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Abstract

We study and compare the learning dynamics of two universal learning
algorithms, one based on Bayesian learning and the other on prediction with
expert advice. Both approaches have strong asymptotic performance guar-
antees. When confronted with the task of finding good long-term strategies
in repeated 2 x 2 matrix games, they behave quite differently. We consider
the case where the learning algorithms are not even informed about the game
they are playing.

1 Introduction

Today, data mining and machine learning is typically treated in a problem-specific
way: People propose algorithms to solve a particular problem (such as learning to
classify points in a vector space), they prove properties and performance guaran-
tees of their algorithms (e.g. for Support Vector Machines), and they evaluate the
algorithms on toy or real data, with the (potential) aim to use them afterwards in
real-world applications. In contrast, it seems that universal learning, i.e. a single
algorithm that is applied for all (or at least “many”) problems, is neither feasible in
terms of computational costs nor competitive in (practical) performance. Neverthe-
less, understanding universal learning is important: On the one hand, its practical
success would lead a way to real Artificial Intelligence. On the other hand, principles
and ideas from universal learning can be of immediate use, and of course machine
learning research aims at exploring and establishing more and more general concepts
and algorithms.

Because of its practical restrictions, most of the understanding of universal learn-
ing so far is theoretical. Some approaches that have been suggested in the past



are Solomonoff induction [Sol64], (adaptive) Levin search [SZW97], universal Al
[Hut04b], Optimal Ordered Problem Solver [Sch04], Godel machines [Sch05], among
others. For a thorough discussion see e.g. [Hut04b]. In this paper, we concentrate
on two approaches with strong theoretical guarantees in the limit: the AI¢ agent
based on Bayesian learning [Hut04b| and FoE based on prediction with expert advice
[PHO5].

Both models work in the setup of a sequential decision problem: An agent in-
teracts with an environment in discrete time t. At each time step, the agent does
some action and receives a feedback from the environment. The feedback consists
of a loss (or reward) plus maybe more information. (It is usually just a matter of
convenience if losses or rewards are considered, as one can be transformed into the
other by reverting the sign. Accordingly, in this paper we switch between both,
always preferring the more convenient one.) In addition to this instantaneous loss,
we will also consider the cumulative loss which is the sum of the instantaneous losses
from ¢ = 1 up to the current time step, and the average per round loss which is the
cumulative loss divided by the total number of time steps so far (and the same for
reward).

Most learning theory known so far concentrates on passive problems, where our
actions have an influence on the instantaneous loss, but not on the future behavior
of the environment. All regression, classification, (standard) time-series prediction
tasks, common Bayesian learning and prediction with expert advice, and many
others fall in this category. In contrast, here we deal with active problems. The
environment may be reactive, i.e. react to our actions, which is the standard situation
considered in reinforcement learning and game theory. These cases are harder in
theory, and it is often impossible to obtain relevant performance bounds in general.

Both approaches we consider and compare are based on finite or countably in-
finite base classes. In the Bayesian decision approach, the base class consists of
hypotheses or models for the environment. A model is a complete description of
the (possibly probabilistic) behavior of the environment. In order to prove guar-
antees, it is usually assumed that the true environment is contained in the model
class. Experts algorithms in contrast work with a class of decision-makers or experts.
Performance guarantees are proven without any assumptions in the worst case, but
only relative to the best expert in the class. In both approaches, the model class
is endowed with a prior. If the model class is finite and contains n elements, it is
common to choose the uniform prior % For universal learning it turns out that
universal base classes for both approaches can be constructed from the set of all
programs on some fixed universal (prefix) Turing machine. Then each program nat-
urally corresponds to an element in the base class, and a prior weight is defined by
w(program) = 27 tength(program) (hrovided that the input tape of the Turing machine
is binary). The prior is a (sub-)probability distribution on the class, i.e. Y w < 1.

Contents. The aim of this paper is to better understand the actual learning dy-
namics and properties of the two universal approaches, which are both “universally
optimal” in a sense specified later. Clearly, the universal base class is computation-



ally very expensive or infeasible to use. So we will restrict on simpler base classes
that are “universal” in a much weaker sense: we will employ complete Markov base
classes where each element sees only the previous time step. Although these classes
are not truly universal, they are general enough (and not tailored towards our appli-
cations), such that we expect the outcome to be a good indication for the dynamics
of true universal learning. The problems we study in this paper are 2 x 2 matrix
games. (We will not go into the deep literature on learning equilibria in matrix
games, as our primary interest is the universal learning dynamics.) Matrix games
are simple enough such that a “universal” algorithm with our restricted base class
can learn something, yet they provide interesting and nontrivial cases for reactive
environments, where really active learning is necessary. Moreover, in this way we
can set up a direct competition between the two universal learners. We require our
learners to learn the behavior of their opponent and the game they are playing. The
paper is structured as follows: In the next two sections, we present both universal
learning approaches together with their theoretical guarantees. Section 4 contains
the simulations, followed by a discussion in Section 5.

2 Bayesian Sequential Decisions

Passive problems. Prediction problems can be brought into the following form:
Given a string xo; = x1.4_1 := T129...74_1, guess its continuation x;. Here and in the
following we assume that the symbols x; are in a finite alphabet X’; for concreteness
the reader may think of X = {0,1}. If strings are sampled from a probability
distribution g : X* — [0, 1], then predicting according to pu(z¢|x<;), the probability
conditioned on the history, is optimal. If y is unknown, predictions may be based
on an approximation of u. This is what happens in Bayesian sequential prediction:
Let the model class M := {1, fio, ...} be a finite or countable set of distributions
on strings f;(21.4|y1..) which are additionally conditionalized to the past actions
y<:- The actions are necessary for dealing with reactive environments as introduced
above. We agree on the convention that the learner issues action y; before seeing x;.
Let {wy,wy, ...} be a prior on M satisfying > w; < 1. Then the Bayes mizture is
the weighted average

E(@1:e]yr4): Z Wi« i (T 1Y)

One can show that the &-predictions rapidly converge to the p-predictions almost
surely, if we assume that M contains the true distribution: p € M. This is not
a serious constraint if we include all computable probability distributions in M.
This universal model class corresponds to all programs on a fixed universal Turing
machine (cf. the introduction and [Sol64, Hut04b)).

In a passive prediction problem, the behavior of the environments p; do not
depend on our actions y;;. Here we may interpret our action g, as a prediction of



xy. Assume that ¢ : (y,z¢) — [0,1] is a function defining our instantaneous loss.
Then the average per round regret of & tends to 0 at least at rate t—'/2, precisely

[Hut04b]
%L < 1LY, + 2y /Inw, 1/t (1)

Here, Lit is the cumulative p-expected loss of the &-predictions. The &-prediction
(and likewise the p-prediction) is chosen Bayes optimal for the given loss function:
y§ = arg min,, > o Ly, 26)6(71:4y1). The difference LS, — L, is termed regret.

Active problems. If the environment is reactive, i.e. depends on our action, then
it is easy to construct examples where the greedy Bayes optimal loss minimization
is not optimal. Instead, the far-sighted AI&-agent chooses the action

yf = arg mmz mlnz Coopra€(T1:4a|Y1:t+d) (2)

LTt4d

where liivq = U(Yiivd Titrd) = ZZ:Z U(ys, zs) and d is the depth of the expectimin-
tree the agent computes by means of (2). We refer to t + d as the (current) horizon.
If we knew the final time T in advance and had enough computational resources,
we could choose d = T — t according to the fixed horizon T. Taking d fixed and
small (e.g. d = 8) is computationally feasible; this is the moving horizon variant.
However, this can cause consistency problems: A sequence of actions that is started
some time step ¢t may not seem favorable any more in the next time step ¢ + 1
(since the horizon shifts), and thus is disrupted. We therefore also use an almost
consistent horizon variant that takes d = 8 in the first step, then d = 7, and so
on down to d = 2, after which we start again with d = 8. (Actually, we do not
go down to d = 1, since then the agent would be greedy, which can for instance
disrupt consecutive runs of cooperation in the Prisoner’s dilemma, see below.) A
theoretically very appealing alternative is to consider the future discounted loss and
infinite depth, which is a solution of the Bellman equations. This can be found in
[Hut04b], together with more discussion and the proof of the following optimality
theorem for AIE.

Theorem 1 (Performance of AI) If there exists a self-optimizing policy p in
the sense that its expected average loss %L’f:T converges for T — oo to the optimal
average %L’f:T for all environments p € M, then this also holds for the universal

policy &, i.e.
1 p T—>oo 174 176 T—© 1 5p
If 3pvp 7 L7, iy = 7lir — 7lig
Matrix games (as defined in Section 4) can be stated in a straightforward way in
our setup. We just have to consider that the opponent, i.e. the environment, does not

know our action y; when deciding its reaction x;: p;(x|z<s, Y1) = pi(Te|T<r, y<t)-
AI¢ for 2 x 2 matrix games can then be implemented recursively as shown in Figure
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function £ =AI&(So, Tty Y<ity d)

//input: current state sy = x; (unknown),

//history Ty, y<y, depth d

EO = K(O, 50), gl = g(l, 80)

If d > 1 Then

For a € {0,1} //the agent’s possible actions
For s € {0,1} //possible next states

g(s,a) ::AIS(Sv [$<t30]7 [y<ta]> d_l)
0 =0+ 6(3‘807 a, T, y<t> ' g(s,a)

Return min{¢°, ¢!}

Figure 1: The AI¢ recursion for known loss matrix /.

1, if we additionally assume that the environments are Markov players with two
internal states, corresponding to the reaction z; they are playing. (Note that in
the description of the algorithm, we denote the hypothetical future states by s,
as opposed to the observed history x.) Since in step t, we don’t know x; yet, AI¢
must evaluate both AI£(0, x4, y<¢, d) and AIE(1, x4, y<¢, d) and compute a weighted
mixture for both possible actions a = 0,1. We also do not provide AI{ with the loss
matrix £ : (y;, ;) — [0, 1] (which we assume to be deterministic). So we additionally
need to compute an expectation over all assignments of losses that are consistent
with the history. To this aim, we pre-define a finite set £ C N that contains all
possible losses. In the simulations below, we use £ = {0...4} U {—16}, where the
actual losses are always in {0...4} and the large negative value of —16 encourages
the agent to explore as long as he doesn’t know the losses completely. This is for
obtaining interesting results with moderate tree depth: otherwise, when the loss
observed by AI¢ is relatively low, AI¢ would explore only with a large depth. This
phenomenon is explained in detail in Section 4.

Markov Decision Processes (MDP) are probably the most intensively studied
environments. In an MDP, the environmental behavior depends only on the last
action and observation, precisely p(z¢|x<s, y<t) = p(x¢|xi—1,y:—1) in case of a matrix
game. For a 2 x 2 game, a Markov player is modelled by a 2 x 2 X 2 transition
matrix. It turns out that the (uncountable) class of all transition matrices with a
uniform prior admits a closed-form solution:

NYt1 +1

LT—1—Tt

§($t|x<tay<t) = Nyt_l_@—l—Nyt_l_}l—f—Q’

Tt—1 Tt—1

where N¥~!_ = counts how often in the history the state x;_; transformed to state xz;
under action y;_;. This is just Laplace’s law of succession [Hut04b, Prob.2.11&5.14].
(Observe that £ is not Markov but depends on the full history.) Note that the £ pos-

terior estimate changes along the expectimin tree (2). Disregarding this important
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function FoE ((vt)e>1, (Me)e>15 (Bt)e>1)
//input: sequences of exploration rates 7y, learning
//rates 1, time control parameters By

Fort=1,2,3,...
Sample 7. € {0,1} independ. s.t. P[r, = 1] =,
If r. =0 Then

Invoke subroutine FPL(T):
Sample ¢- S Ezp independently for 1 <i <mn
Select I = arg 11211? {n A +Inw" —q¢-}

Play [P := [ for B, elementary time steps
SetéizOforalllgign
Else
Sample I € {1..n} uniformly
Play I := I for B, elementary time steps

Let to(7) = 211_:11 B, and (! := to(T)+Br p1

t=to (7‘)+1 t

Let 0L = ¢In/~, and /i = 0 for all i # I

Figure 2: The algorithm FoE. The parameters 7, v, and
B; will be specified in Theorem 2.

fact as is done in Temporal Difference learning and variants would result in greedy
policies where on has to rescue exploration by ad-hoc methods (like e-greedy). One
can show that there exist self-optimizing policies p for the class of ergodic MDPs
[Hut04b]. Although the class of transition matrices contains non-ergodic environ-
ments, a variant of Theorem 1 applies, and hence the Bayes optimal policy p® is
self-optimizing for ergodic Markov players (which we will often encounter). The
intuitive reason is that the class is compact and the non-ergodic environments have
measure zero.

3 Acting with Expert Advice (FoE)

Instead of predicting or acting optimally with respect to a model class, we may con-
struct an agent from a class of base agents. We show how this can be accomplished
for fully active problems. The resulting algorithm will radically differ from the AI¢
agent.

Prediction with expert advice has been very popular in the last two decades.
The base predictors are called experts. Our goal is to design a master algorithm
that in each time step ¢ selects one expert i and follows its advice (i.e. predicts as the
expert does). Thereby, we want to keep the master’s regret £7:95%" — % .. small, where

3. is the cumulative loss of the best expert in hindsight up to time 7". Usually, T" >
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1 is not known in advance. The state-of-the-art experts algorithms achieve this: Loss
bounds similar to (1) can be proven, with ¢/, replaced by ¢;., and w* replaced by
the prior weight of the best expert in hindsight, w*. These bounds hold in the worst
case, i.e. without any assumption on the data generating process. In particular, the
environment that provides the feedback may be an adaptive adversary. Since these
bounds imply bounds in expectation in the Bayesian setting (with slightly larger
constants than (1), expert advice is in a sense the stronger prediction strategy
[Hut04a).

In order to protect against adaptive adversaries, we need a randomized master.
In this work, we build on the Follow the Perturbed Leader FPL algorithm introduced
by [Han57]. (We won'’t discuss the more popular alternative of weighted sampling at
all.) We don’t even need to be told the true outcome after the master’s decision. All
we need for the analysis is learning the losses of all experts, which are bounded (this
is an important restriction which applies to all standard experts algorithms) w.l.o.g.
in [0,1]. In this way, the master’s actual decision is based on the past cumulative
loss of the experts. A key concept is that we must prevent the master from learning
too fast (or too slowly). This is achieved by introducing a learning rate n;, which
decreases to zero at an appropriate rate with growing . Most of the literature
assumes experts classes of finite size n with uniform prior %, in particular when the
learning rate 7; is non-stationary. For FPL, the case of arbitrary non-uniform prior
and countable expert classes has been treated in [HP05].!

Active problems. In the passive problem setup, it is sufficient to compare the
leaner’s performance with the observed performance of each expert. This may
change for reactive problems, i.e., situations where reaction of the environment de-
pends on our past actions and a strong expert can perform well because he decided
“wisely” in the past. Here, we might wish to perform well relative to the hypothetical
losses of a strong expert, not just its observed losses. An example is the repeated
game of “Prisoner’s Dilemma” against the tit-for-tat strategy described below: Al-
though defecting is the dominant action, cooperating has the optimal long-term
performance. And even if the learner decided to defect in the last round, hence an
expert always cooperating has a disastrous performance in the current round, this
expert has optimal hypothetical performance. It is this hypothetical performance
we want to compete with.

Increasing horizon. [dFMO04] have been the first to propose a master algorithm
that performs well w.r.t. the hypothetical performance of each expert. In order to
achieve this, it is in principle sufficient to evaluate a chosen expert over an increasing
number of time steps, then the expert has eventually enough time to reach its optimal
performance. This means that the master works at a different time scale 7: in its

LGiven the large amount of recent literature, it should be not too difficult to obtain similar
assertions for weighted sampling algorithms. However, as far as we know, the only result proven
so far requires rapidly decaying weights [Gen03], which is therefore not appropriate for universal
expert classes.



7th time step, it gives the control to the selected expert for B, > 1 time steps (in the
original time scale t). As a consequence, the instantaneous losses that the master
observes are no longer uniformly bounded in [0, 1], but in [0, B;]. Fortunately, it
turns out that the analysis remains valid if B, grows unboundedly but slowly enough.
Only the convergence rate of the average master’s loss to the optimum is affected:
we will obtain a final rate of ¢~ /10,

The construction of running the selected expert for more than one time step has
impact on which observations we may use. Even if in the current time step ¢, we
observe the performance of all experts, it is not legitimate to use this information
for other than the currently selected expert, since the alternative experts have a
differnt history and we are interested in longer term performance. (Precisely, we
know only the loss of all experts which have coincidentally the correct action history.
But instead of trying to track the action history, which is possibly expensive, we
use only the feedback from the currently selected expert ¢ and discard all other
information.) This is commonly referred to as bandit setup. Fortunately, this issue
can be successfully addressed by forcing exploration, i.e. sampling according to the
prior, with a certain probability v, [MBO04]. This exploration rate ~y; is decreased
to zero appropriately with growing ¢. Thus, in each time step we decide to either
follow the perturbed leader or explore. Accordingly, we call our algorithm FoF
(Follow or Explore), it is specified in Figure 2 for a finite expert class, together
with its subroutine FPL. We have instantaneous and cumulative losses in both time
scales, this is always clear from the notation (e.g. ¢! vs. £%). Not surprisingly, most
of FoE works in the master time scale.

Bounds for the bandit setup are typically similar to (1), but with — In w* replaced
by (something larger than) 1/w*. Hence they are exponentially larger in w*, and
one can show that this is sharp in general.

Note that FoF makes use of its observation only if he decided to explore, i.e.
if . = 1. This seems an unnecessary waste of information, which is motivated
from the analysis, since FoE needs an unbiased loss estimate / (with respect to
FoE’s randomization). We just chose the simplest way to guarantee this. For the
simulations, we concentrate on the following faster learning variant: approximate
the probability p? of the selected expert i (jointly for exploration and exploitation)
by a Monte-Carlo simulation. Then always learn a (close to) unbiased estimate
ng = (! /p’.. The analysis of FoFE works in the same way for this modification. On
the other hand, not resulting in better bounds. On the other hand, we will see that
modified FoF learns faster.

In case of a non-uniform prior and possibly infinitely many experts, the explo-
ration must be according to the prior weights. This causes another problem: FoE'’s
loss estimates ¢ need to be bounded, which forbids exploring experts with very small
prior weights. Hence we define for each expert i, an entering time 7° > 1 (at the
master time scale). Then FoF (including its subroutine FPL) is modified such that
it uses only active experts from {i : 7 > 7'}. This guarantees additionally that we
have only a finite active set in each step, and the algorithm remains computationally



feasible.

Theorem 2 (Performance of FoE) Assume FoE acts in an online decision prob-
lem with bounded instantaneous losses (i € [0,1]. Let the exploration rate be v, =
714 and the learning rate be n, = 7-3/*. In case of uniform prior, choose B, =
|7Y/8|. Then, for all experts i and all T > 1, we have

LB < 26,4+ 00T ), and
Lot < L+ OmPT V) wp. 1 -T2

Consequently, imsupy_ o, + (1% — 04.;) < 0 a.s. For non-uniform prior, let B, =

[t1/16] and T* = [(w")~'%]. Then corresponding assertions hold with O-terms re-
placed by O(log(w)T~/10 + (w?)=2T~1).

The proof of this main theorem on the performance of FoF can be found in
[PHO5]. Similar bounds hold for larger B, < 74. These bounds are improvable
[Pol05], and it is possible to prove any regret bound O((-5)¢ + (log %)T%ﬁ), at the
cost of increasing ¢ where ¢ — 0. In the simulations, we used B, = 724 for faster
learning. For playing 2 x 2 matrix games, we will use the class of all 16 deterministic
four-state Markov experts. (Under the assumption that the opponent is Markov,
there is no need to use randomized experts.) Hence each expert consists of a lookup
table with all the actions for each of the 4 possible combination of moves in the
last round. In the first round, the expert plays uniformly random. (Compare the
standard results on learning matrix games with expert advice by [FS99].)

4 Simulations

As already indicated, it is our goal to explore and compare the performance of the
two universal learning approaches presented so far, in particular for problems that
are not solved by passive or greedy learners. To this aim, repeated 2 X 2 matrix
games are well suited:

e they are simple, such that (close to) universal learning is computationally
feasible even with brute-force implementation;

e they provide situations where optimal long-term behavior significantly differs
from greedy behavior (e.g. Prisoner’s Dilemma);

e moreover, we can observe how universal learners can exploit potentially weak
adversaries;

e and finally, we can test the two universal learners against each other.



We begin by describing the experimental setup and the universal learners. After
that, we will discuss five 2 x 2 matrix games, presenting experimental results and
highlighting their interesting aspects.

Setup. A 2 x 2 matrix game consists of two matrices R, Ry € R?*2, the first
one containing rewards for the row player, the second one rewards for the column
player. (It does not cause any problem that for convenience, we have developed
the theory in terms of [osses rather than rewards: one may be transformed into
the other by simply inverting the sign. So for the discussion of the results, we
will keep the rewards, as this is more standard in game theory.) A single game
proceeds in the following way: the first player chooses a row action ¢ € {0,1} and
simultaneously the second player chooses a column action j € {0, 1}, both players
without knowing the opponent’s move. Then reward Ry(z,j) is payed to player k
(k=1,2), and i and j are revealed to both players. A repeated game consists of T’
single games. We chose T' = 20000, if at least one opponent is FoE (which has slow
learning dynamics, as we will see), and 7" = 100 for the fast learning AI{ (unless it
is plotted in the same graph as FoE). If at least one randomized player participates,
the run is repeated 10 times, and usually the average is shown. We will consider
only symmetric games, where one player, when put in the position of the other
player (i.e. when exchanging R; and R,), has a symmetric strategy (maybe after
exchanging the actions). We will meet precisely three types of symmetry: in the
“Matching Pennies”, R; = R, after inverting the action of the row player, and in
the “Battle of Sexes” game, Ry = R after inverting both players’ actions, and in all
other games we R; = R% (transpose). In these latter games, we will call the action
0 “defect” and 1 “cooperate”. All games we consider have rewards in {0...4}. The
Al¢ and FoE agents are used as specified in the previous sections, with the classes of
all two-state Markov environments and all deterministic four-state Markov experts,
respectively. For AI£, we will concentrate the presentation on the almost consistent
horizon variant, since it performs always better than the moving horizon variant.
For FoFE, we will concentrate on the faster learning variant.

We stress that we are only interested in the qualitative behavior of the simula-
tions, i.e. we need to assess the learning dynamics only roughly. Therefore we do
not need large sample sizes, and we will not complicate the graphs with error bars
or other information used for precise statistics.

Prisoner’s Dilemma. This dilemma is classical. The reward matrices are Ry =
(ég) and Ry = RT, with the following interpretation: The two players are accused
of a crime they have committed together. They are being interrogated separately.
Each player can either cooperate with the other player (don’t tell the cops anything),
or he defects (tells the cops everything but blame the colleague). The punishments
are according to the players’ joint decision: if none of them gives evidence, both get
a minor sentence. If one gives evidence and the other one keeps quiet, the traitor
gets free, while the other gets a huge sentence. If both give evidence, then they both

get a significant sentence. (There is also an easier variant “Deadlock” which we do
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Figure 3: Reward Matrices

not discuss.)

It is clear that giving evidence, i.e. defecting, is an instantaneously dominant
action: regardless of what the opponent does, the immediate reward is always larger
for defecting. However, if both players would agree to cooperate, this is the “social
optimum” and guarantees the better long-term reward in the repeated game. A well-
known instance for this case is playing against the “tit for tat” strategy strategy
which cooperates in the first move and subsequently performs the action we did in
the previous move. Similar but harder to learn are “two tit for tat” and “three
tit for tat”, which defect in the first move and cooperate only if we cooperated two
respectively three times in a row. Note that although “two tit for tat” and “three tit
for tat” are not in AI¢’s model class, probabilistic versions of the strategies are: if the
probability of “adversary defected, I cooperate, then the adversary will cooperate in
the next round” is chosen correctly (namely % for 2-tit for tat and ~ 0.57 for 3-tit
for tat), then the expected number of rounds I have to cooperate until the adversary
will do so is 2 respectively 3.

Figure 4 shows that in most cases, AI¢ learns very quickly the best actions.
(This is the consistent horizon variant, the moving horizon variant will be discussed
with the next game, Stag Hunt.) If the opponent is memoryless as for example the
uniform random player, AI¢ constantly defects after short time. Against tit for tat
and two tit for tat, AI£ cooperates after short time. The figure shows the average
per round rate of cooperation, which after a few exploratory moves converges to
the optimal action as % However, AI¢ does not learn to cooperate against three
tit for tat. The reason is the general problem that in order to increase exploration,
AI¢ needs exponential depth of the expectimin tree. Assume that a certain action
sequence of length n is favorable against the true environment, which has however
not too large a current weight. In this instance, cooperating three times in a row is
favorable against (the probabilistic version of) 3-tit for tat. In order to recognize that
this is worth exploring, AI¢ has to build a branch of depth n = 3 in the expectimin
tree, which has (because of the relatively low prior weight) very small probability

~ exp(—n) however. Then it needs an exponentially large subtree below this branch
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Dilemma

to accumulate enough (virtual) reward in order to encourage exploration.

One more problem arises when AI¢ plays against another AI€. Here, the perfectly
symmetric setting results in both playing the same actions in each move, hence they
are not correctly learning. We might try to remedy this by varying the tree depth of
the second AI¢ (denoted AI£2 in the figure), however it turns out that in this case,
both AI¢’s do not learn at all to cooperate (see [Hut04b, Sec.8.5.2] for a possible
reason).

We now turn to the performance of FoE (the faster learning variant) as evaluated
in Figure 5. As expected, FoE learns much slower than AI¢ (note the different time
scale). On the other hand, its exploration is strong enough to learn 3-tit for tat (and
even harder opponents). When playing against another instance of FoE, we notice
however that they usually do not succeed to overcome the dominance of mutual
defection. Also when FoE competes with AI, they tend to learn mutual defection
rather than cooperation. (Sometimes, they learn cooperation in one or two of the
possible states of the MDP.)

Stag Hunt. This game is also known as “Assurance”. The reward matrices are
Ry = ((Q)i) and Ry, = RT. Two players are hunting together. If they cooperate, they
will catch the stag. However, one player might not trust the other, in which case he
chases rabbits on his own instead. In this case, the other one won’t get anything if
he tries to cooperate. If both defect, then they are in conflict, and each player gets
less rabbits. Although the optimum for both players is to cooperate, they need to
trust each other sufficiently. If one player plays uniformly random, it is better for
the other to go for the rabbits. Also, defecting has the lower variance.

Maybe it is surprising to observe that AI¢ (with a depth of 8) does not learn
to cooperate against 2-tit for tat (Figure 6). The reason is that defecting has a
relatively good payoff, and therefore exploration is not encouraged as discussed
in the previous subsection. If the depth of the tree is increased to 9, AI¢ learns
cooperation against 2-tit for tat (but not against 3-tit for tat). We also see that the
moving horizon variant of AI¢ has even more problems with exploration: It does
not learn cooperating against 2-tit for tat, even with depth 9. The explanation is
that even if AI£ decides to explore in one time step, in the next step this exploration
might not be correctly continued, as the tree is now explored to a different level. This
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observation can also be made for the Prisoner's Dilemma. In fact, the consistent
horizon variant performs always better than moving horizon.

As before, FoE learns much slower but explores more robustly (Figure 7), neither
2- nor 3-tit for tat are a problem. Unlike in the Prisoner’s Dilemma, if AI¢ and FoE
are competing, they learn mutual cooperation in almost half of the cases, an average
over such lucky instances is given in the figure. The same is valid for FoFE against
FoE | while AI¢ against AI€ has the same symmetry problem as already observed
in the Prisoner’s Dilemma. The original slower learning variant of FoF reaches the
same average level of performance only after 10° time steps instead of 2 - 10* steps,
and moreover with a variance twice as high.

Chicken. The reward matrices R; = (?3) and Ry = RT of the “Chicken” game
(also known as “Hawk and Dove”) can be interpreted as follows: Two coauthors
write a paper, but each tries to spend as little effort as possible. If one succeeds to
let the other do the whole work, he has a high reward. On the other hand, if no one
does anything, there will be no paper and thus no reward. Finally, if both decide to
cooperate, both get some reward. Here, in the repeated game, it is socially optimal
to take turns cooperating and defecting.? Still the best situation for one player is if
he emerges as the “dominant defector”, defecting in most or all of the games, while
the other one cooperates.

If the opponent steadily alternates between cooperating and defecting, then AT
quickly learns to adapt. This can be observed in Figure 8, where the performance
is given in terms of average per round reward instead of cooperation rate. However,
Al is not obstinate enough to perform well against a “stubborn” adversary that
would cooperate only after his opponent has defected for three successive time steps.
Here, AI¢ learns to cooperate, leaving his opponent the favorable role as the dom-
inant defector. (However, AI{ learns to dominate the less stubborn adversary that
cooperates after two defecting actions.) When two AIs play against each other,
they again have the symmetry problem. Interestingly, if we break symmetry by giv-

2We assume that the authors are not very good at cooperating, and that the costs of cooperating
more than compensate for the synergy. We could assign a reward of 3 instead of 2 to mutual
cooperation. This is the less interesting situation of “Easy Chicken”, where cooperating is the
optimal long-term strategy like in the previous games.
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ing the second AI¢ a depth of 9, he will turn out the dominant defector (not shown
in the graph).

FoE behaves differently in this game (Figure 9). While he learns to deal with
the steadily alternating adversary and emerges as the dominant defector against the
stubborn one, he would give precedence to AI{ in most cases. This is not hard
to explain, since FoF in the beginning plays essentially random. Thus AI£ learns
quickly to defect, and for FoF remains nothing but learning to cooperate. However,
this does not always happen: In the minority of the cases, FoE defects enough such
that AI¢ decides to cooperate, and FoE will be the dominant defector. (Hence the
average shown in the graph is less clear in favor of AIE.)

Battle of Sexes. In this game, a married couple wants to spend the evening
together, but they didn’t settle if they would go to the theater (her preference) or the
pub (his preference). However, if they fail to meet, both have a boring evening (and
no reward at all). The reward matrices are Ry = (gg) and Ry = (ég). Coordination
is clearly important in the repeated game. Like in “Chicken”, taking turns is a social
optimum, while it is best for one player if his choice becomes dominant.

In Figure 10, our universal learners show similar performance like in the Chicken
game. Both learn to deal with an alternating partner. FoF also learns to dominate
over a stubborn adversary that plays his less favorite action only after the opponent
insists three times on that. AI£ is dominated by this stubborn player. However, AI
always dominates FoE. Finally, in contrast to the Chicken game, AI¢ against AI
does not have the symmetry problem, but they both learn to alternate.

14



Matching Pennies. Fach player conceals in his palm a coin with either heads
or tails up. They are revealed simultaneously. If they match (both heads or both
tails), the first player wins, otherwise the second. This is the only zero-sum game of
the games we consider, where R, = (ég) and Ry = (%). Thus, there is a minimax
strategy for both players, which is actually uniform random play. On the other
hand, deterministic repeated play is potentially exploitable by the adversary.

Figure 11 shows the results for this last game we discuss. Both AI¢ and FoFE learn
to exploit a predictable adversary, namely the player alternating between 0 and 1.
The other games are balanced in the long run, only in the beginning AI¢ succeeds
to exploit FoF a little. If two Alfs compete, it is important to break symmetry,
then both learn to alternate (this situation is shown in the graph). If symmetry is
not broken, the row player (who tries to match) always wins.

5 Discussion

In principle, universal learners perform well in repeated matrix games. They usually
learn to prefer the optimal long-term action to greedy behavior (Prisoner’s Dilemma
and Stag Hunt). If possible they are able to exploit a predictable adversary (Match-
ing Pennies). And they learn good strategies when it is necessary to foresee the
opponent’s action (Chicken and Battle of Sexes). Of the two approaches we pre-
sented and compared, AI§ learns much faster than FoE, but FoF explores more
thoroughly. Of course, there is a trade-off between exploration and fast learning.
Interestingly, it may depend on the adversary (and thus on the environment) if fast
learning or exploration is the better long-term strategy: In Chicken and Battle of
Sexes, AI¢ profits against FoE by learning fast and dictating its preferred action,
but looses against the stubborn opponent because of not exploring enough.
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