
A Monte Carlo AIXI Approximation

Joel Veness joel.veness@nicta.com.au

University of New South Wales and National ICT Australia

Kee Siong Ng keesiong.ng@nicta.com.au

National ICT Australia and The Australian National University

Marcus Hutter marcus.hutter@anu.edu.au

The Australian National University and National ICT Australia

David Silver silver@cs.ualberta.ca

University of Alberta

4 September 2009

Abstract
This paper describes a computationally feasible approximation to the AIXI

agent, a universal reinforcement learning agent for arbitrary environments. AIXI is
scaled down in two key ways: First, the class of environment models is restricted
to all prediction suffix trees of a fixed maximum depth. This allows a Bayesian
mixture of environment models to be computed in time proportional to the logarithm
of the size of the model class. Secondly, the finite-horizon expectimax search is
approximated by an asymptotically convergent Monte Carlo Tree Search technique.
This scaled down AIXI agent is empirically shown to be effective on a wide class
of toy problem domains, ranging from simple fully observable games to small
POMDPs. We explore the limits of this approximate agent and propose a general
heuristic framework for scaling this technique to much larger problems.

Contents
1 Introduction 2
2 The Agent Setting and Some Design Issues 4
3 Monte Carlo Tree Search with Model Updates 7
4 Extensions of Context Tree Weighting 11
5 Putting it All Together 20
6 Theoretical Results 21
7 Experimental Results 24
8 Discussion 34
9 Conclusion 37

Keywords

Reinforcement Learning (RL); Context Tree Weighting (CTW); Monte Carlo Tree
Search (MCTS); Upper Confidence bounds applied to Trees (UCT); Partially Ob-
servable Markov Decision Process (POMDP); Prediction Suffix Trees (PST).

1

1 Introduction
A main difficulty of doing research in artificial general intelligence has always been in
defining exactly what artificial general intelligence means. There are many possible def-
initions [LH07], but the AIXI formulation [Hut05] seems to capture in concrete quantita-
tive terms many of the qualitative attributes usually associated with intelligence.

The general reinforcement learning problem. Consider an agent that exists within
some (unknown to the agent) environment. The agent interacts with the environment in
cycles. At each cycle, the agent executes an action and receives in turn an observation
and a reward. There is no explicit notion of state, neither with respect to the environment
nor internally to the agent. The general reinforcement learning problem is to construct an
agent that, over time, collects as much reward as possible in this setting.

The AIXI agent. The AIXI agent is a mathematical solution to the general reinforce-
ment learning problem. The AIXI setup mirrors that of the general reinforcement prob-
lem, however the environment is assumed to be an unknown but computable function;
i.e. the observations and rewards received by the agent given its actions can be computed
by a Turing machine. Furthermore, the AIXI agent is assumed to exist for a finite, but
arbitrarily large amount of time. The AIXI agent results from a synthesis of two ideas:

1. the use of a finite-horizon expectimax operation from sequential decision theory for
action selection; and

2. an extension of Solomonoff’s universal induction scheme [Sol64] for future predic-
tion in the agent context.

More formally, let U(q, a1a2 . . . an) denote the output of a universal Turing machine
U supplied with program q and input a1a2 . . . an, m ∈ N a finite lookahead horizon,
and `(q) the length in bits of program q. The action picked by AIXI at time t, hav-
ing executed actions a1a2 . . . at−1 and received the sequence of observation-reward pairs
o1r1o2r2 . . . ot−1rt−1 from the environment, is given by:

a∗t = arg max
at

∑

otrt

. . .max
at+m

∑

ot+mrt+m

[rt + · · · + rt+m]
∑

q:U(q,a1...at+m)=o1r1...ot+mrt+m

2−`(q). (1)

Intuitively, the agent considers the sum of the total reward over all possible futures (up
to m steps ahead), weighs each of them by the complexity of programs (consistent with
the agent’s past) that can generate that future, and then picks the action that maximises
expected future rewards. Equation (1) embodies in one line the major ideas of Bayes, Ock-
ham, Epicurus, Turing, von Neumann, Bellman, Kolmogorov, and Solomonoff. The AIXI
agent is rigorously shown in [Hut05] to be optimal in different senses of the word. (Tech-
nically, AIXI is Pareto optimal and ‘self-optimising’ in different classes of environment.)
In particular, the AIXI agent will rapidly learn an accurate model of the environment and
proceed to act optimally to achieve its goal.

2

The AIXI formulation also takes into account stochastic environments because Equa-
tion (1) can be shown to be formally equivalent to the following expression:

a∗t = arg max
at

∑

otrt

. . .max
at+m

∑

ot+mrt+m

[rt + · · · + rt+m]
∑

ρ∈M
2−K(ρ)ρ(o1r1 . . . ot+mrt+m | a1 . . . at+m),

(2)
where ρ(o1r1 . . . ot+mrt+m | a1 . . . at+m) is the probability of o1r1 . . . ot+mrt+m given actions
a1 . . . at+m. Class M consists of all enumerable chronological semimeasures [Hut05],
which includes all computable ρ, and K(ρ) denotes the Kolmogorov complexity of ρ
[LV08].

An accessible overview of the AIXI agent can be found in [Leg08]. A complete
description of the agent is given in [Hut05].

AIXI as a principle. The AIXI formulation is best understood as a rigorous definition
of optimal decision making in general unknown environments, and not as an algorithmic
solution to the general AI problem. (AIXI after all, is only asymptotically computable.)
As such, its role in general AI research should be viewed as, for example, the same way
the minimax and empirical risk minimisation principles are viewed in decision theory and
statistical machine learning research. These principles define what is optimal behaviour if
computational complexity is not an issue, and can provide important theoretical guidance
in the design of practical algorithms. It is in this light that we see AIXI. This paper is an
attempt to scale AIXI down to produce a practical agent that can perform well in a wide
range of different, unknown and potentially noisy environments.

Approximating AIXI. As can be seen in Equation (1), there are two parts to AIXI. The
first is the expectimax search into the future which we will call planning. The second
is the use of a Bayesian mixture over Turing machines to predict future observations
and rewards based on past experience; we will call that learning. Both parts need to be
approximated for computational tractability. There are many different approaches one can
try. In this paper, we opted to use a generalised version of the UCT algorithm [KS06] for
planning and a generalised version of the Context Tree Weighting algorithm [WST95] for
learning. This harmonious combination of ideas, together with the attendant theoretical
and experimental results, form the main contribution of this paper.

Paper organisation. The paper is organised as follows. Section 2 describes the basic
agent setting and discusses some design issues. Section 3 then presents a Monte Carlo
Tree Search procedure that we will use to approximate the expectimax operation in AIXI.
This is followed by a description of the context tree weighting algorithm and how it can
be generalised for use in the agent setting in Section 4. We put the two ideas together
in Section 5 to form our agent algorithm. Theoretical and experimental results are then
presented in Sections 6 and 7. We end with a discussion of related work and other topics
in Section 8.

3

2 The Agent Setting and Some Design Issues
Notation. A string x1x2 . . . xn of length n is denoted by x1:n. The prefix x1: j of x1:n,
j ≤ n, is denoted by x≤ j or x< j+1. The notation generalises for blocks of symbols: e.g.
ax1:n denotes a1x1a2x2 . . . anxn and ax< j denotes a1x1a2x2 . . . a j−1x j−1. The empty string is
denoted by ε. The concatenation of two strings s and r is denoted by sr.

Agent setting. The (finite) action, observation, and reward spaces are denoted byA,O,
and R respectively. Also, X denotes the joint perception space O × R.

Definition 1. A history is a string h ∈ (A × X)n, for some n ≥ 0. A partial history is the
prefix of some history.

The set of all history strings of maximum length n will be denoted by (A×X)≤n.
The following definition states that the agent’s model of the environment takes the

form of a probability distribution over possible observation-reward sequences conditioned
on actions taken by the agent.

Definition 2. An environment model ρ is a sequence of functions {ρ0, ρ1, . . . }, ρn : An →
Density (Xn), that satisfies:

1. ∀a1:n∀x<n : ρn(x<n | a<n) =
∑

xn∈X ρn(x1:n | a1:n)
2. ∀a<n∀x<n : ρn(x<n | a<n) > 0.

The first condition (called the chronological condition in [Hut05]) captures the natural
constraint that action an has no effect on observations made before it. The second con-
dition enforces the requirement that the probability of every possible observation-reward
sequence is non-zero. This ensures that conditional probabilities are always defined. It is
not a serious restriction in practice, as probabilities can get arbitrarily small. For conve-
nience, we drop the index t in ρt from here onwards.

Given an environment model ρ, we have the following identities:

ρ(xn | ax<nan) =
ρ(x1:n | a1:n)
ρ(x<n | a<n)

(3)

ρ(x1:n | a1:n) = ρ(x1 | a1)ρ(x2 | a1x1a2) · · · ρ(xn | ax<nan) (4)

Reward, policy and value functions. We represent the notion of reward as a numeric
value that represents the magnitude of instantaneous pleasure experienced by the agent at
any given time step. Our agent is a hedonist; its goal is to accumulate as much reward
as it can during its lifetime. More precisely, in our setting the agent is only interested in
maximising its future reward up to a fixed, finite, but arbitrarily large horizon m ∈ N.

In order to act rationally, our agent seeks a policy that will allow it to maximise its
future reward. Formally, a policy is a function that maps a history to an action. If we define
Rk(aor≤t) := rk for 1 ≤ k ≤ t, then we have the following definition for the expected future
value of an agent acting under a particular policy:

4

Definition 3. Given history ax<t, the m-horizon expected future reward of an agent acting
under policy π : (A×X)≤t+m → A with respect to an environment model ρ is:

vm
ρ (π, ax<t) := Ext:t+m∼ρ

t+m∑

i=t

Ri(ax≤t+m)

 , (5)

where for t ≤ k ≤ t + m, ak := π(ax<k). The quantity vm
ρ (π, ax<tat) is defined similarly,

except that at is now no longer defined by π.

The optimal policy π∗ is the policy that maximises Equation (5). The maximal achiev-
able expected future reward of an agent with history h ∈ (A × X)t−1 in environment ρ
looking m steps ahead is Vm

ρ (h) := vm
ρ (π∗, h). It is easy to see that

Vm
ρ (h) = max

at

∑

xt

ρ(xt | hat) · · ·max
at+m

∑

xt+m

ρ(xt+m | haxt:t+m−1at+m)

t+m∑

i=t

ri

 . (6)

All of our subsequent efforts can be viewed as attempting to define an algorithm that
determines a policy as close to the optimal policy as possible given reasonable resource
constraints. Our agent is model based: we learn a model of the environment and use it to
estimate the future value of our various actions at each time step. These estimates allow
the agent to make an approximate best action given limited computational resources.

We now discuss some high-level design issues before presenting our algorithm in the
next section.

Perceptual aliasing. A major problem in general reinforcement learning is perceptual
aliasing [Chr92], which refers to the situation where the instantaneous perceptual infor-
mation (a single observation in our setting) does not provide enough information for the
agent to act optimally. This problem is closely related to the question of what constitutes
a state, an issue we discuss next.

State vs history based agents. A Markov state [SB98] provides a sufficient statistic for
all future observations, and therefore provides sufficient information to represent optimal
behaviour. No perceptual aliasing can occur with a Markov state. In Markov Decision
Processes (MDPs) and Partially Observable Markov Decision Processes (POMDPs) all
underlying environmental states are Markov.

A compact state representation is often assumed to generalise well and therefore en-
able efficient learning and planning. A common approach in reinforcement learning (RL)
[SB98] is to approximate the environmental state by using a small number of handcrafted
features. However, this approach requires both that the environmental state is known, and
that sufficient domain knowledge is available to select the features.

In the general RL problem, neither the states nor the domain properties are known in
advance. One approach to general RL is to find a compact representation of state that
is approximately Markov [McC96, Sha07, SJR04, ST04], or a compact representation of
state that maximises some performance criterion [Hut09b, Hut09a]. In practice, a Markov

5

representation is rarely achieved in complex domains, and these methods must introduce
some approximation, and therefore some level of perceptual aliasing.

In contrast, we focus on learning and planning methods that use the agent’s history
as its representation of state. A history representation can be generally applied without
any domain knowledge. Importantly, a history representation requires no approximation
and introduces no aliasing: each history is a perfect Markov state (or k-Markov for length
k histories). In return for these advantages, we give up on compactness. The number of
states in a history representation is exponential in the horizon length (or k for length k
histories), and many of these histories may be equivalent. Nevertheless, a history rep-
resentation can sometimes be more compact than the environmental state, as it ignores
extraneous factors that do not affect the agent’s direct observations.

Predictive environment models. In order to form non-trivial plans that span multiple
time steps, our agent needs to be able to predict the effects of its interaction with the
environment. If a model of the environment is known, search-based methods offer one
way of generating such plans. However, a general RL agent does not start with a model of
the environment; it must learn one over time. Our agent builds an approximate model of
the true environment from the experience it gathers when interacting with the real world,
and uses it for online planning.

Approximation via online planning. If the problem is small, model-based RL methods
such as Value Iteration for MDPs can easily derive an optimal policy. However this is not
appropriate for the larger problems more typical of the real world. Local search is one
way to address this problem. Instead of solving the problem in its entirety, an approximate
solution is computed before each decision is made. This approach has met with much
success on difficult decision problems within the game playing research community and
on large-sized POMDPs [RPPCD08].

Scalability. The general RL problem is extremely difficult. On any real world prob-
lem, an agent is necessarily restricted to making approximately correct decisions. One of
the distinguishing features of sophisticated heuristic decision making frameworks, such as
those used in computer chess or computer go, is the ability of these frameworks to provide
acceptable performance on hardware ranging from mobile phones through to supercom-
puters. To take advantage of the fast-paced advances in computer technology, we claim
that a good autonomous agent framework should naturally and automatically scales with
increasing computational resources. Both the learning and planning components of our
approximate AIXI agent have been designed with scalability in mind.

Anytime decision making. One of the key resources in real world decision making is
time. As we are interested in a practical general agent framework, it is imperative that
our agent be able to make good approximate decisions on demand. Different application
domains have different real-world time constraints. We seek an agent framework that

6

can make good, approximate decisions given anything from 10 milliseconds to 10 days
thinking time per action.

3 Monte Carlo Tree Search with Model Updates
In this section we describe Predictive UCT, a Monte Carlo Tree Search (MCTS) technique
for stochastic, partially observable domains that uses an incrementally updated environ-
ment model ρ to predict and evaluate the possible outcomes of future action sequences.

The Predictive UCT algorithm is a straightforward generalisation of the UCT algo-
rithm [KS06], a Monte Carlo planning algorithm that has proven effective in solving large
state space discounted, or finite horizon MDPs. The generalisation requires two parts:

• The use of an environment model that is conditioned on the agent’s history, rather
than a Markov state.

• The updating of the environment model during search. This is essential for the algo-
rithm to utilise the extra information an agent will have at a hypothetical, particular
future time point.

The generalisation involves a change in perspective which has significant practical
ramifications in the context of general RL agents. Our extensions to UCT allow Predic-
tive UCT, in combination with a sufficiently powerful predictive environment model ρ,
to implicitly take into account the value of information in search and be applicable to
partially observable domains.

Overview. Predictive UCT is a best-first Monte Carlo Tree Search technique that itera-
tively constructs a search tree in memory. The tree is composed of two interleaved types
of nodes: decision nodes and chance nodes. These correspond to the alternating max and∑

operations in expectimax. Each node in the tree corresponds to a (partial) history h. If
h ends with an action, it is a chance node; if h ends with an observation, it is a decision
node. Each node contains a statistical estimate of the future reward.

Initially, the tree starts with a single decision node containing |A| children. Much like
in existing MCTS methods [CWU+08], there are four conceptual phases to a single itera-
tion of Predictive UCT. The first is the selection phase, where the search tree is traversed
from the root node to an existing leaf chance node n. The second is the expansion phase,
where a new decision node is added as a child to n. The third is the simulation phase,
where a playout policy in conjunction with the environment model ρ is used to sample
a possible future path from n until a fixed distance from the root is reached. Finally, the
backpropagation phase updates the value estimates for each node on the reverse trajec-
tory leading back to the root. Whilst time remains, these four conceptual operations are
repeated. Once the time limit is reached, an approximate best action can be selected by
looking at the value estimates of the children of the root node.

During the selection phase, action selection at decision nodes is done using a policy
that balances exploration and exploitation. This policy has two main effects:

7

a1
a2 a3

o1 o2 o3 o4

future reward estimate

Figure 1: A Predictive UCT search tree

• to move the estimates of the future reward towards the maximum attainable future
reward if the agent acted optimally.

• to cause asymmetric growth of the search tree towards areas that have high predicted
reward, implicitly pruning large parts of the search space.

The future reward at leaf nodes is estimated by choosing actions according to a heuris-
tic policy until a total of m actions have been made by the agent, where m is the search
horizon. This heuristic estimate helps the agent to focus its exploration on useful parts
of the search tree, and in practice allows for a much larger horizon than a brute-force
expectimax search.

Predictive UCT builds a sparse search tree in the sense that observations are only
added to chance nodes once they have been generated along some sample path. A full
expectimax search tree would not be sparse; each possible stochastic outcome will be
represented by a distinct node in the search tree. For expectimax, the branching factor
at chance nodes is thus |O|, which means that searching to even moderate sized m is
intractable.

Figure 1 shows an example Predictive UCT tree. Chance nodes are denoted with stars.
Decision nodes are denoted by circles. The dashed lines from a star node indicate that not
all of the children have been expanded. The squiggly line at the base of the leftmost
leaf denotes the execution of a playout policy. The arrows proceeding up from this node
indicate the flow of information back up the tree; this is defined in more detail in Section
3.

Action selection at decision nodes. A decision node will always contain |A| distinct
children, all of whom are chance nodes. Associated with each decision node representing
a particular history h will be a value function estimate, V̂(h). During the selection phase,
a child will need to be picked for further exploration. Action selection in MCTS poses a
classic exploration/exploitation dilemma. On one hand we need to allocate enough visits
to all children to ensure that we have accurate estimates for them, but on the other hand
we need to allocate enough visits to the maximal action to ensure convergence of the node
to the value of the maximal child node.

8

Like UCT, Predictive UCT recursively uses the UCB policy [Aue02] from the n-armed
bandit setting at each decision node to determine which action needs further exploration.
Although the uniform logarithmic regret bound no longer carries across from the bandit
setting, the UCB policy has been shown to work well in practice in complex domains
such as Computer Go [GW06] and General Game Playing [FB08]. This policy has the
advantage of ensuring that at each decision node, every action eventually gets explored
an infinite number of times, with the best action being selected exponentially more often
than actions of lesser utility.

Definition 4. The visit count T (h) of a decision node h is the number of times h has been
sampled by the Predictive UCT algorithm. The visit count of the chance node found by
taking action a at h is defined similarly, and is denoted by T (ha).

Definition 5. Suppose m is the search horizon and each single time-step reward is
bounded in the interval [α, β]. Given a node representing a history h in the search tree,
the action picked by the UCB action selection policy is:

aUCB(h) := arg max
a∈A

1

m(β−α) V̂(ha) + C
√

log(T (h))
T (ha) if T (ha) > 0;

∞ otherwise,
(7)

where C ∈ R is a positive parameter that controls the ratio of exploration to exploitation.
If there are multiple maximal actions, one is chosen uniformly at random.

Note that we need a linear scaling of V̂(ha) in Definition 5 because the UCB policy is
only applicable for rewards confined to the [0, 1] interval.

Chance nodes. Chance nodes follow immediately after an action is selected from a
decision node. Each chance node ha following a decision node h contains an estimate of
the future utility denoted by V̂(ha). Also associated with the chance node ha is a density
ρ(· | ha) over observation-reward pairs.

After an action a is performed at node h, ρ(· | ha) is sampled once to generate the next
observation-reward pair or. If o has not been seen before, the node hao is added as a child
of ha. We will use the notation Oha to denote the subset of O representing the children of
partial history ha created so far.

Estimating future reward at leaf nodes. If a leaf decision node is encountered at depth
k < m in the tree, a means of estimating the future reward for the remaining m − k time
steps is required. The agent applies its heuristic playout function Π to estimate the sum
of future rewards

∑m
i=k ri. A particularly simple, pessimistic baseline playout function is

Πrandom, which chooses an action uniformly at random at each time step.
A more sophisticated playout function that uses action probabilities estimated from

previously taken real-world actions could potentially provide a better estimate. The qual-
ity of the actions suggested by such a predictor can be expected to improve over time,
since it is trying to predict actions that are chosen by the agent after a Predictive UCT

9

search. This powerful and intuitive method of constructing a generic heuristic will be
explored further in a subsequent section.

Asymptotically, the heuristic playout policy makes no contribution to the value func-
tion estimates of Predictive UCT. When the remaining depth is zero, the playout policy
always returns zero reward. As the number of simulations tends to infinity, the struc-
ture of the Predictive UCT search tree is equivalent to the exact depth m expectimax tree
with high probability. This implies that the asymptotic value function estimates of Pre-
dictive UCT are invariant to the choice of playout function. However, when search time
is limited, the choice of playout policy will be a major determining factor of the overall
performance of the agent.

Reward backup. After the selection phase is completed, a path of nodes n1n2 . . . nk,
k ≤ m, will have been traversed from the root of the search tree n1 to some leaf nk. For
each 1 ≤ j ≤ k, the statistics maintained for (partial) history hn j associated with node n j

will be updated as follows:

V̂(hn j)←
T (hn j)

T (hn j) + 1
V̂(hn j) +

1
T (hn j) + 1

m∑

i= j

ri (8)

T (hn j)← T (hn j) + 1 (9)

Note that the same backup equations are applied to both decision and chance nodes.

Incremental model updating. Recall from Definition 2 that an environment model ρ
is a sequence of functions {ρ0, ρ1, ρ2, . . .}, where ρt : At → Density (Xt). When invoking
the Sample routine to decide on an action, many hypothetical future experiences will be
generated, with ρt being used to simulate the environment at time t. For the algorithm to
work well in practice, we need to be able to perform the following two operations in time
sublinear with respect to the length of the agent’s entire experience string.

• Update - given ρt(x1:t | a1:t), at+1, and xt+1, produce ρt+1(x1:t+1 | a1:t+1)
• Revert - given ρt+1(x1:t+1 | a1:t+1), recover ρt(x1:t | a1:t)

The revert operation is needed to restore the environment model to ρt after each simu-
lation to time t + m is performed. In Section 4, we will show how these requirements can
be met efficiently by a certain kind of Bayesian mixture over a rich model class.

Pseudocode. We now give the pseudocode of the entire Predictive UCT algorithm.
Algorithm 1 is responsible for determining an approximate best action. Given the

current history h, it first constructs a search tree containing estimates V̂m
ρ (ha) for each

a ∈ A, and then selects a maximising action. An important property of Algorithm 1 is
that it is anytime; an approximate best action is always available, whose quality improves
with extra computation time.

10

Algorithm 1 Predictive UCT(ρ, h,m)
Require: An environment model ρ
Require: A history h
Require: A search horizon m ∈ N

1: Initialise(Ψ)
2: repeat
3: Sample(Ψ, h,m)
4: ρ← Revert(ρ,m)
5: until out of time
6: return BestAction(Ψ, h)

For simplicity of exposition, Initialise can be understood to simply clear the entire
search tree Ψ. In practice, it is possible to carry across information from one time step to
another. If Ψt is the search tree obtained at the end of time t, and aor is the agent’s actual
action and experience at time t, then we can keep the subtree rooted at node Ψt(hao) in
Ψt and make that the search tree Ψt+1 for use at the beginning of the next time step. The
remainder of the nodes in Ψt can then be deleted.

As a Monte Carlo Tree Search routine, Algorithm 1 is embarrassingly parallel. The
main idea is to concurrently invoke the Sample routine whilst providing appropriate lock-
ing mechanisms for the nodes in the search tree. An efficient parallel implementation is
beyond the scope of the paper, but it is worth noting that ideas [CWH08] applicable to
high performance Monte Carlo Go programs are easily transferred to our setting.

Algorithm 2 implements a single run through some trajectory in the search tree. It
uses the SelectAction routine to choose moves at interior nodes, and invokes the playout
policy at unexplored leaf nodes. After a complete path of length m is completed, the
recursion takes care that every visited node along the path to the leaf is updated as per
Section 3.

The action chosen by SelectAction is specified by the UCB policy described in Def-
inition 5. If the selected child has not been explored before, then a new node is added
to the search tree. The constant C is a parameter that is used to control the shape of the
search tree; lower values of C create deep, selective search trees, whilst higher values lead
to shorter, bushier trees.

4 Extensions of Context Tree Weighting

Context Tree Weighting (CTW) [WST95, WST97] is a theoretically well-motivated on-
line binary sequence prediction algorithm that works well in practice [BEYY04]. It is
an online Bayesian model averaging algorithm that computes a mixture of all prediction
suffix trees [RST96] of a given bounded depth, with higher prior weight given to simpler
models. We examine in this section several extensions of CTW needed for its use in the
context of agents. Along the way, we will describe the CTW algorithm in detail.

11

Algorithm 2 Sample(ρ,Ψ, h,m)
Require: An environment model ρ
Require: A search tree Ψ

Require: A (partial) history h
Require: A remaining search horizon m ∈ N

1: if m = 0 then
2: return 0
3: else if Ψ(h) is a chance node then
4: Generate (o, r) from ρ(or | h)
5: Create node Ψ(hor) if T (hor) = 0
6: reward← r + Sample(ρ,Ψ, hor,m − 1)
7: else if T (h) = 0 then
8: reward← Playout(ρ, h,m)
9: else

10: a← SelectAction(Ψ, h)
11: reward← Sample(ρ,Ψ, ha,m)
12: end if
13: V̂(h)← 1

T (h)+1 [reward + T (h)V̂(h)]
14: T (h)← T (h) + 1
15: return reward

Algorithm 3 SelectAction(Ψ, h)
Require: A search tree Ψ

Require: A history h
Require: An exploration/exploitation constant C

1: U = {a ∈ A : T (ha) = 0}
2: if U , {} then
3: Pick a ∈ U uniformly at random
4: Create node Ψ(ha)
5: return a
6: else
7: return arg max

a∈A

{
1

m(β−α) V̂(ha) + C
√

log(T (h))
T (ha)

}

8: end if

Action-conditional CTW. We first look at how CTW can be generalised for use as envi-
ronment models (Definition 2), which are functions of the form ρn : An → Density (Xn).
This means we need an extension of CTW that, incrementally, takes as input a sequence
of actions and produces as output successive conditional probabilities over observations
and rewards. The high-level view of the algorithm is as follows: we process observations
and rewards one bit at a time using standard CTW, but bits representing actions are simply
appended to the input sequence without updating the context tree. The algorithm is now

12

Algorithm 4 Playout(ρ, h,m)
Require: An environment model ρ
Require: A history h
Require: A remaining search horizon m ∈ N
Require: A playout function Π

1: reward ← 0
2: for i = 1 to m do
3: Generate a from Π(h)
4: Generate (o, r) from ρ(or | ha)
5: reward ← reward + r
6: h← haor
7: end for
8: return reward

described in detail. If we drop the action sequence throughout the following description,
the algorithm reduces to the standard CTW algorithm.

Krichevsky-Trofimov estimator. We start with a brief review of the KT estimator
[KT81] for Bernoulli distributions. Given a binary string y1:t with a zeroes and b ones, the
KT estimate of the probability of the next symbol is as follows:

Prkt(Yt+1 = 1 | y1:t) :=
b + 1/2

a + b + 1
(10)

Prkt(Yt+1 = 0 | y1:t) := 1 − Prkt(Yt+1 = 1 | y1:t). (11)

The KT estimator is obtained via a Bayesian analysis by putting a (1
2 ,

1
2)-Beta prior on the

parameter of the Bernoulli distribution. From (10)-(11), we obtain the following expres-
sion for the block probability of a string:

Prkt(y1:t) = Prkt(y1 | ε)Prkt(y2 | y1) · · · Prkt(yt | y1:t−1).

Given a binary string s, one can establish that Prkt(s) depends only on the number of
zeroes as and ones bs in s. If we let 0a1b denote a string with a zeroes and b ones then:

Prkt(s) = Prkt(0as1bs) =
1/2(1 + 1/2) · · · (as − 1/2)1/2(1 + 1/2) · · · (bs − 1/2)

(as + bs)!
. (12)

We write Prkt(a, b) to denote Prkt(0a1b) in the following. The quantity Prkt(a, b) can be
updated incrementally as follows:

Prkt(a + 1, b) =
a + 1/2

a + b + 1
Prkt(a, b) (13)

Prkt(a, b + 1) =
b + 1/2

a + b + 1
Prkt(a, b), (14)

with the base case being Prkt(0, 0) = 1.

13

θ1 = 0.1

◦
1
ÄÄÄÄ

ÄÄ
ÄÄ 0

ÂÂ?
??

??
??

θ10 = 0.3

◦
1
ÄÄÄÄ

ÄÄ
ÄÄ 0

ÂÂ?
??

??
?

θ00 = 0.5

Figure 2: An example prediction suffix tree

Prediction Suffix Trees. We next describe prediction suffix trees, which are a form of
variable-order Markov models.

Definition 6. A prediction suffix tree (PST) is a pair (M,Θ) satisfying the following:

1. M is a binary tree where the left and right edges are labelled 1 and 0 respectively;
and

2. associated with each leaf node l in M is a probability distribution over {0, 1} pa-
rameterised by θl ∈ Θ (the probability of 1).

We call M the model of the PST and Θ the parameter of the PST, in accordance with the
terminology of [WST95], .

A prediction suffix tree (M,Θ) maps each binary string y1:n, where n ≥ the depth of
M, to a probability distribution over {0, 1} in the natural way: we traverse the model M
by moving left or right at depth d depending on whether the bit yn−d is one or zero until
we reach a leaf node l in M, at which time we return θl. For example, the PST shown
in Figure 2 maps the string 110 to θ10 = 0.3. At the root node (depth 0), we move right
because y3 = 0. We then move left because y3−1 = 1. We say θ10 is the distribution
associated with the string 110. Sometimes we need to refer to the leaf node holding the
distribution associated with a string h; we denote that by M(h), where M is the model of
the PST used to process the string.

To use a prediction suffix tree of depth d for binary sequence prediction, we start with
the distribution θl := Prkt(1 | ε) = 1/2 at each leaf node l of the tree. The first d bits y1:d

of the input sequence are set aside for use as an initial context and the variable h denoting
the bit sequence seen so far is set to y1:d. We then repeat the following steps as long as
needed:

1. predict the next bit using the distribution θh associated with h;
2. observe the next bit y, update θh using Formula (10) by incrementing either a or b

according to the value of y, and then set h := hy.

Action-conditional PST. The above describes how a PST is used for binary sequence
prediction. In the agent setting, we reduce the problem of predicting history sequences
with general non-binary alphabets to that of predicting the bit representations of those
sequences. Further, we only ever condition on actions and this is achieved by appending

14

bit representations of actions to the input sequence without a corresponding update of the
KT estimators. These ideas are now formalised.

For convenience, we will assume without loss of generality that |A| = 2lA and
|X| = 2lX for some lA, lX > 0. Given a ∈ A, we denote by ~a� = a[1, lA] =

a[1]a[2] . . . a[lA] ∈ {0, 1}lA the bit representation of a. Observation and reward symbols
are treated similarly. Further, the bit representation of a symbol sequence x1:t is denoted
by ~x1:t� = ~x1�~x2� . . . ~xt�. The ith bit in ~x1:t� is denoted by ~x1:t�[i] and the first l bits
of ~x1:t� is denoted by ~x1:t�[1, l].

To do action-conditional prediction using a PST, we again start with θl := Prkt(1 | ε) =

1/2 at each leaf node l of the tree. We also set aside a sufficiently long initial portion of
the binary history sequence corresponding to the first few cycles to initialise the variable
h as usual. The following steps are then repeated as long as needed:

1. set h := h~a�, where a is the current selected action;
2. for i := 1 to lX do

(a) predict the next bit using the distribution θh associated with h;
(b) observe the next bit x[i], update θh using Formula (10) according to the value

of x[i], and then set h := hx[i].

Now, let M be the model of a prediction suffix tree, L(M) the leaf nodes of M, a1:t ∈ At

an action sequence, and x1:t ∈ Xt an observation-reward sequence. We have the following
expression for the probability of x1:t given M and a1:t:

Pr(x1:t |M, a1:t) =

t∏

i=1

lX∏

j=1

Pr(xi[j] |M, ~ax<iai�xi[1, j − 1])

=
∏

n∈L(M)

Prkt(~x1:t�|n), (15)

where ~x1:t�|n is the (non-contiguous) subsequence of ~x1:t� that ended up in leaf node n
in M. More precisely,

~x1:t�|n := ~x1:t�[l1]~x1:t�[l2] · · · ~x1:t�[ln],

where 1 ≤ l1 < l2 < · · · < ln ≤ t and, for each i, i ∈ {l1, . . . ln} iff M(~x1:t�[1, i − 1]) = n.
The above deals with action-conditional prediction using a single PST. We now show

how we can perform action-conditional prediction using a Bayesian mixture of PSTs in
an efficient way. First, we need a prior distribution on models of PSTs.

A prior on models of PSTs. Our prior, containing an Ockham-like bias favouring sim-
ple models, is derived from a natural prefix coding of the tree structure of a PST. The
coding scheme works as follows: given a model of a PST of maximum depth D, a pre-
order traversal of the tree is performed. Each time an internal node is encountered, we
write down 1. Each time a leaf node is encountered, we write a 0 if the depth of the leaf

15

node is less than D; otherwise we write nothing. For example, if D = 3, the code for the
model shown in Figure 2 is 10100; if D = 2, the code for the same model is 101. The cost
ΓD(M) of a model M is the length of its code, which is given by the number of nodes in
M minus the number of leaf nodes in M of depth D. One can show that

∑

M∈CD

2−ΓD(M) = 1,

where CD is the set of all models of prediction suffix trees with depth at most D; i.e. the
prefix code is complete. We remark that the above is another way of describing the coding
scheme in [WST95]. We use 2−ΓD(·), which penalises large trees, to determine the prior
weight of each PST model.

Context trees. The following is a key ingredient of the (action-conditional) CTW algo-
rithm.

Definition 7. A context tree of depth D is a perfect binary tree of depth D where the left
and right edges are labelled 1 and 0 respectively and attached to each node (both internal
and leaf) is a probability on {0, 1}∗.

The node probabilities in a context tree are estimated from data using KT estimators
as follows. We update a context tree with the history sequence similarly to the way we
use a PST, except that

1. the probabilities at each node in the path from the root to a leaf traversed by an
observed bit is updated; and

2. we maintain block probabilities using Equations (12)-(14) instead of conditional
probabilities (Equation (10)) like in a PST. (This is done for computational reasons
to ease the calculation of the posterior probabilities of models in the algorithm.)

The process can be best understood with an example. Figure 3 (left) shows a context
tree of depth two. For expositional reasons, we show binary sequences at the nodes;
the node probabilities are computed from these. Initially, the binary sequence at each
node is empty. Suppose 1001 is the history sequence. Setting aside the first two bits
10 as an initial context, the tree in the middle of Figure 3 shows what we have after
processing the third bit 0. The tree on the right is the tree we have after processing
the fourth bit 1. In practice, we of course only have to store the counts of zeros and
ones instead of complete subsequences at each node because, as we saw earlier in (12),
Prkt(s) = Prkt(as, bs). Since the node probabilities are completely determined by the input
sequence, we shall henceforth speak unambiguously about the context tree after seeing a
sequence.

The context tree of depth D after seeing a sequence h has the following important
properties:

1. the model of every PST of depth at most D can be obtained from the context tree
by pruning off appropriate subtrees and treating them as leaf nodes;

16

ε

ε
1
ÄÄÄÄ

ÄÄ
Ä 0

ÂÂ?
??

??

ε
1
ÄÄÄÄ

ÄÄ
Ä 0

ÂÂ?
??

??

ε ε

ε
1
ÄÄÄÄ

ÄÄ
Ä 0

ÂÂ?
??

??

ε ε

ε
1

ÄÄÄÄ
ÄÄ

ÄÄ 0
ÂÂ?

??
??

?

0
1

ÄÄÄÄ
ÄÄ

ÄÄ 0

ÂÂ?
??

??
?

ε 0

0
1
ÄÄÄÄ

ÄÄ
Ä 0

ÂÂ?
??

??
?

ε ε

ε
1

ÄÄÄÄ
ÄÄ

ÄÄ 0
ÂÂ?

??
??

?

01
1

ÄÄÄÄ
ÄÄ

ÄÄ 0
ÂÂ?

??
??

ε 0

01
1
ÄÄÄÄ

ÄÄ
Ä 0

ÂÂ?
??

??
?

1

Figure 3: A depth-2 context tree (left); trees after processing two bits (middle and right)

2. the block probability of h as computed by each PST of depth at most D can be
obtained from the node probabilities of the context tree via Equation (15).

These properties, together with an application of the distributive law, form the basis of the
highly efficient (action-conditional) CTW algorithm. We now formalise these insights.

Weighted probabilities. We first need to define the weighted probabilities at each node
of the context tree. Suppose a1:t is the action sequence and x1:t is the observation-reward
sequence. Let ~x1:t�|n be the (non-contiguous) subsequence of ~x1:t� that ended up in node
n of the context tree. The weighted probability Pn

w of each node n in the context tree is
defined inductively as follows:

Pn
w(~x1:t�|n | ~a1:t�)

:=

Prkt(~x1:t�|n) if n is a leaf node
1
2 Prkt(~x1:t�|n) + 1

2 Pnl
w (~x1:t�|nl | ~a1:t�)Pnr

w (~x1:t�|nr | ~a1:t�) otherwise,

where nl and nr are the left and right children of n respectively. Note that the set of
sequences { ~x1:t�|n : n is a node in the context tree } has a dependence on the action se-
quence ~a1:t�.

If n is a node at depth d in a tree, we denote by p(n) ∈ {0, 1}d the path description to
node n in the tree.

Lemma 1 ([WST95]). Let D be the depth of the context tree. For each node n in the
context tree at depth d, we have for all a1:t ∈ At, for all x1:t ∈ Xt,

Pn
w(~x1:t�|n | ~a1:t�) =

∑

M∈CD−d

2−ΓD−d(M)
∏

l∈L(M)

Prkt(~x1:t�|p(n)p(l)), (16)

where ~x1:t�|p(n)p(l) is the (non-contiguous) subsequence of ~x1:t� that ended up in the node
with path description p(n)p(l) in the context tree.

Proof. The proof proceeds by induction on d. The statement is clearly true for the leaf
nodes at depth D. Assume now the statement is true for all nodes at depth d + 1, where
0 ≤ d < D. Consider a node n at depth d. Letting d = D − d, we have

Pn
w(~x1:t�|n | ~a1:t�)

=
1
2

Prkt(~x1:t�|n) +
1
2

Pnl
w (~x1:t�|nl | ~a1:t�)Pnr

w (~x1:t�|nr | ~a1:t�)

17

=
1
2

Prkt(~x1:t�|n) +
1
2

∑

M∈Cd+1

2−Γd+1(M)
∏

l∈L(M)

Prkt(~x1:t�|p(nl)p(l))

∑

M∈Cd+1

2−Γd+1(M)
∏

l∈L(M)

Prkt(~x1:t�|p(nr)p(l))

=
1
2

Prkt(~x1:t�|n) +
∑

M1∈Cd+1

∑

M2∈Cd+1

2−(Γd+1(M1)+Γd+1(M2)+1)·

∏

l∈L(M1)

Prkt(~x1:t�|p(nl)p(l))

∏

l∈L(M2)

Prkt(~x1:t�|p(nr)p(l))

=
1
2

Prkt(~x1:t�|n) +
∑

M̂1 M2∈Cd

2−Γd(M̂1 M2)
∏

l∈L(M̂1 M2)

Prkt(~x1:t�|p(n)p(l))

=
∑

M∈CD−d

2−ΓD−d(M)
∏

l∈L(M)

Prkt(~x1:t�|p(n)p(l)),

where M̂1M2 denotes the tree in Cd whose left and right subtrees are M1 and M2 respec-
tively. �

CTW as an optimal Bayesian mixture predictor. A corollary of Lemma 1 is that at
the root node λ of the context tree we have

Pλ
w(~x1:t� | ~a1:t�) =

∑

M∈CD

2−ΓD(M)
∏

l∈L(M)

Prkt(~x1:t�|p(l)) (17)

=
∑

M∈CD

2−ΓD(M)
∏

l∈L(M)

Prkt(~x1:t�|l) (18)

=
∑

M∈CD

2−ΓD(M) Pr(x1:t |M, a1:t), (19)

where the last step follows from Equation (15). Note carefully that ~x1:t�|p(l) in line (17)
denotes the subsequence of ~x1:t� that ended in the node pointed to by p(l) in the context
tree but ~x1:t�|l in line (18) denotes the subsequence of ~x1:t� that ended in the leaf node l in
M if M is used as the only model to process ~x1:t�. Equation (19) shows that the quantity
computed by the (action-conditional) CTW algorithm is exactly a Bayesian mixture of
(action-conditional) PSTs.

The weighted probability Pλ
w is a block probability. To recover the conditional proba-

bility of xt given ax<tat, we simply evaluate

Pλ
w(~xt� | ~ax<tat�) =

Pλ
w(~x1:t� | ~a1:t�)

Pλ
w(~x<t� | ~a<t�)

,

which follows directly from Equation (3). To sample from this conditional probability,
we simply sample the individual bits of xt one by one. For brevity, we will sometimes use

18

the following notation for Pλ
w:

Υ(x1:t | a1:t) := Pλ
w(~x1:t� | ~a1:t�)

Υ(xt | ax<tat) := Pλ
w(~xt� | ~ax<tat�).

In summary, to do action-conditional prediction using a context tree, we set aside a
sufficiently long initial portion of the binary history sequence corresponding to the first
few cycles to initialise the variable h and then repeat the following steps as long as needed:

1. set h := h~a�, where a is the current selected action;
2. for i := 1 to lX do

(a) predict the next bit using the weighted probability Pλ
w;

(b) observe the next bit x[i], update the context tree using h and x[i], calculate the
new weighted probability Pλ

w, and then set h := hx[i].

Note that in practice, the context tree need only be constructed incrementally as needed.
The depth of the context tree can thus take on non-trivial values. This memory require-
ment of maintaining a context tree is discussed further in Section 7.

Reversing an update. As explained in Section 3, the Revert operation is performed
many times during search and it needs to be efficient. Saving and restoring a copy of the
context tree is unsatisfactory. Luckily, the block probability estimated by CTW using a
context depth of D at time t can be recovered from the block probability estimated at time
t + m in O(mD) operations in a rather straightforward way. Alternatively, a copy on write
implementation can be used to modify the context tree during the simulation phase.

Predicate CTW. As foreshadowed in [Bun92, HS97], the CTW algorithm can be gen-
eralised to work with rich logical tree models [BD98, KW01, Llo03, Ng05, LN07] in
place of prediction suffix trees. A full description of this extension, especially the part on
predicate definition/enumeration and search, is beyond the scope of the paper and will be
reported elsewhere. Here we outline the main ideas and point out how the extension can
be used to incorporate useful background knowledge into our agent.

Definition 8. Let P = {p0, p1, . . . , pm} be a set of predicates (boolean functions) on histo-
ries h ∈ (A×X)n, n ≥ 0. A P-model is a binary tree where each internal node is labelled
with a predicate in P and the left and right outgoing edges at the node are labelled True
and False respectively. A P-tree is a pair (MP,Θ) where MP is a P-model and associ-
ated with each leaf node l in MP is a probability distribution over {0, 1} parameterised by
θl ∈ Θ.

A P-tree (MP,Θ) represents a function g from histories to probability distributions on
{0, 1} in the usual way. For each history h, g(h) = θlh , where lh is the leaf node reached
by pushing h down the model MP according to whether it satisfies the predicates at the
internal nodes and θlh ∈ Θ is the distribution at lh.

19

The use of general predicates on histories in P-trees is a powerful way of extending
the notion of a “context” in applications. To begin with, it is easy to see that, with a
suitable choice of predicate class P, both prediction suffix trees (Definition 6) and looping
suffix trees [HJ06] can be represented as P-trees. Much more background contextual
information can be provided in this way to the agent to aid learning and action selection.

The following is a generalisation of Definition 7.

Definition 9. Let P = {p0, p1, . . . , pm} be a set of predicates on histories. A P-context
tree is a perfect binary tree of depth m + 1 where

1. each internal node at depth i is labelled by pi ∈ P and the left and right outgoing
edges at the node are labelled True and False respectively; and

2. attached to each node (both internal and leaf) is a probability on {0, 1}∗.

We remark here that the (action-conditional) CTW algorithm can be generalised to
work with P-context trees in a natural way, and that a result analogous to Lemma 1 but
with respect to a much richer class of models can be established. A proof of a similar
result is in [HS97]. Section 7 describes some experiments showing how predicate CTW
can help in more difficult problems.

5 Putting it All Together
We now describe how the entire agent is constructed. At a high level, the combination
is simple. The agent uses the action-conditional (predicate) CTW predictor presented
in Section 4 as a model Υ of the (unknown) environment. At each time step, the agent
first invokes the Predictive UCT routine to estimate the value of each action. The agent
then picks an action according to some standard exploration/exploitation strategy, such
as ε-Greedy or Softmax [SB98]. It then receives an observation-reward pair from the
environment which is then used to update Υ. Communication between the agent and
the environment is done via binary codings of action, observation, and reward symbols.
Figure 4 gives an overview of the agent/environment interaction loop.

It is worth noting that, in principle, the AIXI agent does not need to explore according
to any heuristic policy. This is since the value of information, in terms of expected future
reward, is implicitly captured in the expectimax operation defined in Equations (1) and
(2). Theoretically, ignoring all computational concerns, it is sufficient just to choose a
large horizon and pick the action with the highest expected value at each timestep.

Unfortunately, this result does not carry over to our approximate AIXI agent. In prac-
tice, the true environment will not be contained in our restricted model class, nor will
we perform enough Predictive UCT simulations to converge to the optimal expectimax
action, nor will the search horizon be as large as the agent’s maximal lifespan. Thus, the
exploration/exploitation dilemma is a non-trivial problem for our agent. We found that the
standard heuristic solutions to this problem, such as ε-Greedy and Softmax exploration,
were sufficient for obtaining good empirical results. We will revisit this issue in Section 7.

20

Environment

Update Bayesian Mixture of Models

a1
a2 a3

o1 o2 o3 o4

future reward estimate

Record Action

Simple Complex

Large Prior Small Prior

+

.......

- - +
-

-

Observation/Reward... Past

Determine best action

Action... Past Observation/Reward

Perform action in real world

Record new sensor information

Refine environment model

AIXI-MC
An approximate AIXI agent

Figure 4: The AIXI-MC agent loop

6 Theoretical Results
Some theoretical properties of our algorithm are now explored.

Model class approximation. We first study the relationship between Υ and the univer-
sal predictor in AIXI. Using Υ in place of ρ in Equation (6), the optimal action for an
agent at time t, having experienced ax1:t−1, is given by

a∗t = arg max
at

∑

xt

Υ(x1:t | a1:t)
Υ(x<t | a<t)

· · ·max
at+m

∑

xt+m

Υ(x1:t+m | a1:t+m)
Υ(x<t+m | a<t+m)

t+m∑

i=t

ri

= arg max
at

∑

xt

· · ·max
at+m

∑

xt+m

t+m∑

i=t

ri

t+m∏

i=t

Υ(x1:i | a1:i)
Υ(x<i | a<i)

= arg max
at

∑

xt

· · ·max
at+m

∑

xt+m

t+m∑

i=t

ri

Υ(x1:t+m | a1:t+m)

Υ(x<t | a<t)

= arg max
at

∑

xt

· · ·max
at+m

∑

xt+m

t+m∑

i=t

ri

 Υ(x1:t+m | a1:t+m)

= arg max
at

∑

xt

· · ·max
at+m

∑

xt+m

t+m∑

i=t

ri

∑

M∈CD

2−ΓD(M) Pr(x1:t+m |M, a1:t+m). (20)

Contrast (20) now with Equation (2) which we reproduce here:

at = arg max
at

∑

xt

. . .max
at+m

∑

xt+m

t+m∑

i=t

ri

∑

ρ∈M
2−K(ρ)ρ(x1:t+m | a1:t+m), (21)

21

where M is the class of all enumerable chronological semimeasures, and K(ρ) denotes
the Kolmogorov complexity of ρ [Hut05]. The two expressions share a prior that enforces
a bias towards simpler models. The main difference is in the subexpression describing
the mixture over the model class. AIXI uses a mixture over all enumerable chronological
semimeasures. This is scaled down to a mixture of prediction suffix trees in our setting.
Although the model class used in AIXI is completely general, it is also incomputable. Our
approximation has restricted the model class to gain the desirable computational proper-
ties of CTW. As indicated in Section 4, the model class CD can be significantly enlarged
by using predicates without sacrificing the efficient computability of mixtures.

Convergence to true environment. We show in this section that if there is a good
model of the (unknown) environment in the class CD, then CTW will ‘find’ it. We need
the following entropy inequality.

Lemma 2 ([Hut05]). Let {yi} and {zi} be two probability distributions, i.e. yi ≥ 0, zi ≥ 0,
and

∑
i yi =

∑
i zi = 1. Then we have

∑

i

(yi − zi)2 ≤
∑

i

yi ln
yi

zi
.

Theorem 1. Let µ be the true environment model. The µ-expected squared difference of
µ and Υ is bounded as follows. For all n ∈ N, for all a1:n,

n∑

k=1

∑

x1:k

µ(x<k | a<k)
(
µ(xk | ax<kak) − Υ(xk | ax<kak)

)2

≤ min
M∈CD

{
ΓD(M) ln 2 + DKL(µ(· | a1:n) ‖ Pr(· |M, a1:n))

}
,

where DKL(· ‖ ·) is the KL divergence of two distributions.

Proof. We adapt a proof from [Hut05, §5.1.3].

n∑

k=1

∑

x1:k

µ(x<k | a<k)
(
µ(xk | ax<kak) − Υ(xk | ax<kak)

)2

=

n∑

k=1

∑

x<k

µ(x<k | a<k)
∑

xk

(
µ(xk | ax<kak) − Υ(xk | ax<kak)

)2

≤
n∑

k=1

∑

x<k

µ(x<k | a<k)
∑

xk

µ(xk | ax<kak) ln
µ(xk | ax<kak)
Υ(xk | ax<kak)

[by Lemma 2]

=

n∑

k=1

∑

x1:k

µ(x1:k | a1:k) ln
µ(xk | ax<kak)
Υ(xk | ax<kak)

[by Eq. (3)]

=

n∑

k=1

∑

x1:k

(∑

xk+1:n

µ(x1:n | a1:n)
)

ln
µ(xk | ax<kak)
Υ(xk | ax<kak)

[by Defn. 2]

22

=

n∑

k=1

∑

x1:n

µ(x1:n | a1:n) ln
µ(xk | ax<kak)
Υ(xk | ax<kak)

=
∑

x1:n

µ(x1:n | a1:n)
n∑

k=1

ln
µ(xk | ax<kak)
Υ(xk | ax<kak)

=
∑

x1:n

µ(x1:n | a1:n) ln
µ(x1:n | a1:n)
Υ(x1:n | a1:n)

[by Eq. (4)]

=
∑

x1:n

µ(x1:n | a1:n) ln
[

µ(x1:n | a1:n)
Pr(x1:n |M, a1:n)

Pr(x1:n |M, a1:n)
Υ(x1:n | a1:n)

]
[arbitrary M ∈ CD]

=
∑

x1:n

µ(x1:n | a1:n) ln
µ(x1:n | a1:n)

Pr(x1:n |M, a1:n)
+

∑

x1:n

µ(x1:n | a1:n) ln
Pr(x1:n |M, a1:n)

Υ(x1:n | a1:n)

≤ DKL(µ(· | a1:n) ‖ Pr(· |M, a1:n)) +
∑

x1:n

µ(x1:n | a1:n) ln
Pr(x1:n |M, a1:n)

2−ΓD(M) Pr(x1:n |M, a1:n)
[by Eq. (19)]

= DKL(µ(· | a1:n) ‖ Pr(· |M, a1:n)) + ΓD(M) ln 2.

Since the inequality holds for arbitrary M ∈ CD, it holds for the minimising M. �

If the KL divergence between µ and the best model in CD is finite, then Theorem 1
implies Υ(xk | ax<kak) will converge rapidly to µ(xk | ax<kak) for k → ∞ with µ-probability
1. The contrapositive of the statement tells us that if Υ fails to predict the environment
well, then there is no good model in CD. This result provides the motivation for looking
at ways of enriching the model class in Section 8.

Consistency of Predictive UCT. Let µ be the true underlying environment. We now
establish the link between the expectimax value Vm

µ (h) and its estimate V̂m
Υ

(h) computed
by the Predictive UCT algorithm using Υ as the environment model.

In [KS06], the authors show that the UCT algorithm is consistent in finite horizon
MDPs and derive finite sample bounds on the estimation error due to sampling. By inter-
preting histories as Markov states, our general agent problem reduces to a finite horizon
MDP and the results of [KS06] are now directly applicable. Restating the main consis-
tency result in our notation, we have

∀ε∀h lim
T (h)→∞

Pr
(
|Vm

Υ (h) − V̂m
Υ (h)| ≤ ε

)
= 1. (22)

Further, the probability that a suboptimal action (with respect to Vm
Υ

(·)) is picked by Pre-
dictive UCT goes to zero in the limit. Details of this analysis can be found in [KS06].

Theorem 1 above in conjunction with [Hut05, Thm.5.36] implies Vm
Υ

(h) → Vm
µ (h), as

long as there exists a model in the model class that approximates the unknown environ-
ment µ well. This, and the consistency (22) of the Predictive UCT algorithm, imply that
V̂m

Υ
(h) will converge to Vm

µ (h).

23

Domain Aliasing Noisy O NoisyA Uninformative O
1d-maze yes no no yes
Cheese Maze yes no no no
Tiger yes yes no no
Extended Tiger yes yes no no
4 × 4 Grid yes no no yes
TicTacToe no no no no
Biased Rock-Paper-Scissor no yes yes no
Partially Observable Pacman yes no no no

Table 1: Domain characteristics

7 Experimental Results
In this section we evaluate our algorithm on a number of pre-existing domains. We have
chosen domains that, from the agent’s perspective, have noisy perceptions, partial infor-
mation, and inherent stochastic elements. In particular, we will focus on learning and
approximately solving some benchmark POMDPs. The planning problem (i.e. computa-
tion of the optimal policy given the full POMDP model) associated with these POMDPs
were considered challenging in the mid-nineties but can now be solved easily. We stress
here that our requirement of having to learn the environment model, as well as solve the
planning problem, significantly increases the difficulty of these problems.

As we shall see, our agent achieves state-of-the-art performance in both generality
(eight separate problems with different characteristics are attempted) and optimality (the
agent converges to the optimal policy in seven cases, and exhibits good scaling properties
in the remaining case).

Our test domains are now described in detail. Their characteristics are summarised in
Table 1.

1d-maze. The 1d-maze is a simple problem from [CKL94]. The agent begins at a ran-
dom, non-goal location within a 1×4 maze. There is a choice of two actions: left or right.
Each action transfers the agent to the adjacent cell if it exists, otherwise it has no effect.
If the agent reaches the third cell from the left, it receives a reward of 1. Otherwise it
receives a reward of 0. The distinguishing feature of this problem is that the observations
are uninformative; every observation is the same regardless of the agent’s actual location.

Cheese maze. This well known problem is due to [McC96]. The agent is a mouse inside
a two dimensional maze seeking a piece of cheese. The agent has to choose one of four
actions: move up, down, left or right. If the agent bumps into a wall, it receives a penalty
of −10. If the agent finds the cheese, it receives a reward of 10. Each movement into
a free cell gives a penalty of −1. The problem is depicted graphically in Figure 5. The
number in each cell represents the decimal equivalent of the four bit binary observation

24

the mouse receives in each cell. The problem exhibits perceptual aliasing in that a single
observation is potentially ambiguous.

Figure 5: The cheese maze

Tiger. This is another familiar domain from [KLC95]. The environment dynamics are
as follows: a tiger and a pot of gold are hidden behind one of two doors. Initially the
agent starts facing both doors. The agent has a choice of one of three actions: listen, open
the left door, or open the right door. If the agent opens the door hiding the tiger, it suffers
a -100 penalty. If it opens the door with the pot of gold, it receives a reward of 10. If
the agent performs the listen action, it receives a penalty of −1 and an observation that
correctly describes where the tiger is with 0.85 probability.

Extended Tiger. The problem setting is similar to Tiger, except that now the agent
begins sitting down on a chair. The actions available to the agent are: stand, listen, open
the left door, and open the right door. Before an agent can successfully open one of the
two doors, it must stand up. However, the listen action only provides information about
the tiger’s whereabouts when the agent is sitting down. Thus it is necessary for the agent
to plan a more intricate series of actions before it sees the optimal solution. The reward
structure is slightly modified from the simple Tiger problem, as now the agent gets a
reward of 30 when finding the pot of gold.

4 × 4 Grid. The agent is restricted to a 4 × 4 grid world. It can move either up, down,
right or left. If the agent moves into the bottom right corner, it receives a reward of 1, and
it is randomly teleported to one of the remaining 15 cells. If it moves into any cell other
than the bottom right corner cell, it receives a reward of 0. If the agent attempts to move
into a non-existent cell, it remains in the same location. Like the 1d-maze, this problem
is also uninformative but on a much larger scale. Although this domain is simple, it does
require some subtlety on the part of the agent. The correct action depends on what the

25

agent has tried before at previous time steps. For example, if the agent has repeatedly
moved right and not received a positive reward, then the chances of it receiving a positive
reward by moving down are increased.

TicTacToe. In this domain, the agent plays repeated games of TicTacToe against an
opponent who moves randomly. If the agent wins the game, it receives a reward of 2. If
there is a draw, the agent receives a reward of 1. A loss penalises the agent by −2. If the
agent makes an illegal move, by moving on top of an already filled square, then it receives
a reward of −3. A legal move that does not end the game earns no reward.

Biased Rock-Paper-Scissor. This domain is taken from [FMRW09]. The agent repeat-
edly plays Rock-Paper-Scissor against an opponent that has a slight, predictable bias in
its strategy. If the opponent has won a round by playing rock on the previous cycle, it
will always play rock at the next timestep; otherwise it will pick an action uniformly at
random. The agent’s observation is the most recently chosen action of the opponent. It
receives a reward of 1 for a win, 0 for a draw and −1 for a loss.

Partially Observable PacMan. This domain is a partially observable version of the
classic PacMan game. The agent must navigate a 17 × 17 maze and eat the food pellets
that are distributed across the maze. Four ghosts roam the maze. They move initially
at random, until there is a Manhattan distance of 5 between them and PacMan, where-
upon they will aggressively pursue PacMan for a short duration. The maze structure and
game are the same as the original arcade game, however the PacMan agent is hampered
by partial observability. PacMan is unaware of the maze structure and only receives a
4-bit observation describing the wall configuration at its current location. It also does
not know the exact location of the ghosts, receiving only 4-bit observations indicating
whether a ghost is visible (via direct line of sight) in each of the four cardinal directions.
In addition, the location of the food pellets is unknown except for a 3-bit observation
that indicates whether food can be smelt within a Manhattan distance of 2, 3 or 4 from
PacMan’s location, and another 4-bit observation indicating whether there is food in its
direct line of sight. A final single bit indicates whether PacMan is under the effects of a
power pill. At the start of each episode, a food pellet is placed down with probability 0.5
at every empty location on the grid. The agent receives a penalty of 1 for each movement
action, a penalty of 10 for running into a wall, a reward of 10 for each food pellet eaten,
a penalty of 50 if it is caught by a ghost, and a reward of 100 for collecting all the food.
If multiple such events occur, then the total reward is cumulative, i.e. running into a wall
and being caught would give a penalty of 60. The episode resets if the agent is caught or
if it collects all the food.

Figure 6 shows a graphical representation of the partially observable PacMan domain.
This problem is the largest domain we consider, with an unknown optimal policy. The
main purpose of this domain is to show the scaling properties of our agent with respect to
a challenging problem.

26

Figure 6: A screenshot (converted to b&w) of the partially observable PacMan domain

Experimental setup. Table 2 outlines the parameters used in each experiment. The
sizes of the action and observation spaces are given. TheA bits, O bits and R bits param-
eters specify the number of bits used to encode the action, observation and reward spaces.
The context depth parameter D specifies the maximum number of most recent bits used
by the action-conditional CTW prediction scheme. The search horizon is specified by the
parameter m.

The experimental results are presented in terms of average reward per time step. The
key factors of interest are the performance of the agent as it accumulates more real world
experience, and the performance of the agent as it is given more thinking time per deci-
sion.

All experiments were performed on a dual quad-core Intel 2.53Ghz Xeon. If com-
putational concerns could be ignored, it would be natural to make D as large as possible
since CTW is robust against overfitting due to its strong bias towards simple PSTs. There
are similar issues with the choice of horizon; ideally the horizon would be as large as
possible if we could ignore computational concerns. In practice however, these param-
eters must be made much smaller for our agent to be tractable on our modest hardware.
Section 7 discusses the asymptotic properties of our algorithms. Although the asymptotic
behaviour is excellent (essentially linear in D and m in terms of both time and space), our
prototype implementation is still pushing the boundaries of what can be done on a present
day workstation. There are obvious problems if these parameters are set too small. For
example, if the problem is n-Markov but we only use a D < n, or if the optimal policy
requires planning ahead more than m steps, then we cannot expect the agent to perform
optimally.

27

Domain |A| |O| A bits O bits R bits D m
1d-maze 2 1 1 1 1 32 10
Cheese Maze 4 16 2 4 5 96 8
Tiger 3 3 2 2 7 96 5
Extended Tiger 4 3 2 3 8 96 4
4 × 4 Grid 4 1 2 1 1 96 12
TicTacToe 9 19683 4 18 3 64 9
Biased Rock-Paper-Scissor 3 3 2 2 2 32 4
Partial Observable Pacman 4 216 2 16 8 64 8

Table 2: Parameter Configuration

Scaling properties. Our agent has both limited thinking time and a limited amount of
time to gather experience in the real world. Potentially, both of these dimensions will
affect the agent’s performance. This section explores what the agent’s performance on
different problem domains as we vary the two parameters.

Figure 7 shows the performance of the agent as it accumulates more experience. Two
seconds of search time per decision was used for each experiment. The label Age for the
horizontal axis refers to the number of cycles that has transpired.

Figure 8 shows the performance of the agent on each problem domain by running
it with varying amounts of search. The environment model used for each experiment
was learned by the agent from randomly interacting with the environment for 50′000
timesteps, with the exception of TicTacToe which used a model built from 500′000
timesteps. Random action selection was used for computational reasons; it allowed large
amounts of experience to be gathered quickly. For each data point, the agent is run for
2000 timesteps, using the best action chosen greedily by Predictive UCT. The average
reward is then calculated from the performance across these 2000 timesteps.

General discussion. In all cases, given sufficient thinking time and experience, the
performance of our agent approaches optimality. Generally speaking, the agent’s per-
formance gets better as it acquires more experience and is given more search time per
decision. The agent’s performance on the tiger domains warrants some discussion.

The behaviour of the agent in the Tiger domain varies as the amount of interaction
with the environment increases. Initially, the agent avoids selecting a door, as it is too
uncertain about the environment dynamics. However, as it gathers more experience, more
sophisticated behaviour emerges; the agent correctly acquires multiple pieces of informa-
tion before picking a door. If some of the information is contradictory, the agent gathers
more information before making its decision.

The performance of the agent in the Extended Tiger domain is sensitive to the number
of simulations used by Predictive UCT. As can be seen in Figure 7, two seconds of think-
ing time were insufficient to act optimally. As indicated by figure 8, optimal behaviour is
only achieved when using a minimum of approximately 10′000 simulations per decision.

28

10
2

10
3

10
4

0.3

0.35

0.4

0.45

0.5

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

1d Maze − Reward versus Age

Empirical
Optimal

10
2

10
3

10
4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Cheese Maze − Reward versus Age

Empirical
Optimal

10
2

10
3

10
4

−1.5

−1

−0.5

0

0.5

1

1.5

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Tiger − Reward versus Age

Empirical
Optimal

10
2

10
3

10
4

−5

−4

−3

−2

−1

0

1

2

3

4

5

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Extended Tiger − Reward versus Age

Empirical
Optimal

10
2

10
3

10
4

0

0.05

0.1

0.15

0.2

0.25

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

4x4 Grid − Reward versus Age

Empirical
Optimal

10
2

10
3

10
4

10
5

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

TicTacToe − Reward versus Age

Empirical
Upper Bound on Optimal

Figure 7: Average reward vs age (measured in number of cycles). Two seconds of search
were used for each action.

29

10
2

10
3

10
4

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Number of Simulations per Timestep

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Search Scalability − 1d Maze

Optimal
Empirical

10
2

10
3

10
4

−1

−0.5

0

0.5

1

1.5

Number of Simulations per Timestep

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Search Scalability − Cheese Maze

Empirical
Optimal

10
2

10
3

10
4

−4

−3

−2

−1

0

1

2

Number of Simulations per Timestep

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Search Scalability − Tiger

Empirical
Optimal

10
2

10
3

10
4

−10

−5

0

5

Number of Simulations per Timestep

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p
Search Scalability − Extended Tiger

Empirical
Optimal

10
2

10
3

10
4

0

0.05

0.1

0.15

0.2

0.25

Number of Simulations per Timestep

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Search Scalability − 4x4 grid

Empirical
Optimal

10
2

10
3

10
4

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Simulations per Timestep

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Search Scalability − TicTacToe

Empirical
Upper Bound on Optimal Value

Figure 8: Average reward vs search effort (measured in terms of the number of simulations
used for picking each action).

30

10
3

10
4

10
5

10
6

−12

−10

−8

−6

−4

−2

0

2

Number of Timesteps

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Scaling Properties − Partially Observable Pacman

500 simulations
1000 simulations
2000 simulations

Figure 9: Scaling properties on Partially Observable Pacman

Only then does agent to understand that it is worth listening initially, then standing up,
and then finally choosing the correct door according to the information it gathered whilst
sitting down. With less simulations, the agent avoids picking a door. Interestingly, the
performance of the agent drops after it has interacted with the world 5000 times, yet then
sharply increases. At 5000 steps, the agent has overcome its aversion towards picking a
door, without fully understanding the environment dynamics. This causes the agent to
sometimes pick the wrong door. Further interaction refines the environment model and
subsequently allows the agent to improve its performance.

Performance on a challenging domain. Above we introduced the partially observable
Pacman domain. In contrast to our other domains, this is an enormous problem. Even if
the underlying state space were known, the learning and planning problems would still be
hard because there are more than 250 states.

Figure 9 shows the scaling properties of our agent. Again, random exploration was
used to build the model for computational reasons. The average reward at each data point
was gathered by running the agent for 4000 timesteps, with each action being determined
by Predictive UCT.

Visually, the performance of the agent was non-optimal. However, after 2.5 million
cycles of interaction, the agent had managed to learn a number of important concepts. It
knows not to run into walls. It knows how to seek out food from the limited information
provided by its sensors. It knows how to run away and avoid chasing ghosts. The main
subtlety that it hasn’t learnt (after 2.5 million timesteps) is to aggressively chase down
ghosts when it has eaten a red power pill. Also, its behaviour can sometimes become
temporarily erratic when stuck in a long corridor with no nearby food or visible ghosts.
Still, the ability to perform reasonably in a large domain, and exhibit consistent increases
in performance with additional resources (experience or search time) makes us optimistic

31

about the long-term potential of our work.

Heuristic playout function. An important parameter in Predictive UCT is the choice of
the playout function. In MCTS-based methods for playing Computer Go, it is well known
that adding knowledge to the playout function can dramatically improve performance
[GWMT06]. One of the benefits of MCTS methods is that if the domain is known, the
playout function presents a natural way to incorporate domain knowledge. In the general
agent setting, it would be desirable to automatically gain some of the benefits of expert
design through online learning.

If the domain is unknown, a natural baseline playout policy is one that selects between
each action uniformly at random. Although this playout policy is obviously quite poor,
it does make some heuristic sense: the playouts end up guiding the search toward areas
that give off larger rewards without requiring a carefully planned action sequence. In
Section 3, we described an intuitive method to incrementally learn a playout policy by
attempting to model the real-world actions chosen by Predictive UCT. The aim of this
section is to show that our heuristic approach, using a CTW-based action predictor as a
playout function, can give significant improvements to Predictive UCT over the naive,
uniformly random policy.

Figure 10 shows the impact of using the learned playout function on the cheese maze.
(The other domains we tested exhibit similar behaviour.) Two versions of the same agent
were run for 120′000 cycles. Actions were selected using an ε-greedy policy: i.e. with
probability ε the agent moved randomly, otherwise the best action according to Predictive
UCT was chosen. The initial ε of 0.9 was decayed by multiplying by 0.999 at each time-
step. A small (100 or 500) Predictive UCT simulations were used to decide on each action,
to maximise the impact of the playout policy on the overall agent performance. The agent
that used the self-improving playout policy learned faster and obtained a higher maximum
average reward than the agent using uniform random playouts. Although the difference in
average reward is small numerically, there is a qualitative difference in the performance of
the agent. For example, the uniform playout policy when using 100 simulations averages
approximately -1 per timestep. This is equivalent to a policy that simply runs around
the maze, never finding the cheese, without ever bumping into a wall. When using 100
learned playouts however, the average reward ends up greater than zero. To achieve this,
the agent must be finding the cheese, on average, in less than 11 steps every instance.

Our results demonstrate that it is both reasonable and practical for a MCTS-based
general reinforcement learning agent to attempt to learn a playout function online. Our
results are by no means exhaustive. The ideal action predictor may not resemble the
observation/reward predictor, or it may be designed with different speed/accuracy trade-
offs in mind. Online learning of playout functions for MCTS-based agents is a promising
direction for future research. Building on this idea, one could also look at ways to modify
the UCB policy used in Predictive UCT to automatically take advantage of learnt playout
knowledge, similar to the heuristic techniques used in Computer Go [GS07].

32

10
2

10
3

10
4

10
5

−7

−6

−5

−4

−3

−2

−1

0

1

2

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Impact of Bootstrapped Playouts on Cheese Maze

Uniform playouts (100 sims)
Uniform playouts (500 sims)
Learned playouts (100 sims)
Learned playouts (500 sims)

Figure 10: Impact of learned playout function on performance

Computational considerations. If an agent has interacted with the world for t cycles,
using a context tree with depth D, there is at most O(tD log(|O||R|)) nodes in the context
tree. In practice, unless the environment is very noisy, only a subset of the 2D possi-
ble contexts will be created. In our experiments, no more than a gigabyte of memory
was required to store the entire environment model. The time complexity of CTW is
also impressive: O(D) to generate a single bit, and O(Dm log(|O||R|)) to generate the m
observation/reward pairs needed to perform a single Predictive UCT simulation.

Predicate CTW. This section gives an example of how Predicate CTW can be used to
incorporate domain knowledge that drastically simplifies the agent’s learning task. We
saw earlier in Figure 7 that the dynamics of TicTacToe required a large amount of training
examples for CTW to correctly predict the environment dynamics. Essentially, the main
difficulty for the first hundred thousand steps was avoiding making illegal moves. In this
experiment, the set of predicates that define CTW was augmented with a predicate that
indicated whether the last move by the agent was legal. As one would expect, the agent
using this augmented predicate set quickly learnt to play according to the game rules.
Figure 11 shows how a small but carefully chosen piece of domain knowledge can have a
significant impact on the agent’s performance.

33

10
4

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Predicate CTW versus CTW on TicTacToe

CTW
PCTW

Figure 11: Impact of domain knowledge, using 1000 Predictive UCT simulations.

8 Discussion
We discuss some related and future work in this section. The headings reflect the general
area of the literature in which those work can be found.

Algorithmic Information Theory. There have been several attempts at studying the
computational properties of AIXI. In [Hut02], an asymptotically optimal algorithm is
proposed that, in parallel, picks and runs the fastest program from an enumeration of
provably correct programs for any given well-defined problem. A similar construction
that runs all programs of length less than l and time less than t per cycle and picks the best
output (in the sense of maximizing a provable lower bound for the true value) results in
the optimal time bounded AIXItl agent [Hut05, Chp.7]. Like Levin search [Lev73], such
algorithms are not practical in general but can in some cases be applied successfully; see
e.g. [Sch97, SZW97, Sch03, Sch04].

In tiny domains, universal learning is computationally feasible with brute-force
search. In [PH06] the behaviour of AIXI is compared with a universal predicting-with-
expert-advice algorithm [PH05] in repeated 2 × 2 matrix games and shows they exhibit
different behaviour.

A Monte Carlo algorithm is proposed in [Pan08] that samples programs according
to their algorithmic probability as a way of approximating Solomonoff’s universal prior.
A closely related algorithm is that of speed prior sampling [Sch02]. It remains an open
question whether algorithms that sample from the space of general Turing machines can
be made to work in practical problems.

General Reinforcement Learning. We move on next to a discussion of related work
in the general RL literature. An early and influential work is the Utile Suffix Memory

34

(USM) algorithm by McCallum [McC96]. USM uses a suffix tree to partition the agent’s
history space into distinct states, one for each leaf in the suffix tree. Associated with each
state/leaf is a Q-value, which is updated incrementally from experience like in Q-learning
[WD92]. The history-partitioning suffix tree is grown in an incremental fashion, starting
from a single leaf node in the beginning. A leaf in the suffix tree is split when the history
sequences that fall into the leaf are shown to exhibit statistically different Q-values. The
USM algorithm works well for a number of tasks but could not deal effectively with
noisy environments. Several extensions of USM to deal with noisy environments are
investigated in [SB04, Sha07]. USM and their extensions are usually well-motivated but
lack formal performance guarantees.

The work closest to ours in the general RL literature is the BLHT algorithm described
in [SHL97, SH99]. As in the present work, Suematsu et al. use prediction suffix trees
as the model class but their suffix trees are defined at the symbol level (like in USM)
as opposed to the bit level at which we operate. Another difference is that BLHT uses
the maximum a posteriori (MAP) model to predict the future at any one time whereas
we use a mixture of models. Having said that, the actual data structure and algorithm
used in [SHL97, SH99] to efficiently compute the MAP model bears close resemblance
to CTW, and their algorithm may indeed be a general form of the context tree maximising
algorithm [VW95]. In their experiments, Suematsu et al. chose to use a uniform prior
over the tree models even though their algorithm would work with an Ockham prior like
that given in Equation (20). It is also worth noting that our use of a Bayesian mixture
admits a much stronger convergence result compared to what can be proved for BLHT.
For control, BLHT uses an (unspecified) dynamic programming based algorithm.

The active LZ algorithm [FMRW09] is also similar in spirit to our work. It combines
a Lempel-Ziv [ZL77] based prediction scheme with dynamic programming for control
to produce an agent that is provably optimal if the environment is n-Markov, for some
arbitrary n. They introduced and evaluated the performance of their agent on the (n-
Markov) biased Rock-Paper-Scissor domain. We ran our agent on the same domain, using
action-conditional CTW, 10000 Predictive UCT simulations and a uniform playout policy.
Figure 12 shows our results overlayed with their reported results. Though it is difficult
to compare implementations, it is clear that our agent has reached optimal performance
using vastly less (at least two orders of magnitude) experience.

Predictive state representations (PSRs) [LSS02, SJR04] maintain predictions of future
experience. Formally, a PSR is a probability distribution over the agents future experi-
ence, given its past experience. A subset of these predictions, the core tests, provide a
sufficient statistic for all future experience. PSRs provide a Markov state representation,
can represent and track the agents state in partially observable environments, and provide
a complete model of the worlds dynamics. Unfortunately, exact representations of state
are impractical in large domains, and some form of approximation is typically required.
There is considerable interest in PSRs but there are at present still no satisfactory learning
and discovery algorithms for PSRs.

Temporal-difference networks [ST04] are a form of predictive state representation in
which the agent’s state is approximated by abstract predictions. These can be predic-

35

10
3

10
4

10
5

10
6

10
7

10
8

0

0.05

0.1

0.15

0.2

0.25

Age

A
ve

ra
ge

 R
ew

ar
d

pe
r

T
im

es
te

p

Comparison of Active LZ with AIXI−MC on biased Rock−Paper−Scissor

Active LZ
AIXI−MC
Optimal

Figure 12: Comparison between AIXI-MC (using action-conditional CTW, 10k Predic-
tive UCT simulations and uniform playouts) and the Active-LZ algorithm.

tions about future observations, but also predictions about future predictions. This set of
interconnected predictions is known as the question network. Temporal-difference net-
works learn an approximate model of the worlds dynamics: given the current predictions,
the agents action, and an observation vector, they provide new predictions for the next
time-step. The parameters of the model, known as the answer network, are updated after
each time-step by temporal-difference learning. Some promising recent results applying
TD-Networks for prediction (but not control) to small POMDPs have been reported in
[Mak09].

Model Learning and CTW. Bayesian model averaging is a well-studied technique in
statistics and machine learning [HMRV99, Bun92, OH95, CGM98]. There is a nice con-
nection between CTW, Buntine’s tree-smoothing algorithm [Bun92], Winnow-style on-
line learning [Lit88, LW94], and boosting [FS97]. The key idea behind Lemma 1 appears
in [Bun92, Lemma 6.5.1]. The same technique is used in [HS97] to implement an effi-
cient version of the P(β) online learning algorithm [CBFH+93] as a way of avoiding the
problematic post-pruning step in decision-tree induction [BFOS84]. [PS99] then builds
on that work to implement an efficient version of the Hedge algorithm [FS97] for con-
structing mixtures of the larger class of edge-based (as opposed to node-based) prunings
of a tree. The algorithm in [PS99] can be used in conjunction with the predicate CTW
idea to enlarge our agent’s model class.

There are several noteworthy ways the basic CTW algorithm can be extended. The fi-
nite depth limit on the context tree can be removed [Wil94] without increasing the asymp-
totic space overhead of the algorithm. We chose to avoid this extension however due to
the asymptotic time complexity increase of generating a symbol from linear in the con-
text depth to linear in the number of observed symbols. CTW has also been extended to
general non-binary alphabets, and the state-of-the-art seems to be the DE-CTW algorithm
[BEYY04, BEY06]. We opted not to use DE-CTW for several reasons. Firstly, DE-CTW

36

is not a strictly online algorithm: a preprocessing phase is required to compute a way
of decomposing the alphabets. Secondly, what is computed by DE-CTW isn’t really a
Bayesian mixture and this is an unnecessary deviation from the theory of AIXI. Lastly,
most of the effects of decomposing alphabets can in fact be realised using the predicate
CTW extension.

Future work. Our experimental results have been restricted to problems of modest size.
Future work will attempt to apply the algorithms presented here to more challenging
domains.

The biggest limitation of our current agent is the restricted model class. Prediction
suffix trees are simplistic models, inadequate to compactly represent something as simple
as the rules of TicTacToe. Furthermore, the strong emphasis placed by CTW on tempo-
rally recent symbols is appropriate for only a subset of interesting real-world problems.
The aim of the Predicate CTW extension is to relax this restriction somewhat, yet keep
the desirable computational properties of CTW. As these predicates are arbitrary boolean
functions on the agent’s history, they have the power to represent more complicated pieces
of information that are useful to an agent in terms of making sensible predictions. Domain
knowledge can be encoded in the form of user-supplied predicates, which seems essential
for our agent to have any realistic chance of scaling to problems with real-world visual
or audio data. Given a large model class P, the main learning problem in predicate CTW
is in the identification of a small subset P′ of P that is relevant to the current environ-
ment. This is a major unsolved problem in our setup and we think a suitable application
of the Minimum Message Length principle [Wal05] along the lines of [Hut09b] would
shed much light on the key issues.

Furthermore, the performance of our agent is dependent on the amount of thinking
time allowed at each time step. A crucial property of Predictive UCT is that it is naturally
parallel. A prototype parallel implementation of Predictive UCT has been completed,
with promising scaling results using between 4 and 8 processing cores. We are confident
that further improvements to our prototype implementation will allow us to solve prob-
lems where the amount of search, rather than the agent’s predictive power, is the main
performance bottleneck. Continuing advances in computer hardware will no doubt help
address this issue as well.

9 Conclusion
The main contribution of the paper is the extension and synthesis of two key results from
online MDP planning (UCT) and information theory/machine learning (CTW) in the de-
sign of an agent that directly and scalably approximates the AIXI ideal. This is an im-
portant result. Although well established theoretically, it has previously been unclear
whether AIXI could motivate the design of practical, yet theoretically well-founded algo-
rithms. Our work answers this question strongly in the affirmative: empirically, our AIXI
approximation achieves state-of-the-art performance and theoretically, we can provide

37

some characterisation of the type of environments we expect our agent to handle.
To develop this approximation, we introduced two key algorithms:

• Predictive UCT- a histories-as-states expectimax approximation algorithm;

• action-conditional CTW - an agent-specific generalisation of the CTW algorithm.

Furthermore, we demonstrated that our approach opens a number of future research areas:

• incorporating background knowledge through the predicate CTW extension;

• the possibility of constructing self-improving heuristic playout policies.

Although we are a long way away from being able to construct a truly powerful gen-
eral agent, the future looks promising. We hope this work generates further interest from
the broader artificial intelligence community in both AIXI and general reinforcement
learning agents.

Acknowledgements. The authors thank Alan Blair, Bernhard Hengst, John Lloyd, Has-
san Mahmud, Malcolm Ryan, Scott Sanner, and William Uther for many helpful discus-
sions. NICTA is funded by the Australian Government’s Department of Communications,
Information Technology, and the Arts and the Australian Research Council through Back-
ing Australia’s Ability and the ICT Research Centre of Excellence programs.

References
[Aue02] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of

Machine Learning Research, 3:397–422, 2002.

[BD98] Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order logical decision
trees. Artificial Intelligence, 101(1-2):285–297, 1998.

[BEY06] Ron Begleiter and Ran El-Yaniv. Superior guarantees for sequential prediction and loss-
less compression via alphabet decomposition. Journal of Machine Learning Research,
7:379–411, 2006.

[BEYY04] Ron Begleiter, Ran El-Yaniv, and Golan Yona. On prediction using variable order
markov models. Journal of Artificial Intelligence Research, 22:385–421, 2004.

[BFOS84] Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. Classification
and Regression Trees. Chapman & Hall, 1984.

[Bun92] Wray L. Buntine. A Theory of Learning Classification Rules. PhD thesis, University of
Technology Sydney, 1992.

[CBFH+93] Nicolò Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler, Robert E.
Schapire, and Manfred K. Warmuth. How to use expert advice. In Proc. 25th Annual
ACM Symposium on the Theory of Computing, pages 382–391, 1993.

38

[CGM98] Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. Bayesian CART
model search. Journal of the American Statistical Association, 93:935–960, 1998.

[Chr92] Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach. In Proceedings of the Tenth National Conference on Artificial
Intelligence, pages 183–188, 1992.

[CKL94] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting opti-
mally in partially observable stochastic domains. In AAAI, pages 1023–1028, 1994.

[CWH08] Guillaume M. Chaslot, Mark H. Winands, and H. Jaap Herik. Parallel monte-carlo tree
search. In Proceedings of the 6th International Conference on Computers and Games,
pages 60–71, Berlin, Heidelberg, 2008. Springer-Verlag.

[CWU+08] G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and
B. Bouzy. Progressive strategies for Monte-Carlo Tree Search. New Mathematics and
Natural Computation, 4(3), 2008.

[FB08] Hilmar Finnsson and Yngvi Björnsson. Simulation-based approach to general game
playing. In AAAI, pages 259–264, 2008.

[FMRW09] Vivek F. Farias, Ciamac C. Moallemi, Benjamin Van Roy, and Tsachy Weissman.
Universal reinforcement learning. IEEE Transactions on Information Theory, 2009. To
appear.

[FS97] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[GS07] S. Gelly and D. Silver. Combining online and offline learning in UCT. In Proceedings
of the 17th International Conference on Machine Learning, pages 273–280, 2007.

[GW06] Sylvain Gelly and Yizao Wang. Exploration exploitation in Go: UCT for Monte-Carlo
Go. In NIPS Workshop on On-line trading of Exploration and Exploitation, 2006.

[GWMT06] Sylvain Gelly, Yizao Wang, Rémi Munos, and Olivier Teytaud. Modification of UCT
with patterns in Monte-Carlo Go. Technical Report 6062, INRIA, France, November
2006.

[HJ06] Michael P. Holmes and Charles Lee Isbell Jr. Looping suffix tree-based inference of
partially observable hidden state. In ICML, pages 409–416, 2006.

[HMRV99] Jennifer A. Hoeting, David Madigan, Adrian Raftery, and Chris T. Volinsky. Bayesian
model averaging: A tutorial. Statistical Science, 14(4):382–417, 1999.

[HS97] David P. Helmbold and Robert E. Schapire. Predicting nearly as well as the best pruning
of a decision tree. Machine Learning, 27(1):51–68, 1997.

[Hut02] Marcus Hutter. The fastest and shortest algorithm for all well-defined problems. Inter-
national Journal of Foundations of Computer Science., 13(3):431–443, 2002.

39

[Hut05] Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions Based on Algo-
rithmic Probability. Springer, 2005.

[Hut09a] Marcus Hutter. Feature dynamic Bayesian networks. In AGI, pages 67–73, 2009.

[Hut09b] Marcus Hutter. Feature Markov decision processes. In AGI, pages 61–66, 2009.

[KLC95] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and
acting in partially observable stochastic domains. Artificial Intelligence, 101:99–134,
1995.

[KS06] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In ECML,
pages 282–293, 2006.

[KT81] R.E. Krichevsky and V.K. Trofimov. The performance of universal coding. IEEE Trans-
actions on Information Theory, IT-27:199–207, 1981.

[KW01] Stefan Kramer and Gerhard Widmer. Inducing classification and regression trees in
first order logic. In Sašo Džeroski and Nada Lavrač, editors, Relational Data Mining,
chapter 6. Springer, 2001.

[Leg08] Shane Legg. Machine Super Intelligence. PhD thesis, Department of Informatics, Uni-
versity of Lugano, 2008.

[Lev73] Leonid A. Levin. Universal sequential search problems. Problems of Information Trans-
mission, 9:265–266, 1973.

[LH07] Shane Legg and Marcus Hutter. Universal intelligence: A definition of machine intelli-
gence. Minds and Machines, 17(4):391–444, 2007.

[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285–318, 1988.

[Llo03] John W. Lloyd. Logic for Learning: Learning Comprehensible Theories from Structured
Data. Springer, 2003.

[LN07] John W. Lloyd and Kee Siong Ng. Learning modal theories. In Proceedings of the 16th
International Conference on Inductive Logic Programming, LNAI 4455, pages 320–334,
2007.

[LSS02] Michael Littman, Richard Sutton, and Satinder Singh. Predictive representations of
state. In NIPS, pages 1555–1561, 2002.

[LV08] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer, third edition, 2008.

[LW94] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Informa-
tion and Computation, 108:212–261, 1994.

[Mak09] Takaki Makino. Proto-predictive representation of states with simple recurrent temporal-
difference networks. In ICML ’09: Proceedings of the 26th Annual International Con-
ference on Machine Learning, pages 697–704, New York, NY, USA, 2009. ACM.

40

[McC96] Andrew Kachites McCallum. Reinforcement Learning with Selective Perception and
Hidden State. PhD thesis, University of Rochester, 1996.

[Ng05] Kee Siong Ng. Learning Comprehensible Theories from Structured Data. PhD thesis,
The Australian National University, 2005.

[OH95] Jonathan J. Oliver and David J. Hand. On pruning and averaging decision trees. In
ICML, pages 231–241, 1995.

[Pan08] Sergey Pankov. A computational approximation to the AIXI model. In AGI, pages
256–267, 2008.

[PH05] Jan Poland and Marcus Hutter. Defensive universal learning with experts. In Proc.
16th International Conf. on Algorithmic Learning Theory, volume LNAI 3734, pages
356–370. Springer, 2005.

[PH06] Jan Poland and Marcus Hutter. Universal learning of repeated matrix games. Technical
Report 18-05, IDSIA, 2006.

[PS99] Fernando C. Pereira and Yoram Singer. An efficient extension to mixture techniques for
prediction and decision trees. Machine Learning, 36(3):183–199, 1999.

[RPPCD08] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-Draa. Online
planning algorithms for POMDPs. Journal of Artificial Intelligence Research, 32:663–
704, 2008.

[RST96] D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic au-
tomata with variable memory length. Machine Learning, 25(2):117–150, 1996.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[SB04] Guy Shani and Ronen Brafman. Resolving perceptual aliasing in the presence of noisy
sensors. In NIPS, 2004.

[Sch97] Jürgen Schmidhuber. Discovering neural nets with low Kolmogorov complexity and
high generalization capability. Neural Networks, 10(5):857–873, 1997.

[Sch02] Jürgen Schmidhuber. The speed prior: A new simplicity measure yielding near-optimal
computable predictions. In Proc. 15th Annual Conf. on Computational Learning Theory,
pages 216–228, 2002.

[Sch03] Jürgen Schmidhuber. Bias-optimal incremental problem solving. In Advances in Neural
Information Processing Systems 15, pages 1571–1578. MIT Press, 2003.

[Sch04] Jürgen Schmidhuber. Optimal ordered problem solver. Machine Learning, 54:211–254,
2004.

[SH99] Nobuo Suematsu and Akira Hayashi. A reinforcement learning algorithm in partially
observable environments using short-term memory. In NIPS, pages 1059–1065, 1999.

41

[Sha07] Guy Shani. Learning and Solving Partially Observable Markov Decision Processes.
PhD thesis, Ben-Gurion University of the Negev, 2007.

[SHL97] Nobuo Suematsu, Akira Hayashi, and Shigang Li. A Bayesian approach to model learn-
ing in non-Markovian environment. In ICML, pages 349–357, 1997.

[SJR04] Satinder Singh, Michael James, and Matthew Rudary. Predictive state representations:
A new theory for modeling dynamical systems. In UAI, pages 512–519, 2004.

[Sol64] Ray J. Solomonoff. A formal theory of inductive inference: Parts 1 and 2. Information
and Control, 7:1–22 and 224–254, 1964.

[ST04] Richard S. Sutton and Brian Tanner. Temporal-difference networks. In NIPS, 2004.

[SZW97] J. Schmidhuber, J. Zhao, and M. A. Wiering. Shifting inductive bias with success-
story algorithm, adaptive Levin search, and incremental self-improvement. Machine
Learning, 28:105–130, 1997.

[VW95] Paul A.J. Volf and Frans M.J. Willems. A study of the context tree maximizing method.
In 16th Symposium on Information Theory in the Benelux, pages 3–9, 1995.

[Wal05] Christopher S. Wallace. Statistical and Inductive Inference by Minimum Message
Length. Springer, 2005.

[WD92] Christopher Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279–292, 1992.

[Wil94] Frans M. J. Willems. The context-tree weighting method: Extensions. IEEE Transac-
tions on Information Theory, 44:792–798, 1994.

[WST95] Frans M.J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. The context tree
weighting method: Basic properties. IEEE Transactions on Information Theory,
41:653–664, 1995.

[WST97] Frans Willems, Yuri Shtarkov, and Tjalling Tjalkens. Reflections on “The Context
Tree Weighting Method: Basic properties”. Newsletter of the IEEE Information Theory
Society, 1997.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23(3):337–343, 1977.

42

