e. we need to choose γ<1 fixed in advance (but
how?), or consider higher order terms [Mah96, AA99]. We also cannot consistently
adapt γ with k. Finally, the value limits may not exist beyond ergodic MDPs.

In the computer science literature, geometric discount is essentially assumed for
convenience without outer justification (sometimes a constant interest rate or prob-
ability of surviving is quoted [KLM96]). In the psychology and economics literature
it has been argued that people discount a one day=cycle delay in reward more if it
concerns rewards now rather than later, e.g. in a year (plus one day) [FLO02]. So
there is some work on “sliding” discount sequences Wkγ∝γ0rk+γ1rk+1+.... One can
show that this also leads to inconsistent policies if γ is non-geometric [Str56, VW04].

Is there any non-geometric discount leading to consistent policies? In [Hut02]
the generally discounted value Vkγ := 1

Γk

∑∞
i=kγiri with Γk :=

∑∞
i=kγi <∞ has been

introduced. It is well-defined for arbitrary environments, leads to consistent policies,
and e.g. for quadratic discount γk =1/k2 to an increasing effective horizon (propor-
tionally to k), i.e. the optimal agent becomes increasingly farsighted in a consistent
way, leads to self-optimizing policies in ergodic (kth-order) MDPs in general, Ban-
dits in particular, and even beyond MDPs. See [Hut02] for these and [Hut05] for
more results. The only other serious analysis of general discounts we are aware of
is in [BF85], but their analysis is limited to Bandits and so-called regular discount.
This discount has bounded effective horizon, so also does not lead to self-optimizing
policies.

The asymptotic total average performance U1∞ and future discounted perfor-
mance V∞γ are of key interest. For instance, often we do not know the exact envi-
ronment in advance but have to learn it from past experience, which is the domain of
reinforcement learning [SB98] and adaptive control theory [KV86]. Ideally we would
like a learning agent that performs asymptotically as well as the optimal agent that
knows the environment in advance.

Contents and main results. The subject of study of this paper is the relation
between U1∞ and V∞γ for general discount γ and arbitrary environment. The im-
portance of the performance measures U and V , and general discount γ has been
discussed above. There is also a clear need to study general environments beyond er-
godic MDPs, since the real world is neither ergodic (e.g. losing an arm is irreversible)
nor completely observable.

The only restriction we impose on the discount sequence γ is summability (Γ1<
∞) so that Vkγ exists, and monotonicity (γk≥γk+1). Our main result is that if both
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limits U1∞ and V∞γ exist, then they are necessarily equal (Section 7, Theorem 19).
Somewhat surprisingly this holds for any discount sequence γ and any environment
(reward sequence r), whatsoever.

Note that limit U1∞ may exist or not, independent of whether V∞γ exists or not.
We present examples of the four possibilities in Section 2. Under certain conditions
on γ, existence of U1∞ implies existence of V∞γ, or vice versa. We show that if (a
quantity closely related to) the effective horizon grows linearly with k or faster, then
existence of U1∞ implies existence of V∞γ and their equality (Section 5, Theorem 15).
Conversely, if the effective horizon grows linearly with k or slower, then existence
of V∞γ implies existence of U1∞ and their equality (Section 6, Theorem 17). Note
that apart from discounts with oscillating effective horizons, this implies (and this
is actually the path used to prove) the first mentioned main result. In Sections 3
and 4 we define and provide some basic properties of average and discounted value,
respectively.

2 Example Discount and Reward Sequences

In order to get a better feeling for general discount sequences, effective horizons,
average and discounted value, and their relation and existence, we first consider
various examples.

Notation.

• In the following we assume that i,k,m,n∈IN are natural numbers.
• Let F :=limnFn =limk→∞infn>kFn denote the limit inferior and
• F :=limnFn =limk→∞supn>kFn the limit superior of Fn.
• ∀′n means for all but finitely many n.
• Let γ =(γ1,γ2,...) denote a summable discount sequence in the sense that
• Γk :=

∑∞
i=kγi <∞ and γk∈IR+ ∀k.

• Further, r=(r1,r2,...) is a bounded reward sequence w.l.g. rk∈ [0,1] ∀k.
• Let constants α,β∈ [0,1], boundaries 0≤k1 <m1 <k2 <m2 <k3 <...,
• total average value U1m := 1

m

∑m
i=1ri (see Definition 10) and

• future discounted value Vkγ := 1
Γk

∑∞
i=kγiri (see Definition 12).

The derived theorems also apply to general bounded rewards ri ∈ [a,b] by linearly
rescaling ri ;

ri−a
b−a

∈ [0,1] and U ; U−a
b−a

and V ; V−a
b−a

.

Discount sequences and effective horizons. Rewards rk+h give only a small
contribution to Vkγ for large h, since γk+h

h→∞−→0. More important, the whole reward
tail from k+h to ∞ in Vkγ is bounded by 1

Γk
[γk+h+γk+h+1+...], which tends to zero

for h→∞. So effectively Vkγ has a horizon h for which the cumulative tail weight
Γk+h/Γk is, say, about 1

2
, or more formally heff

k := min{h≥ 0 : Γk+h ≤ 1
2
Γk}. The

closely related quantity hquasi
k :=Γk/γk, which we call the quasi-horizon, will play an
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important role in this work. The following table summarizes various discounts with
their properties.

Discounts γk Γk heff
k hquasi

k kγk/Γk →?

finite (k ≤ m) 1 m− k + 1 1
2
(m− k + 1) m− k + 1 k

m−k+1

geometric γk, 0 ≤ γ < 1 γk

1−γ
ln 2

ln γ−1
1

1−γ
(1− γ)k →∞

quadratic 1
k(k+1)

1
k

k k + 1 k
k+1

→ 1

power k−1−ε, ε > 0 ∼ 1
ε
k−ε ∼ (21/ε − 1)k ∼ k

ε
∼ ε → ε

harmonic≈
1

k ln2 k
∼ 1

ln k
∼ k2 ∼ k ln k ∼ 1

ln k
→ 0

For instance, the standard discount is geometric γk =γk for some 0≤γ<1, with con-
stant effective horizon ln(1/2)

lnγ
. (An agent with γ=0.95 can/will not plan farther than

about 10-20 cycles ahead). Since in this work we allow for general discount, we can
even recover the average value U1m by choosing γk ={1 for k≤m

0 for k>m
}. A power discount

γk = k−α (α > 1) is very interesting, since it leads to a linearly increasing effective
horizon heff

k ∝k, i.e. to an agent whose farsightedness increases proportionally with
age. This choice has some appeal, as it avoids preselection of a global time-scale like
m or 1

1−γ
, and it seems that humans of age k years usually do not plan their lives for

more than, perhaps, the next k years. It is also the boundary case for which U1∞
exists if and only if V∞γ exists.

Example reward sequences. Most of our (counter)examples will be for binary
reward r ∈ {0,1}∞. We call a maximal consecutive subsequence of ones a 1-run.
We denote start, end, and length of the nth run by kn, mn−1, and An =mn−kn,
respectively. The following 0-run starts at mn, ends at kn+1−1, and has length
Bn =kn+1−mn. The (non-normalized) discount sum in 1/0-run n is denoted by an

/ bn, respectively. The following definition and two lemmas facilitate the discussion
of our examples. The proofs contain further useful relations.

Definition 1 (Value for binary rewards) Every binary reward sequence r ∈
{0,1}∞ can be defined by the sequence of change points 0≤ k1 < m1 < k2 < m2 < ...
with

rk = 1 ⇐⇒ ∃n : kn ≤ k < mn

The intuition behind the following lemma is that the relative length An of a
1-run and the following 0-run Bn (previous 0-run Bn−1) asymptotically provides a
lower (upper) limit of the average value U1m.

Lemma 2 (Average value for binary rewards) For binary r of Definition 1,
let An :=mn−kn and Bn :=kn+1−mn be the lengths of the nth 1/0-run. Then

If An

An+Bn
→ α then U1∞ = limn U1,kn−1 = α

If An

Bn−1+An
→ β then U1∞ = limn U1,mn−1 = β

In particular, if α=β, then U1∞=α=β exists.
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Proof. The elementary identity U1m =U1,m−1+
1
m

(rm−U1,m−1)≷U1,m−1 if rm ={1
0
}

implies

U1kn ≤ U1m ≤ U1,mn−1 for kn ≤ m < mn

U1,kn+1−1 ≤ U1m ≤ U1,mn for mn ≤ m < kn+1

⇒ inf
n≥n0

U1kn ≤ U1m ≤ sup
m≥n0

U1,mn−1 ∀m ≥ kn0

⇒ lim
n

U1kn = U1∞ ≤ U1∞ = lim
n

U1,mn−1 (1)

The ≥ direction in the equalities in the last line holds, since (U1kn) and (U1,mn−1)
are subsequences of (U1m). Now

If An

An+Bn
≥ α ∀n then U1,kn−1 = A1 + ... + An−1

A1+B1+...+An−1+Bn−1
≥ α ∀n (2)

This implies infn
An

An+Bn
≤ infnU1,kn−1. If the condition in (2) is initially (for a finite

number of n) violated, the conclusion in (2) still holds asymptotically. A standard
argument along these lines shows that we can replace the inf by a lim, i.e.

lim
n

An

An+Bn
≤ lim

n
U1,kn−1 and similarly lim

n

An

An+Bn
≥ lim

n
U1,kn−1

Together this shows that limnU1,kn−1 =α exists, if limn
An

An+Bn
=α exists. Similarly

If An

Bn−1+An
≥ β ∀n then U1,mn−1 = A1 + ... + An

B0+A1+...+Bn−1+An
≥ β ∀n (3)

where B0 :=0. This implies infn
An

Bn−1+An
≤ infnU1,mn−1, and by an asymptotic refine-

ment of (3)

lim
n

An

Bn−1+An
≤ lim

n
U1,mn−1 and similarly lim

n

An

Bn−1+An
≥ lim

n
U1,mn−1

Together this shows that limnU1,mn−1 =β exists, if limn
An

Bn−1+An
=β exists.

Similarly to Lemma 2, the asymptotic ratio of the discounted value an of a 1-run
and the discount sum bn of the following (bn−1 of the previous) 0-run determines the
upper (lower) limits of the discounted value Vkγ.

Lemma 3 (Discounted value for binary rewards) For binary r of Definition
1, let an :=

∑mn−1
i=kn

γi =Γkn−Γmn and bn :=
∑kn+1−1

i=mn
γi =Γmn−Γkn+1 be the discount

sums of the nth 1/0-run. Then

If an+1

bn+an+1
→ α then V ∞γ = limn Vmnγ = α

If an

an+bn
→ β then V ∞γ = limn Vknγ = β

In particular, if α=β, then V∞γ =α=β exists.
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Proof. The proof is very similar to the proof of Lemma 2. The elementary identity
Vkγ =Vk+1,γ+ γk

Γk
(rk−Vk+1,γ)≷Vk+1,γ if rk ={1

0
} implies

Vmnγ ≤ Vkγ ≤ Vknγ for kn ≤ k ≤ mn

Vmnγ ≤ Vkγ ≤ Vkn+1γ for mn ≤ k ≤ kn+1

⇒ inf
n≥n0

Vmnγ ≤ Vkγ ≤ sup
m≥n0

Vknγ ∀k ≥ kn0

⇒ lim
n

Vmnγ = V ∞γ ≤ V ∞γ = lim
n

Vknγ (4)

The ≥ in the equalities in the last line holds, since (Vknγ) and (Vmnγ) are sub-
sequences of (Vkγ). Now if an

an+bn
≥ β ∀n≥ n0 then Vknγ = an + an+1 + ...

an+bn+an+1+bn+1+...
≥ β

∀n≥n0. This implies

lim
n

an

an+bn
≤ lim

n
Vknγ and similarly lim

n

an

an+bn
≥ lim

n
Vknγ

Together this shows that limnVknγ = β exists, if limn
an

an+bn
= β exists. Similarly if

an+1

bn+an+1
≥α ∀n≥n0 then Vmnγ = an+1 + an+2 +...

bn+an+1+bn+1+an+2+...
≥α ∀n≥n0. This implies

lim
n

an+1

bn+an+1
≤ lim

n
Vmnγ and similarly lim

n

an+1

bn+an+1
≥ lim

n
Vmnγ

Together this shows that limnVmnγ =α exists, if limn
an+1

bn+an+1
=α exists.

Example 4 (U1∞ =V∞γ) Constant rewards rk≡α is a trivial example for which
U1∞=V∞γ =α exist and are equal.

A more interesting example is r=11021304... of linearly increasing 0/1-run-length
with An = 2n−1 and Bn = 2n, for which U1∞ = 1

2
exists. For quadratic discount

γk= 1
k(k+1)

, using Γk= 1
k
, hquasi

k =k+1=Θ(k), kn=(2n−1)(n−1)+1, mn=(2n−1)n+1,

an =Γkn−Γmn = An

knmn
∼ 1

2n3 , and bn =Γmn−Γkn+1 = Bn

mnkn+1
∼ 1

2n3 , we also get V∞γ = 1
2
.

The values converge, since they average over increasingly many 1/0-runs, each of
decreasing weight.

Example 5 (simple U1∞ 6⇒V∞γ) Let us consider a very simple example with
alternating rewards r = 101010... and geometric discount γk = γk. It is immediate
that U1∞= 1

2
exists, but V ∞γ =V2k,γ = γ

1+γ
< 1

1+γ
=V2k−1,γ =V ∞γ.

Example 6 (U1∞ 6⇒V∞γ) Let us reconsider the more interesting example r =
11021304... of linearly increasing 0/1-run-length with An = 2n−1 and Bn = 2n for
which U1∞= 1

2
exists, as expected. On the other hand, for geometric discount γk=γk,

using Γk = γk

1−γ
and an =Γkn−Γmn = γkn

1−γ
[1−γAn ] and bn =Γmn−Γkn+1 = γmn

1−γ
[1−γBn ],

i.e. bn

an
∼γAn→0 and an+1

bn
∼γBn→0, we get V ∞γ =α=0<1=β=V ∞γ. Again, this is

plausible since for k at the beginning of a long run, Vkγ is dominated by the reward
0/1 in this run, due to the bounded effective horizon of geometric γ.
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Example 7 (V∞γ 6⇒U1∞) Discounted may not imply average value on sequences
of exponentially increasing run-length like r = 11021408116... with An = 22n−2 = kn

and Bn =22n−1 =mn for which U1∞= An

An+Bn
= 1

3
< 2

3
= An

Bn−1+An
=U1∞, i.e. U1∞ does

not exist. On the other hand, V∞γ exists for a discount with super-linear horizon
like γk = [kln2k]−1, since an increasing number of runs contribute to Vkγ: Γk∼ 1

lnk
,

hence Γkn∼ 1
(2n−2)ln2

and Γmn∼ 1
(2n−1)ln2

, which implies an =Γkn−Γmn∼ [4n2ln2]−1∼
Γmn−Γkn+1 =bn, i.e. V∞γ = 1

2
exists.

Example 8 (Non-monotone discount γ, U1∞ 6=V∞γ) Monotonicity of γ in
Theorems 15, 17, and 19 is necessary. As a simple counter-example consider al-
ternating rewards r2k = 0 with arbitrary γ2k and r2k−1 = 1 with γ2k−1 = 0, which
implies Vkγ≡0, but U1∞= 1

2
.

The above counter-example is rather simplistic. One may hope equivalence to
hold on smoother γ like γk+1

γk
→1. The following example shows that this condition

alone is not sufficient. For a counter-example one needs an oscillating γ of constant
relative amplitude, but increasing wavelength, e.g. γk =[2+cos(π

√
2k)]/k2. For the

sequence r = 11021304... of Example 6 we had U1∞ = 1
2
. Using mn = 1

2
(2n− 1

2
)2+ 7

8

and kn+1 = 1
2
(2n+ 1

2
)2+ 7

8
, and replacing the sums in the definitions of an and bn by

integrals, we get an∼ 1
n3 [

1
2
− 1

π
] and bn∼ 1

n3 [
1
2
+ 1

π
], which implies that V∞γ = 1

2
− 1

π

exists, but differs from U1∞= 1
2
.

Example 9 (Oscillating horizon) It is easy to construct a discount γ for which
supk

Γk

kγk
=∞ and supk

kγk

Γk
=∞ by alternatingly patching together discounts with

super- and sub-linear quasi-horizon hquasi
k . For instance choose γk ∝ γk geometric

until Γk

kγk
< 1

n
, then γk∝ 1

kln2k
harmonic until Γk

kγk
>n, then repeat with n;n+1. The

proportionality constants can be chosen to insure monotonicity of γ. For such γ
neither Theorem 15 nor Theorem 17 is applicable, only Theorem 19.

3 Average Value

We now take a closer look at the (total) average value U1m and relate it to the future
average value Ukm, an intermediate quantity we need later. We recall the definition
of the average value:

Definition 10 (Average value, U1m) Let ri∈ [0,1] be the reward at time i∈ IN .
Then

U1m :=
1

m

m∑
i=1

ri ∈ [0, 1]

is the average value from time 1 to m, and U1∞ :=limm→∞U1m the average value if
it exists.

We also need the average value Ukm := 1
m−k+1

∑m
i=kri from k to m and the following

Lemma.
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Lemma 11 (Convergence of future average value, Uk∞) For km ≤ m → ∞
and every k we have

U1m → α ⇔ Ukm → α
⇒ Ukmm → α if sup

m

km−1
m

< 1

⇐ Ukmm → α

The first equivalence states the obvious fact (and problem) that any finite initial
part has no influence on the average value U1∞. Chunking together many Ukmm

implies the last ⇐. The ⇒ only works if we average in Ukmm over sufficiently many
rewards, which the stated condition ensures (r =101010... and km =m is a simple
counter-example). Note that Ukmk

→α for mk≥k→∞ implies U1mk
→α, but not

necessarily U1m→α (e.g. in Example 7, U1mk
= 1

3
and k−1

mk
→ 0 imply Ukmk

→ 1
3

by
(5), but U1∞ does not exist).

Proof. The trivial identity mU1m=(k−1)U1,k−1+(m−k+1)Ukm implies Ukm−U1m=
k−1

m−k+1
(U1m−U1,k−1) implies

|Ukm − U1m| ≤
|U1m − U1,k−1|

m
k−1

− 1
(5)

⇔) The numerator is bounded by 1, and for fixed k and m→∞ the denominator
tends to ∞, which proves ⇔.

⇒) We choose (small) ε>0, mε large enough so that |U1m−α|<ε ∀m≥mε, and
m≥ mε

ε
. If k :=km≤mε, then (5) is bounded by 1

1/ε−1
. If k :=km >mε, then (5) is

bounded by 2ε
1/c−1

, where c :=supk
km−1

m
<1. This shows that |Ukmm−U1m|=O(ε) for

large m, which implies Ukmm→α.

⇐) We partition the time-range {1...m}=
⋃L

n=1{kmn ...mn}, where m1 :=m and
mn+1 := kmn−1. We choose (small) ε > 0, mε large enough so that |Ukmm−α|< ε
∀m≥mε, m≥ mε

ε
, and l so that kml

≤mε≤ml. Then

U1m =
1

m

[
l∑

n=1

+
L∑

n=l+1

]
(mn−kmn +1)Ukmnmn

≤ 1

m

l∑
n=1

(mn−kmn +1)(α + ε) +
ml+1−kmL

+1

m

≤ m1−kml
+1

m
(α + ε) +

kml

m
≤ (α + ε) + ε

Similarly U1m ≥ m1−kml
+1

m
(α− ε) ≥ m−mε

m
(α− ε) ≥ (1− ε)(α− ε)

This shows that |U1m−α|≤2ε for sufficiently large m, hence U1m→α.
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4 Discounted Value

We now take a closer look at the (future) discounted value Vkγ for general discounts
γ, and prove some useful elementary asymptotic properties of discount γk and nor-
malizer Γk. We recall the definition of the discounted value:

Definition 12 (Discounted value, Vkγ) Let ri ∈ [0,1] be the reward and γi ≥ 0
a discount at time i ∈ IN , where γ is assumed to be summable in the sense that
0<Γk :=

∑∞
i=kγi <∞. Then

Vkγ :=
1

Γk

∞∑
i=k

γiri ∈ [0, 1]

is the γ-discounted future value and V∞γ :=limk→∞Vkγ its limit if it exists.

We say that γ is monotone if γk+1≤ γk∀k. Note that monotonicity and Γk > 0
∀k implies γk >0 ∀k and convexity of Γk.

Lemma 13 (Discount properties, γ/Γ)

i)
γk+1

γk

→ 1 ⇔ γk+∆

γk

→ 1 ∀∆ ∈ IN

ii)
γk

Γk

→ 0 ⇔ Γk+1

Γk

→ 1 ⇔ Γk+∆

Γk

→ 1 ∀∆ ∈ IN

Furthermore, (i) implies (ii), but not necessarily the other way around (even not if
γ is monotone).

Proof. (i)⇒ γk+∆

γk
=
∏∆−1

i=k
γi+1

γi

k→∞−→1, since ∆ is finite.
(i)⇐ Set ∆=1.
(ii) The first equivalence follows from Γk = γk +Γk+1. The proof for the second
equivalence is the same as for (i) with γ replaced by Γ.
(i)⇒(ii) Choose ε>0. (i) implies γk+1

γk
≥1−ε ∀ ′k implies

Γk =
∞∑

i=k

γi = γk

∞∑
i=k

i−1∏
j=k

γi+1

γi

≥ γk

∞∑
i=k

(1− ε)i−k = γk/ε

hence γk

Γk
≤ε ∀′k, which implies γk

Γk
→0.

(i) 6⇐ (ii) Consider counter-example γk = 4−dlog2ke, i.e. γk = 4−n for 2n−1 < k≤ 2n.
Since Γk≥

∑∞
i=2nγi=2−n−1 we have 0≤ γk

Γk
≤21−n→0, but γk+1

γk
= 1

4
6→1 for k=2n.

10



5 Average Implies Discounted Value

We now show that existence of limmU1m can imply existence of limkVkγ and their
equality. The necessary and sufficient condition for this implication to hold is
roughly that the effective horizon grows linearly with k or faster. The auxiliary
quantity Ukm is in a sense closer to Vkγ than U1m is, since the former two both aver-
age from k (approximately) to some (effective) horizon. If γ is sufficiently smooth,
we can chop the area under the graph of Vkγ (as a function of k) “vertically” ap-
proximately into a sum of average values, which implies

Proposition 14 (Future average implies discounted value, U∞ ⇒V∞γ)
Assume k≤mk→∞ and monotone γ with

γmk

γk
→1. If Ukmk

→α, then Vkγ→α.

The proof idea is as follows: Let k1 =k and kn+1 =mkn +1. Then for large k we
get

Vkγ =
1

Γk

∞∑
n=1

mkn∑
i=kn

γiri ≈
1

Γk

∞∑
n=1

γkn(kn+1 − kn)Uknmkn

≈ α

Γk

∞∑
n=1

γkn(kn+1 − kn) ≈ α

Γk

∞∑
n=1

mkn∑
i=kn

γi = α

The (omitted) formal proof specifies the approximation error, which vanishes for
k→∞.

Actually we are more interested in relating the (total) average value U1∞ to the
(future) discounted value Vkγ. The following (first main) Theorem shows that for
linearly or faster increasing quasi-horizon, we have V∞γ =U1∞, provided the latter
exists.

Theorem 15 (Average implies discounted value, U1∞ ⇒V∞γ)

Assume supk
kγk

Γk
<∞ and monotone γ. If U1m→α, then Vkγ→α.

For instance, quadratic, power and harmonic discounts satisfy the condition, but
faster-than-power discount like geometric do not. Note that Theorem 15 does not
imply Proposition 14.

The intuition of Theorem 15 for binary reward is as follows: For U1m being able
to converge, the length of a run must be small compared to the total length m up
to this run, i.e. o(m). The condition in Theorem 15 ensures that the quasi-horizon
hquasi

k = Ω(k) increases faster than the run-lengths o(k), hence Vkγ ≈ UkΩ(k) ≈ U1m

(Lemma 11) asymptotically averages over many runs, hence should also exist. The
formal proof “horizontally” slices Vkγ into a weighted sum of average rewards U1m.
Then U1m→α implies Vkγ→α.

11



Proof. We represent Vkγ as a δj-weighted mixture of U1j’s for j ≥ k, where δj :=
γj−γj+1≥0. The condition ∞>c≥ kγk

Γk
=: ck ensures that the excessive initial part

∝U1,k−1 is “negligible”. It is easy to show that

∞∑
j=i

δj = γi and
∞∑

j=k

jδj = (k−1)γk + Γk

We choose some (small) ε>0, and mε large enough so that |U1m−α|<ε ∀m≥mε.
Then, for k>mε we get

Vkγ =
1

Γk

∞∑
i=k

γiri =
1

Γk

∞∑
i=k

∞∑
j=i

δjri =
1

Γk

∞∑
j=k

j∑
i=k

δjri

=
1

Γk

∞∑
j=k

δj[jU1j − (k−1)U1,k−1]

≶
1

Γk

∞∑
j=k

δj[j(α± ε)− (k−1)(α∓ ε)]

=
1

Γk

[(k−1)γk + Γk](α± ε)− 1

Γk

γk(k−1)(α∓ ε)

= α±
(
1 +

2(k − 1)γk

Γk

)
ε ≶ α± (1 + 2ck)ε

i.e. |Vkγ−α|<(1+2ck)ε≤(1+2c)ε ∀k>mε, which implies Vkγ→α.

Theorem 15 can, for instance, be applied to Example 4. Examples 5, 6, and 8
demonstrate that the conditions in Theorem 15 cannot be dropped. The following
proposition shows more strongly, that the sufficient condition is actually necessary
(modulo monotonicity of γ), i.e. cannot be weakened.

Proposition 16 (U1∞ 6⇒V∞γ) For every monotone γ with supk
kγk

Γk
=∞, there are

r for which U1∞ exists, but not V∞γ.

The proof idea is to construct a binary r such that all change points kn and mn

satisfy Γkn ≈ 2Γmn . This ensures that Vknγ receives a significant contribution from
1-run n, i.e. is large. Choosing kn+1�mn ensures that Vmnγ is small, hence Vkγ

oscillates. Since the quasi-horizon hquasi
k 6=Ω(k) is small, the 1-runs are short enough

to keep U1m small so that U1∞=0.

Proof. The assumption ensures that there exists a sequence m1, m2, m3, ... for
which

mnγmn

Γmn

≥ n2 We further (can) require Γmn < 1
2
Γmn−1+1 (m0 := 0)

For each mn we choose kn such that Γkn≈2Γmn . More precisely, since Γ is monotone
decreasing and Γmn <2Γmn≤Γmn−1+1, there exists (a unique) kn in the range mn−1<

12



kn < mn such that Γkn+1 < 2Γmn ≤Γkn . We choose a binary reward sequence with
rk =1 iff kn≤k<mn for some n. This implies

n2 ≤ mnγmn

Γmn

=
mn

mn − kn − 1

(mn − kn − 1)γmn

Γmn

≤ mn

mn − kn − 1

Γkn+1 − Γmn

Γmn

≤ mn

mn − kn − 1

=⇒ mn − kn

mn

=
mn − kn − 1

mn

+
1

mn

≤ 1

n2
+

γmn

Γmn

1

n2
≤ 2

n2

=⇒ U1mn ≤ 1

mn

[kl − 1] +
1

mn

n∑
n′=l

[mn′ − kn′ ] ≤
kl

mn

+
n∑

n′=l

mn′ − kn′

mn′

≤ kl

mn

+
n∑

n′=l

2

n′2
≤ kl

mn

+
2

l − 1

hence by (1) we have U1∞=limnU1,mn−1 ≤ 2
l−1
∀l, hence U1∞=0. On the other hand

ΓknVknγ = [Γkn−Γmn ] + ΓmnVmnγ ⇒ 1− Vknγ

1− Vmnγ

=
Γmn

Γkn

≤ 1
2

This shows that Vkγ cannot converge to an α<1. Theorem 19 and U1∞=0 implies
that Vkγ can also not converge to 1, hence V∞γ does not exist.

6 Discounted Implies Average Value

We now turn to the converse direction that existence of V∞γ can imply existence
of U1∞ and their equality, which holds under a nearly converse condition on the
discount: Roughly, the effective horizon has to grow linearly with k or slower.

Theorem 17 (Discounted implies average value, V∞γ ⇒U1∞)
Assume supk

Γk

kγk
<∞ and monotone γ. If Vkγ→α, then U1m→α.

For instance, power or faster and geometric discounts satisfy the condition, but
harmonic does not. Note that power discounts satisfy the conditions of Theorems
15 and 17, i.e. U1∞ exists iff V∞γ in this case.

The intuition behind Theorem 17 for binary reward is as follows: The run-length
needs to be small compared to the quasi-horizon, i.e. o(hquasi

k ), to ensure convergence
of Vkγ. The condition in Theorem 17 ensures that the quasi-horizon hquasi

k = O(k)
grows at most linearly, hence the run-length o(m) is a small fraction of the sequence
up to m. This ensures that U1m ceases to oscillate. The formal proof slices U1m

in “curves” to a weighted mixture of discounted values Vkγ. Then Vkγ→α implies
U1m→α.
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Proof. We represent Ukm as a (0≤ bj-weighted) mixture of Vjγ for k≤ j≤m. The
condition c :=supk

Γk

kγk
<∞ ensures that the redundant tail ∝Vm+1,γ is “negligible”.

Fix k large enough so that |Vjγ−α|<ε ∀j≥k. Then

m∑
j=k

bj(α∓ ε) ≶
m∑

j=k

bjVjγ =
m∑

j=k

bj

Γj

m∑
i=j

γiri +
m∑

j=k

bj

Γj

∞∑
i=m+1

γiri (6)

=
m∑

i=k

(
i∑

j=k

bj

Γj

)
γiri +

(
m∑

j=k

bj

Γj

)
Γm+1Vm+1,γ

In order for the first term on the r.h.s. to be a uniform mixture, we need

i∑
j=k

bj

Γj

=
1

γi

1

m− k + 1
(k ≤ i ≤ m) (7)

Setting i=k and, respectively, subtracting an i; i−1 term we get

bk

Γk

=
1

γk

1

m− k + 1
and

bi

Γi

=

(
1

γi

− 1

γi−1

)
1

m− k + 1
≥ 0 for k < i ≤ m

So we can evaluate the b-sum in the l.h.s. of (6) to

m∑
j=k

bj =
1

m− k + 1

[
m∑

j=k+1

(
Γj

γj

− Γj

γj−1

)
+

Γk

γk

]

=
1

m− k + 1

[
m∑

j=k

(
Γj

γj

− Γj+1

γj

)
+

Γm+1

γm

]

= 1 +
Γm+1

γm(m− k + 1)
=: 1 + cm (8)

where we shifted the sum index in the second equality, and used Γj−Γj+1 = γj in
the third equality. Inserting (7) and (8) into (6) we get

(1 + cm)(α∓ ε) ≶
m∑

i=k

1

m− k + 1
ri +

Γm+1

γm(m− k + 1)
Vm+1,γ ≶ Ukm + cm(α± ε)

Note that the excess cm over unity in (8) equals the coefficient of the tail contribution
Vm+1,γ. The above bound shows that

|Ukm − α| ≤ (1 + 2cm)ε ≤ (1 + 4c)ε for m ≥ 2k

Hence Um/2,m→α, which implies U1m→α by Lemma 11.

Theorem 17 can, for instance, be applied to Example 4. Examples 7 and 8
demonstrate that the conditions in Theorem 17 cannot be dropped. The following
proposition shows more strongly, that the sufficient condition is actually necessary,
i.e. cannot be weakened.
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Proposition 18 (V∞γ 6⇒U1∞) For every monotone γ with supk
Γk

kγk
=∞, there are

r for which V∞γ exists, but not U1∞.

Proof. The assumption ensures that there exists a sequence k1, k2, k3, ... for which

knγkn

Γkn

≤ 1

n2
We further choose kn+1 > 8kn

We choose a binary reward sequence with rk =1 iff kn≤k<mn :=2kn.

Vknγ =
1

Γkn

∞∑
l=n

γkl
+ ... + γ2kl−1 ≤

1

Γkn

∞∑
l=n

klγkl

≤
∞∑

l=n

klγkl

Γkl

≤
∞∑

l=n

1

l2
≤ 1

n− 1
→ 0

which implies V∞γ = 0 by (4). In a sense the 1-runs become asymptotically very
sparse. On the other hand,

U1,mn−1 ≥ 1
mn

[rkn + ... + rmn−1] = 1
mn

[mn − kn] = 1
2

but

U1,kn+1−1 ≤ 1
kn+1−1

[r1 + ... + rmn−1 ] ≤ 1
8kn

[mn − 1] ≤ 1
4
,

hence U1∞ does not exist.

7 Average Equals Discounted Value

Theorem 15 and 17 together imply for nearly all discount types (all in our table)
that U1∞ = V∞γ if U1∞ and V∞γ both exist. But Example 9 shows that there are
γ for which simultaneously supk

Γk

kγk
=∞ and supk

kγk

Γk
=∞, i.e. neither Theorem 15,

nor Theorem 17 applies. This happens for quasi-horizons that grow alternatingly
super- and sub-linear. Luckily, it is easy to also cover this missing case, and we get
the remarkable result that U1∞ equals V∞γ if both exist, for any monotone discount
sequence γ and any reward sequence r, whatsoever.

Theorem 19 (Average equals discounted value, U1∞ =V∞γ)
Assume monotone γ and that U1∞ and V∞γ exist. Then U1∞=V∞γ.

Proof. Case 1, supk
Γk

kγk
<∞: By assumption, there exists an α such that Vkγ→α.

Theorem 17 now implies U1m→α, hence U1∞=V∞γ =α.
Case 2, supk

Γk

kγk
= ∞: This implies that there is an infinite subsequence

k1 <k2 <k3,... for which Γki
/kiγki

→∞, i.e. cki
:=kiγki

/Γki
≤c<∞. By assumption,

there exists an α such that U1m→ α. If we look at the proof of Theorem 15, we
see that it still implies |Vkiγ−α|< (1+cki

)ε≤ (1+2c)ε on this subsequence. Hence
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Vkiγ → α. Since we assumed existence of the limit Vkγ this shows that the limit
necessarily equals α, i.e. again U1∞=V∞γ =α.

Considering the simplicity of the statement in Theorem 19, the proof based on
the proofs of Theorems 15 and 17 is remarkably complex. A simpler proof, if it
exists, probably avoids the separation of the two (discount) cases.

Example 8 shows that the monotonicity condition in Theorem 19 cannot be
dropped.

8 Discussion

We showed that asymptotically, discounted and average value are the same, provided
both exist. This holds for essentially arbitrary discount sequences (interesting since
geometric discount leads to agents with bounded horizon) and arbitrary reward se-
quences (important since reality is neither ergodic nor MDP). Further, we exhibited
the key role of power discounting with linearly increasing effective horizon. First, it
separates the cases where existence of U1∞ implies/is-implied-by existence of V∞γ.
Second, it neither requires nor introduces any artificial time-scale; it results in an
increasingly farsighted agent with horizon proportional to its own age. In particular,
we advocate the use of quadratic discounting γk =1/k2. All our proofs provide con-
vergence rates, which could be extracted from them. For simplicity we only stated
the asymptotic results. The main theorems can also be generalized to probabilis-
tic environments. Monotonicity of γ and boundedness of rewards can possibly be
somewhat relaxed. A formal relation between effective horizon and the introduced
quasi-horizon may be interesting.
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