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Algorithmic "Solomonoff" Probability (AP) assigns to objects an a priori 

probability that is in some sense universal. This prior distribution has 

theoretical applications in a number of areas, including inductive inference 

theory and the time complexity analysis of algorithms. Its main drawback 

is that it is not computable and thus can only be approximated in practice.  

 

Bayes, Occam and Epicurus  

In an inductive inference problem there is some observed data  and a set of hypotheses 

, one of which may be the true hypothesis generating . The task is to decide which 

hypothesis, or hypotheses, are the most likely to be responsible for the observations. An elegant solution to this 

problem is Bayes' rule,  

 

 

To compute the relative probabilities of different hypotheses  can be dropped as it is an independent 

constant. Furthermore, for a given hypothesis  it is often straight forward to compute . A 

conceptually more difficult problem is to assign the prior probability . Indeed, how can one assign a 

probability to a hypothesis  before observing any data? A theoretically sound solution to this problem was 

not known until R.J. Solomonoff founded algorithmic probability theory in the 1960s.  

Algorithmic probability rests upon two philosophical principles. The first is Epicurus' (342? B.C. - 270 B.C.) 
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Figure 1: Ray Solomonoff in 
Bioggio, Switzerland, 2001. 
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principle of multiple explanations which states that one should keep all hypotheses that are consistent with the 

data. From Bayes' rule it is clear that in order to keep consistent hypotheses what is needed is 
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.  

The second philosophical foundation is the principle of Occam's razor (1285 - 1349, sometimes spelt Ockham). 

Occam's razor states that when inferring causes entities should not be multiplied beyond necessity. This is 

widely understood to mean: Among all hypotheses consistent with the observations, choose the simplest. In 

terms of a prior distribution over hypotheses, this is the same as giving simpler hypotheses higher a priori 

probability, and more complex ones lower probability.  

Using Turing's model of universal computation, Solomonoff (1964) produced a universal prior distribution that 

unifies these two principles. This work was later generalized and extended by a number of researchers, in 

particular L. A. Levin who formalized the initial intuitive approach in a rigorous mathematical setting and 

supplied the basic theorems of the field. There now exist a number of strongly related universal prior 

distributions, however this article will describe only the discrete universal a priori probability, and its 

continuous counterpart. See Chapters 4 and 5 of Li and Vitányi (1997) for a general survey.  

Discrete Universal A Priori Probability  

Consider an unknown process producing a binary string of one hundred 1s. The probability that such a string is 

the result of a uniform random process, such as fair coin flips, is just , like that of any other 

string of the same length. Intuitively, we feel that there is a difference between a string that we can recognize 

and distinguish, and the vast majority of strings that are indistinguishable to us. In fact, we feel that a far more 

likely explanation is that some deterministic algorithmic simple process has generated this string. This 

observation was already made by P.-S. Laplace in about 1800, but the techniques were lacking for that great 

mathematician to quantify this insight. Presently we do this using the lucky confluence of combinatorics, 

information theory and theory of algorithms. It is clear that, in a world with computable processes, patterns 

which result from simple processes are relatively likely, while patterns that can only be produced by very 

complex processes are relatively unlikely. Formally, a computable process that produces a string  is a 

program  that when executed on a universal Turing machine  produces the string  as output.  

As  is itself a binary string, we can define the discrete universal a priori probability, , to be the 

probability that the output of a universal prefix Turing machine  is  when provided with fair coin flips on 

the input tape. Formally,  

 

 

where the sum is over all halting programs  for which  outputs the string . As  is a prefix universal 

Turing machine the set of valid programs forms a prefix-free set and thus the sum is bounded due to Kraft's 

inequality. In fact, the boundedness of the sum should be an obvious consequence from realizing that the above 

expression is indeed a probability, which hinges on the fact that a prefix machine is one with only {0,1} input 

symbols and no end-of-input marker of any kind. It is easy to see that this distribution is strongly related to 

Kolmogorov complexity in that  is at least the maximum term in the summation, which is . The 

Coding Theorem of L.A. Levin (1974) states that equality also holds in the other direction in the sense that 

, or equivalently,  

 

 

As every string can be computed by at least one program on , it follows that  assigns a non-zero 

probability to all computable hypotheses and thus this distribution respects Epicurus' principle. Furthermore, if 

we measure the complexity of  by its Kolmogorov complexity, we see that the simplest strings have the 

highest probability under , while complex ones have a correspondingly low probability. In this way  

also formalises the principle of Occam's razor.  

Unfortunately, it is impossible in general to know whether any given program  will halt when run on , due 
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to the halting problem. This means that the sum can not be computed, it can only be approximated from below. 

Stated technically, the function  is only lower semi-computable. Furthermore,  is not a proper 

probability measure but rather a semi-measure as . This can be corrected by normalising, 

however this introduces other theoretical weaknesses and so will not be discussed here.  

The universal a priori probability  has many remarkable properties. A theorem of L.A. Levin states that 

among the lower semi-computable semi-measures it is the largest such function in the following sense: If  is 

a lower semi-computable semi-measure, then there is a constant  such that  for all . In fact, 

we can take  with  the prefix Kolmogorov complexity of the distribution  (defined as the 

least complexity of a prefix Turing machine lower semi-computing the distribution). This justifies calling  a 

universal distribution.  

Thus, the same mathematical object  arises in three different ways: 
 

� The family of lower semi-computable semi-measures contains an element that multiplicatively 
dominates every other element: a `universal' lower semi-computable semi-measure ;  

� The probability mass function defined as the probability that the universal prefix machine  outputs  
when the input is provided by fair coin flips, is the `a priori' probability ; and  

� The probability  has  as its associated Shannon-Fano code ( ).  

When three very different definitions (or properties) turn out to define the same object, then this is usually 

taken in Mathematics to mean that this object is objectively important.  

Continuous Universal A Priori Probability  

The universal distribution  is defined in a discrete domain, its arguments are finite binary strings. For 

applications such as the prediction of growing sequences it is necessary to define a similar distribution on 

infinite binary sequences. This leads to the universal semi-measure  defined as the probability that the 

output of a monotone universal Turing machine  starts with  when provided with fair coin flips on the 

input tape. Formally,  

 

 

where the sum is over all minimal programs  for which 's output starts with  (denoted by *). 

 

Like , it can be shown that  is only a semi-computable semi-measure. Due to a theorem of L.A. Levin it 

is the largest such function: If  is a lower semi-computable semi-measure, then there is a constant  such 

that  for all . The precise definition of these notions is similar but more complicated than in 

the discrete setting above and thus we refer the reader to the literature (see for example chapter 4 of Li and 

Vitanyi 1997).  

The semi-measure  has similar remarkable properties to , for example,  

 , where  is the 

monotone complexity. Also  divided by the uniform measure  is the maximal semicomputable 

supermartingale. Additionally, if the infinite binary sequences are distributed according to a computable 

measure , then the predictive distribution  converges 

rapidly to  with -probability 1. Hence,  predicts almost 

as well as does the true distribution .  

Applications  
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Algorithmic probability has a number of important theoretical applications; some of them are listed below. For 

a more complete survey see Li and Vitanyi (1997).  

Solomonoff Induction  

Solomonoff (1964) developed a quantitative formal theory of induction based on universal Turing machines (to 

compute, quantify and assign codes to all quantities of interest) and algorithmic complexity (to define what 

simplicity/complexity means). The important Prediction Error Theorem is due to Solomonoff (1978): Let  

 

 

be the expected squared error made in the -th prediction of the next bit of an infinite binary sequence 

 in the ensemble of infinite binary sequences distributed according to computable measure  

when predicting according to the fixed semi-measure . Then,  

 

 

that is, the total summed expected squared prediction error is bounded by a constant, and therefore, if smooth 

enough, typically decreases faster than . In particular it implies  

with -probability 1, stated above. This is remarkable as it means that Solomonoff's inductive inference 

system will learn to correctly predict any computable sequence with only the absolute minimum amount of 

data. It would thus, in some sense, be the perfect universal prediction algorithm, if only it were computable.  

AIXI and a Universal Definition of Intelligence  

It can also be shown that  leads to excellent predictions and decisions in more general stochastic 

environments. Essentially AIXI is a generalisation of Solomonoff induction to the reinforcement learning 

setting, that is, where the agent's actions can influence the state of the environment. AIXI can be proven to be, 

in some sense, an optimal reinforcement learning agent embedded in an arbitrary unknown environment 

(Hutter 2004). Like Solomonoff induction, the AIXI agent is not computable and thus can only be 

approximated in practice.  

Instead of defining an optimal general agent, it is possible to turn things around and define a universal 

performance measure for agents acting in computable environments, known as universal intelligence.  

Expected Time/Space Complexity of Algorithms under the Universal Distribution  

For every algorithm whatsoever, the -average-case complexity is always of the same order of magnitude as 

the worst-case complexity for computational resources such as time and storage space. This result of Li and 

Vitanyi means that, if the inputs are distributed according to the universal distribution, rather than according to 

the uniform distribution as is customary, then the expected case is as bad as the worst case. For example, the 

sorting procedure Quicksort has worst-case running time , but expexted running time  on a list of n 

keys for permutations drawn at random from uniformly distributed permutations of  keys. But if the 

permutations are distributed according to the universal distribution, that is, according to Occam's dictum that 

the simple permutations have the highest probabilities, as is often the case in practice, then the expected 

running time rises to the worst-case of . Experiments appear to confirm this theoretical prediction.  

PAC Learning Using the Universal Distribution in the Learning Phase  

Using  as the sampling distribution in the learning phase in PAC-learning properly increases the learning 

power for the family of discrete concept classes under computable distributions, and similarly for PAC learning 
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of continuous concepts over computable measures by using . This model of Li and Vitanyi is akin to using 

a teacher in the learning phase who gives the simple examples first. See Applications of AIT.  

Halting Probability  

A formally related quantity is the probability that  halts when provided with fair coin flips on the input tape 

(i.e., that a random computer program will eventually halt). This halting probability  is also 

known as Chaitin's constant or "the number of wisdom", and has numerous remarkable mathematical 

properties. For example, it can be used to quantify Goedel's Incompleteness Theorem.  
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