Universal Learning of Repeated Matrix Games

Jan Poland
Grad. School of Inf. Sci. and Tech.
Hokkaido University, Japan
jan@ist.hokudai.ac.jp
www-alg.ist.hokudai.ac.jp/~jan

Marcus Hutter
IDSIA, Galleria 2
CH-6928 Manno (TI), Switzerland
marcus@idsia.ch
www.idsia.ch/~marcus

27 March 2006

Abstract

We study and compare the learning dynamics of two universal learning algorithms, one based on Bayesian learning and the other on prediction with expert advice. Both approaches have strong asymptotic performance guarantees. When confronted with the task of finding good long-term strategies in repeated 2×2 matrix games, they behave quite differently. We consider the case where the learning algorithms are not even informed about the game they are playing.

1 Introduction

Today, data mining and machine learning is typically treated in a problem-specific way: People propose algorithms to solve a particular problem (such as learning to classify points in a vector space), they prove properties and performance guarantees of their algorithms (e.g. for Support Vector Machines), and they evaluate the algorithms on toy or real data, with the (potential) aim to use them afterwards in real-world applications. In contrast, it seems that universal learning, i.e. a single algorithm that is applied for all (or at least "many") problems, is neither feasible in terms of computational costs nor competitive in (practical) performance. Nevertheless, understanding universal learning is important: On the one hand, its practical success would lead a way to real Artificial Intelligence. On the other hand, principles and ideas from universal learning can be of immediate use, and of course machine learning research aims at exploring and establishing more and more general concepts and algorithms.

Because of its practical restrictions, most of the understanding of universal learning so far is theoretical. Some approaches that have been suggested in the past

are Solomonoff induction [Sol64], (adaptive) Levin search [SZW97], universal AI [Hut04b], Optimal Ordered Problem Solver [Sch04], Gödel machines [Sch05], among others. For a thorough discussion see e.g. [Hut04b]. In this paper, we concentrate on two approaches with strong theoretical guarantees in the limit: the AI ξ agent based on Bayesian learning [Hut04b] and FoE based on prediction with expert advice [PH05].

Both models work in the setup of a sequential decision problem: An agent interacts with an environment in discrete time t. At each time step, the agent does some action and receives a feedback from the environment. The feedback consists of a loss (or reward) plus maybe more information. (It is usually just a matter of convenience if losses or rewards are considered, as one can be transformed into the other by reverting the sign. Accordingly, in this paper we switch between both, always preferring the more convenient one.) In addition to this instantaneous loss, we will also consider the cumulative loss which is the sum of the instantaneous losses from t=1 up to the current time step, and the average per round loss which is the cumulative loss divided by the total number of time steps so far (and the same for reward).

Most learning theory known so far concentrates on passive problems, where our actions have an influence on the instantaneous loss, but not on the future behavior of the environment. All regression, classification, (standard) time-series prediction tasks, common Bayesian learning and prediction with expert advice, and many others fall in this category. In contrast, here we deal with active problems. The environment may be reactive, i.e. react to our actions, which is the standard situation considered in reinforcement learning and game theory. These cases are harder in theory, and it is often impossible to obtain relevant performance bounds in general.

Both approaches we consider and compare are based on finite or countably infinite base classes. In the Bayesian decision approach, the base class consists of hypotheses or models for the environment. A model is a complete description of the (possibly probabilistic) behavior of the environment. In order to prove guarantees, it is usually assumed that the true environment is contained in the model class. Experts algorithms in contrast work with a class of decision-makers or experts. Performance guarantees are proven without any assumptions in the worst case, but only relative to the best expert in the class. In both approaches, the model class is endowed with a prior. If the model class is finite and contains n elements, it is common to choose the uniform prior $\frac{1}{n}$. For universal learning it turns out that universal base classes for both approaches can be constructed from the set of all programs on some fixed universal (prefix) Turing machine. Then each program naturally corresponds to an element in the base class, and a prior weight is defined by $w(program) = 2^{-length(program)}$ (provided that the input tape of the Turing machine is binary). The prior is a (sub-)probability distribution on the class, i.e. $\sum w \leq 1$.

Contents. The aim of this paper is to better understand the *actual learning dynamics* and properties of the two universal approaches, which are both "universally optimal" in a sense specified later. Clearly, the universal base class is computation-

ally very expensive or infeasible to use. So we will restrict on simpler base classes that are "universal" in a much weaker sense: we will employ complete Markov base classes where each element sees only the previous time step. Although these classes are not truly universal, they are general enough (and not tailored towards our applications), such that we expect the outcome to be a good indication for the dynamics of true universal learning. The problems we study in this paper are 2×2 matrix games. (We will not go into the deep literature on learning equilibria in matrix games, as our primary interest is the universal learning dynamics.) Matrix games are simple enough such that a "universal" algorithm with our restricted base class can learn something, yet they provide interesting and nontrivial cases for reactive environments, where really active learning is necessary. Moreover, in this way we can set up a direct competition between the two universal learners. We require our learners to learn the behavior of their opponent and the game they are playing. The paper is structured as follows: In the next two sections, we present both universal learning approaches together with their theoretical guarantees. Section 4 contains the simulations, followed by a discussion in Section 5.

2 Bayesian Sequential Decisions

Passive problems. Prediction problems can be brought into the following form: Given a string $x_{< t} \equiv x_{1:t-1} := x_1x_2...x_{t-1}$, guess its continuation x_t . Here and in the following we assume that the symbols x_t are in a finite alphabet \mathcal{X} ; for concreteness the reader may think of $\mathcal{X} = \{0,1\}$. If strings are sampled from a probability distribution $\mu: \mathcal{X}^* \to [0,1]$, then predicting according to $\mu(x_t|x_{< t})$, the probability conditioned on the history, is optimal. If μ is unknown, predictions may be based on an approximation of μ . This is what happens in Bayesian sequential prediction: Let the model class $\mathcal{M} := \{\mu_1, \mu_2, ...\}$ be a finite or countable set of distributions on strings $\mu_i(x_{1:t}|y_{1:t})$ which are additionally conditionalized to the past actions $y_{< t}$. The actions are necessary for dealing with reactive environments as introduced above. We agree on the convention that the learner issues action y_t before seeing x_t . Let $\{w_1, w_2, ...\}$ be a prior on \mathcal{M} satisfying $\sum w_i \leq 1$. Then the Bayes mixture is the weighted average

$$\xi(x_{1:t}|y_{1:t}) := \sum_{i} w_i \cdot \mu_i(x_{1:t}|y_{1:t}).$$

One can show that the ξ -predictions rapidly converge to the μ -predictions almost surely, if we assume that \mathcal{M} contains the true distribution: $\mu \in \mathcal{M}$. This is not a serious constraint if we include *all* computable probability distributions in \mathcal{M} . This universal model class corresponds to all programs on a fixed universal Turing machine (cf. the introduction and [Sol64, Hut04b]).

In a passive prediction problem, the behavior of the environments μ_i do not depend on our actions $y_{1:t}$. Here we may interpret our action y_t as a prediction of

 x_t . Assume that $\ell: (y_t, x_t) \mapsto [0, 1]$ is a function defining our instantaneous loss. Then the average per round regret of ξ tends to 0 at least at rate $t^{-1/2}$, precisely [Hut04b]

$$\frac{1}{t}L_{1:t}^{\xi} \le \frac{1}{t}L_{1:t}^{\mu} + 2\sqrt{\ln w_{\mu}^{-1}/t}.$$
 (1)

Here, $L_{1:t}^{\xi}$ is the cumulative μ -expected loss of the ξ -predictions. The ξ -prediction (and likewise the μ -prediction) is chosen $Bayes\ optimal$ for the given loss function: $y_t^{\xi} = \arg\min_{y_t} \sum_{x_t} \ell(y_t, x_t) \xi(x_{1:t} | y_{1:t})$. The difference $L_{1:t}^{\xi} - L_{1:t}^{\mu}$ is termed regret.

Active problems. If the environment is *reactive*, i.e. depends on our action, then it is easy to construct examples where the greedy Bayes optimal loss minimization is not optimal. Instead, the *far-sighted AI\xi-agent* chooses the action

$$y_t^{\xi,d} = \arg\min_{y_t} \sum_{x_t} \dots \min_{y_{t+d}} \sum_{x_{t+d}} \ell_{t:t+d} \xi(x_{1:t+d} | y_{1:t+d})$$
 (2)

where $\ell_{t:t+d} = \ell(y_{t:t+d}, x_{t:t+d}) = \sum_{s=t}^{t+d} \ell(y_s, x_s)$ and d is the depth of the expectimintree the agent computes by means of (2). We refer to t+d as the (current) horizon. If we knew the final time T in advance and had enough computational resources, we could choose d = T - t according to the fixed horizon T. Taking d fixed and small (e.g. d = 8) is computationally feasible; this is the moving horizon variant. However, this can cause consistency problems: A sequence of actions that is started some time step t may not seem favorable any more in the next time step t+1 (since the horizon shifts), and thus is disrupted. We therefore also use an almost consistent horizon variant that takes d = 8 in the first step, then d = 7, and so on down to d = 2, after which we start again with d = 8. (Actually, we do not go down to d = 1, since then the agent would be greedy, which can for instance disrupt consecutive runs of cooperation in the Prisoner's dilemma, see below.) A theoretically very appealing alternative is to consider the future discounted loss and infinite depth, which is a solution of the Bellman equations. This can be found in [Hut04b], together with more discussion and the proof of the following optimality theorem for AI ξ .

Theorem 1 (Performance of AI\xi) If there exists a self-optimizing policy ρ in the sense that its expected average loss $\frac{1}{T}L_{1:T}^{\rho}$ converges for $T \to \infty$ to the optimal average $\frac{1}{T}L_{1:T}^{\mu}$ for all environments $\mu \in \mathcal{M}$, then this also holds for the universal policy ξ , i.e.

If
$$\exists \rho \forall \mu : \frac{1}{T} L_{1:T}^{\rho} \xrightarrow{T \to \infty} \frac{1}{T} L_{1:T}^{\mu} \Rightarrow \frac{1}{T} L_{1:T}^{\xi} \xrightarrow{T \to \infty} \frac{1}{T} L_{1:T}^{\mu}$$

Matrix games (as defined in Section 4) can be stated in a straightforward way in our setup. We just have to consider that the opponent, i.e. the environment, does not know our action y_t when deciding its reaction x_t : $\mu_i(x_t|x_{< t},y_{1:t}) = \mu_i(x_t|x_{< t},y_{< t})$. AI ξ for 2×2 matrix games can then be implemented recursively as shown in Figure

```
function \ell = AI\xi(s_0, x_{< t}, y_{< t}, d)

//input: current state s_0 = x_t (unknown),

//history x_{< t}, y_{< t}, depth d

\ell^0 := \ell(0, s_0), \ell^1 := \ell(1, s_0)

If d > 1 Then

For a \in \{0, 1\} //the agent's possible actions

For s \in \{0, 1\} //possible next states

\ell^{(s,a)} := AI\xi(s, [x_{< t}s_0], [y_{< t}a], d-1)

\ell^a := \ell^a + \xi(s|s_0, a, x_{< t}, y_{< t}) \cdot \ell^{(s,a)}

Return \min\{\ell^0, \ell^1\}
```

Figure 1: The AI ξ recursion for known loss matrix ℓ .

1, if we additionally assume that the environments are Markov players with two internal states, corresponding to the reaction x_t they are playing. (Note that in the description of the algorithm, we denote the hypothetical future states by s, as opposed to the observed history x.) Since in step t, we don't know x_t yet, AI ξ must evaluate both AI ξ (0, $x_{< t}$, $y_{< t}$, d) and AI ξ (1, $x_{< t}$, $y_{< t}$, d) and compute a weighted mixture for both possible actions a = 0, 1. We also do not provide AI ξ with the loss matrix ℓ : $(y_t, x_t) \mapsto [0, 1]$ (which we assume to be deterministic). So we additionally need to compute an expectation over all assignments of losses that are consistent with the history. To this aim, we pre-define a finite set $\mathcal{L} \subset \mathbb{N}$ that contains all possible losses. In the simulations below, we use $\mathcal{L} = \{0 \dots 4\} \cup \{-16\}$, where the actual losses are always in $\{0 \dots 4\}$ and the large negative value of -16 encourages the agent to explore as long as he doesn't know the losses completely. This is for obtaining interesting results with moderate tree depth: otherwise, when the loss observed by AI ξ is relatively low, AI ξ would explore only with a large depth. This phenomenon is explained in detail in Section 4.

Markov Decision Processes (MDP) are probably the most intensively studied environments. In an MDP, the environmental behavior depends only on the last action and observation, precisely $\mu(x_t|x_{< t},y_{< t}) = \mu(x_t|x_{t-1},y_{t-1})$ in case of a matrix game. For a 2 × 2 game, a Markov player is modelled by a 2 × 2 × 2 transition matrix. It turns out that the (uncountable) class of all transition matrices with a uniform prior admits a closed-form solution:

$$\xi(x_t|x_{< t},y_{< t}) = \frac{N_{x_{t-1} \to x_t}^{y_{t-1}} + 1}{N_{x_{t-1} \to 0}^{y_{t-1}} + N_{x_{t-1} \to 1}^{y_{t-1}} + 2},$$

where $N_{x_{t-1}\to x_t}^{y_{t-1}}$ counts how often in the history the state x_{t-1} transformed to state x_t under action y_{t-1} . This is just Laplace's law of succession [Hut04b, Prob.2.11&5.14]. (Observe that ξ is not Markov but depends on the full history.) Note that the ξ posterior estimate changes along the expectimin tree (2). Disregarding this important

```
function FoE((\gamma_t)_{t\geq 1}, (\eta_t)_{t\geq 1}, (B_t)_{t\geq 1})

//input: sequences of exploration rates \gamma_t, learning

//rates \eta_t, time control parameters B_t

For \tau = 1, 2, 3, ...

Sample r_{\tau} \in \{0, 1\} independ. s.t. P[r_{\tau} = 1] = \gamma_{\tau}

If r_{\tau} = 0 Then

Invoke subroutine FPL(\tau):

Sample q_{\tau}^i \stackrel{d}{\sim} Exp independently for 1 \leq i \leq n

Select I_{\tau}^{FPL} = \arg\min_{1 \leq i \leq n} \{\eta_{\tau} \hat{\ell}_{<\tau}^i + \ln w^i - q_{\tau}^i\}

Play I_{\tau}^{FoE} := I_{\tau}^{FPL} for B_{\tau} elementary time steps

Set \hat{\ell}_{\tau}^i = 0 for all 1 \leq i \leq n

Else

Sample I_{\tau}^{FoE} \in \{1...n\} uniformly

Play I := I_{\tau}^{FoE} for B_{\tau} elementary time steps

Let t_0(\tau) := \sum_{\tau'=1}^{\tau-1} B_{\tau'} and \ell_{\tau}^I := \sum_{t=t_0(\tau)+1}^{t_0(\tau)+B_{\tau}} \ell_t^I

Let \hat{\ell}_{\tau}^I = \ell_{\tau}^I n/\gamma_t and \hat{\ell}_{\tau}^i = 0 for all i \neq I
```

Figure 2: The algorithm FoE. The parameters η_t , γ_t , and B_t will be specified in Theorem 2.

fact as is done in Temporal Difference learning and variants would result in greedy policies where on has to rescue exploration by ad-hoc methods (like ε -greedy). One can show that there exist self-optimizing policies \tilde{p} for the class of ergodic MDPs [Hut04b]. Although the class of transition matrices contains non-ergodic environments, a variant of Theorem 1 applies, and hence the Bayes optimal policy p^{ξ} is self-optimizing for ergodic Markov players (which we will often encounter). The intuitive reason is that the class is compact and the non-ergodic environments have measure zero.

3 Acting with Expert Advice (FoE)

Instead of predicting or acting optimally with respect to a model class, we may construct an agent from a class of *base agents*. We show how this can be accomplished for fully active problems. The resulting algorithm will radically differ from the $AI\xi$ agent.

Prediction with expert advice has been very popular in the last two decades. The base predictors are called experts. Our goal is to design a master algorithm that in each time step t selects one expert i and follows its advice (i.e. predicts as the expert does). Thereby, we want to keep the master's regret $\ell_{1:T}^{master} - \ell_{1:T}^*$ small, where $\ell_{1:T}^*$ is the cumulative loss of the best expert in hindsight up to time T. Usually, $T \ge 1$

1 is not known in advance. The state-of-the-art experts algorithms achieve this: Loss bounds similar to (1) can be proven, with $\ell_{1:T}^{\mu}$ replaced by $\ell_{1:T}^{*}$ and w^{μ} replaced by the prior weight of the best expert in hindsight, w^{*} . These bounds hold in the worst case, i.e. without any assumption on the data generating process. In particular, the environment that provides the feedback may be an adaptive adversary. Since these bounds imply bounds in expectation in the Bayesian setting (with slightly larger constants than (1), expert advice is in a sense the stronger prediction strategy [Hut04a].

In order to protect against adaptive adversaries, we need a randomized master. In this work, we build on the Follow the Perturbed Leader FPL algorithm introduced by [Han57]. (We won't discuss the more popular alternative of weighted sampling at all.) We don't even need to be told the true outcome after the master's decision. All we need for the analysis is learning the losses of all experts, which are bounded (this is an important restriction which applies to all standard experts algorithms) w.l.o.g. in [0, 1]. In this way, the master's actual decision is based on the past cumulative loss of the experts. A key concept is that we must prevent the master from learning too fast (or too slowly). This is achieved by introducing a learning rate η_t , which decreases to zero at an appropriate rate with growing t. Most of the literature assumes experts classes of finite size n with uniform prior $\frac{1}{n}$, in particular when the learning rate η_t is non-stationary. For FPL, the case of arbitrary non-uniform prior and countable expert classes has been treated in [HP05].

Active problems. In the passive problem setup, it is sufficient to compare the leaner's performance with the observed performance of each expert. This may change for reactive problems, i.e., situations where reaction of the environment depends on our past actions and a strong expert can perform well because he decided "wisely" in the past. Here, we might wish to perform well relative to the hypothetical losses of a strong expert, not just its observed losses. An example is the repeated game of "Prisoner's Dilemma" against the tit-for-tat strategy described below: Although defecting is the dominant action, cooperating has the optimal long-term performance. And even if the learner decided to defect in the last round, hence an expert always cooperating has a disastrous performance in the current round, this expert has optimal hypothetical performance. It is this hypothetical performance we want to compete with.

Increasing horizon. [dFM04] have been the first to propose a master algorithm that performs well w.r.t. the hypothetical performance of each expert. In order to achieve this, it is in principle sufficient to evaluate a chosen expert over an *increasing number of time steps*, then the expert has eventually enough time to reach its optimal performance. This means that the master works at a different time scale τ : in its

¹Given the large amount of recent literature, it should be not too difficult to obtain similar assertions for weighted sampling algorithms. However, as far as we know, the only result proven so far requires rapidly decaying weights [Gen03], which is therefore not appropriate for universal expert classes.

 τ th time step, it gives the control to the selected expert for $B_{\tau} \geq 1$ time steps (in the original time scale t). As a consequence, the instantaneous losses that the master observes are no longer uniformly bounded in [0,1], but in $[0,B_{\tau}]$. Fortunately, it turns out that the analysis remains valid if B_{τ} grows unboundedly but slowly enough. Only the convergence rate of the average master's loss to the optimum is affected: we will obtain a final rate of $t^{-1/10}$.

The construction of running the selected expert for more than one time step has impact on which observations we may use. Even if in the current time step t, we observe the performance of all experts, it is not legitimate to use this information for other than the currently selected expert, since the alternative experts have a differnt history and we are interested in longer term performance. (Precisely, we know only the loss of all experts which have coincidentally the correct action history. But instead of trying to track the action history, which is possibly expensive, we use only the feedback from the currently selected expert i and discard all other information.) This is commonly referred to as bandit setup. Fortunately, this issue can be successfully addressed by forcing exploration, i.e. sampling according to the prior, with a certain probability γ_t [MB04]. This exploration rate γ_t is decreased to zero appropriately with growing t. Thus, in each time step we decide to either follow the perturbed leader or explore. Accordingly, we call our algorithm FoE (Follow or Explore), it is specified in Figure 2 for a finite expert class, together with its subroutine FPL. We have instantaneous and cumulative losses in both time scales, this is always clear from the notation (e.g. ℓ_t^i vs. ℓ_τ^i). Not surprisingly, most of *FoE* works in the master time scale.

Bounds for the bandit setup are typically similar to (1), but with $-\ln w^*$ replaced by (something larger than) $1/w^*$. Hence they are exponentially larger in w^* , and one can show that this is sharp in general.

Note that FoE makes use of its observation only if he decided to explore, i.e. if $r_{\tau}=1$. This seems an unnecessary waste of information, which is motivated from the analysis, since FoE needs an unbiased loss estimate $\hat{\ell}$ (with respect to FoE's randomization). We just chose the simplest way to guarantee this. For the simulations, we concentrate on the following faster learning variant: approximate the probability p_{τ}^{i} of the selected expert i (jointly for exploration and exploitation) by a Monte-Carlo simulation. Then always learn a (close to) unbiased estimate $\hat{\ell}_{\tau}^{i} = \ell_{\tau}^{i}/p_{\tau}^{i}$. The analysis of FoE works in the same way for this modification. On the other hand, not resulting in better bounds. On the other hand, we will see that modified FoE learns faster.

In case of a non-uniform prior and possibly infinitely many experts, the exploration must be according to the prior weights. This causes another problem: FoE's loss estimates $\hat{\ell}$ need to be bounded, which forbids exploring experts with very small prior weights. Hence we define for each expert i, an entering time $T^i \geq 1$ (at the master time scale). Then FoE (including its subroutine FPL) is modified such that it uses only active experts from $\{i: \tau \geq T^i\}$. This guarantees additionally that we have only a finite active set in each step, and the algorithm remains computationally

feasible.

Theorem 2 (Performance of FoE) Assume FoE acts in an online decision problem with bounded instantaneous losses $\ell_t^i \in [0,1]$. Let the exploration rate be $\gamma_{\tau} = \tau^{-1/4}$ and the learning rate be $\eta_{\tau} = \tau^{-3/4}$. In case of uniform prior, choose $B_{\tau} = \lfloor \tau^{1/8} \rfloor$. Then, for all experts i and all $T \geq 1$, we have

$$\begin{array}{lcl} \frac{1}{T}\mathbf{E}\ell_{1:T}^{\textit{FoE}} & \leq & \frac{1}{T}\ell_{1:T}^{i} + O(n^{2}T^{-1/10}), \ \textit{and} \\ & \frac{1}{T}\ell_{1:T}^{\textit{FoE}} & \leq & \frac{1}{T}\ell_{1:T}^{i} + O(n^{2}T^{-1/10}) \ \textit{w.p.} \ 1 - T^{-2}. \end{array}$$

Consequently, $\limsup_{T\to\infty} \frac{1}{T} (\ell_{1:T}^{FoE} - \ell_{1:T}^i) \leq 0$ a.s. For non-uniform prior, let $B_{\tau} = \lfloor t^{1/16} \rfloor$ and $\mathcal{T}^i = \lceil (w^i)^{-16} \rceil$. Then corresponding assertions hold with O-terms replaced by $O(\log(w^i)T^{-1/10} + (w^i)^{-22}T^{-1})$.

The proof of this main theorem on the performance of FoE can be found in [PH05]. Similar bounds hold for larger $B_{\tau} < \tau^{\frac{1}{4}}$. These bounds are improvable [Pol05], and it is possible to prove any regret bound $O((\frac{1}{w^i})^c + (\log \frac{1}{w^i})T^{\frac{2}{3}+\varepsilon})$, at the cost of increasing c where $\varepsilon \to 0$. In the simulations, we used $B_{\tau} = \tau^{0.24}$ for faster learning. For playing 2×2 matrix games, we will use the class of all 16 deterministic four-state Markov experts. (Under the assumption that the opponent is Markov, there is no need to use randomized experts.) Hence each expert consists of a lookup table with all the actions for each of the 4 possible combination of moves in the last round. In the first round, the expert plays uniformly random. (Compare the standard results on learning matrix games with expert advice by [FS99].)

4 Simulations

As already indicated, it is our goal to explore and compare the performance of the two universal learning approaches presented so far, in particular for problems that are not solved by passive or greedy learners. To this aim, repeated 2×2 matrix games are well suited:

- they are simple, such that (close to) universal learning is computationally feasible even with brute-force implementation;
- they provide situations where optimal long-term behavior significantly differs from greedy behavior (e.g. Prisoner's Dilemma);
- moreover, we can observe how universal learners can exploit potentially weak adversaries;
- and finally, we can test the two universal learners against each other.

We begin by describing the experimental setup and the universal learners. After that, we will discuss five 2×2 matrix games, presenting experimental results and highlighting their interesting aspects.

Setup. A 2 × 2 matrix game consists of two matrices $R_1, R_2 \in \mathbb{R}^{2\times 2}$, the first one containing rewards for the row player, the second one rewards for the column player. (It does not cause any problem that for convenience, we have developed the theory in terms of losses rather than rewards: one may be transformed into the other by simply inverting the sign. So for the discussion of the results, we will keep the rewards, as this is more standard in game theory.) A single game proceeds in the following way: the first player chooses a row action $i \in \{0,1\}$ and simultaneously the second player chooses a column action $j \in \{0,1\}$, both players without knowing the opponent's move. Then reward $R_k(i,j)$ is payed to player k (k=1,2), and i and j are revealed to both players. A repeated game consists of T single games. We chose T = 20000, if at least one opponent is FoE (which has slow learning dynamics, as we will see), and T = 100 for the fast learning AI ξ (unless it is plotted in the same graph as FoE). If at least one randomized player participates, the run is repeated 10 times, and usually the average is shown. We will consider only symmetric games, where one player, when put in the position of the other player (i.e. when exchanging R_1 and R_2), has a symmetric strategy (maybe after exchanging the actions). We will meet precisely three types of symmetry: in the "Matching Pennies", $R_1 = R_2$ after inverting the action of the row player, and in the "Battle of Sexes" game, $R_1=R_2$ after inverting both players' actions, and in all other games we $R_1 = R_2^T$ (transpose). In these latter games, we will call the action 0 "defect" and 1 "cooperate". All games we consider have rewards in $\{0...4\}$. The Al ξ and FoE agents are used as specified in the previous sections, with the classes of all two-state Markov environments and all deterministic four-state Markov experts, respectively. For AI ξ , we will concentrate the presentation on the almost consistent horizon variant, since it performs always better than the moving horizon variant. For FoE, we will concentrate on the faster learning variant.

We stress that we are only interested in the *qualitative* behavior of the simulations, i.e. we need to assess the learning dynamics only roughly. Therefore we do not need large sample sizes, and we will not complicate the graphs with error bars or other information used for precise statistics.

Prisoner's Dilemma. This dilemma is classical. The reward matrices are $R_1 = \binom{14}{03}$ and $R_2 = R_1^T$, with the following interpretation: The two players are accused of a crime they have committed together. They are being interrogated separately. Each player can either cooperate with the other player (don't tell the cops anything), or he defects (tells the cops everything but blame the colleague). The punishments are according to the players' joint decision: if none of them gives evidence, both get a minor sentence. If one gives evidence and the other one keeps quiet, the traitor gets free, while the other gets a huge sentence. If both give evidence, then they both get a significant sentence. (There is also an easier variant "Deadlock" which we do

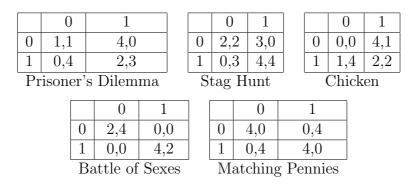


Figure 3: Reward Matrices

not discuss.)

It is clear that giving evidence, i.e. defecting, is an instantaneously dominant action: regardless of what the opponent does, the immediate reward is always larger for defecting. However, if both players would agree to cooperate, this is the "social optimum" and guarantees the better long-term reward in the repeated game. A well-known instance for this case is playing against the "tit for tat" strategy strategy which cooperates in the first move and subsequently performs the action we did in the previous move. Similar but harder to learn are "two tit for tat" and "three tit for tat", which defect in the first move and cooperate only if we cooperated two respectively three times in a row. Note that although "two tit for tat" and "three tit for tat" are not in AI ξ 's model class, probabilistic versions of the strategies are: if the probability of "adversary defected, I cooperate, then the adversary will cooperate in the next round" is chosen correctly (namely $\frac{1}{2}$ for 2-tit for tat and ≈ 0.57 for 3-tit for tat), then the expected number of rounds I have to cooperate until the adversary will do so is 2 respectively 3.

Figure 4 shows that in most cases, AI ξ learns very quickly the best actions. (This is the consistent horizon variant, the moving horizon variant will be discussed with the next game, Stag Hunt.) If the opponent is memoryless as for example the uniform random player, AI ξ constantly defects after short time. Against tit for tat and two tit for tat, AI ξ cooperates after short time. The figure shows the average per round rate of cooperation, which after a few exploratory moves converges to the optimal action as $\frac{1}{t}$. However, AI ξ does not learn to cooperate against three tit for tat. The reason is the general problem that in order to increase exploration, AI ξ needs exponential depth of the expectimin tree. Assume that a certain action sequence of length n is favorable against the true environment, which has however not too large a current weight. In this instance, cooperating three times in a row is favorable against (the probabilistic version of) 3-tit for tat. In order to recognize that this is worth exploring, AI ξ has to build a branch of depth n=3 in the expectimin tree, which has (because of the relatively low prior weight) very small probability $\sim \exp(-n)$ however. Then it needs an exponentially large subtree below this branch

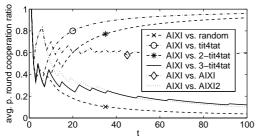


Figure 4: AI ξ in Prisoner's Dilemma

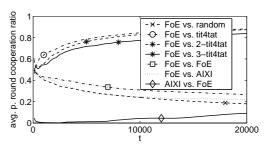


Figure 5: FoE (and AI ξ) in Prisoner's Dilemma

to accumulate enough (virtual) reward in order to encourage exploration.

One more problem arises when AI ξ plays against another AI ξ . Here, the perfectly symmetric setting results in both playing the same actions in each move, hence they are not correctly learning. We might try to remedy this by varying the tree depth of the second AI ξ (denoted AI ξ 2 in the figure), however it turns out that in this case, both AI ξ 's do not learn at all to cooperate (see [Hut04b, Sec.8.5.2] for a possible reason).

We now turn to the performance of FoE (the faster learning variant) as evaluated in Figure 5. As expected, FoE learns much slower than AI ξ (note the different time scale). On the other hand, its exploration is strong enough to learn 3-tit for tat (and even harder opponents). When playing against another instance of FoE, we notice however that they usually do not succeed to overcome the dominance of mutual defection. Also when FoE competes with AI ξ , they tend to learn mutual defection rather than cooperation. (Sometimes, they learn cooperation in one or two of the possible states of the MDP.)

Stag Hunt. This game is also known as "Assurance". The reward matrices are $R_1 = \binom{23}{04}$ and $R_2 = R_1^T$. Two players are hunting together. If they cooperate, they will catch the stag. However, one player might not trust the other, in which case he chases rabbits on his own instead. In this case, the other one won't get anything if he tries to cooperate. If both defect, then they are in conflict, and each player gets less rabbits. Although the optimum for both players is to cooperate, they need to trust each other sufficiently. If one player plays uniformly random, it is better for the other to go for the rabbits. Also, defecting has the lower variance.

Maybe it is surprising to observe that $AI\xi$ (with a depth of 8) does not learn to cooperate against 2-tit for tat (Figure 6). The reason is that defecting has a relatively good payoff, and therefore exploration is not encouraged as discussed in the previous subsection. If the depth of the tree is increased to 9, $AI\xi$ learns cooperation against 2-tit for tat (but not against 3-tit for tat). We also see that the moving horizon variant of $AI\xi$ has even more problems with exploration: It does not learn cooperating against 2-tit for tat, even with depth 9. The explanation is that even if $AI\xi$ decides to explore in one time step, in the next step this exploration might not be correctly continued, as the tree is now explored to a different level. This

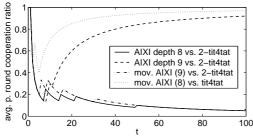


Figure 6: Stag Hunt: AI ξ and its moving horizon variant

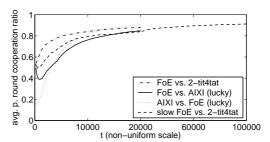


Figure 7: Stag Hunt: FoE and its slower learning variant

observation can also be made for the Prisoner's Dilemma. In fact, the consistent horizon variant performs always better than moving horizon.

As before, FoE learns much slower but explores more robustly (Figure 7), neither 2- nor 3-tit for tat are a problem. Unlike in the Prisoner's Dilemma, if AI ξ and FoE are competing, they learn mutual cooperation in almost half of the cases, an average over such lucky instances is given in the figure. The same is valid for FoE against FoE, while AI ξ against AI ξ has the same symmetry problem as already observed in the Prisoner's Dilemma. The original slower learning variant of FoE reaches the same average level of performance only after 10^5 time steps instead of $2 \cdot 10^4$ steps, and moreover with a variance twice as high.

Chicken. The reward matrices $R_1 = \binom{04}{12}$ and $R_2 = R_1^T$ of the "Chicken" game (also known as "Hawk and Dove") can be interpreted as follows: Two coauthors write a paper, but each tries to spend as little effort as possible. If one succeeds to let the other do the whole work, he has a high reward. On the other hand, if no one does anything, there will be no paper and thus no reward. Finally, if both decide to cooperate, both get some reward. Here, in the repeated game, it is socially optimal to take turns cooperating and defecting.² Still the best situation for one player is if he emerges as the "dominant defector", defecting in most or all of the games, while the other one cooperates.

If the opponent steadily alternates between cooperating and defecting, then $AI\xi$ quickly learns to adapt. This can be observed in Figure 8, where the performance is given in terms of average per round reward instead of cooperation rate. However, $AI\xi$ is not obstinate enough to perform well against a "stubborn" adversary that would cooperate only after his opponent has defected for three successive time steps. Here, $AI\xi$ learns to cooperate, leaving his opponent the favorable role as the dominant defector. (However, $AI\xi$ learns to dominate the less stubborn adversary that cooperates after two defecting actions.) When two $AI\xi$ s play against each other, they again have the symmetry problem. Interestingly, if we break symmetry by giv-

²We assume that the authors are not very good at cooperating, and that the costs of cooperating more than compensate for the synergy. We could assign a reward of 3 instead of 2 to mutual cooperation. This is the less interesting situation of "Easy Chicken", where cooperating is the optimal long-term strategy like in the previous games.

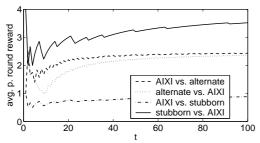


Figure 8: AI ξ in the Chicken game

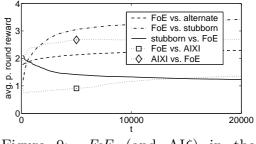


Figure 9: FoE (and $AI\xi$) in the Chicken game

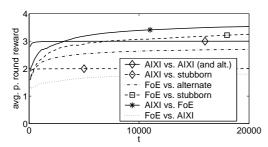


Figure 10: AI ξ and FoE in Battle of Sexes

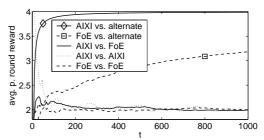


Figure 11: AI ξ and FoE in Matching Pennies

ing the second AI ξ a depth of 9, he will turn out the dominant defector (not shown in the graph).

FoE behaves differently in this game (Figure 9). While he learns to deal with the steadily alternating adversary and emerges as the dominant defector against the stubborn one, he would give precedence to AI ξ in most cases. This is not hard to explain, since FoE in the beginning plays essentially random. Thus AI ξ learns quickly to defect, and for FoE remains nothing but learning to cooperate. However, this does not always happen: In the minority of the cases, FoE defects enough such that AI ξ decides to cooperate, and FoE will be the dominant defector. (Hence the average shown in the graph is less clear in favor of AI ξ .)

Battle of Sexes. In this game, a married couple wants to spend the evening together, but they didn't settle if they would go to the theater (her preference) or the pub (his preference). However, if they fail to meet, both have a boring evening (and no reward at all). The reward matrices are $R_1 = \binom{20}{04}$ and $R_2 = \binom{40}{02}$. Coordination is clearly important in the repeated game. Like in "Chicken", taking turns is a social optimum, while it is best for one player if his choice becomes dominant.

In Figure 10, our universal learners show similar performance like in the Chicken game. Both learn to deal with an alternating partner. FoE also learns to dominate over a stubborn adversary that plays his less favorite action only after the opponent insists three times on that. AI ξ is dominated by this stubborn player. However, AI ξ always dominates FoE. Finally, in contrast to the Chicken game, AI ξ against AI ξ does not have the symmetry problem, but they both learn to alternate.

Matching Pennies. Each player conceals in his palm a coin with either heads or tails up. They are revealed simultaneously. If they match (both heads or both tails), the first player wins, otherwise the second. This is the only zero-sum game of the games we consider, where $R_1 = \binom{40}{04}$ and $R_2 = \binom{04}{40}$. Thus, there is a minimax strategy for both players, which is actually uniform random play. On the other hand, deterministic repeated play is potentially exploitable by the adversary.

Figure 11 shows the results for this last game we discuss. Both AI ξ and FoE learn to exploit a predictable adversary, namely the player alternating between 0 and 1. The other games are balanced in the long run, only in the beginning AI ξ succeeds to exploit FoE a little. If two AI ξ s compete, it is important to break symmetry, then both learn to alternate (this situation is shown in the graph). If symmetry is not broken, the row player (who tries to match) always wins.

5 Discussion

In principle, universal learners perform well in repeated matrix games. They usually learn to prefer the optimal long-term action to greedy behavior (Prisoner's Dilemma and Stag Hunt). If possible they are able to exploit a predictable adversary (Matching Pennies). And they learn good strategies when it is necessary to foresee the opponent's action (Chicken and Battle of Sexes). Of the two approaches we presented and compared, AI ξ learns much faster than FoE, but FoE explores more thoroughly. Of course, there is a trade-off between exploration and fast learning. Interestingly, it may depend on the adversary (and thus on the environment) if fast learning or exploration is the better long-term strategy: In Chicken and Battle of Sexes, AI ξ profits against FoE by learning fast and dictating its preferred action, but looses against the stubborn opponent because of not exploring enough.

Acknowledgement. This work was supported by the SNF grant 2100-67712 and JSPS 21st century COE program C01.

References

- [dFM04] D. Pucci de Farias and N. Megiddo. How to combine expert (and novice) advice when actions impact the environment? In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, *Advances in Neural Information Processing Systems* 16. MIT Press, Cambridge, MA, 2004.
- [FS99] Y. Freund and R. Schapire. Adaptive game playing using multiplicative weights. *Games and Economic Behavior*, 29:79–193, 1999.
- [Gen03] C. Gentile. The robustness of the p-norm algorithm. *Machine Learning*, 53(3):265-299, 2003.

- [Han57] J. Hannan. Approximation to Bayes risk in repeated plays. In M. Dresher, A. W. Tucker, and P. Wolfe, editors, *Contributions to the Theory of Games* 3, pages 97–139. Princeton University Press, 1957.
- [HP05] M. Hutter and J. Poland. Adaptive online prediction by following the perturbed leader. *Journal of Machine Learning Research*, 6:639–660, 2005.
- [Hut04a] M. Hutter. Online prediction Bayes versus experts. Technical report, http://www.idsia.ch/~marcus/ai/bayespea.htm, July 2004. Presented at the EU PASCAL Workshop on Learning Theoretic and Bayesian Inductive Principles (LTBIP-2004).
- [Hut04b] M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Springer, Berlin, 2004. 300 pages, http://www.idsia.ch/~marcus/ai/uaibook.htm.
- [MB04] H. B. McMahan and A. Blum. Online geometric optimization in the bandit setting against an adaptive adversary. In 17th Annual Conference on Learning Theory (COLT), volume 3120 of Lecture Notes in Computer Science, pages 109–123. Springer, 2004.
- [PH05] J. Poland and M. Hutter. Defensive universal learning with experts. In *Proc. 16th International Conf. on Algorithmic Learning Theory (ALT'05)*, volume 3734 of *LNAI*, pages 356–370, Singapore, 2005. Springer, Berlin.
- [Pol05] J. Poland. FPL analysis for adaptive bandits. In 3rd Symposium on Stochastic Algorithms, Foundations and Applications (SAGA'05), pages 58–69, 2005.
- [Sch04] J. Schmidhuber. Optimal ordered problem solver. *Machine Learning*, 54(3):211–254, 2004.
- [Sch05] J. Schmidhuber. Gödel machines: Self-referential universal problem solvers making provably optimal self-improvements. In *Artificial General Intelligence*. Springer, in press, 2005.
- [Sol64] R. J. Solomonoff. A formal theory of inductive inference: Part 1 and 2. Inform. Control, 7:1–22, 224–254, 1964.
- [SZW97] J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement. *Machine Learning*, 28:105–130, 1997.