

 Eric Baum, Marcus Hutter, Emanuel Kitzelmann (Editors)

Artificial General Intelligence

Proceedings of the Third Conference on Artificial General
Intelligence, AGI 2010, Lugano, Switzerland, March 5-8, 2010

Amsterdam-Beijing-Paris

ISBN: 978-90-78677-36-9

__

Advances in Intelligent Systems Research

volume 10
__

In Memoriam
Ray Solomonoff (1926-2009)

 The Great Ray Solomonoff, pioneer of Machine Learning, founder of Algorithmic Probability
Theory, father of the Universal Probability Distribution, creator of the Universal Theory of Inductive
Inference, passed away on Monday 30 November 2009, from complications in the wake of a broken
aneurism in his head. He is survived by his loving wife, Grace.
 Ray Solomonoff was the first to describe the fundamental concept of Algorithmic Information or
Kolmogorov Complexity, and the first to prove the celebrated Invariance Theorem. In the new millennium
his work became the foundation of the first mathematical theory of Optimal Universal Artificial Intelligence.
 Ray intended to deliver an invited lecture at AGI 2010, the Conference on Artificial General
Intelligence (March 5-8, 2010) in Lugano (where he already spent time in 2001 as a visiting professor at the
Swiss AI Lab IDSIA). The AGI conference series would not even exist without his essential theoretical
contributions. With great sadness AGI 2010 was held «In Memoriam Ray Solomonoff».
 Ray will live on in the many minds shaped by his revolutionary ideas.

Eulogy by Jürgen Schmidhuber

This book is part of the series Advances in Intelligent Systems Research (ISSN: 1951-6851) published by
Atlantis Press.

Aims and scope of the series
During the past decade computer science research in understanding and reproducing human intelligence has
expanded from the more traditional approaches like psychology, logics and artificial intelligence into
multiple other areas, including neuroscience research. Moreover, new results in biology, chemistry, (surface)
physics and gene technology, but also in network technology are greatly affecting current research in
computer science, including the development of intelligent systems. At the same time, computer science’s
new results are increasingly being applied in these fields allowing for important cross-fertilisations. This
series aims at publishing proceedings from all disciplines dealing with and affecting the issue of
understanding and reproducing intelligence in artificial systems. Also, the series is open for publications
concerning the application of intelligence in networked or any other environment and the extraction of
meaningful data from large data sets.

Research fields covered by the series include: * Fuzzy sets * Machine learning * Autonomous agents *
Evolutionary systems * Robotics and autonomous systems * Semantic web, incl. web services, ontologies
and grid computing * Biological systems * Artificial Intelligence, incl. knowledge representation, logics *
Neural networks * Constraint satisfaction * Computational biology * Information sciences * Computer
vision, pattern recognition * Computational neuroscience * Datamining, knowledge discovery and modelling
for e.g. life sciences.

© ATLANTIS PRESS, 2010
http://www.atlantis-press.com

ISBN: 978-90-78677-36-9

This book is published by Atlantis Press, scientific publishing, Paris, France.

All rights reserved for this book. No part of this book may be reproduced, translated, stored or transmitted in
any form or by any means, including electronic, mechanical, photocopying, recording or otherwise, without
prior permission from the publisher.

Atlantis Press adheres to the creative commons policy, which means that authors retain the copyright of their
article.

http://www.atlantis-press.com
http://www.atlantis-press.com

Artificial General Intelligence

Volume Editors

Marcus Hutter
CSL@RSISE and SML@NICTA

Australian National University
Room B259, Building 115

Corner of North and Daley Road
Canberra ACT 0200, Australia

Email: marcus.hutter@gmx.net
WWW: http://www.hutter1.net

Eric B. Baum
Azure Sky Research Inc.

386 Riverside Drive
Princeton NJ 08540 USA

Email: ebaum@fastmail.fm
WWW: http://whatisthought.com/

Emanuel Kitzelmann
Cognitive Systems Group, WIAI

University of Bamberg
Feldkirchenstrasse 21

D-96052 Bamberg, Germany
Email: emanuel.kitzelmann@uni-bamberg.de

WWW: http://www.uni-bamberg.de/kogsys/members/kitzelmann/

mailto:marcus.hutter@gmx.net
mailto:marcus.hutter@gmx.net
http://www.hutter1.net
http://www.hutter1.net
mailto:ebaum@fastmail.fm
mailto:ebaum@fastmail.fm
http://whatisthought.com
http://whatisthought.com
mailto:emanuel.kitzelmann@uni-bamberg.de
mailto:emanuel.kitzelmann@uni-bamberg.de
http://www.uni-bamberg.de/kogsys/members/kitzelmann/
http://www.uni-bamberg.de/kogsys/members/kitzelmann/

Preface

Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI - to create
broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and
experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary
methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have
focused on what has been called narrow AI - the production of AI systems displaying intelligence regarding
specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the
necessity - and feasibility - of returning to the original goals of the field. Increasingly, there is a call for a
transition back to confronting the more difficult issues of human level intelligence and more broadly
artificial general intelligence.
 The Conference on Artificial General Intelligence is the only major conference series devoted wholly
and specifically to the creation of AI systems possessing general intelligence at the human level and
ultimately beyond. Its third installation, AGI-10, in Lugano, Switzerland, March 5-8, 2010, attracted 66
paper submissions. Of these submissions, 29 (i.e., 44%) were accepted as full papers, additional 12 were
accepted as short position papers, which was a more selective choice than for AGI-09 in Arlington, Virginia.
Both full and short papers are included in this collection. The papers presented at the conference and
collected in these proceedings address a wide range of AGI-related topics such as Universal Search,
Cognitive and AGI Architectures, Adaptive Agents, special aspects of reasoning, the formalization of AGI,
the evaluation of AGI systems, machine learning for AGI, and implications of AGI. The contributions range
from proven theoretical results to system descriptions, implementations, and experiments to general ideas
and visions.
 The conference program also included a keynote address by Richard Sutton and an invited lecture by
Randal Koene. Richard Sutton is a Professor at the University of Alberta. The co-author of the textbook
«Reinforcement Learning: an Introduction», has made numerous contributions to the fields of AI and
learning. His talk was on Reducing Knowledge to Prediction. The idea is to formalize and reduce knowledge
about the world to predictive statements of a particular form that is particularly well suited for learning and
reasoning. He presented new learning algorithms in this framework that his research group has developed.
Randal Koene is the Director of the Department of Neuroengineering at Tecnalia. His talk was on Whole
Brain Emulation: Issues of scope and resolution, and the need for new methods of in-vivo recording.
 Finally, the conference program included a number of workshops on topics such as formalizing AGI
and the future of AI, pre-conference tutorials on various AGI-related topics, and an AGI-systems
demonstration.
 Producing such a highly profiled program would not have been possible without the support of the
community. We thank the (local) organizing committee members for their advise and their help in all matters
of actually preparing and running the event. We thank the program committee members for a smooth review
process and for the high quality of the reviews - despite the tight review phase and the fact that due to the
high number of submissions the review load per PC member was considerably higher than originally
expected. And we thank all participants for submitting and presenting interesting and stimulating work,
which is the key ingredient needed for a successful conference. We also gratefully acknowledge the support
of a number of sponsors:

• Association for the Advancement of Artificial Intelligence (AAAI)
• KurzweilAI.net (Kurzweil Best Paper Prize and Kurzweil Best Idea Prize)
• The University of Lugano, Faculty of Informatics (scientifically endorses AGI-10)

March 2010 Marcus Hutter (Conference Chair)
Eric Baum, Emanuel Kitzelmann (Program Committee Chairs)

Conference Organization

Chairs
Marcus Hutter (Conference Chair) Australian National University, Australia

Jürgen Schmidhuber (Local Chair) IDSIA, Switzerland

Eric Baum (Program Chair) Azure Sky Research Inc., USA

Emanuel Kitzelmann (Program Chair) University of Bamberg, Germany

Program Committee
Igor Aleksander Imperial College London, UK

Lee Altenberg University of Hawaii at Manoa, USA

Itamar Arel University of Tennessee, Knoxville, USA

Sebastian Bader Rostock University, Germany

Eric Baum Azure Sky Research Inc., USA

Anselm Blumer Tufts University, USA

Hugo de Garis Xiamen University, China

Wlodek Duch Nicolaus Copernicus University, Poland

Artur Garcez City University London, UK

J. Storrs Hall Institute for Molecular Manufacturing, USA

Benjamin Johnston University of Technology, Sydney, Australia

Bert Kappen Radboud University, The Netherlands

Emanuel Kitzelmann University of Bamberg, Germany

Kai-Uwe Kühnberger University of Osnabrück, Germany

Christian Lebiere Carnegie Mellon University, USA

Shane Legg University College London, UK

Moshe Looks Google Research, USA

András Lörincz Eötvös Loránd University, Hungary

Hassan Mahmud Australian National University, Australia

Eric Nivel Reykjavik University, Iceland

Jan Poland ABB Research, Zurich, Switzerland

Brandon Rohrer Sandia National Laboratory, USA

Sebastian Rudolph University of Karlsruhe, Germany

Robert Schapire Princeton University, USA

Lokendra Shastri Infosys Technologies Ltd, India

Ray Solomono Oxbridge Research, Cambridge, USA

Rich Sutton University of Alberta, Canada

Kristinn Thorisson Reykjavik University, Iceland

Lyle Ungar University of Pennsylvania, USA

Les Valiant Harvard University, USA

Marco Wiering University of Groningen, The Netherlands

Mary-Anne Williams University of Technology, Sydney, Australia

David Wolpert NASA, USA

Organizing Committee
Tsvi Achler University of Illinois at Urbana Champaign, USA

Eric Baum Azure Sky Research Inc., USA

Sarah Bull NICTA, Australia

Ben Goertzel Novamente LLC, USA

Marcus Hutter Australian National University, Australia

Emanuel Kitzelmann University of Bamberg, Germany

David Orban Singularity University, USA

Stephen Reed Texai.org, USA

Local Organizing Committee
Carlo Lepori CFO of IDSIA

Mauro Pezze Dean of the Faculty of Informatics of USI

Jürgen Schmidhuber IDSIA

Albino Zgraggen CFO of the University of Lugano/USI

External Reviewers
Subhadip Bandyopadhyay

Arijit Laha

Srinivas Narasimhamurthy

Bintu Vasudevan

Table of Contents

Full Articles.

Efficient Constraint-Satisfaction in Domains with Time . 1
Perrin Bignoli, Nicholas Cassimatis, Arthi Murugesan

The CHREST Architecture of Cognition: The Role of Perception in General Intelligence . 7
Fernand Gobet, Peter Lane

A General Intelligence Oriented Architecture for Embodied Natural Language Processing 13
Ben Goertzel, Cassio Pennachin, Samir Araujo, Ruiting Lian, Fabricio Silva, Murilo
Queiroz, Welter Silva, Mike Ross, Linas Vepstas, Andre Senna

Toward a Formal Characterization of Real-World General Intelligence 19
Ben Goertzel

On Evaluating Agent Performance in a Fixed Period of Time . 25
Jose Hernandez-Orallo

Artificial General Segmentation . 31
Daniel Hewlett, Paul Cohen

Grounding Possible Worlds Semantics in Experiential Semantics . 37
Matthew Ikle, Ben Goertzel

The Toy Box Problem (and a Preliminary Solution) . 43
Benjamin Johnston

Playing General Structure Rewriting Games . 49
Lukasz Kaiser, Lukasz Stafiniak

Towards Automated Code Generation for Autonomous Mobile Robots 55
Dermot Kerr, Ulrich Nehmzow, Stephen A. Billings

Searching for Minimal Neural Networks in Fourier Space . 61
Jan Koutnik, Faustino Gomez, Juergen Schmidhuber

Remarks on the Meaning of Analogical Relations . 67
Ulf Krumnack, Helmar Gust, Angela Schwering, Kai-Uwe Kuehnberger

Quantitative Spatial Reasoning for General Intelligence . 73
Unmesh Kurup, Nicholas Cassimatis

Cognitive Architecture Requirements for Achieving AGI . 79
John Laird, Robert Wray

Sketch of an AGI Architecture with Illustration . 85
Andras Lorincz, Zoltan Bardosi, Daniel Takacs

GQ(λ): A General Gradient Algorithm for Temporal-Difference Prediction Learning
with Eligibility Traces . 91

Hamid Maei, Richard Sutton

A Generic Adaptive Agent Architecture Integrating Cognitive and Affective States and
their Interaction . 97

Zulfiqar A. Memon, Jan Treur

A Cognitive Architecture for Knowledge Exploitation . 103
Gee Wah Ng, Yuan Sin Tan, Loo Nin Teow, Khin Hua Ng, Kheng Hwee Tan, Rui Zhong
Chan

An Artificial Intelligence Model that Combines Spatial and Temporal Perception 109
Jianglong Nan, Fintan Costello

A Conversion Between Utility and Information . 115
Pedro Ortega, Daniel Braun

A Bayesian Rule for Adaptive Control based on Causal Interventions 121
Pedro Ortega, Daniel Braun

Discovering and Characterizing Hidden Variables . 127
Soumi Ray, Tim Oates

What we Might Look for in an AGI Benchmark . 133
Brandon Rohrer

Towards Practical Universal Search . 139
Tom Schaul, Juergen Schmidhuber

Artificial Scientists & Artists Based on the Formal Theory of Creativity 145
Juergen Schmidhuber

Algorithmic Probability, Heuristic Programming and AGI . 151
Ray Solomonoff

Frontier Search . 158
Yi Sun, Tobias Glasmachers, Tom Schaul, Juergen Schmidhuber

The Evaluation of AGI Systems . 164
Pei Wang

Designing a Safe Motivational System for Intelligent Machines . 170
Mark Waser

Position Statements.

Software Design of an AGI System Based on Perception Loop . 176
Antonio Chella, Massimo Cossentino, Valeria Seidita

A Theoretical Framework to Formalize AGI-Hard Problems . 178
Pedro Demasi, Jayme Szwarcfiter, Adriano Cruz

Uncertain Spatiotemporal Logic for General Intelligence . 180
Nil Geisweiller, Ben Goertzel

A (hopefully) Unbiased Universal Environment Class for Measuring Intelligence of
Biological and Artificial Systems . 182

Jose Hernandez-Orallo

Neuroethological Approach to Understanding Intelligence . 184
DaeEun Kim

Compression Progress, Pseudorandomness, and Hyperbolic Discounting 186
Moshe Looks

Relational Local Iterative Compression . 188
Laurent Orseau

Stochastic Grammar Based Incremental Machine Learning Using Scheme 190
Eray Ozkural, Cevdet Aykanat

Compression-driven Progress in Science . 192
Leo Pape

Concept Formation in the Ouroboros Model . 194
Knud Thomsen

On Super-Turing Computing Power and Hierarchies of Artificial General Intelligence
Systems . 196

Jiri Wiedermann

A Minimum Relative Entropy Principle for AGI . 198
Antoine van de Ven, Ben Schouten

Author Index . 200

Efficient Constraint-Satisfaction in Domains with Time

Perrin G. Bignoli, Nicholas L. Cassimatis, Arthi Murugesan

Department of Cognitive Science

Rensselaer Polytechnic Institute

Troy, NY 12810

{bignop, cassin, muruga}@rpi.edu

Abstract

Satisfiability (SAT) testing methods have been used
effectively in many inference, planning and constraint
satisfaction tasks and thus have been considered a
contribution towards artificial general intelligence.
However, since SAT constraints are defined over atomic
propositions, domains with state variables that change over
time can lead to extremely large search spaces. This poses
both memory- and time-efficiency problems for existing
SAT algorithms. In this paper, we propose to address these
problems by introducing a language that encodes the
temporal intervals over which relations occur and an
integrated system that satisfies constraints formulated in this
language. Temporal intervals are presented as a compressed
method of encoding time that results in significantly smaller
search spaces. However, intervals cannot be used efficiently
without significant modifications to traditional SAT
algorithms. Using the Polyscheme cognitive architecture,
we created a system that integrates a DPLL-like SAT-
solving algorithm with a rule matcher in order to support
intervals by allowing new constraints and objects to be
lazily instantiated throughout inference. Our system also
includes constraint graphs to compactly store information
about temporal and identity relationships between objects.
In addition, a memory retrieval subsystem was utilized to
guide inference towards minimal models in common sense
reasoning problems involving time and change. We
performed two sets of evaluations to isolate the
contributions of the system‟s individual components. These
tests demonstrate that both the ability to add new objects
during inference and the use of smart memory retrieval
result in a significant increase in performance over pure
satisfiability algorithms alone and offer solutions to some
problems on a larger scale than what was possible before.

Introduction

Many AI applications have been successfully framed as
SAT problems: planning (Kautz and Selman 1999),
computer-aided design (Marques-Silva and Sakallah 2000),
diagnosis (Smith and Veneris 2005), and scheduling
(Feldman and Golumbic 1990). Although SAT-solvers
have successfully handled problems with millions of
clauses, tasks that require an explicit representation of time
can exceed their capacities.
 Adding a temporal dimension to a problem space has the
potential to greatly expand search space sizes because SAT
algorithms propositionalize relational constraints. The most

direct way to incorporate time is to have a copy of each
state variable for every time point over which the system
reasons. This increases the number of propositions by a
factor equal to the number of time points involved. Since
SAT algorithms generally become slower as the size of a
problem increases, adding a temporal dimension to even
relatively simple problems can make them intractable.
 Although problems with time require more space to
encode, the true expense of introducing time stems from
the additional cost required to find a SAT solution.
Consider a task that requires the comparison of all the
possible ways that a car can visit three locations in order. If
the problem has no reference to time points, there is only
one solution: the car just moves from a to b to c. On the
other hand, there are clearly more possibilities, since the
car could potentially move or not move at every time.
Compared to other SAT-solvers, LazySAT (Singla and
Domingos 2006), which lazily instantiates constraints, is
less affected by the increased memory demands of larger
search spaces. Unfortunately, lazy instantiation will not
increase the tractability of larger problems with respect to
runtime.
 There is, however, a more efficient way of representing
time. Since it is unlikely that the truth value of a
proposition will change at every time point, temporal
intervals can be used to denote segments of contiguous
time points over which its value is constant. This practice
alleviates the need to duplicate all propositions at every
time point for most problem instances, thus significantly
reducing the search space size. Intervals also mitigate the
arbitrary granularity of time because they are continuous
and scale independent.
 However, existing SAT solvers cannot process intervals
efficiently because they do not allow new objects to be
introduced during the course of inference. It is clearly
impossible to know exactly which temporal intervals will
be required. Therefore, every possible interval must be
defined in advance. Since unique intervals can be
defined over n times, there would be little advantage to use
them with current searching methods.
 To capture the benefits of SAT while supporting the use
of intervals, we created an integrated system that combines
a DPLL-like search with several specialized forms of
inference: a rule matcher, constraint graphs, and memory
retrieval. Rule matching allows our system to both lazily
instantiate constraints and introduce new objects during

2
)2)(1(nn

1

inference. Constraint graphs compactly store temporal and
identity relationships between objects. Memory retrieval
supports common sense reasoning about time. Although
SAT has previously been applied to planning (Shanahan
and Witkowski 2004) and reasoning (Mueller 2004) with
the event calculus, we present a novel approach.

Language

We have specified a language that can express
relationships between objects at different points in time.
This language incorporates temporal intervals and a
mechanism for introducing new objects during inference.
For example, in path planning tasks, it is often useful to
have a condition such as: If at location p1 and must be at
location p2, which is not adjacent to p1, then move to some
location px that is adjacent to p1 at the next possible time.
We write this constraint as:

Note that we prefix arguments with a „?‟ to denote
variables. Variables permit this one constraint to apply to
all locations in the system. Additionally, we can assign
weights to constraints as a measure of their importance.
Because this constraint holds for any path, it is given an
infinite weight to indicate that it must be satisfied.
 Formally, constraints have the form
 , where w is a positive rational
number, m ≥ 0 and n ≥ 1. Ai and Cj are first order literals.
Literals have the form P(arg1, …, argn), where P is a
predicate, argi is a term, and argn must be a time point or
interval. Terms that are prefixed with a „?‟ are variables;
others are constant “objects.” A grounded predicate is one
in which no term is a variable. Predicates specify relations
over the first n-1 terms, which hold at time argn. There is a
special type of relation called an attribute. Attributes are
predicates, P, with three terms, o, v, and t, such that only
one relation of the form P(o, v, t) holds for each o at every
t. The negation of a literal is expressed with the ¬ operator.
Every literal is mapped to a truth value.
 If all of the literals in a constraint are grounded, then the
constraint itself is grounded. Only grounded constraints
can be satisfied or broken, according to the truth value of
its component literals. A constraint is broken iff every
antecedent literal is assigned to true and every consequent
literal is assigned to false. The cost of breaking a constraint
is given by w, which is infinite if the constraint is hard.
 Some predicates and objects are included in the
language. For instance, Meets, Before, and Includes are
temporal relations that are similar to the predicates in
Allen‟s interval calculus (Allen 1981). We reserve a set of
objects of the form {t1, …, tn}, where n is the number of
times in the system. This set is known as the native times.
Another time, E, denotes eternity and is used in literals
whose assignments do not change over time.

 A model of a theory in this language consists of a
complete assignment, which is a mapping of every literal
to a truth value. Valid models are those such that their
assignment permits all hard constraints to be satisfied. All
models have an associated cost equal to the cost of its
broken constraints. Each theory has many valid models,
but it is often useful to find one of the models with the
minimum cost. For instance, this process can perform
change minimization, a form of commonsense reasoning
motivated by the frame problem (Shanahan 1997).

System Architecture

We created an integrated system using the Polyscheme
cognitive architecture (Cassimatis 2002) in order to
efficiently solve problems with time. This approach
allowed us to glean the benefits of SAT while capitalizing
on the properties of specialized forms of inference. It is
easiest to describe how our system works by framing it as a
DPLL-like search. DPLL (Davis, Logemann et al. 1962)
performs a branch-and-bound depth first search that is
guaranteed to be complete for finite search spaces. The
algorithm searches for the best assignment by making
assumptions about the literals that appear in its constraint
set. An assumption consists of selecting an unassigned
literal, setting it to true or false, and then performing
inference based on this assignment. When necessary, the
search backtracks to previous decision points to explore the
ramifications of making the opposite assumption.
 The DPLL-FIRST procedure in Algorithm 1 takes a set
of constraints, c, as input and outputs an assignment of
literals to truth values that minimizes the cost of broken
constraints. In the input constraint set, there must be at
least one fully grounded constraint with a single literal.
Such constraints are called facts. Within the DPLL-FIRST
procedure, several data structures are declared and passed
to DPLL-RECUR, which is illustrated in Algorithm 2.
First, there is a structure, assign, which stores the current
assignment of literals to truth values. The facts specified in
the input are stored in assign with an assignment that
corresponds to the valence of the fact‟s literal. Second,
there is a queue, q, which stores the literals that have been
deemed relevant by the system in order to perform
inference after the previous assumption. At the beginning,
q contains the facts in the input. Third, b stores the best
total assignment that has been found so far. Fourth, the cost
of b is stored in o. Initially, b is empty and o is infinite.

Algorithm 1. DPLL-FIRST(c):
 return DPLL-RECUR(c, assign, q, o, b)

 Each time DPLL_RECUR is called, it performs an
elaboration step that infers new assignments based on the
current assumption. Initially, when there is no assumption,
the elaboration step attempts to infer new information from
the constraints specified in the input. After elaboration, the
current assignment is examined to determine if one of the

),?,1(?),?,1(?

),2?,1(?)2?,2?,(?)1?,1?,(?

EtxtMeetsEpxpAdjacent

EppSametpxLocationtpxLocation

nm CCwAA 11)(

2

three termination conditions is met. The first condition is if
the assignment is contradictory because the same literal has
been assigned to both true and false. The second condition
is if the cost of the current assignment exceeds the lowest
cost of a complete assignment that has been discovered in
previous iterations. Since new assignments can never
reduce the total cost, it is unnecessary to continue
searching. The third condition is if the current assignment
is complete. In all of these cases, the search backtracks to a
previous assumption and investigates any remaining
unexplored possibilities. Afterwards, the search selects an
unassigned literal and creates two new branches in the
search tree: one where the literal is assumed to be true and
one where it is assumed to be false. DPLL-RECUR is then
invoked on those subtrees and the assignment from the
branch with the lower cost is returned.

Algorithm 2. DPLL-RECUR(c, assign, q, o, b)

 call ELABORATION(c, assign, q)
 if Contradictory(assign) then
 return Fail
 else if Cost(assign) > o
 return Fail
 else if Complete(assign)
 return assign
 end if
 u ← next element of q
 newassign ← assign with u assigned to true
 b1 ← call DPLL-RECUR(c, newassign, o, b)
 newassign ← assign with u assigned to false
 b2 ← call DPLL-RECUR(c, newassign, o, b)
 if Cost(b1) < Cost(b2) then
 return b1
 else
 return b2
 end if

 The elaboration step in basic DPLL is called unit-
propagation. Unit-propagation examines the current
assignment to determine if there are any constraints that
have exactly one literal unassigned. If such constraints
exist and exactly one assignment (i.e., true or false) for that
literal satisfies the constraint, then DPLL makes that
assignment immediately instead of through a later
assumption. Our system augments this basic technique by
introducing several more specialized forms of inference.
 To understand the importance of elaboration, consider
that all of the best available complete SAT-solvers are
based on some version of DPLL (Moskewicz, Madigan et
al. 2001; Een and Sorensson 2005). DPLL is so effective
because its elaboration step eliminates the need to explore
large numbers of unnecessary assumptions. It is more
efficient to infer assignments directly rather than to make
assumptions, because each assumption is equivalent to
creating a new branch in DPLL‟s abstract search tree.
Elaboration also allows early detection of contradictions in
the current assignment.

 Despite its elaboration step, DPLL is unable to handle
the large search spaces that occur when time is explicitly
represented. The goal of our approach is to improve
elaboration by using a combination of specialized
inference routines. Previous work (Cassimatis, Bugjaska et
al. 2007) has outlined the implementation of SAT solvers
in Polyscheme. Following that approach, we implemented
DPLL using Polyscheme‟s focus of attention. One call to
DPLL-RECUR is implemented by one focus of attention in
Polyscheme. Logical worlds are used to manage DPLL
assumptions. For each assumption, an alternative world is
created in which the literal in question is either true or
false. Once Polyscheme focuses on an assumption literal, it
is elaborated by polling the opinions of several specialists.
These specialists implement the specialized inference
routines upon which our system relies. One of these
specialists, the rule matcher, lazily instantiates grounded
constraints that involve the current assumption. The
assignment of a literal is given by Polyscheme‟s final
consensus on the corresponding proposition. This
elaboration constitutes the main difference between our
system and standard DPLL.
 Our elaboration step, which is illustrated in Algorithm 3,
loops over the literals that have been added to the queue
because their assignments were modified by previous
inference. Two procedures are performed on each of these
literals. First, a rule matcher is used to lazily instantiate
grounded constraints from relevant variable constraints
provided in the input. Relevant constraints are those that
contain a term that corresponds to the current literal in
focus. These constraints are “fired” to propagate truth
value from the antecedent terms to the consequent terms.
Newly grounded literals, which may contain new objects,
are introduced during this process. Any such literals are
added to the assignment store and the queue.
 The second procedure involves formulating an
assignment for the current proposition based on
suggestions from the various components of the system.
For instance, the temporal constraint graph is queried here
in the case that the proposition being examined describes a
temporal relationship. Likewise, the identity constraint
graph would be queried if the examined proposition was an
identity relationship. In the extended system, this is the
step at which the memory retrieval mechanism would be
utilized. These opinions are combined with the old
assignment of the proposition to produce a new
assignment. If the new assignment differs from the old one,
the literal is placed back on the queue.

Algorithm 3. ELABORATION(c, assign, q):

 while q is not empty do
 l ← the next element in q
 ris ← call Match(l, c, q)
 delta ←
 for each ri in ris do
 delta ← delta call Propagate(ri, assign)
 end for

3

 rs ← the rule system‟s opinion on l
 tc ← the temporal constraint graph‟s opinion on l
 ic ← the identity constraint graph‟s opinion on l
 mr ← the memory retrieval system‟s opinion on l
 c ← call Combine(rs, tc, ic, mr)
 if c ≠ l‟s assignment in assign then
 delta ← delta l
 end if
 q ← q delta
 end while
 return

Rule Matching Component

Lazy instantiation is efficient because it avoids the creation
of constraints that do not need to be considered to produce
an acceptable assignment. We accomplish lazy
instantiation by treating constraints with open variables as
templates that can be passed to a rule matcher. The rule
matching component (RMC) attempts to bind the
arguments of the last dequeued literal to variables in the
constraint rules. A binding is valid if it allows all variables
in the antecedent terms of a constraint to be bound to
objects in the arguments of literals that are stored in the
system‟s memory. All valid bindings are evaluated as
constraints by propagating truth value from the antecedents
to the consequents. A constraint is considered broken only
if the grounded literals in its antecedent terms have been
assigned to true and the propositions in its consequent
terms have been assigned to false.
 A simple example will illustrate the binding process. Let
the literal currently being assigned be .
If
appears as a constraint, then the following fully grounded
instance is created:

In this case, ?x binds to car1, ?y binds to road, ?t1 binds to
t1, and ?t2 binds to a new object, tnew. If Location(car1,
road, t1) is assigned to true and Location(car1, road,
t_new) is later assigned to false, then any models that
contain that assignment will accrue a cost of 10.

Temporal Constraint Graph Component

As the number of objects in a problem instance increase, so
do the number of literals and constraints. For instance,
when time objects are introduced, it is often necessary to
know how those times are ordered. If there are n times in
the system, approximately literals are required to
represent all of the values of a binary relation over those
times. Usually, only a small portion of these literals
provide useful information for solving the problem. Instead
of eagerly encoding all temporal relations, we created a
component that could be queried on demand to determine
if a given relation holds according to the current
knowledge of the system. This component represents
relations in graphical form.

 Using a graph enables the system to derive new entailed
relations without storing them explicitly as propositions.
All of the fundamental temporal relationships described by
Allen can be represented in the following way. Whenever a
literal that involves such a relationship is encountered, the
temporal constraint graph (TCGC) decomposes the time
object arguments into three parts: the start point, the
midpoints, and the end point. These parts form the nodes of
the graph. Edges are created between two nodes in the
graph if their temporal relationship is known.
 Every interval relationship can be derived from only two
types of relationships on the parts of times: Before and
Equals. A time object‟s start point is defined to be before
its midpoints and its midpoints are before its end point. By
creating edges between the parts of different time objects,
it is possible to record relationships between the objects
themselves. For instance, to encode Meets(t1, t2, E) in the
graph, one would use the relationship: Equals(end-t1,
start-t2, E). To illustrate why the graph is an efficient way
to store this information, consider the following example.
If it is known that Meets(t1, t2, E) and Meets(t2, t3, E),
then the graph can be traversed to find Before(t1, t3, E),
among other relationships. Thus, these propositions are
stored implicitly and do not need to be assigned unless they
are present in a grounded constraint.

Identity Constraint Graph Component

The identity constraint graph component (ICGC) is similar
to the TCGC, but it handles propositions about the identity
of objects. This graph consists of nodes that represent
objects and edges that represent either equality or
inequality. By traversing the graph, it is possible to capture
the transitivity of the identity relation. Although a rule
could be used to generate the transitivity property, doing so
has the potential to drastically increase the number of
propositions over which DPLL must search.
 Another important use for the ICGC is that it can detect
inconsistencies in truth assignments to identity
propositions. Consider that the following set of identity
propositions is known: Same(a, b), Same(b, c). Then, the
proposition, ¬Same(a, c), is examined and assumed to be
true. Clearly this is inconsistent, but without including a
rule that defines the properties of identity, the system will
continue to perform inference based on these facts until an
explicit contradiction is encountered. Traversing the edges
connecting a, b, and c in the graph will indicate that this
scenario is contradictory. This information can be reported
to the system as a whole during elaboration.

Memory Retrieval Component

Systems that explicitly represent time often also have to
reason about change. However, in situations with imperfect
knowledge, reasoning about change can be difficult.
Consider the following information about the color of a
car, assuming that Location is an attribute: Color(car, red,
t1), Color(car, blue, t6), Color(car, green, t11). In between
t1 and t6 and t6 and t11, it is consistent for the car to be

)1,,1(troadcarLocation

),2?,1(?)2?,?,(?)10()1?,?,(? EttMeetstyxLocationtyxLocation

),,1(),,1()10()1,,1(EtnewtMeetstnewroadcarLocationtroadcarLocation

2

2n

4

any color. However, in many scenarios, the car would
remain red until it was painted blue and then blue until it
was painted green. Although the world is dynamic, it also
exhibits inertia. The principle of change minimization
states that changes to particular objects are relatively
infrequent and when changes do occur, they will be salient.
It is worthwhile for a reasoning system to bet on such
recurring patterns, because doing so significantly reduces
the complexity of many problems.
 We can frame the change minimization problem as a
weighted SAT problem as follows. Given a set of attribute
literals that involve the same first term, but whose second
term changes over time, determine the minimum number
of changes required to explain the data. To this end,
constraints can be defined so that the least costly models
will be those that exhibit the smallest possible number of
attribute value changes. The memory retrieval component
(MRC) is designed to accommodate this procedure by
regulating which attribute values appear in grounded
constraints. Only attribute values with some prior evidence
in memory are considered. As an example, the car could
have been purple at t2 and brown at t3, but models that
contain such literals are automatically excluded.
 To control which values are considered, the MRC makes
a copy of each literal that encodes an attribute with a native
time index. This copy is modified to contain a time index
that corresponds to an open-ended interval. Only when
new attribute values are observed will that interval‟s
endpoints be constrained. For instance, when the system
elaborates Color(car, red, t1), a new literal Color(car, red,
t-car-red) will be introduced. Because it uses a content-
addressable retrieval system, the MRC will henceforth
report that the color of the car is likely to be red at every
time point until new information is discovered. If the literal
Color(car, blue, t6) is observed, then the literal Color(car,
blue, t-car-blue) will be introduced. Also, constraints will
be added to limit the right side of the t-car-red interval at
t6 and the left side of the t-car-blue interval at t1.
 Even with this optimization, change minimization is
expensive if performed naively, since there are
 possible transitions between n attribute values if
nothing is known about when the values hold relative to
each other. For instance, if a car is seen to be red, then
blue, then green, the naïve formulation will consider such
possibilities as a change from green to red even though this
is clearly impossible. The change detection mechanism in
the MRC utilizes the TCGC in conjunction with content-
accessible memory to significantly reduce the number of
impossible changes that are considered by the system.
When an attribute literal containing an interval is
elaborated, the only values that are adjacent in time to the
current interval will be considered. Since the intervals do
not have completely fixed endpoints, these neighboring
times can be detected by looking at what times the current
interval could possibly include. For instance, once it has
been established that there is a change between t1 and t6,
the interval created around t1 can no longer include t11, so

the location t1 will not appear as a possible previous state
of the location at t11.

Results

Our system was designed to improve the efficiency of
applying SAT-solving to problems that involve an explicit
representation of time. In order to accomplish this goal, we
used Polyscheme to implement a DPLL-like algorithm
with specialized forms of inference that permitted the
creation of new objects. The ability to introduce new
objects allowed us to use intervals to reduce the search
space of these problems.
 In order to test the level of improvement gained by the
ability to add new objects independently of other
techniques, we ran an evaluation with the memory retrieval
component deactivated. The task we selected was optimal
path planning through space. We represented this space as
a graph. Although the particular problem we used did not
model a changing environment, an explicit represent of
time would be required if actions had side effects or if
objects in the environment had changing states. For
instance, a particular environment might contain walls that
crumble over time. We asked the system to find the
shortest valid path between two particular locations on the
graph. Valid paths consisted of movements between
adjacent locations that did not contain active obstacles.
These types of problems are important to the object
tracking and motion planning domains.
 We initially compared our system against LazySAT
because it is similar to our approach in that it also supports
the lazy instantiation of constraints. Through
experimentation, we determined what values of
LazySAT‟s parameters enabled high performance on this
task. LazySAT, however, is based on a randomized local
search, which is inefficient for many structured domains.
Therefore, we ran the same set of tests on MiniMaxSAT
(Heras, Larrrosa et al. 2007), which is one of the best
DPLL-based systematic SAT-solvers. Because Markov
logic is not complete and cannot report unsatisfiability, we
were forced to select a configuration of space in which a
valid path existed.
 The evaluation problem involved a 9-location graph
with one obstacle, which had to be circumvented. We were
limited to 9 locations because the performance of the
systems degraded on larger problems. To determine how
well each system handled time, we created ten versions of
the problem from 5 to 50 time points in increments of 5.
For each condition and each system, we ran 10 trials and
recorded the average runtime. These results are displayed
in Figure 1. While our system was consistently better than
LazySAT, MiniMaxSAT outperformed both until it had to
contend with more than 30 time points. Our system
required approximately constant time to solve the problem
due to the fact that intervals make this task equivalent to
the case of planning without explicit time points.
 A second evaluation was conducted to show that the
memory retrieval subsystem allowed change minimization

2
))(1(nn

5

problems to be solved efficiently. We ran these tests on the
system with and without the MRC activated. These
problems consisted of a number of attribute value
observations that involved the color of an object. For
instance, suppose the following facts were given as input:
Color(car, red, t1), Color(car, blue, t6), and Color(car,
green, t11). The system would then be tasked with finding
the least costly model that explained this data, namely that
the color changed from red to blue and then from blue to
green.
 The results from this evaluation are depicted in Figure 2.
Not only does enabling the MRC permit the change
minimization problems to be solved in less time than with
the basic system, but it also increases the upper limit on
problem size. Without the MRC, our system ran for over
50,000 seconds attempting to solve the 5 attribute value
problem. These results demonstrate that the elimination of
irrelevant constraints is a powerful technique for
improving the performance of SAT-solvers.

Figure 1: Path planning problem results

Figure 2: Change minimization results

Conclusion

Although SAT is in some cases an efficient approach to
domain-general problem solving, it does not scale well to
the large search spaces that result from tasks that require an
explicit representation of time. Temporal intervals help to
reduce the size of such problems, but can be used
effectively only with SAT-solvers that permit the
introduction of novel objects throughout inference. Hence,

we created a system that combines specialized inference
techniques with a DPLL-like algorithm. This system was
shown to outperform MiniMaxSAT and LazySAT in a
series of evaluations involving a simple path planning
domain.
 When time is represented explicitly, it is also beneficial
to incorporate common sense reasoning that exploits
common patterns in real-world problem instances.
Towards this end, a memory retrieval subsystem was
developed that prevented the exploration of fruitless paths
in the DPLL search tree under certain conditions. This
technique was demonstrated to increase the efficiency of
how our system solves the change minimization problem.

References

Allen, J. (1981). Maintaining knowledge about temporal intervals. TR-86,

Computer Science Department, University of Rochester, Rochester, NY.

Cassimatis, N. L. (2002). Polyscheme: A Cognitive Architecture for

Integrating Multiple Representation and Inference Schemes. Media

Laboratory. Cambridge, MA, Massachusetts Institute of Technology.

Cassimatis, N. L., M. Bugjaska, et al. (2007). An Architecture for

Adaptive Algorithmic Hybrids. AAAI-07, Vancouver, BC.

Davis, M., G. Logemann, et al. (1962). "A Machine Program for Theorem

Proving." Communications of the ACM 5(7): 394–397.

Een, N. and N. Sorensson (2005). MiniSat-A SAT solver with conflict-

clause minimization. SAT 2005 Competition.

Feldman, R. and M. C. Golumbic (1990). "Optimization algorithms for

student scheduling via constraint satisfiability." Computer Journal 33:

356-364.

Heras, F., J. Larrrosa, et al. (2007). "MiniMaxSAT: a new weight Max-

SAT solver." International Conference on Theory and Application of

Satisfiability Testing: 41-55.

Kautz, H. and B. Selman (1999). Unifying SAT-based and Graph-based

Planning. IJCAI-99.

Marques-Silva, J. P. and K. A. Sakallah (2000). "Boolean satisfiability in

electronic design automation." Proc., IEEE/ACM Design Automation

Conference (DAC '00).

Moskewicz, M., C. Madigan, et al. (2001). Chaff: Engineering an

Efficient SAT Solver 39th Design Automation Conference, Las Vegas.

Mueller, E. T. (2004). "Event calculus reasoning through satisfiability."

Journal of Logic and Computation 14(5): 703-730.

Russell, S. and P. Norvig (1995). Artificial Intelligence: A Modern

Approach, Prentice Hall.

Shanahan, M. (1997). Solving the Frame Problem, a mathematical

investigation of the common sense law of inertia, M.I.T. Press.

Shanahan, M. and M. Witkowski (2004). "Event calculus planning

through satisfiability." Journal of Logic and Computation 14(5): 731-745.

Singla, P. and P. Domingos (2006). Memory-efficient inference in

relational domains. Proceedings of the Twenty-First National Conference

on Artificial Intelligence, Boston, MA.

Smith, A. and A. Veneris (2005). "Fault diagnosis and logic debugging

using boolean satsifiability." IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 24.

0

50

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30 35 40 45 50
No. Time Points

R
u

n
 T

im
e
 (

s
e
c
)

GenDPLL
MiniMaxSAT
LazySAT

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7
No. Attribute Values

R
u

n
 T

im
e
 (

s
e
c
)

Without MRC
With MRC

6

The CHREST Architecture of Cognition

The Role of Perception in General Intelligence

Fernand Gobet
Centre for the Study of Expertise

Brunel University

 Uxbridge Middlesex, UB8 3PH

fernand.gobet@brunel.ac.uk

Peter C.R. Lane
School of Computer Science

University of Hertfordshire

Hatfield, Hertfordshire, AL10 9AB

peter.lane@bcs.org.uk

Abstract

This paper argues that the CHREST architecture of cognition
can shed important light on developing artificial general
intelligence. The key theme is that “cognition is perception.”
The description of the main components and mechanisms of
the architecture is followed by a discussion of several domains
where CHREST has already been successfully applied, such
as the psychology of expert behaviour, the acquisition of
language by children, and the learning of multiple
representations in physics. The characteristics of CHREST
that enable it to account for empirical data include: self-
organisation, an emphasis on cognitive limitations, the
presence of a perception-learning cycle, and the use of
naturalistic data as input for learning. We argue that some of
these characteristics can help shed light on the hard questions
facing theorists developing artificial general intelligence, such
as intuition, the acquisition and use of concepts, and the role
of embodiment.

Introduction

There are two main broad approaches for developing general
artificial intelligence. The first is to use whatever techniques
are offered by computer science and artificial intelligence,
including brute force, to create artefacts that behave in an
intelligent way. The second is to develop computational
architectures that closely simulate human behaviour in a
variety of domains. Examples of this approach include ACT-
R (Anderson and Lebière, 1998), Soar (Newell, 1990), and
EPAM (Feigenbaum and Simon, 1984). More recently, the
computational architecture CHREST (Chunk Hierarchy and
REtrieval Structures) (Gobet et al., 2001; Gobet and Simon,
2000; Lane, Cheng, and Gobet, 2000) has simulated data in a
number of domains, including expert behaviour in board
games, problem solving in physics, first language
acquisition, and implicit learning.

The strength of cognitive architectures is that their
implementation as computer programs ensures a high degree
of precision, and offers a sufficiency proof that the
mechanisms proposed can carry out the tasks under study –
something obviously desirable if artificial general
intelligence is the goal. The extent to which success is
reached in simulating actual human behaviour can be
assessed by using measures such as eye movements, reaction
times, and error patterns.

The aim of this paper is to introduce CHREST, to

illustrate the kind of phenomena it has already been able to
successfully simulate, and to show what insight it offers on
the creation of AI systems displaying general intelligence.
The claim made here is that developing a cognitive
architecture – and thus understanding human intelligence –
provides critical insight for developing general artificial
intelligence.

The CHREST Architecture

Just like its predecessor, EPAM (Elementary Memorizer and
Perceiver) (Feigenbaum and Simon, 1984), CHREST
assumes the presence of short-term memory (STM) and
long-term memory (LTM) structures, and models cognition
as the product of the interaction of perceptual learning,
memory retrieval, and decision-making processes. A central
theme is that “cognition is perception” (De Groot and Gobet,
1996). Thus, the architecture postulates a close interaction
between perception, learning, and memory: CHREST’s
knowledge directs attention and perception, and, in turn,
perception directs the learning of new knowledge.

Another essential aspect of the architecture is that
Simon’s assumption of bounded rationality (Simon, 1969) is
taken very seriously. For example, CHREST’s behaviour is
constrained by the limited capacity of visual short-term
memory (3 chunks), the relatively slow rate at which new
elements can be learned (8 seconds to create a new chunk),
and the time it takes to transfer information from LTM to
STM (50 ms). Just like the human cognitive system,
CHREST satisfices, and this might be a key condition for
displaying general intelligence. All cognitive operations
carried out by the system have a cost, which is indicated with
approximate but fixed time parameters. The presence of
these parameters enables close comparison between human
and simulated behaviour (see De Groot and Gobet, 1996, for
details; a technical specification of CHREST can be found at
www.CHREST.info).

The emphasis on cognitive limitations is in stark contrast
with architectures such as Soar, where the stress is on
carrying out complex intelligent behaviour without imposing
many constraints on the architecture (for example, Soar
enjoys an unlimited capacity for its working memory).
Compared to other architectures, CHREST might thus appear
as a very austere system. However, it is also a powerful
dynamic system governed not only by built-in capabilities

7

but also, more importantly, by the complexities of its
interaction with the environment. Together, these features
enable it to cover a wide range of behaviours.

Components

The three main components of CHREST are shown in Figure
1: (a) mechanisms and structures for interacting with the
external world; (b) multiple STMs that hold information
from varied input modalities; and (c) an LTM, which holds
information is in a “chunking network.” A chunking network
is a discrimination network whose dynamic growth is a joint
function of the previous states of the system and the inputs
from the environment. The visual input-output channels (and
the STM associated with them) have been investigated in
models of chess expertise where the actual eye movements of
masters and novices have been simulated (De Groot and
Gobet, 1996). In general, this simulated eye is crucial in
understanding the interaction between low-level information,
such as visual stimuli, and high-level cognition, such as
concepts. The auditory channels have been investigated in a
model of vocabulary acquisition (Jones, Gobet and Pine,
2007, 2008), which simulates the way children learn words
using phonemic information.

Input/Output module
Long-term memory

Short-term memories

Chunks (patterns)

High-level concepts

Schemata and
productions, etc

Eye

Ear

Hand

Feature

extraction

mechanisms

Figure 1. Key components of the CHREST architecture

Learning Mechanisms

Chunking networks are grown by mechanisms similar to
those used in EPAM. A process called discrimination creates
new nodes and a process called familiarisation incrementally
adds information to existing nodes. An important extension,
compared to EPAM, is a mechanism for creating high-level
structures from perceptual information, by a process called
template formation. The creation of a template, which is a
kind of schema, uses both stable information (for creating its
core) and variable information (for creating its slots).
Templates are essential for explaining how chess Masters
can recall briefly presented positions relatively well, even
with a presentation time as short as 1 or 2 seconds (Gobet
and Simon, 2000). They are also important for explaining
how chess masters carry out planning – that is search at a
level higher than that of moves. Another important novelty is
the creation of lateral links (similarity links, production
links, equivalence links, and generative links) between nodes
(see Gobet et al., 2001, for detail). It is important to point out

that all these mechanisms are carried out automatically.
Much more than with previous chunking models (for
example, Simon and Gilmartin, 1973), CHREST explains the
development of expertise by both acquiring a large number
of knowledge structures and building connections between
them.

Eye Movements and the Perception-Learning Cycle

The frame problem is a central issue in cognitive science and
artificial intelligence: How can a system notice the relevant
changes in the environment in real time whilst ignoring the
indefinite number of changes that are irrelevant? CHREST’s
solution consists of three parts, which all lead to a reduction
in information. First, the limited capacity of the visual field
eliminates a considerable amount of information coming
from the environment. Second, the knowledge that the
system brings to bear – and sometimes the lack of such
knowledge – further constrains the amount of information
processed. Third, the limited memory capacity we have
mentioned earlier causes a further reduction of information.
Thus, CHREST is highly selective, as presumably is the
human cognitive system. This is consistent with research on
perception and evolution, which has shown that animals and
humans in particular have evolved powerful perceptual
mechanisms for extracting key features from sensations in
order to survive complex and dangerous environments.

Indeed, with CHREST, the link between perception and
cognition is so tight that the distinction between these two
sets of mechanisms all but disappears. To begin with, the
focus of attention determines what information will be
learned. Then, when possible, eye movements and thus
attention will be directed by previous knowledge, making it
more likely that the system pays attention to critical
information. The key assumption here is that features that
were important in the past – to the point that they led to
learning – should be important in the future as well. This
perception-learning-perception cycle is another way by
which CHREST addresses the frame problem, as it leads to a
selectivity of attention that further reduces the amount of
information extracted from the environment and makes it
possible to respond in real time.

Some Domains Modelled by CHREST

Chess Expertise

Historically, chess has been a standard domain for studying
cognition, including intelligence, both for humans and
computers. Chess was the first domain of application of
CHREST, a domain that turned out to be excellent as it
engages various cognitive abilities including perception,
memory, decision making, and problem solving. It turns out
that CHREST can simulate a large number of phenomena
related to chess expertise. These include: the eye movements
of novices and chess Masters (see Figure 2); recall
performance in numerous memory experiments (including
errors and the detail of the piece placements); and evolution

8

of look-ahead search as a function of skill (De Groot and
Gobet, 1996; Gobet, 1997; Gobet and Simon, 1996, 2000).
The main mechanism explaining these phenomena is the
acquisition of a large number of chunks (more than 300,000
for simulating Grandmasters) and templates, which are
autonomously acquired from scanning master-level games.

CHREST Master Human Master

260 msec mean 272 msec

100 msec
sd

97 msec

Figure 2. Example of a Master’s eye movements (left) and their

simulations by CHREST (right). The mean and the standard

deviation of fixation times are across all positions and all master

subjects. (After De Groot and Gobet, 1996.)

Computational modelling is often criticised by describing
it as only some kind of curve-fitting exercise, without new
predictions and thus without real understanding. CHREST
does not suffer from this weakness, as it has made a number
of new predictions, some of which have been later confirmed
by empirical data. A good example of this is the recall of
random chess positions, which are constructed by
haphazardly replacing the pieces of a game position on the
board. When these simulations were carried out, the
universal belief, based on research by Chase and Simon
(1973) with a small sample, was that there was no skill
difference in the recall of random positions, while of course
Masters vastly outperform weaker players with game
positions. The simulations repeatedly showed that there
should also be a skill effect with this type of positions – for
the simple reason that CHREST could recognize some
chunks in random positions, just by chance, and that this was
more likely with large networks of chunks. This prediction
was verified by a re-analysis of all studies carried out with
this type of material and by collecting new data (Gobet and
Simon, 1996). Figure 3 shows the predictions of CHREST
and the human data, for both game and random positions.
(Please note the close fit between CHREST and the human
data.) CHREST’s predictions were also supported when
random positions were created using different procedures
(Gobet and Waters, 2003).

These results indicate that Masters perceive patterns in
spite of the fact that the positions do not contain much
structure, a further indication, if necessary, that chunking
mechanisms are automatic and implicit. If this is the case,
CHREST should be able to simulate the kind of phenomena
observed in the implicit learning literature (Reber, 1967). In

an implicit-learning experiment, stimuli generated from an
artificial grammar are first shown to the subjects, and then
subjects have to classify new strings as well-formed or not.
The debate in this literature is whether subjects learn
anything in these experiments, and, if so, what kind of things
are learnt: rules, fragments, or exemplars? Unpublished work
with Daniel Freudenthal indicates that CHREST can simulate
some of the key results very well, suggesting that subjects in
these experiments learn implicitly and unconsciously small
fragments of stimuli that become incrementally larger with
additional learning.

0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

 c
o

rr
e

c
t

Class A Exper t s Mast ers

Skill level

CHREST, Random

Human, Random

CHREST, Game

Human, Game

1,000 chunks 10,000 chu nks 100,000 chunks

Figure 3. Memory for game and random positions as a function of

skill level. The human data are the average results aggregated

across 13 studies. (After Gobet and Simon, 1996.)

Of course, the essence of chess skill is not to memorize
chess positions, but to find good moves. Work has also been
done with CHREST to understand how human masters are
able to find good moves despite searching only one very
small subset of the search space. A first program inspired by
CHREST, CHUMP (CHUnking of Moves and Patterns;
Gobet and Jansen, 1994), was able to learn an association of
chess moves to perceptual patterns. It is interesting that
CHUMP, while playing at a fairly low level, performed
better in positions requiring a ‘positional judgement’ than in
tactical positions, which engage more look-ahead search. As
positional judgment in chess is seen as a clear-cut example of
intuition (e.g., Dreyfus & Dreyfus, 1986), it could be argued
that CHUMP captures this aspect of human intelligence (see
also Simon, 1979). A second program, SEARCH (Gobet,
1997), simulated key parameters of the way human of
different levels search a position. These parameters included
depth of search, width of search, and rate at which moves
were generated. More recent work with CHREST has added
mechanisms combining look-ahead search and pattern
recognition, paving the way to complete simulation of
expertise in chess.

Other Domains of Expertise

An application of CHREST to the African game of Awele
(Gobet, 2009) shows that it can play at a fairly good level by

9

pattern recognition only, while at the same time simulating
several results from memory-recall experiments. Simulations
have also been carried out on memory for computer
programs and the acquisition of multiple representations in
physics. In this latter work, the aim was to study the
acquisition of multiple diagrammatic representations, and the
combination of these multiple representations to form
problem-solving stages. The representations were, first, the
classic circuit-style of representation, found in textbooks, and
second, a specialized problem-solving representation,
containing quantitative properties of the domain (see Lane et
al., 2000 for details). The essential elements of the model
here were the movements of the eye and visual short-term
memory; some chunks were learnt for each representation,
and they were combined within short-term memory using
lateral links. These links are used in solving new problems,
to retrieve known components of a problem.
 Although simple in comparison to the abilities of ACT-R
or Soar, this work provides CHREST with a rather unique
form of problem solving, based around perceptual chunks.
The idea is that problem solutions are planned, at a high
level, by retrieving familiar chunks; these familiar chunks
have been acquired by solving smaller problems in isolation.
The solution process involves a form of composition, guided
by the perceived separation of the problem into chunks. The
decomposition used by CHREST corresponds with that used
and drawn by human participants, providing empirical
support for the role of perceptual chunks in problem solving.

Linking Perception to Expectations

Perception in CHREST is seen as a cycle, with the eye
guided to look at parts of the scene or image where useful
information is expected to lie. With human, and perhaps
animal, cognition, it is expected that such expectations would
be formed from information in more than one modality. For
example, knowing a sequence of verbal statements may help
guide the location of a sequence of perceptual icons.
 Lane, Sykes and Gobet (2003) explored this aspect of
cognition by training CHREST to encode information in
more than one modality: visual and verbal. The process is
illustrated by Figure 4. Here, one visual and one verbal
stimulus are separately experienced and sorted through the
long-term memory. Pointers to the retrieved chunks are
placed into short-term memory. Because short-term memory
is separated for each modality, the information about visual
and verbal chunks is kept distinct. An association is then
made between the visual and verbal memories.
 The interaction between the two memories produces
various measurable effects. For instance, prior expectations
can improve the speed and accuracy with which unclear
stimuli are recognised. The ultimate aim is to understand
how low-level and high-level knowledge interact to produce
intelligent behaviour, a question that has nagged cognitive
science for decades (for example, Neisser, 1966).
 Current work is looking to apply chunking mechanisms to
bitmap-level data, whilst maintaining interactions between
verbal and visuo-spatial information. One technique for
doing so lies in employing techniques from component-based

vision, where one layer of feature detectors seeks out
symbolic features to pass to a second layer. For example,
Han et al. (2009) employ support-vector machines to locate
components of a human face, which are then classified by a
separate classifier. A natural extension is to use CHREST as
the second layer, and so gain the benefits both of low-level
pixel analysis and high-level symbolic pattern matching
across multiple representations.

Figure 4. Learning to link information across two modalities. (1)

The visual pattern is sorted through LTM, and a pointer to the node

retrieved placed into visual STM. (2) The verbal pattern is sorted

through LTM, and a pointer to the node retrieved placed into verbal

STM. (3) A naming link is formed between the two nodes at the top

of the STMs. (After Lane, Sykes and Gobet, 2003.)

Acquisition of Language

Language is uniquely human, and understanding how
children acquire their first language will tell us something
important about intelligence in general. We see language
acquisition as one type of expertise, and argue that children
become experts in their native language through implicitly
acquiring a large number of chunks and links between them.
A first variation of CHREST has studied the acquisition of
vocabulary (Jones et al., 2007). The interest has been on how
mechanisms in short-term memory and long-term memory
interact through the creation and use of chunks. A second
variation of CHREST, known as MOSAIC (Model of Syntax
Acquisition In Children), has simulated with great success a
number of empirical phenomena in the early acquisition of
syntactic categories (Freudenthal et al., 2008, 2009). Our
attention has focused on the “optional infinitive”
phenomenon and related phenomena, such as the misuse of
pronouns. The “optional infinitive” phenomenon concerns
typical errors made by children in their use of finite (for
example, goes, went) and non-finite verb forms (for example,
go, going). For example, a child would say “her do it”
instead of “she does it.” A combination of four features
makes the MOSAIC project unique within cognitive science:
(a) it uses naturalistic input (utterances spoken by parents
interacting with their children in a play setting); (b) it can
simulate in detail the pattern and developmental trend of
errors; (c) it uses exactly the same model for reproducing a
number of empirical phenomena; and (d) it carries out
simulations in several languages (so far, English, Dutch,
German, French, Spanish; and Q'anjobalan, a Mayan
language) with exactly the same model – the only difference

10

being the maternal input used for training. Compared to
other approaches in the field (e.g., connectionism), the extent
of MOSAIC’s coverage is striking, in particular when one
considers that only simple and local learning mechanisms are
used. In a nutshell, three interacting factors are essential for
explaining MOSAIC’s behaviour: rote learning, the creation
and use of generative links, and the statistical structure of the
input.

General Intelligence: Some Central Questions

Although CHREST does not yet show fully general
intelligence, it offers a cognitive architecture whose
combined components have proved sufficient to exhibit
behaviour that is, in several domains, remarkably close to
human behaviour. In this final section, we explore some
central questions in artificial intelligence and cognitive
science for which, we believe, CHREST provides important
insight.

The Role of Concepts

It is generally accepted that acquiring and using concepts is
essential for the survival of organisms and their successful
interaction with the environment. Without concepts,
organisms can show only primitive behaviour, as the lack of
generalization means that each new exemplar must be treated
separately. A considerable amount of experimental research
has been carried out on concept formation and categorization
in psychology over the last decades. We know a great deal
about how people acquire and utilise concepts, with a
number of computational models accounting for different
aspects of these empirical data. For example, Gobet et al.
(1997) used a model close to CHREST to investigate the role
of strategies in concept formation, and the suitability of
CHREST for simulating categorization experiments was
further established by Lane and Gobet (2005).
 The previous simulations with CHREST have essentially
relied on individual nodes to account for the concepts used
by humans. However, the type of chunking networks created
by CHREST suggests other possibilities as well. A natural
interpretation of these networks is that concepts do not map
into single chunks (or even single templates), but rather
correspond to a subset of nodes interlinked, to varying
degrees, by lateral links. In this view, concepts are much
more distributed than in standard symbolic models, and take
on some of the flavour of how concepts are represented in
connectionist networks; this idea is expanded upon in Lane,
Gobet and Cheng (2000). While this idea is not new, the
advantage of using CHREST is to provide mechanisms
explaining how nodes and the links between them are
acquired autonomously and in real time, how they relate to
perceptual input, how they are influenced by the structure of
the environment, and how they may integrate information
across different modalities.

Embodiment

Although the first experiments with autonomous robots are

fairly old, going back to Grey Walter’s (1953) seminal work,
it is only in the last twenty years or so that the field of
embodied cognition has been taken up. A number of mobile
robots have been created that are able to carry out fairly
simple tasks (Pfeifer and Scheier, 1999). However, as we
have argued elsewhere (Lane and Gobet, 2001), a limitation
of current research in this field is that it does not provide
mechanisms for how simple behaviours can be linked with
more complex behaviours. The limitation is serious, as it is
obvious that systems showing general intelligence must have
(at least) these two levels of complexity. Specifically, the
lack of symbolic processing in current embodied-cognition
systems means that there are important limits in the kind of
behaviours that can be addressed.
 As soon as one tries to link simple behaviours with
symbolic processes, the question of symbol grounding arises.
The CHREST framework provides a fairly simple
explanation for this: as noted above, symbols, that is chunks,
are grounded through perception. Importantly, as mentioned
above, this idea goes much beyond that of simply linking
symbols to external objects, through perception. Chunks also
shape how the world is perceived, in two important ways.
First, they determine how percepts will be organized. The
way former world chess champion Gary Kasparov
perceptually groups information of a chess position is
different from the way an amateur does. Second, chunks
actively direct eye movements and thus determine to which
part of the display attention will be heeded.
 To show how such an integrated system would work, we
are currently working to implement CHREST into a mobile
robot. Our first aim is to show that a chunking-based
architecture can replicate some of the 'classic' simulations in
the literature, such as the avoidance of obstacles and the
emergence of complex behaviour. Our belief is that
combining symbolic and non-symbolic approaches within an
embodied system is likely to have important consequences,
both for theory and application. In particular, symbolic
information will enable the robot to be 'articulate',
explaining, verbally, what and why it takes particular
decisions.

Conclusion

We have argued that progress towards understanding general
intelligence requires an integrated approach: not just
integrating perception with learning, but also integrating
high-level and low-level modes of processing. It is unlikely
that a satisfactory theory of human intelligence will be
developed from a single explanatory framework, so we
expect an artificial system with claims to general intelligence
to be a unification of diverse approaches.
 In this paper, we have set out the case for a symbolic
system, which integrates perception with learning. We have
shown how the system captures many details of high-level
processing in human cognition, and also how it captures
physical behaviours, such as details of eye fixations. These
successes allow us to propose some ideas of how a complete
model of the mind may look.

11

 Central would be a two-way interaction between
perception and cognition. This interaction must be coupled
with an incremental learning system, capable of acquiring a
vast and coherent structure of nodes and links. But also,
paradoxically perhaps, the architecture should exhibit strong
constraints, such as limited processing time or short-term
memory capacities. These limits lie behind some of the key
empirical challenges to computational theories of
psychological behaviour.

Acknowledgements

This research was supported by the Economics and Social
Research Council under grant number RES-000-23-1601.

References

Anderson, J. R., and Lebière, C. (Eds.). (1998). The atomic
components of thought. Mahwah, NJ: Erlbaum.

Chase, W. G., and Simon, H. A. (1973). Perception in
chess. Cognitive Psychology, 4, 55-81.

De Groot, A. D., and Gobet, F. (1996). Perception and
memory in chess: Heuristics of the professional eye. Assen:
Van Gorcum.

Dreyfus, H., and Dreyfus, S. (1986). Mind over machine.
New York: Free Press.

Feigenbaum, E. A., and Simon, H. A. (1984). EPAM-like
models of recognition and learning. Cognitive Science, 8,
305-336.

Freudenthal, D., Pine, J. M., Aguado-Orea, J. & Gobet, F.
(2007). Modelling the developmental patterning of finiteness
marking in English, Dutch, German and Spanish using
MOSAIC. Cognitive Science, 31, 311-341.

Freudenthal, D., Pine, J. M., & Gobet, F. (2009).
Simulating the referential properties of Dutch, German and
English Root Infinitives in MOSAIC. Language Learning
and Development, 5, 1-29.

Gobet, F. (1997). A pattern-recognition theory of search in
expert problem solving. Thinking and Reasoning, 3, 291-313.

Gobet, F. (2009). Using a cognitive architecture for
addressing the question of cognitive universals in cross-
cultural psychology: The example of awalé. Journal of
Cross-Cultural Psychology, 40, 627-648.

Gobet, F., and Jansen, P. (1994). Towards a chess program
based on a model of human memory. In H. J. van den Herik,
I. S. Herschberg and J. E. Uiterwijk (Eds.), Advances in
Computer Chess 7 (pp. 35-60). Maastricht: University of
Limburg Press.

Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C.-H.,
Jones, G., Oliver, I., and Pine, J. M. (2001). Chunking
mechanisms in human learning. Trends in Cognitive
Sciences, 5, 236-243.

Gobet, F., Richman, H., Staszewski, J., and Simon, H. A.
(1997). Goals, representations, and strategies in a concept
attainment task: The EPAM model. The Psychology of
Learning and Motivation, 37, 265-290.

Gobet, F., and Simon, H. A. (1996). Recall of rapidly

presented random chess positions is a function of skill.
Psychonomic Bulletin and Review, 3, 159-163.

Gobet, F., and Simon, H. A. (2000). Five seconds or sixty?
Presentation time in expert memory. Cognitive Science, 24,
651-682.

Gobet, F., and Waters, A. J. (2003). The role of constraints
in expert memory. Journal of Experimental Psychology:
Learning, Memory and Cognition, 29, 1082-1094.

Grey Walter, W. The living brain (1953). London, UK:
Penguin.

Han, J.W., Lane, P.C.R., Davey, N. and Sun Y. (2009).
Attention mechanisms and component-based face detection.
Proceedings of the International Conference on Methods and
Models in Computer Science (IEEE Computer Society).

Jones, G., Gobet, F., & Pine, J. M. (2007). Linking
working memory and long-term memory: A computational
model of the learning of new words. Developmental Science,
10, 853-873.

Jones, G., Gobet, F., & Pine, J. M. (2008). Computer
simulations of developmental change: The contributions of
working memory capacity and long-term knowledge.
Cognitive Science,32, 1148-1176.

Lane, P. C. R., Cheng, P. C.-H., and Gobet, F. (2000).
CHREST+: Investigating how humans learn to solve
problems using diagrams. AISB Quarterly, 103, 24-30.

Lane, P. C. R., and Gobet, F. (2001). Simple environments
fail as illustrations of intelligence: A review of R. Pfeifer and
C. Scheier: 'Understanding Intelligence'. Artificial
Intelligence, 127, 261-267.

Lane, P. C. R., & Gobet, F. (2005). Discovering predictive
variables when evolving cognitive models. Third
International Conference on Advances in Pattern
Recognition.

Lane, P.C.R., Gobet, F. & Cheng, P.C-H. (2000). Learning-
based constraints on schemata. Proceedings of the Twenty-
Second Annual Conference of the Cognitive Science Society,
pp. 776-81.

Lane, P. C. R., Sykes, A. K., and Gobet, F. (2003).
Combining low-level perception with expectations in
CHREST. In F. Schmalhofer, R. M. Young and G. Katz
(Eds.), Proceedings of EuroCogSci 03: The European
Cognitive Science Conference 2003 (pp. 205-210). Mahwah,
NJ: Erlbaum.

Newell, A. (1990). Unified theories of cognition.
Cambridge, MA: Harvard University Press.

Pfeifer, R., and Scheier, C. (1999). Understanding
intelligence. Cambridge: MIT Press.

Reber, A. S. (1967). Implicit learning of artificial
grammars. Journal of Verbal Learning and Verbal
Behaviour, 6, 855-863.

Simon, H. A. (1969). The sciences of the artificial.
Cambridge, MA: MIT Press.

Simon, H. A. (1979). Models of thought (Vol. 1). New
Haven, CT: Yale University Press.

Simon, H. A., and Gilmartin, K. J. (1973). A simulation of
memory for chess positions. Cognitive Psychology, 5, 29-46.

12

A General Intelligence Oriented Architecture for Embodied Natural
Language Processing

Ben Goertzel1 & Cassio Pennachin1 & Samir Araujo1 & Fabricio Silva1

& Murilo Queiroz1 & Ruiting Lian2 & Welter Silva1 &Michael Ross & Linas Vepstas1 & Andre Senna1

1 Novamente LLC
1405 Bernerd Place, Rockville MD 20851

2 Artificial Brain Laboratory
Xiamen University, Xiamen, China

Abstract

A software architecture is described which enables a
virtual agent in an online virtual world to carry out
simple English language interactions grounded in its
perceptions and actions. The use of perceptions to
guide anaphor resolution is discussed, along with the
use of natural language generation to answer simple
questions about the observed world. This architec-
ture has been implemented within the larger PetBrain
system, which is built on the OpenCog open-source
AI software framework and architected based on the
OpenCogPrime design for integrative AGI, and has
previously been used for nonlinguistic intelligent be-
haviors such as imitation and reinforcement learning.

Introduction

One key requirement of a humanlike AGI is the ability
to communicate linguistically about the world it expe-
riences, and to use its world-experience to understand
the language others produce. We describe here an ap-
proach to achieving these abilities, which has been im-
plemented within the PetBrain software system. After
reviewing the current version, we discuss extending it
into a more powerful AGI system.

The PetBrain implements a portion of OpenCog-
Prime (Goe09), an integrated conceptual and software
design aimed at achieving roughly humanlike AGI at
the human level and ultimately beyond. It is imple-
mented within the OpenCog open-source AI software
framework (GH08); and its purpose is to control a vir-
tual pet (currently a dog) in the Multiverse or RealX-
Tend virtual worlds. Previous papers have described
the PetBrain’s capability for imitative and reinforce-
ment learning (GPG08) and its personality and emo-
tion model (GPGA08); here we focus on its capability
for linguistic interaction, with a focus on the way its
virtual embodiment allows it to resolve linguistic am-
biguity and answer questions about itself and its life.
The paper is best read in conjunction with two online
videos illustrating the phenomena described 1, 2.

1http://novamente.net/example/grab ball.html
2http://novamente.net/example/nlp.html

Figure 1: High-level overview of PetBrain software ar-
chitecture

OpenCog and the PetBrain

OpenCogPrime is a cognitive architecture intended
for implementation within the OpenCog AGI software
framework, motivated by human cognitive science and
overlapping significantly with Stan Franklin’s LIDA
(FF08) and Joscha Bach’s MicroPsi (Bac09) architec-
tures. The architecture consists of a division into a
number of interconnected functional units correspond-
ing to different specialized capabilities such as percep-
tion, motor control and language, and also an atten-
tional focus unit corresponding to intensive integrative
processing. Within each functional unit, knowledge
representation is enabled via an Atomspace software
object that contains nodes and links (collectively called
Atoms) of various types representing declarative, pro-
cedural and episodic knowledge both symbolically and
subsymbolically. (For a description of the node and
link types typically utilized in OpenCog, the reader is
referred to (GP06); here we will mention a few node and
link types in passing, assuming the essential semantics
will be clear from context.) Each unit also contains
a collection of MindAgent objects implementing cog-
nitive, perception or action processes that act on this
Atomspace, and/or interact with the outside world.

The PetBrain, roughly depicted in Figure 1, is a sub-

13

set of the OpenCogPrime architecture, implemented
within OpenCog. Currently it is used to control vir-
tual pets, but in fact it could be used more generally
to control various intelligent virtual agents; and work
is underway to customize it to control humanoid robots
as well (GdG98). The PetBrain stores all its knowl-
edge inside the Atomspace. Part of this knowledge
is produced by the agent’s (pet’s) sensors (exterocep-
tive and proprioceptive) and handled by the Perception
Manager component. The agent’s knowledge about the
whole environment is used by the Language Compre-
hension component to link the elements, mentioned in
the sentences heard by the agent, to the objects ob-
served by the agent in the virtual world. An agent can
recognize and execute commands requested by another
agent/avatar, besides answering questions.

Most of our work with the PetBrain to date has in-
volved the Multiverse 3 virtual world, though we have
also worked with RealXTend. We’ve customized the
Multiverse Server and created a Multiverse Proxy to
mediate communication between the Virtual World and
the PetBrain. The Multiverse Proxy sends perceptual
data from Multiverse to the PetBrain, and in the cur-
rent system it also sends linguistic relationship. The
RelEx language comprehension system is used by the
Multiverse Proxy to parse the sentences given by the
user, via the Multiverse Client, and only the Relation
objects produced by RelEx are then sent to the Pet-
Brain. Conversely, the PetBrain sends Relation objects
based on conceptual Atoms to the Multiverse Proxy,
which invokes the NLGen system to transform these
into English to be conveyed to the user.

The current PetBrain architecture is not intended as
a human(or animal)-level AGI but rather as an inter-
esting proto-AGI software system incorporating mul-
tiple components designed with human-level AGI in
mind. Strategies for incrementally modifying the Pet-
Brain into a human-level AGI will be discussed below.

Natural Language Processing with RelEx
and NLGen
OpenCog’s current Natural Language Processing sub-
system (invoked by the PetBrain but also heavily used
outside it) contains two main components: RelEx
(GGP+06), which is the natural language comprehen-
sion engine, takes sentences and maps them into ab-
stract logical relations which can be represented in the
OpenCog Atomspace; and NLGen, a natural language
generation engine, that translates Atoms embodying
logical relations into English sentences.

RelEx itself contains multiple components, only the
largest or most pertinent of which will be reviewed
here. RelEx carries out syntactic parsing via the open-
source Link Parser created at Carnegie-Mellon Univer-
sity (ST91)4. It then contains semantic interpretation
code that converts the Link Parser output to a feature

3http://www.multiverse.net
4http://www.link.cs.cmu.edu/link/

structure representation (a directed graph), and uses
a series of hand-coded rules (“sentence algorithms”)
to modify the feature structure. The modified feature
structures are used to generate the RelEx semantic rela-
tionships corresponding to a sentence, which bear some
resemblance to the output of the Stanford dependency
parser 5, but often contain significant additional seman-
tic information. Finally, the RelEx2Frame component
uses additional hand-coded rules to map RelEx seman-
tic relationships into sets of more abstract logical rela-
tionships, constructed utilizing the FrameNet (BFL98)
ontology and other similar semantic resources (Goe08);
and the Frame2Atom component translates these rela-
tionships into OpenCogAtoms Thus, RelEx translates
English into Atoms. Among the many details we have
left out in this precis are the ranking of multiple out-
puts (parses and FrameNet interpretations are ranked
using a combination of inference and heuristics) and the
handling of ambiguity (e.g. anaphor resolution which
will be discussed below).

NLGen is a sentence generation system which is used
to generate sentences from RelEx semantic relation-
ships – which in turn may be produced by applying a
component called Frames2RelEx to appropriate Atoms
in the OpenCog Atomspace. One of the core ideas un-
derlying NLGen is that most language generation may
be done by reversing previously executed language com-
prehension processes (GPI+10),(LGL+10). Given a set
of interconnected Atoms to express, NLGen iterates
through the predicates P in this set, and for each one it
produces a graph GP of associated RelEx semantic rela-
tionships, and then matches this graph against its mem-
ory (which stores previously perceived sentences and
their semantic interpretations) via the SAGA match-
ing algorithm (TMS+07), looking for remembered sen-
tences that gave rise to semantic relationship-sets simi-
lar to GP . The results from doing this matching for dif-
ferent graphs GP are then merged, and some rules are
applied for handling phenomena like tense and deter-
miners, ultimately yielding one or more sentences based
on combining (instantiated abstractions of) pieces of
the remembered sentences corresponding to selected
predicates P . Finally, while this similarity matching
approach has quite broad applicability, for dealing with
complex sentences it must be augmented by additional
mechanisms, and a prototype exists that uses an imple-
mentation of Chomsky’s Merge operator for this pur-
pose (operating on the same RelEx relationships as the
primary NLGen system).

Embodiment-Based Anaphor Resolution
One of the two ways the PetBrain currently relates lan-
guage processing to embodied experience is via using
the latter to resolve anaphoric references in text pro-
duced by human-controlled avatars.

In our current work, the PetBrain controlled agent
lives in a world with many objects, each one with their

5http://nlp.stanford.edu/software/lex-parser.shtml

14

own characteristics. For example, we can have multiple
balls, with varying colors and sizes. We represent this
in the OpenCog Atomspace via using multiple nodes:
a single ConceptNode to represent the concept ”ball”,
a WordNode associated with the word ”ball”, and nu-
merous SemeNodes representing particular balls. There
may of course also be ConceptNodes representing ball-
related ideas not summarized in any natural language
word, e.g. ”big fat squishy balls,” ”balls that can use-
fully be hit with a bat”, etc.

As the agent interacts with the world, it acquires in-
formation about the objects it finds, through percep-
tions. The perceptions associated with a given object
are stored as other nodes linked to the node represent-
ing the specific object instance. All this information
is represented in the Atomspace using FrameNet-style
relationships (exemplified in the next section).

When the user says, e.g., ”Grab the red ball”, the
agent needs to figure out which specific ball the user
is referring to – i.e. it needs to invoke the Reference
Resolution (RR) process. RR uses the information in
the sentence to select instances and also a few heuristic
rules. Broadly speaking, Reference Resolution maps
nouns in the user’s sentences to actual objects in the
virtual world, based on world-knowledge obtained by
the agent through perceptions.

In this example, first the brain selects the ConceptN-
odes related to the word ”ball”. Then it examines all
individual instances associated with these concepts, us-
ing the determiners in the sentence along with other ap-
propriate restrictions (in this example the determiner is
the adjective ”red”; and since the verb is ”grab” it also
looks for objects that can be fetched). If it finds more
than one ”fetchable red ball”, an heuristic is used to se-
lect one (in this case, it chooses the nearest instance).

The agent also needs to map pronouns in the sen-
tences to actual objects in the virtual world. For exam-
ple, if the user says ”I like the red ball. Grab it,” the
agent must map the pronoun ”it” to a specific red ball.
This process is done in two stages: first using anaphor
resolution to associate the pronoun ”it” with the previ-
ously heard noun ”ball”; then using reference resolution
to associate the noun ”ball” with the actual object.

The subtlety of anaphor resolution is that there may
be more than one plausible ”candidate” noun cor-
responding to a given pronouns. RelEx’s standard
anaphor resolution system is based on the classical
Hobbs algorithm(Hob78). Basically, when a pronoun
(it, he, she, they and so on) is identified in a sen-
tence, the Hobbs algorithm searches through recent sen-
tences to find the nouns that fit this pronoun accord-
ing to number, gender and other characteristics. The
Hobbs algorithm is used to create a ranking of candi-
date nouns, ordered by time.

We improve the Hobbs algorithm results by using the
agent’s world-knowledge to help choose the best candi-
date noun. Suppose the agent heard the sentences:

"The ball is red."

"The stick is brown."

and then it receives a third sentence

"Grab it.".

the anaphor resolver will build a list containing two
options for the pronoun ”it” of the third sentence: ball
and stick. Given that the stick corresponds to the most
recently mentioned noun, the agent will grab it instead
of (as Hobbs would suggest) the ball.

Similarly, if the agent’s history contains

"From here I can see a tree and a ball."
"Grab it."

Hobbs algorithm returns as candidate nouns ”tree”
and ”ball”, in this order. But using our integrative
Reference Resolution process, the agent will conclude
that a tree cannot be grabbed, so ”ball” is chosen.

Embodiment-Based Question Answering
Our agent is also capable of answering simple ques-
tions about its feelings/emotions (happiness, fear, etc.)
and about the environment in which it lives. After a
question is asked to the agent, it is parsed by RelEx
and classified as either a truth question or a discur-
sive one. After that, RelEx rewrites the given question
as a list of Frames (based on FrameNet 6 with some
customizations), which represent its semantic content.
The Frames version of the question is then processed
by the agent and the answer is also written in Frames.
The answer Frames are then sent to a module that con-
verts it back to the RelEx format. Finally the answer,
in RelEx format, is processed by the NLGen module,
that generates the text of the answer in English. We
will discuss this process here in the context of the sim-
ple question ”What is next to the tree?”, which in an
appropriate environment receives the answer ”The red
ball is next to the tree.”

Question answering (QA) of course has a long history
in AI (Zhe09), and our approach fits squarely into the
tradition of “deep semantic QA systems”; however it
is innovative in its combination of dependency parsing
with FrameNet and most importantly in the manner of
its integration of QA with an overall cognitive architec-
ture for agent control.

Preparing/Matching Frames
In order to answer an incoming question, the agent tries
to match the Frames list, created by RelEx, against
the Frames stored in its own memory. In general these
Frames could come from a variety of sources, including
inference, concept creation and perception; but in the
current PetBrain they primarily come from perception,
and simple transformations of perceptions.

However, the agent cannot use the incoming percep-
tual Frames in their original format because they lack
grounding information (information that connects the

6http://framenet.icsi.berkeley.edu

15

mentioned elements to the real elements of the environ-
ment). So, two steps are then executed before trying
to match the Frames: Reference Resolution (described
above) and Frames Rewriting. Frames Rewriting is a
process that changes the values of the incoming Frames
elements into grounded values. Here is an example, us-
ing the standard Novamente/OpenCog indent notation
described in (GP06) (in which indentation denotes the
function-argument relation, as in Python, and RAB de-
notes the relation R with arguments A and B):

Incoming Frame (Generated by RelEx)

EvaluationLink
DefinedFrameElementNode Color:Color
WordInstanceNode "red@aaa"

EvaluationLink
DefinedFrameElementNode Color:Entity
WordInstanceNode "ball@bbb"

ReferenceLink
WordInstanceNode "red@aaa"
WordNode "red"

After Reference Resolution

ReferenceLink
WordInstanceNode "ball@bbb"
SemeNode "ball_99"

Grounded Frame (After Rewriting)

EvaluationLink
DefinedFrameElementNode Color:Color
ConceptNode "red"

EvaluationLink
DefinedFrameElementNode Color:Entity
SemeNode "ball_99"

Frame Rewriting serves to convert the incoming
Frames to the same structure used by the Frames stored
into the agent’s memory. After Rewriting, the new
Frames are then matched against the agent’s memory
and if all Frames were found in it, the answer is known
by the agent, otherwise it is unknown.

Currently if a truth question was posed and all
Frames were matched successfully, the answer will be
”yes”; otherwise ”no”. Mapping of ambiguous matches
into ambiguous responses is left for a later version.

If the question requires a discursive answer the pro-
cess is slightly different. For known answers the
matched Frames are converted into RelEx format by
Frames2RelEx and then sent to NLGen, which prepares
the final English text to be answered. There are two
types of unknown answers. The first one is when at
least one Frame cannot be matched against the agent’s
memory and the answer is ”I don’t know”. And the
second type of unknown answer occurs when all Frames
were matched successfully they cannot be correctly con-
verted into RelEx format or NLGen cannot identify the
incoming relations. In this case the answer is ”I know
the answer, but I don’t know how to say it”.

Figure 2: Overview of language comprehension process

Frames2RelEx
As mentioned above, this module is responsible for re-
ceiving a list of grounded Frames and returning another
list containing the relations, in RelEx format, which
represents the grammatical form of the sentence de-
scribed by the given Frames. That is, the Frames list
represents a sentence that the agent wants to say to an-
other agent. NLGen needs an input in RelEx Format
in order to generate an English version of the sentence;
Frames2RelEx does this conversion.

Currently, Frames2RelEx is implemented as a rule-
based system in which the preconditions are the re-
quired frames and the output is one or more RelEx
relations e.g.

#Color(Entity,Color) =>
present($2) .a($2) adj($2) _predadj($1, $2)
definite($1) .n($1) noun($1) singular($1)
.v(be) verb(be) punctuation(.) det(the)

where the precondition comes before the symbol =>
and Color is a frame which has two elements: Entity
and Color. Each element is interpreted as a variable
Entity = $1 and Color = $2. The effect, or output of
the rule, is a list of RelEx relations. As in the case of
RelEx2Frame, the use of hand-coded rules is considered
a stopgap, and for a powerful AGI system based on
this framework such rules will need to be learned via
experience (a topic beyond the scope of this paper).

Example of the Question Answering
Pipeline
Turning to the example ”What is next to the tree?”,
Figure illustrates the processes involved:

The question is parsed by RelEx, which creates the
frames indicating that the sentence is a question re-
garding a location reference (next) relative to an object
(tree). The frame that represents questions is called

16

Questioning and it contains the elements Manner that
indicates the kind of question (truth-question, what,
where, and so on), Message that indicates the main
term of the question and Addressee that indicates the
target of the question. To indicate that the question is
related to a location, the Locative relation frame is also
created with a variable inserted in its element Figure,
which represents the expected answer (in this specific
case, the object that is next to the tree).

The question-answer module tries to match the ques-
tion frames in the Atomspace to fit the variable element.
Suppose that the object that is next to the tree is the
red ball. In this way, the module will match all the
frames requested and realize that the answer is the value
of the element Figure of the frame Locative relation
stored in the Atom Table. Then, it creates location
frames indicating the red ball as the answer. These
frames will be converted into RelEx format by the
RelEx2Frames rule based system as described above,
and NLGen will generate the expected sentence ”the
red ball is next to the tree”.

Example of the Language Generation
Pipeline
To illustrate the process of language generation using
NLGen, as utilized in the context of query response,
consider the sentence ”The red ball is near the tree”.
When parsed by RelEx, this sentence is converted to:

_obj(near, tree)
_subj(near, ball)
imperative(near)
hyp(near)
definite(tree)
singular(tree)
_to-do(be, near)
_subj(be, ball)
present(be)
definite(ball)
singular(ball)

So, if sentences with this format are in the system’s
experience, these relations are stored by NLGen and
will used to match future relations that must be con-
verted into natural language. NLGen matches at an
abstract level, so sentences like ”The stick is next to
the fountain” will also be matched even if the corpus
contain only the sentence ”The ball is near the tree”.

If the agent wants to say that ”The red ball is near
the tree”, it must invoke NLGen with the above RelEx
contents as input. However, the knowledge that the
red ball is near the tree is stored as frames, and not as
RelEx format. More specifically, in this case the related
frame stored is the Locative relation one, containing
the following elements and respective values: Figure →
red ball, Ground → tree, Relation type→ near.

So we must convert these frames and their elements’
values into the RelEx format accept by NLGen. For
AGI purposes, a system must learn how to perform this
conversion appropriately; currently, however, we have

implemented a temporary short-cut: a system of hand-
coded rules, in which the preconditions are the required
frames and the output is the RelEx format that will
generate the sentence that represents the frames. The
output of a rule may contains variables that must be
replaced by the frame elements’ values. For the example
above, the output subj(be, ball) is generated from the
rule output subj(be, $var1) with the $var1 replaced by
the Figure element value.

Considering specifically question-answering (QA),
the PetBrain’s Language Comprehension module rep-
resents the answer to a question as a list of frames. In
this case, we may have the following situations:

• The frames match a precondition and the RelEx out-
put is correctly recognized by NLGen, which gener-
ates the expected sentence as the answer;

• The frames match a precondition, but NLGen did not
recognize the RelEx output generated. In this case,
the answer will be ”I know the answer, but I don’t
know how to say it”, which means that the question
was answered correctly by the Language Comphre-
hension, but the NLGen could not generate the cor-
rect sentence;

• The frames didn’t match any precondition; also ”I
know the answer, but I don’t know how to say it” ;

• Finally, if no frames are generated as answer by the
Language Comprehension module, the agent’s answer
will be ”I don’t know”.

If the question is a truth-question, then NLGen is
not required: the answer is ”Yes” if and only if it was
possible to create frames constituting an answer.

From Today’s PetBrain to Tomorrow’s
Embodied AGI

The current PetBrain system displays a variety of in-
teresting behaviors, but is not yet a powerful AGI sys-
tem. It combines a simple framework for emotions and
motivations with the ability to learn via imitation, re-
inforcement and exploration, and the ability to under-
stand and produce simple English pertaining to its ob-
servations and experiences; and shortly it will be able
to carry out simple inferences based on its observations
and experiences. Assuming the underlying theory is
correct, what needs to be done to transform the cur-
rent PetBrain into an AGI system with, say, the rough
general intelligence level of a young child?

Firstly, the current PetBrain QA system has one ma-
jor and obvious shortcoming: it can only answer ques-
tions whose answer is directly given by its experience.
To answer questions whose answers are indirectly given
by experience, some sort of inference process must be in-
tegrated into the system. OpenCog already has a prob-
abilistic engine, PLN (Probabilistic Logic Networks),
and one of our next steps will be to integrate it with
the PetBrain. For instance, suppose the agent is in a
scenario that has many balls in it, of different colors.

17

Suppose it has previously been shown many objects,
and has been told things like ”The ball near the tree is
Bob’s”, ”the stick next to Jane is Jane’s”, etc. Suppose
that from its previous experience, the agent has enough
data to infer that Jane tends to own a lot of red things.
Suppose finally that the agent is asked ”Which ball is
Bob’s.” The current agent will say ”I don’t know,” un-
less someone has told it which ball is Bob’s before, or
it has overheard someone referring to a particular ball
as Bob’s. But with PLN integrated, then the agent will
be able look around, find a red ball and say (for in-
stance) ”The ball near the fountain” (if the ball near
the fountain is in fact red).

Next, there are known shortcomings in the NLP in-
frastructure we have used in the PetBrain, some of
which have been mentioned above, e.g. the use of hard-
coded rules in places where there should be experien-
tially adaptable rules. Remedying these shortcomings
is relatively straightforward within the OpenCog archi-
tecture, the main step being to move all of these hard-
coded rules into the Atomspace, replacing their inter-
preters with the PLN chainer, and then allowing PLN
inference to modify the rules based on experience.

Apart from NLP improvements and PLN integration,
what else is missing in the PetBrain, restricting its level
of general intelligence? It is missing a number of impor-
tant cognition components identified in the OpenCog-
Prime AGI design. Adaptive attention allocation is
prime among these: the ECAN framework (GPI+10)
provides a flexible capability for assignment of credit
and resource allocation, but needs to be integrated with
and adapted to the virtual agent control context. Con-
cept creation is another: inference about objects and
linguistic terms is important, but inference becomes
more powerful when used in synchrony with methods
for creating new concepts to be inferred about. Finally
the PetBrain’s motivational architecture is overly spe-
cialized for the ”virtual dog” context and we intend
to replace it with a new architecture based on Joscha
Bach’s MicroPsi (Bac09).

There is also the question of whether virtual worlds
like Multiverse are sufficiently rich to enable a young
artificial mind to learn to be a powerful AGI. We
consider this non-obvious at present, and in parallel
with our virtual-worlds work we have been involved
with using the PetBrain to control a Nao humanoid
robot (GdG98). The OpenCog framework is flexible
enough that intricate feedback between robotic sensori-
motor modules and cognitive/linguistic modules (such
as those described here) can be introduced without
changing the operation of the latter.

References

Joscha Bach. Principles of Synthetic Intelligence. Ox-
ford University Press, 2009.
Collin F. Baker, Charles J. Fillmore, and John B.
Lowe. The berkeley framenet project. In In Proc.
of COLING-ACL, pages 86–90, 1998.

Stan Franklin and David Friedlander. Lida and a the-
ory of mind. In Proc. of AGI-08, 2008.
Ben Goertzel and Hugo de Garis. Xia-man: An exten-
sible, integrative architecture for intelligent humanoid
robotics. In IIn Proc. of BICA-08, pages 86–90, 1998.
Ben Goertzel, Izabela Freire Goertzel, Hugo Pinto,
Mike Ross, Ari Heljakka, and Cassio Pennachin. Using
dependency parsing and probabilistic inference to ex-
tract relationships between genes, proteins and malig-
nancies implicit among multiple biomedical research
abstracts. In BioNLP ’06: Proc. of the Workshop
on Linking Natural Language Processing and Biology,
pages 104–111, 2006.
Ben Goertzel and David Hart. Opencog: An open-
source platform for agi. In Proc. of AGI-08, 2008.
Ben Goertzel. A pragmatic path toward endowing
virtually-embodied ais with human-level linguistic ca-
pability. In Proc. of IJCNN 2008, 2008.
Ben Goertzel. Opencogprime: A cognitive synergy
based architecture for embodied general intelligence.
In Yingxu Wang and George Baciu (eds), Proc. of
ICCI-09, Hong Kong, 2009.
Ben Goertzel and Cassio Pennachin. The novamente
cognition engine. In Artificial General Intelligence.
Springer, 2006.
Ben Goertzel, Cassio Pennachin, and Nil Geisweiller.
An integrative methodology for teaching embodied
non-linguistic agents, applied to virtual animals in sec-
ond life. In Proc. of AGI-08, 2008.
Ben Goertzel, Cassio Pennachin, Nil Geisweiller, and
Samir Araujo. An inferential dynamics approach to
personality and. emotion driven behavior determina-
tion for virtual animals. In Proc. of Catz and Dogz
2008 (AISB) Symposium, 2008.
Ben Goertzel, Joel Pitt, Matthew Ikle, Cassio Pen-
nachin, and Rui Liu. Glocal memory: a design prin-
ciple for artificial brains and minds. Neurocomputing,
Special Issue of Artificial Brain, 2010.
Jerry R. Hobbs. Resolving pronominal references. Lin-
gua, 44:311–338, 1978.
Ruiting Lian, Ben Goertzel, Rui Liu, Michael Ross,
Murilo Queiroz, and Linas Vepstas. Sentence gera-
tion for artificial brains: a glocal similarity matching
approach. Neurocomputing, Special Issue of Artificial
Brain, 2010.
Daniel D. K. Sleator and Davy Temperley. Parsing
english with a link grammar. In In Third International
Workshop on Parsing Technologies, 1991.
Yuanyuan Tian, Richard C. McEachin, Carlos Santos,
David J. States, and Jignesh M. Patel. Saga: a sub-
graph matching tool for biological graphs. Bioinfor-
matics (Oxford, England), 23(2):232–239, Jan. 2007.
Zhiping Zheng. Bibliography on auto-
mated question answering, May 2009.
http://www.answerbus.com/bibliography/index.shtml.

18

Toward a Formal Characterization of Real-World General Intelligence

Ben Goertzel
Novamente LLC

1405 Bernerd Place
Rockville MD 20851

Abstract

Two new formal definitions of intelligence are pre-
sented, the ”pragmatic general intelligence” and ”effi-
cient pragmatic general intelligence.” Largely inspired
by Legg and Hutter’s formal definition of ”universal
intelligence,” the goal of these definitions is to cap-
ture a notion of general intelligence that more closely
models that possessed by humans and practical AI sys-
tems, which combine an element of universality with a
certain degree of specialization to particular environ-
ments and goals. Pragmatic general intelligence mea-
sures the capability of an agent to achieve goals in envi-
ronments, relative to prior distributions over goal and
environment space. Efficient pragmatic general intelli-
gences measures this same capability, but normalized
by the amount of computational resources utilized in
the course of the goal-achievement. A methodology
is described for estimating these theoretical quantities
based on observations of a real biological or artificial
system operating in a real environment. Finally, a mea-
sure of the ”degree of generality” of an intelligent sys-
tem is presented, allowing a rigorous distinction be-
tween ”general AI” and ”narrow AI.”

Introduction
”Intelligence” is a commonsense, ”folk psychology” con-
cept, with all the imprecision and contextuality that
this entails. One cannot expect any compact, elegant
formalism to capture all of its meanings. Even in the
psychology and AI research communities, divergent def-
initions abound; Legg and Hutter (LH07a) lists and or-
ganizes 70+ definitions from the literature.

Practical study of natural intelligence in humans and
other organisms, and practical design, creation and in-
struction of artificial intelligences, can proceed perfectly
well without an agreed-upon formalization of the ”intel-
ligence” concept. Some researchers may conceive their
own formalisms to guide their own work, others may
feel no need for any such thing.

But nevertheless, it is of interest to seek formaliza-
tions of the concept of intelligence, which capture useful
fragments of the commonsense notion of intelligence,
and provide guidance for practical research in cogni-
tive science and AI. A number of such formalizations
have been given in recent decades, with varying degrees

of mathematical rigor. Perhaps the most carefully-
wrought formalization of intelligence so far is the theory
of ”universal intelligence” presented by Shane Legg and
Marcus Hutter in (LH07b), which draws on ideas from
algorithmic information theory.

Universal intelligence captures a certain aspect of the
”intelligence” concept very well, and has the advantage
of connecting closely with ideas in learning theory, de-
cision theory and computation theory. However, the
kind of general intelligence it captures best, is a kind
which is in a sense more general in scope than human-
style general intelligence. Universal intelligence does
capture the sense in which humans are more intelligent
than worms, which are more intelligent than rocks; and
the sense in which theoretical AGI systems like Hutter’s
AIXI or AIXItl (Hut05) would be much more intelli-
gent than humans. But it misses essential aspects of
the intelligence concept as it is used in the context of
intelligent natural systems like humans or real-world AI
systems.

Our main goal here is to present variants of univer-
sal intelligence that better capture the notion of intel-
ligence as it is typically understood in the context of
real-world natural and artificial systems. The first vari-
ant we describe is pragmatic general intelligence, which
is inspired by the intuitive notion of intelligence as ”the
ability to achieve complex goals in complex environ-
ments,” given in (Goe93). After assuming a prior dis-
tribution over the space of possible environments, and
one over the space of possible goals, one then defines the
pragmatic general intelligence as the expected level of
goal-achievement of a system relative to these distribu-
tions. Rather than measuring truly broad mathemat-
ical general intelligence, pragmatic general intelligence
measures intelligence in a way that’s specifically biased
toward certain environments and goals.

Another variant definition is then presented, the ef-
ficient pragmatic general intelligence, which takes into
account the amount of computational resources utilized
by the system in achieving its intelligence. Some ar-
gue that making efficient use of available resources is a
defining characteristic of intelligence, see e.g. (Wan06).

A critical question left open is the characterization
of the prior distributions corresponding to everyday hu-

19

man reality; we have given a semi-formal sketch of some
ideas on this in a prior conference paper (Goe09), where
we present the notion of a ”communication prior,”
which assigns a probability weight to a situation S
based on the ease with which one agent in a society
can communicate S to another agent in that society,
using multimodal communication (including verbaliza-
tion, demonstration, dramatic and pictorial depiction,
etc.). We plan to develop this and related notions fur-
ther.

Finally, we present a formal measure of the ”gener-
ality” of an intelligence, which precisiates the informal
distinction between ”general AI” and ”narrow AI.”

Legg and Hutter’s Definition of General
Intelligence

First we review the definition of general intelligence
given in (LH07b), as the formal setting they provide
will also serve as the basis for our work here.

We consider a class of active agents which observe
and explore their environment and also take actions in
it, which may affect the environment. Formally, the
agent sends information to the environment by send-
ing symbols from some finite alphabet called the action
space Σ; and the environment sends signals to the agent
with symbols from an alphabet called the perception
space, denoted P. Agents can also experience rewards,
which lie in the reward space, denotedR, which for each
agent is a subset of the rational unit interval.

The agent and environment are understood to take
turns sending signals back and forth, yielding a history
of actions, observations and rewards, which may be de-
noted

a1o1r1a2o2r2...

or else

a1x1a2x2...

if x is introduced as a single symbol to denote both
an observation and a reward. The complete interaction
history up to and including cycle t is denoted ax1:t; and
the history before cycle t is denoted ax<t = ax1:t−1.

The agent is represented as a function π = which
takes the current history as input, and produces an ac-
tion as output. Agents need not be deterministic, an
agent may for instance induce a probability distribution
over the space of possible actions, conditioned on the
current history. In this case we may characterize the
agent by a probability distribution π(at|ax<t). Simi-
larly, the environment may be characterized by a prob-
ability distribution µ(xk|ax<kak). Taken together, the
distributions π and µ define a probability measure over
the space of interaction sequences.

To define universal intelligence, Legg and Hutter
consider the class of environments that are reward-
summable, meaning that the total amount of reward
they return to any agent is bounded by 1. Where ri
denotes the reward experienced by the agent from the

environment at time i, the expected total reward for the
agent π from the environment µ is defined as

V πµ ≡ E(
∞∑
1

ri) ≤ 1

To extend their definition in the direction of greater
realism, we first introduce a second-order probability
distribution ν, which is a probability distribution over
the space of environments µ. The distribution ν as-
signs each environment a probability. One such dis-
tribution ν is the Solomonoff-Levin universal distribu-
tion in which one sets ν = 2−K(µ); but this is not the
only distribution ν of interest. In fact a great deal of
real-world general intelligence consists of the adapta-
tion of intelligent systems to particular distributions
ν over environment-space, differing from the universal
distribution. We then define
Definition 1. The biased universal intelligence
of an agent π is its expected performance with respect
to the distribution ν over the space of all computable
reward-summable environments, E, that is,

Υ(π) ≡
∑
µ∈E

ν(µ)V πµ

Legg and Hutter’s universal intelligence is obtained
by setting ν equal to the universal distribution.

This framework is more flexible than it might seem.
E.g. suppose one wants to incorporate agents that die.
Then one may create a special action, say a666, corre-
sponding to the state of death, to create agents that

• in certain circumstances output action a666

• have the property that if their previous action was
a666, then all of their subsequent actions must be
a666

and to define a reward structure so that actions a666

always bring zero reward. It then follows that death
is generally a bad thing if one wants to maximize in-
telligence. Agents that die will not get rewarded after
they’re dead; and agents that live only 70 years, say, will
be restricted from getting rewards involving long-term
patterns and will hence have specific limits on their in-
telligence.

Connecting Legg and Hutter’s Model of Intelli-
gent Agents to the Real World A notable aspect
of the Legg and Hutter formalism is the separation of
the reward mechanism from the cognitive mechanisms
of the agent. While commonplace in the reinforcement
learning literature, this seems psychologically unrealis-
tic in the context of biological intelligences and many
types of machine intelligences. Not all human intel-
ligent activity is specifically reward-seeking in nature;
and even when it is, humans often pursue complexly
constructed rewards, that are defined in terms of their
own cognitions rather than separately given. Suppose
a certain human’s goals are true love, or world peace,

20

and the proving of interesting theorems – then these
goals are defined by the human herself, and only she
knows if she’s achieved them. An externally-provided
reward signal doesn’t capture the nature of this kind
of goal-seeking behavior, which characterizes much hu-
man goal-seeking activity (and will presumably char-
acterize much of the goal-seeking activity of advanced
engineered intelligences also) ... let alone human behav-
ior that is spontaneous and unrelated to explicit goals,
yet may still appear commonsensically intelligent.

One could seek to bypass this complaint about the
reward mechanisms via a sort of ”neo-Freudian” argu-
ment, via

• associating the reward signal, not with the ”exter-
nal environment” as typically conceived, but rather
with a portion of the intelligent agent’s brain that is
separate from the cognitive component

• viewing complex goals like true love, world peace
and proving interesting theorems as indirect ways of
achieving the agent’s ”basic goals”, created within
the agent’s memory via subgoaling mechanisms

but it seems to us that a general formalization of intelli-
gence should not rely on such strong assumptions about
agents’ cognitive architectures. So below, after intro-
ducing the pragmatic and efficient pragmatic general
intelligence measures, we will propose an alternate in-
terpretation wherein the mechanism of external rewards
is viewed as a theoretical test framework for assessing
agent intelligence, rather than a hypothesis about in-
telligent agent architecture.

In this alternate interpretation, formal measures like
the universal, pragmatic and efficient pragmatic gen-
eral intelligence are viewed as not being directly appli-
cable to real-world intelligences, because they involve
the behaviors of agents over a wide variety of goals and
environments, whereas in real life the opportunity to
observe an agent’s activities are much more limited.
However, they are viewed as being indirectly applica-
ble to real-world agents, in the sense that an external
intelligence can observe an agent’s real-world behavior
and then infer its likely intelligence according to these
measures.

In a sense, this interpretation makes our formalized
measures of intelligence the opposite of real-world IQ
tests. An IQ test is a quantified, formalized test which
is designed to approximately predict the informal, qual-
itative achievement of humans in real life. On the other
hand, the formal definitions of intelligence we present
here are quantified, formalized tests that are designed
to capture abstract notions of intelligence, but which
can be approximately evaluated on a real-world intelli-
gent system by observing what it does in real life.

Pragmatic General Intelligence

To formalize pragmatic general intelligence, the first
modification we need to introduce to Legg and Hutter’s
framework is to allow agents to maintain memories (of

finite size), and at each time step to carry out internal
actions on their memories as well as external actions
in the environment. Legg and Hutter, in their the-
ory of universal intelligence, don’t need to worry about
memory, because their definition of intelligence doesn’t
take into account the computational resource usage of
agents. Thus, in their framework, it’s acceptable for
an agent to determine its actions based on the entire
past history of perceptions, actions and rewards. On
the other hand, if an agent needs to conserve memory
and/or memory access time, it may not be practical for
it to store its entire history, so it may need to store
a sample thereof, and/or a set of memory items rep-
resenting useful abstractions of its history. If one is
gauging intelligence using a measure that incorporates
space and time resource utilization, then the size and
organization of this memory become important aspects
of the system’s intelligence.

Further extending the Legg and Hutter framework,
we introduce the notion of a goal-seeking agent. We de-
fine goals as mathematical functions (to be specified be-
low) associated with symbols drawn from the alphabet
G; and we consider the environment as sending goal-
symbols to the agent along with regular observation-
symbols. (Note however that the presentation of a goal-
symbol to an agent does not necessarily entail the ex-
plicit communication to the agent of the contents of the
goal function. This must be provided by other, corre-
lated observations.) We also introduce a conditional
distribution γ(g, µ) that gives the weight of a goal g in
the context of a particular environment µ.

In this extended framework, an interaction sequence
looks like

m1a1o1g1r1m2a2o2g2r2...

or else

w1y1w2y2...

if w is introduced as a single symbol to denote the com-
bination of a memory action and an external action,
and y is introduced as a single symbol to denote the
combination of an observation, a reward and a goal.

Each goal function maps each finite interaction se-
quence Ig,s,t = ays:t with gs corresponding to g, into
a value rg(Ig,s,t) ∈ [0, 1] indicating the value or “raw
reward” of achieving the goal during that interaction
sequence. The total reward rt obtained by the agent is
the sum of the raw rewards obtained at time t from all
goals whose symbols occur in the agent’s history before
t. We will use “context” to denote the combination of
an environment, a goal function and a reward function.

If the agent is acting in environment µ, and is pro-
vided with gs corresponding to g at the start of the
time-interval T = {i ∈ (s, ..., t)}, then the expected
goal-achievement of the agent, relative to g, during the
interval is the expectation

21

V πµ,g,T ≡ E(
t∑
i=s

rg(Ig,s,i))

where the expectation is taken over all interaction se-
quences Ig,s,i drawn according to µ. We then propose

Definition 2. The pragmatic general intelligence
of an agent π, relative to the distribution ν over envi-
ronments and the distribution γ over goals, is its ex-
pected performance with respect to goals drawn from γ
in environments drawn from ν; that is,

Π(π) ≡
∑

µ∈E,g∈G,T
ν(µ)γ(g, µ)V πµ,g,T

(in those cases where this sum is convergent).

This definition formally captures the notion that ”intel-
ligence is achieving complex goals in complex environ-
ments,” where ”complexity” is gauged by the assumed
measures ν and γ.

If ν is taken to be the universal distribution, and γ is
defined to weight goals according to the universal dis-
tribution, then pragmatic general intelligence reduces
to universal intelligence.

Furthermore, it is clear that a universal algorithmic
agent like AIXI (Hut05) would also have a high prag-
matic general intelligence, under fairly broad condi-
tions. As the interaction history grows longer, the prag-
matic general intelligence of AIXI would approach the
theoretical maximum; as AIXI would implicitly infer
the relevant distributions via experience. However, if
significant reward discounting is involved, so that near-
term rewards are weighted much higher than long-term
rewards, then AIXI might compare very unfavorably in
pragmatic general intelligence, to other agents designed
with prior knowledge of ν and γ in mind.

The most interesting case to consider is where ν and
γ are taken to embody some particular bias in a real-
world space of environments and goals, and this biases
is appropriately reflected in the internal structure of an
intelligent agent. Note that an agent need not lack uni-
versal intelligence in order to possess pragmatic general
intelligence with respect to some non-universal distri-
bution over goals and environments. However, in gen-
eral, given limited resources, there may be a tradeoff be-
tween universal intelligence and pragmatic intelligence.
Which leads to the next point: how to encompass re-
source limitations into the definition.

One might argue that the definition of Pragmatic
General Intelligence is already encompassed by Legg
and Hutter’s definition because one may bias the distri-
bution of environments within the latter by considering
different Turing machines underlying the Kolmogorov
complexity. However this is not a general equivalence
because the Solomonoff-Levin measure intrinsically de-
cays exponentially, whereas an assumptive distribution
over environments might decay at some other rate. This
issue seems to merit further mathematical investigation.

Incorporating Computational Cost
Let ηπ,µ,g,T be a probability distribution describing
the amount of computational resources consumed by
an agent π while achieving goal g over time-scale T .
This is a probability distribution because we want to
account for the possibility of nondeterministic agents.
So, ηπ,µ,g,T (Q) tells the probability that Q units of re-
sources are consumed. For simplicity we amalgamate
space and time resources, energetic resources, etc. into
a single number Q, which is assumed to live in some
subset of the positive reals. Space resources of course
have to do with the size of the system’s memory, briefly
discussed above. Then we may define

Definition 3. The efficient pragmatic general in-
telligence of an agent π with resource consumption
ηπ,µ,g,T , relative to the distribution ν over environments
and the distribution γ over goals, is its expected per-
formance with respect to goals drawn from γ in envi-
ronments drawn from ν, normalized by the amount of
computational effort expended to achieve each goal; that
is,

ΠEff (π) ≡
∑

µ∈E,g∈G,Q,T

ν(µ)γ(g, µ)ηπ,µ,g,T (Q)
Q

V πµ,g,T

(in those cases where this sum is convergent).

Efficient pragmatic general intelligence is a measure
that rates an agent’s intelligence higher if it uses fewer
computational resources to do its business.

Note that, by abandoning the universal prior, we have
also abandoned the proof of convergence that comes
with it. In general the sums in the above definitions
need not converge; and exploration of the conditions
under which they do converge is a complex matter.

Assessing the Intelligence of Real-World
Agents

The pragmatic and efficient pragmatic general intelli-
gence measures are more ”realistic” than the Legg and
Hutter universal intelligence measure, in that they take
into account the innate biasing and computational re-
source restrictions that characterize real-world intel-
ligence. But as discussed earlier, they still live in
”fantasy-land” to an extent – they gauge the intelli-
gence of an agent via a weighted average over a wide
variety of goals and environments; and they presume a
simplistic relationship between agents and rewards that
does not reflect the complexities of real-world cognitive
architectures. It is not obvious from the foregoing how
to apply these measures to real-world intelligent sys-
tems, which lack the ability to exist in such a wide va-
riety of environments within their often brief lifespans,
and mostly go about their lives doing things other than
pursuing quantified external rewards. In this brief sec-
tion we describe an approach to bridging this gap. The
treatment is left-semi-formal in places.

22

We suggest to view the definitions of pragmatic and
efficient pragmatic general intelligence in terms of a
”possible worlds” semantics – i.e. to view them as ask-
ing, counterfactually, how an agent would perform, hy-
pothetically, on a series of tests (the tests being goals,
defined in relation to environments and reward signals).

Real-world intelligent agents don’t normally operate
in terms of explicit goals and rewards; these are ab-
stractions that we use to think about intelligent agents.
However, this is no objection to characterizing various
sorts of intelligence in terms of counterfactuals like: how
would system S operate if it were trying to achieve this
or that goal, in this or that environment, in order to
seek reward? We can characterize various sorts of in-
telligence in terms of how it can be inferred an agent
would perform on certain tests, even though the agent’s
real life does not consist of taking these tests.

This conceptual approach may seem a bit artificial,
but, we don’t currently see a better alternative, if one
wishes to quantitatively gauge intelligence (which is, in
a sense, an ”artificial” thing to do in the first place).
Given a real-world agent X and a mandate to assess
its intelligence, the obvious alternative to looking at
possible worlds in the manner of the above definitions,
is just looking directly at the properties of the things
X has achieved in the real world during its lifespan.
But this isn’t an easy solution, because it doesn’t dis-
ambiguate which aspects of X’s achievements were due
to its own actions versus due to the rest of the world
that X was interacting with when it made its achieve-
ments. To distinguish the amount of achievement that
X ”caused” via its own actions requires a model of
causality, which is a complex can of worms in itself;
and, critically, the standard models of causality also in-
volve counterfactuals (asking ”what would have been
achieved in this situation if the agent X hadn’t been
there”, etc.) (MW07). Regardless of the particulars,
it seems impossible to avoid counterfactual realities in
assessing intelligence.

The approach we suggest – given a real-world agent
X with a history of actions in a particular world, and
a mandate to assess its intelligence – is to introduce
an additional player, an inference agent δ, into the pic-
ture. The agent π modeled above is then viewed as
πX : the model of X that δ constructs, in order to ex-
plore X’s inferred behaviors in various counterfactual
environments. In the test situations embodied in the
definitions of pragmatic and efficient pragmatic general
intelligence, the environment gives πX rewards, based
on specifically configured goals. In X’s real life, the re-
lation between goals, rewards and actions will generally
be significantly subtler and perhaps quite different.

We model the real world similarly to the ”fantasy
world” of the previous section, but with the omission
of goals and rewards. We define a naturalistic context
as one in which all goals and rewards are constant, i.e.
gi = g0 and ri = r0 for all i. This is just a mathemat-
ical convention for stating that there are no precisely-
defined external goals and rewards for the agent. In

a naturalistic context, we then have a situation where
agents create actions based on the past history of ac-
tions and perceptions, and if there is any relevant notion
of reward or goal, it is within the cognitive mechanism
of some agent. A naturalistic agent X is then an agent
π which is restricted to one particular naturalistic con-
text, involving one particular environment µ (formally,
we may achieve this within the framework of agents de-
scribe above via dictating that X issues constant ”null
actions” a0 in all environments except µ).

Next, we posit a metric space (Σµ, d) of naturalistic
agents defined on a naturalistic context involving envi-
ronment µ, and a subspace ∆ ∈ Σµ of inference agents,
which are naturalistic agents that output predictions
of other agents’ behaviors (a notion we will not fully
formalize here). If agents are represented as program
trees, then d may be taken as edit distance on tree space
(Bil05). Then, for each agent δ ∈ ∆, we may assess
• the prior probability θ(δ) according to some assumed

distribution θ

• the effectiveness p(δ,X) of δ at predicting the actions
of an agent X ∈ Σµ
We may then define

Definition 4. The inference ability of the agent δ,
relative to µ and X, is

qµ,X(δ) = θ(δ)

∑
Y ∈Σµ

sim(X,Y)p(δ, Y)∑
Y ∈Σµ

sim(X,Y)

where sim is a specified decreasing function of d(X,Y),
such as sim(X,Y) = 1

1+d(X,Y) .

To construct πX , we may then use the model of X
created by the agent δ ∈ ∆ with the highest inference
ability relative to µ and X (using some specified order-
ing, in case of a tie). Having constructed πX , we can
then say that
Definition 5. The inferred pragmatic general intelli-
gence (relative to ν and γ) of a naturalistic agent X
defined relative to an environment µ, is defined as the
pragmatic general intelligence of the model πX of X
produced by the agent δ ∈ ∆ with maximal inference
ability relative to µ (and in the case of a tie, the first
of these in the ordering defined over ∆). The inferred
efficient pragmatic general intelligence of X relative to
µ is defined similarly.

This provides a precise characterization of the prag-
matic and efficient pragmatic intelligence of real-world
systems, based on their observed behaviors. It’s a bit
messy; but the real world tends to be like that.

Intellectual Breadth: Quantifying the
Generality of an Agent’s Intelligence

We turn finally to a related question: How can one
quantify the degree of generality that an intelligent
agent possesses? There has been much qualitative dis-
cussion of ”General AI” or ”Artificial General Intelli-
gence,” versus ”Narrow AI” (GP05), and intelligence

23

as we have formalized it here is specifically a variety of
general intelligence, but we have not yet tried to quan-
tify the notion of generality versus narrowness.

Given a triple (µ, g, T), and a set Σ of agents, one may
construct a fuzzy set Agµ,g,T gathering those agents
that are intelligent relative to the triple ; and given a
set of triples, one may also also define a fuzzy set Conπ
gathering those triples with respect to which a given
agent π is intelligent. The relevant formulas are:

χAgµ,g,T (π) = χConπ (µ, g, T) =
∑
Q

ηµ,g,T (Q)V πµ,g,T
Q

One could make similar definitions leaving out the com-
putational cost factor Q, but we suspect that incorpo-
rating Q is a more promising direction. We then pro-
pose
Definition 6. The intellectual breadth of an agent
π, relative to the distribution ν over environments and
the distribution γ over goals, is

H(χPConπ (µ, g, T))
where H is the entropy and

χPConπ (µ, g, T) =

ν(µ)γ(g, µ)χConπ (µ, g, T)∑
(µ′,g′,T ′) ν(µα)γ(g′, µ′)χConπ (µ′, g′, T ′)

is the probability distribution formed by normalizing the
fuzzy set χConπ ((µ, g.T)).

A similar definition of the intellectual breadth of a
context (µ, g, T), relative to the distribution σ over
agents, may be posited. A weakness of these defini-
tions is that they don’t try to account for dependencies
between agents or contexts; perhaps more refined for-
mulations may be developed that account explicitly for
these dependencies.

Note that the intellectual breadth of an agent as de-
fined here is largely independent of the (efficient or not)
pragmatic general intelligence of that agent. One could
have a rather (efficiently or not) pragmatically gener-
ally intelligent system with little breadth: this would
be a system very good at solving a fair number of hard
problems, yet wholly incompetent on a larger number
of hard problems. On the other hand, one could also
have a terribly (efficiently or not) pragmatically gener-
ally stupid system with great intellectual breadth: this
would be a system that was roughly equally dumb in
all the contexts under study.

Thus, one can characterize an intelligent agent as
”narrow” with respect to distribution ν over environ-
ments and the distribution γ over goals, based on eval-
uating it as having low intellectual breadth. A ”narrow
AI” relative to ν and γ would then be an AI agent with
a relatively high efficient pragmatic general intelligence
but a relatively low intellectual breadth.

Conclusion
Our goal here has been to push the formal understand-
ing of intelligence in a more pragmatic direction. More
work remains to be done, e.g. in specifying the envi-
ronment, goal and efficiency distributions relevant to
real-world systems, but we believe that the ideas pre-
sented here constitute nontrivial progress.

If the line of research pursued here succeeds, then
eventually, one will be able to do AGI research as fol-
lows: Specify an AGI architecture formally, and then
use the mathematics of general intelligence to derive
interesting results about the environments, goals and
hardware platforms relative to which the AGI architec-
ture will display significant pragmatic or efficient prag-
matic general intelligence, and intellectual breadth.

References
Philip Bille. A survey on tree edit distance and related
problems. Theoretical Computer Science, 337, 2005.
Ben Goertzel. The Structure of Intelligence. Springer,
1993.
Ben Goertzel. The embodied communication prior. In
Yingxu Wang and George Baciu (eds), Proceedings of
ICCI-09, Hong Kong, 2009.
Ben Goertzel and Cassio Pennachin. Artificial General
Intelligence. Springer, 2005.
Marcus Hutter. Universal AI. Springer, 2005.
Shane Legg and Marcus Hutter. A collection of defi-
nitions of intelligence. In Ben Goertzel and Pei Wang
(eds), Advances in Artificial General Intelligence. IOS,
2007.
Shane Legg and Marcus Hutter. A formal measure
of machine intelligence. In Proceedings of Benelaam-
2006, Ghent, 2007.
Stephen Morgan and Christopher Winship. Counter-
factuals and Causal Inference. Cambridge University
Press, 2007.
Pei Wang. Rigid Flexibility: The Logic of Intelligence.
Springer, 2006.

24

On Evaluating Agent Performance in a Fixed Period of Time

José Hernández-Orallo
DSIC, Univ. Politècnica de València,

Camı́ de Vera s/n, 46020 Valencia, Spain. jorallo@dsic.upv.es

Abstract

The evaluation of several agents over a given task in
a finite period of time is a very common problem in
experimental design, statistics, computer science, eco-
nomics and, in general, any experimental science. It
is also crucial for intelligence evaluation. In reinforce-
ment learning, the task is formalised as an interactive
environment with observations, actions and rewards.
Typically, the decision that has to be made by the
agent is a choice among a set of actions, cycle after
cycle. However, in real evaluation scenarios, the time
can be intentionally modulated by the agent. Conse-
quently, agents not only choose an action but they also
choose the time when they want to perform an action.
This is natural in biological systems but it is also an
issue in control. In this paper we revisit the classi-
cal reward aggregating functions which are commonly
used in reinforcement learning and related areas, we
analyse their problems, and we propose a modification
of the average reward to get a consistent measurement
for continuous time.

Introduction

Measuring agent intelligence is one of the pending sub-
tasks (or requirements) in the goal of constructing gen-
eral intelligent artefacts. (LH07) presents a formal def-
inition of intelligence as the evaluated performance in
a broad range of contexts or environments. However,
time is disregarded in their definition. In (HOD09), an
implementation of an anytime intelligence test is en-
deavoured, where time is considered. The introduction
of time in the evaluation has much more implications
than it might seem at first glance. We do not only face
the issue that fast agents score better than slow agents,
but we also need to assess other problems: how can we
evaluate fast and slow agents in the same setting? How
can we deal with intelligent agents that make a shrewd
use of response times to score better?

These problems have not been solved in AI areas
where agent evaluation is custom. For instance, eval-
uating decision-making agents in interactive environ-
ments where observations, actions and rewards take
place has been a well-studied problem in the area of
reinforcement learning (SB98). But, in general, time

(either discrete or continuous) is understood as a vir-
tual time. Even in real applications, where continuous
time appears, any performance evaluation based on re-
wards typically does not consider the decision-making
time of the agents and, to our knowledge, never consid-
ers extreme speed differences between the agents.

In order to illustrate the problem, imagine that a test
(composed of several exercises is passed to several stu-
dents. All exercises deal about the same (previously
unknown) subject, so typically a good student would
improve as s/he does more exercises. Each student re-
ceives the first exercise, works on it and writes the result
and gets an evaluation score or points (e.g. between 0
and 1). Immediately a second exercise is given and the
student works on it similarly. The test goes on until a
(previously unknown) time limit τ is reached.

Consider a test taken in half an hour, where several
students have got different results, as shown in Figure
1. Who is best? We can say that s1 usually scores
better than s2 does but s2 is faster. Let us make the
question a little bit more difficult. What about a third
student s3 only being able to complete five exercises?
From the figure, we can say that it has done all of them
right from almost the beginning. We can also say it is
very slow, but with only two attempts she or he has
been able to find the way to solve the rest of exercises.
And now a more incisive question: what about a fourth
student s4, who does exercises very fast, but at random,
and, eventually, in a series of 5,000 exercises done in the
half an hour is able to score well on 50 of them?

In the previous example we can either accumulate
the results (so students s1, s2, s3 and s4 would get a
total return of 10, 18, 4, 50 respectively) or average the
results by the number of exercises (so we would get an
average return of 2

3 , 3
7 , 4

5 , 1
100 respectively). We can

also consider the physical time (which is equal for all),
and average the results by time, getting a scaling of the
total returns, i.e., 20, 36, 8, 100 points per hour.

An opinion here would be to say that speed and per-
formance are two different things that we should weight
into an equation which matches the context of applica-
tion. In the previous case, if the average by exercises is
v, the number of exercises is n and τ is the total time a
possible formula might be v′ = v×

√
n/τ , giving values

25

s1 1

0

s2 1

0

1

0
s3

s4 1

0

s5
0

s6 1

0

τ

1

s7 1

0

10

18

4

50

4000

3996000

13

12

3996000

1

4

4950

1

24

5

Figure 1: Several students evaluated in a fixed time.

2.3, 2.26, 1.6 and 1 for students s1, s2, s3 and s4.
The problem is that there is no formula which is

valid in general, for different tasks and kinds of agents.
Consequently, in this setting, the way in which per-
formance is measured is always task-dependent. But
worse, the compensation between v, n and τ is typ-
ically non-linear, making different choices when units
change, or the measure gives too much weight to speed.
Additionally, when τ → ∞ the measure goes to 0 (or
diverges), against the intuition that the larger the time
given the better the evaluation. But the main prob-
lem of using time is that for every function which is
increasing on speed (n/τ), there is always a very fast
agent with a very small average reward, such that it
gets better and better scores. Consider, for instance, a
student s5 who does 4,000,000 exercises at random in
the half an hour, and is able to score 1 in 4,000 of them
and 0 for the rest. The value would be 1

1000 ×
2000
0.5 = 4.

With a very low average performance (1
1000), this stu-

dent gets the best result.
To make things still worse, compare s3 with s6 as

shown in Figure 1. The speed of s6 is more than six
times greater than s3’s, but s3 reaches a state where
results are always 1 in about 10 minutes, while s6 re-
quires about 17 minutes. But if we consider speed, s6
has a value v′ = 16

25 ×
5
0.5 = 5.2 (while it was 1.6 for s3).

But in order to realise that this apparently trivial
problem is a challenging one, consider another case.
Student s7 acts randomly but she or he modulates time
in the following way: whenever the result is 1 then she
or he stops doing exercises. If the result is 0 then more
exercises are performed very quickly until a 1 is ob-
tained. Note that this strategy scores much better than
random in the long term. This means that an oppor-
tunistic use of the times could mangle the measurement
and convey wrong results.

The previous example tries to informally illustrate
the goal and the many problems which arise around
agent evaluation in a finite time τ . Simple alterna-
tives such as using fixed time slots are not reasonable,
since we want to evaluate agents of virtually any speed,
without making them wait. A similar (and simpler) ap-
proach is to set a maximum of cycles n instead of a time

τ , but this makes testing almost unfeasible if we do not
know the speed of the agent in advance (the test could
last miliseconds or years).

As apparently there is no trivial solution, in this pa-
per we want to address the general problem of measur-
ing performance in a time τ under the following setting:

• The overall allotted evaluation time τ is variable and
independent of the environment and agent.

• Agents can take a variable time to make an action,
which can also be part of their policy.

• The environment must react immediately (no delay
time computed on its side).

• The larger the time τ the better the assessment
should be (in terms of reliability). This would allow
the evaluation to be anytime.

• A constant rate random agent πrrand should have the
same expected valued for every τ and rate r.

• The evaluation must be fair, avoiding opportunistic
agents, which start with low performance to show an
impressive improvement later on, or that stop acting
when they get good results (by chance or not).

The main contribution of this work is that we revisit the
classical reward aggregation (payoff) functions which
are commonly used in reinforcement learning and re-
lated areas for our setting (continuous time on the
agent, discrete on the environment), we analyse the
problems of each of them and we propose a new modi-
fication of the average reward to get a consistent mea-
surement for this case, where the agent not only decides
an action to perform but also decides the time the de-
cision is going to take.

Setting Definition and Notation
An environment is a world where an agent can interact
through actions, rewards and observations. The set of
interactions between the agent and the environment is a
decision process. Decision processes can be considered
discrete or continuous, and stochastic or deterministic.

In our case, the sequence of events is exactly the same
as discrete-time decision process. Actions are limited by
a finite set of symbols A, (e.g. {left, right, up, down}),
rewards are taken from any subset R of rational num-
bers, and observations are also limited by a finite set
O of possibilities. We will use ai, ri and oi to (respec-
tively) denote action, reward and observation at inter-
action or cycle (or, more loosely, state) i, with i being a
positive natural number. The order of events is always:
reward, observation and action. A sequence of k inter-
actions is then a string such as r1o1a1r2o2a2 . . . rkokak.
We call these sequence histories, and we will use the
notation r̃oa≤k, r̃oa

′
≤k, . . ., to refer to any of these se-

quences of k interactions and r̃o≤k, r̃o′≤k, . . ., to refer
to any of these sequences just before the action, i.e.
r1o1a1r2o2a2 . . . rkok. Physical time is measured in sec-
onds. We denote by ti the total physical time elapsed
until ai is performed by the agent.

26

Both the agent and the environment are defined as
a probabilistic measure. In this way, an environment µ
is a probabilistic measure which assigns probabilities to
each possible pair of observation and reward. For in-
stance, µ(rkok|r̃oa≤k−1) denotes the probability in en-
vironment µ of outputting rkok after the sequence of
events r̃oa≤k−1. For the agent, though, this is now dif-
ferent to the typical reinforcement learning setting (and
more similar to control problems). Given an agent, de-
noted by π, the term π(d, ak|r̃o≤k) denotes the proba-
bility of π to execute action ak before a time delay d
after the sequence of events or history r̃o≤k. Note that
the probability on d is cumulative. Agents can stop,
i.e., there might be some event sequence r̃o≤k such that
p(d, ak|r̃o≤k) = 0 for all d and ak. Agents, in general,
can use information from its previous rewards and ob-
servations to determine its future actions and times, i.e.
ti+1 − ti can depend on the previous experience.

Interactions between environments and agents can be
interrupted at any time τ , known as the “overall or total
test time”. The value τ is unknown for any agent at any
moment. With nπτµ (or just nτ) we denote the number
of interactions or cycles performed by π in µ in time τ .
Let us see a very simple environment and agent:

Example Consider a test setting where a robot
(the agent) can press one of three possible but-
tons (A = {B1, B2, B3}), rewards are just a vari-
able score (R = [0 . . . 1]) and the observation is two
cells where a ball must be inside one of them (O =
{C1, C2}). Given the sequence of events so far is
r1o1a1r2o2a2 . . . rk−1ok−1ak−1, we define the environ-
ment behaviour as follows:

• If (ak−1 = B1 and ok−1 = C1) or (ak−1 = B2 and
ok−1 = C2) then we generate a raw reward of +0.1.

• Otherwise the raw reward is 0.

The observation ok in both cases above is generated
with the following simple rule: if k is even then ok = C2.
Otherwise, ok = C1. The first reward (r1) is 0.

From the previous example, a robot π1 al-
ways pressing button B1 at a rate of three times
per second would have the following interaction:
0C1B10.1C2B10C1B10.1 . . . with times ti = 1

3 i. A
second robot πrand presses buttons at random among
{B1, B2, B3} at a rate ti = 1

10 i.

Payoff and Environment Classes

Let us give the simplest notion of payoff:

Definition The total reward sum of agent π in envi-
ronment µ in a fixed time τ is defined as follows1:

V πµ ⇑ τ := E

(
nτ∑
i=1

ri

)
1E(·) denotes the expected value, which is only neces-

sary in the definition when either (or both) the agent or the
environment are non-deterministic.

For the previous example, the total reward for π1 in 30
seconds would be 1

2 × 30 × 3 × 0.1 + 1
2 × 30 × 3 × 0 =

4.5. The total reward for πrand in 30 seconds would be
1
3 × 30× 10× 0.1 + 2

3 × 30× 10× 0 = 10.
One of the problems of a cumulative reward function

is that the greater the time τ the greater the expected
value. More precisely, this is always the case only when
rewards are positive. Consequently, the previous mea-
sure cannot be used as a value in an anytime test where
the larger the time τ the better the assessment.

One attempt to solve this problem without abandon-
ing the idea of summing rewards is the notion of reward-
bounded (or summable) environment (LH07).

Definition An environment µ is reward-bounded if ∀i :
0 ≤ ri ≤ 1 and for every agent π:

limτ→∞V
π
µ ⇑ τ =

∞∑
i=1

ri ≤ 1

The idea is motivated by the issue that payoff func-
tions based on weighted or discounted rewards usually
require the arbitrary choice of a discounting function
and a parameter. However, the previous idea has sev-
eral problems. First, it is clear that it is easy to make
any environment reward-bounded, by just dividing raw
rewards by expressions such as 2i or any other kind
of discounting function whose total sum is lower than 1
(see (Hut06) for an extensive list of possible discounting
functions). But this implies that the discount function
is hardwired in the environment. We can make this
depend on a universal distribution over the universal
machine which generates the environments, but in the
end this is basically the same as not setting the reward-
bounded condition and choose the discount function ex-
ternally with a universal distribution over a universal
machine generating discount functions.

In any case, be it internally hardwired in the envi-
ronment or chosen externally there is another problem
with discount functions. For the overwhelming major-
ity of reward-bounded environments, the first actions
are typically astronomically more important than the
rest. This can be softened with discount functions that
approach a uniform distribution or that depend on the
agent’s age, but in the end, as the number of inter-
actions grow, the first actions (dozens or millions) get
most of the distribution and hence most of the total re-
ward. And, typically the first actions take place when
the agent explores the environment. This is related to
a similar problem for discounted rewards2.

There is still another (more serious) problem. With
reward-bounded environments, random agents typically
increase their return as τ grows (this also happens for
non-random agents, but this is somehow expected).
This is against the natural constraint that a constant-
rate random agent πrrand should have the same expected

2In fact, in order to show the equivalence in the limit
of the average reward and the discounted reward, (Hut06)
infinite many cycles have to be removed from the start.

27

valued for every τ and this value should also be the same
for every rate r.

And, finally, consider the previous aggregated func-
tion applied to biological systems (e.g. a child or a
chimpanzee). Since all the rewards are always positive,
the subject will strive to accumulate as much reward as
possible, generally acting fast but rashly (hyperactive).

As an alternative to discounting and also to reward-
bounded environments, and especially conceived to
work well with any agent, in (HOD09) we propose this:

Definition An environment µ is balanced if ∀i : −1 ≤
ri ≤ 1 and for a constant-rate random agent πrrand at
any rate r then

∀τ > 0 : E
(
V
πrrand
µ ⇑ τ

)
= E

br×τc∑
i=1

ri

 = 0

The construction of balanced environments is not dif-
ficult, even universal ones, as shown in (HO09a). It
is clear to see that changing rewards from the inter-
val [0, 1] to the interval [−1, 1] creates a phenomenon
which is frequently ignored in reinforcement learning
but is omnipresent in economics: “everything that has
been earned in previous cycles can be lost afterwards”.

As mentioned in the introduction, the goal was to
measure the performance of an agent in an environ-
ment in a given time τ . Apart from the unweighted
sum, there are many different ways to compute the
payoff (or aggregated reward, or return value) of a set
of interactions against an environment. In reinforce-
ment learning there are two main approaches for do-
ing that: the cumulative reward (with weights, typ-
ically known as discounting) and the average reward
(Mah96)(Ber95)(KLM96)(SB98).

Let us see some of them adapted to our continuous
time limit setting. For instance, reward can be averaged
in two different ways, by the number of cycles of the
agent (average reward per cycle), or by the physical
elapsed time (average reward per second). Since the
second boils down to 1

τ V
π
µ ⇑ τ (so inheriting most of

the problems of V πµ ⇑ τ), we will just analyse the first.

Definition The average reward per cycle of agent π in
environment µ in a fixed time τ is defined as follows:

vπµ ||τ := E

(
1

nτ

nτ∑
i=1

ri

)
If nτ = 0, then vπµ ||τ is defined to be 0.

Let us also revisit the most popular aggregated measure
in reinforcement learning, known as discounted reward,
which is just a weighted sum. We will see a gener-
alised version of discounted reward, following (Hut06).
Accordingly, we define γ = (γ1, γ2, . . .) with γk be-
ing positive real numbers (typically with γi > γi+1),
as a summable discount sequence in the sense that
Γnk :=

∑n
i=k γi <∞. If k = 1 we simply use Γn.

Hence, the discounted reward (per cycle) is:

Definition The discounted reward of agent π in envi-
ronment µ in a fixed time τ is defined as follows:

V πµ |γ|τ := E

(
1

Γnτ

nτ∑
i=1

γiri

)
A typical choice for γ is the geometric discounting
(γk = λk, 0 ≤ λ < 1). For a more exhaustive list
see (Hut06). As the very name says, all of them are
discounting, so the first rewards contribute to the ag-
gregated value much stronger than the rest. How much?
That depends on the choice of γ. In any case, the re-
sult very dependent on the rate. For instance, agents
increase their values with increasing values of τ if the
environment is not balanced. And even a slightly bet-
ter than random agent can have better results (although
not very good) than a slower but competent agent. An
alternative is to define γ as a function of ti, but in gen-
eral this has the same behaviour but additionally this
creates other problems (stopping policy problems, as
we will see in the following section).

The Problem of Time Modulation
The time taken by each agent to perform each action is
not necessarily constant. It might depend on the cost
of the computation. But, more importantly, it can be
intentionally modulated by the agent. Thus, agents not
only choose an action but they also choose the time they
want to devote to an action. This is natural in biological
systems but it is also an issue in control. More generally,
an agent could decide to stop, which implies stopping
any further exploration but also any further reward.

First, we see the notion of “time modulation policy”:

Definition A reasonable time modulation policy for
agent π in environment µ evaluated in a fixed time τ is
any intentional (or not) assignment for values t1, t2, . . .
where ∀i ti > ti−1, such that every ti can depend on
previous t1, t2, . . . , ti−1 and also on previous rewards
and observations, but never on τ (since τ is not known).

A time modulation policy can make the agent stop on ti
(and, hence ti+1 is infinite). In our setting, a tricky (but
good) policy here would be to act as a fast random agent
until having an average reward over a threshold and
then stop acting. We call this agent an opportunistic
fast random agent. If the threshold is 0 this strategy
ensures a positive reward in balanced environments3.
Consequently, an agent could get a very good result by
having very fast (and possibly lucky) first interactions
and then rest on its laurels, because the average so far
was good. The following theorem formalises this:

Theorem 1 4 There are random agents πrand using
stopping policies not knowing τ such that for some
balanced environment µ, there is a value t such that
∀τ ≥ t : vπrandµ ||τ > 0.

3In fact, if only rewards −1 and 1 are possible, the ex-
pected reward is 0.79 × 2 − 1 = 0.58 (see (Fer04)).

4Due to space limitations, proofs are found in (HO09b).

28

A first (and näıve) idea to avoid stopping policies would
be to give less weight to quick actions and more weight
to slow actions. Apart from being counterintuitive, this
would also be tricky, because an agent which is sure of
a good action will delay the action as much as possible,
which is, again, counterintuitive. On the other hand,
giving more weight to quick decisions is more intuitive,
but very fast mediocre agents can score well, and, ad-
ditionally, it also suffers the problems of opportunistic
time modulation. A better possibility is shown next:

Definition The average reward per cycle with dimin-
ishing history of agent π in environment µ in a fixed
time τ is defined as follows:

v̆πµ ||τ := E

(
1

n∗

n∗∑
i=1

ri

)
where n∗ =

⌊
nτ

(
tnτ
τ

)⌋
This definition reduces the number of evaluated cycles
proportionally to the elapsed time from the last action
until τ . If the last actions have been good and we de-
lay future actions and let time pass, we soon make the
measure ignore these recent good rewards. If we stop,
in the limit, the measure reaches 0, so it also avoids
stopping policies, as the following theorem shows.

Theorem 2 For every balanced environment µ and ev-
ery agent π, there is no stopping policy not know-
ing τ which eventually stops such that πrand has
limτ→∞v̆

πrand
µ ||τ > 0.

And now, we can ensure what happens in any case
(stopping or not) for a constant-rate random agent:

Theorem 3 For every balanced environment µ, a
constant-rate random agent πrand with any stopping
policy has limτ→∞v̆

πrand
µ ||τ = 0.

A more difficult question is whether time modulation
policies are completely avoided by the previous defini-
tion. The answer is no, as we see next.

Lemma 4 We denote Rπrandµ (i) the result of any given
payoff function R until action i. For every R, an agent
π after action ai with a locally optimal time modulation
policy should wait a time td for the next action if and
only if ∀ti ≤ t < ti+ td : Rπrandµ (i) > E(Rπrandµ (i+1)).

In other words, the payoff until ti + td not performing
any action is greater than the expected payoff perform-
ing the following action. The previous lemma does not
say whether the agent can know the expected payoff. In
fact, even in cases where the overall expected payoff is
clear, an agent can use a wrong information and make
a bad policy. Note that lemma 4 is shown with the
true expected value, and not the expected or estimated
value by the agent. With this, we can conclude that al-
though random agents can use time modulation policies
and can work well in some environments, they can also
be bad in other environments. As a result, good agents
can also be discriminated from bad agents because they
have (or not) good modulation policies. The following
theorem shows that good time modulation policies are
not easy to find, in general.

Theorem 5 Given any agent π there is no time mod-
ulation policy which is optimal for every balanced envi-
ronment µ.

So we have realised that time modulations are impossi-
ble to avoid (only minimise). As a result, we will have to
accept time modulation as part of the agent behaviour
and needs to be considered in the measurement.

Comparison of Payoff Functions
After the analysis of several payoff functions adapted
from the literature, and the introduction of a new vari-
ant with some associated results, it is necessary to re-
capitulate and give a comprehensive view. The setting
we introduce in this paper is characterised by different
response times on the side of the agent. These different
response times could be motivated by different agent
speeds or by an intentional use of delays.

Other practical issues for each function are related to
the behaviour against random agents, the convergence
or boundedness of the results, whether there is a pref-
erence for the start of the testing period, etc. In what
follows, we will examine the previous payoff functions
according to several features, as shown in table 1.

There are several measures which cluster together.
For instance V πµ ⇑ τ and ωπµ |τ get almost the same an-
swers, since one is the scaling of the other using τ . And
V πµ ⇑ τ also gets very similar results to V πµ |γ|τ , since
all of them are cumulative. Averages, on the contrary,
have a different pattern. In general, it is also remarkable
that the use of balanced environments typically is more
problematic on issues 10 and 11, while being better on
1 and 2. The measure v̆ in balanced environments gets
11 ‘yes’ from a total of 12.

Feature 9 has to be discussed in more detail. It
refers to cases where necessarily (not because of the
agent’s time modulation policy) the response times in-
crease with time. This is a general issue in many prob-
lems, since, as time increases, more history has to be
taken into account and decisions can be more difficult to
make. Consider for instance a problem such that choos-
ing the right decision at interaction i has an increasing
polynomial time complexity. Consequently, many of
the payoff functions will penalise the agent executing
this algorithm for increasing values of τ or nτ . On the
contrary, vπµ ||τ would not penalise this at all (but al-
lows the stopping problem) and v̆πµ ||τ penalises it very
mildly. For problems with exponential complexity (and
many other NP-problems), though, v̆πµ ||τ typically will
make n∗ go to zero between interactions (ti+1 > 2ti).
This means that other algorithms approximating the
problem in polynomial time could get better rewards.

Conclusions
This paper has addressed a problem which is appar-
ently trivial: to evaluate the performance of an agent
in a finite period of time, considering that agent actions
can take a variable time delay (intentionally or not).
However, the evaluation is more cumbersome than it

29

Environment Type General Bounded Balanced General Balanced General Balanced Balanced

Score Function V πµ ⇑ τ V πµ ⇑ τ V πµ ⇑ τ vπµ ||τ vπµ ||τ V πµ |γ|τ V πµ |γ|τ v̆πµ ||τ

1. Do random agents get a somehow central value (preferrably 0)? No No Yes No Yes No Yes Yes
2. Is the result of random agents independent from τ and the rate? No No Yes No Yes No Yes Yes
3. Is it avoided that a fast mediocre agent can score well? No No No Yes Yes No No Yes
4. Does the measurement work well when rates → ∞? No No No Yes Yes No No Yes
5. Do better but slower agents score better than worse but faster agents? No No No Yes Yes * * Yes
6. Do faster agents score better than slow ones with equal performance? Yes Yes Yes Yes Yes Yes Yes Yes
7. Are the first interactions as relevant as the rest? Yes No Yes Yes Yes No No Yes
8. Is the measure bounded for all τ? No Yes No Yes Yes Yes Yes Yes
9 .Does it work well when actions require more and more time to decide? No No No Yes Yes No No Yes
10.Is it robust against time stopping policies? Yes Yes No No No Yes No Yes
11.Is it robust against time modulation policies? Yes Yes No No No Yes No No
12.Is it scale independent (different time units)? Yes Yes Yes Yes Yes Yes Yes Yes

Table 1: Comparison of Payoff Functions. Symbol ‘*’ denotes that it may depend on a parameter (e.g. γ).

might seem at first sight. First of all, it is closely re-
lated but not the same as the measurement in reinforce-
ment learning, which typically disregards agent reac-
tion times. Additionally, payoff functions are conceived
to be embedded in the design of the algorithms that
control agent behaviour, not to be used in a general
test setting. And it is important to mention this again,
since here we are not (mainly) concerned with the de-
sign of agents but in their evaluation. Consequently,
we know that, as Hutter says (Hut06): “eternal agents
are lazy”, and might procrastinate their actions. This
is what typically happens with averages, since with an
infinite number of cycles (i.e. eternal life) we will al-
ways be able to compensate any initial bad behaviour.
We do not want to avoid this. We want that, if this
happens, the measure takes it into account. When the
lifetime τ is not known or is infinite, a typical possibility
is to use a weighting (i.e. discounting). This generally
translates into an evaluation weighting where the first
actions are more important than the rest, which is not
reasonable. This does not mean that the formula of
discounted reward should not be used in agent design.
On the contrary, discounted reward and the techniques
that derive from them (such as Q-learning) could work
well in our setting, but we should not use them as the
external performance measure. In any case, we must
devise tests that work with artificial agents but also
with biological beings. This is one of the reasons that
negative rewards are needed. Paraphrasing Hutter, we
can say that “using cumulative positive rewards make
agents hyperactive”.

Our main concern, however, has been an opportunis-
tic use of time. This problem does not exist when using
discrete-time agents and it is uncommon in evaluation,
especially outside control and robotics, where the goals
and measurements are different. The adjustment pro-
posal on the average tries to solve the stopping problem.

The main application of our proposal is for measuring
performance in a broad range of environments which,
according to (LH07), boils down to measuring intelli-
gence. The setting which is presented here is neces-
sary for an anytime intelligence test (HOD09), where
the evaluation can be stopped anytime, and the results
should be better the more time we have for the test.

Finally, as future work, the use of continuous-time en-

vironments must be investigated, especially when other
agents can play inside the environment. This is typical
in multi-agent systems. The problem here is to deter-
mine the rate of the system, because it can be too fast
for some agents and too slow for others.

Acknowledgments
The author thanks the funding from the Spanish Ministerio
de Educación y Ciencia (MEC) for projects Explora-Ingenio
TIN2009-06078-E, Consolider 26706 and TIN 2007-68093-
C02, and Prometeo/2008/051 from GVA.

References
D.P. Bertsekas. Dynamic Programming and Optimal
Control. Athena Scientific, Belmont, MA, 1995.

T. S. Ferguson. Optimal Stopping and Applica-
tions. Maths. Department, UCLA, 2004. http://
www.math.ucla.edu/∼tom/Stopping/Contents.html.

J. Hernández-Orallo. A (hopefully) unbiased universal
environment class for measuring intelligence of biolog-
ical and artificial systems. Extended Version. available
at http://users.dsic.upv.es/proy/anynt/, 2009.

J. Hernández-Orallo. On evaluating agent perfor-
mance in a fixed period of time. Extd. Version. avail-
able at http://users.dsic.upv.es/proy/anynt/, 2009.

J. Hernández-Orallo and D. L. Dowe. Mea-
suring universal intelligence: Towards an any-
time intelligence test. Under Review, available at
http://users.dsic.upv.es/proy/anynt/, 2009.

M. Hutter. General discounting versus average re-
ward. In ALT, volume 4264 of LNCS, pages 244–258.
Springer, 2006.

L.P. Kaelbling, M.L. Littman, and A.W. Moore. Re-
inforcement learning: A survey. J. Artif. Intel.,
4(1):237–285, 1996.

S. Legg and M. Hutter. Universal intelligence: A
definition of machine intelligence. Minds & Mach.,
17(4):391–444, 2007.

S. Mahadevan. Average reward reinforcement learn-
ing: Foundations, algorithms, empirical results. Mach.
Learn., 22, 1996.

R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction. The MIT Press, March 1998.

30

Artificial General Segmentation

Daniel Hewlett and Paul Cohen
Department of Computer Science

University of Arizona
Tucson, AZ 85721, USA

Abstract

We argue that the ability to find meaningful chunks in se-
quential input is a core cognitive ability for artificial general
intelligence, and that the Voting Experts algorithm, which
searches for an information theoretic signature of chunks,
provides a general implementation of this ability. In sup-
port of this claim, we demonstrate that VE successfully finds
chunks in a wide variety of domains, solving such diverse
tasks as word segmentation and morphology in multiple lan-
guages, visually recognizing letters in text, finding episodes
in sequences of robot actions, and finding boundaries in the
instruction of an AI student. We also discuss further desirable
attributes of a general chunking algorithm, and show that VE
possesses them.

Introduction
To succeed, artificial general intelligence requires domain-
independent models and algorithms that describe and imple-
ment the fundamental components of cognition. Chunking
is one of the most general and least understood phenomena
in human cognition. George Miller described chunking as
“a process of organizing or grouping the input into familiar
units or chunks.” Other than being “what short term mem-
ory can hold 7 +/- 2 of,” chunks appear to be incommen-
surate in most other respects. Miller himself was perplexed
because the information content of chunks is so different. A
telephone number, which may be two or three chunks long,
is very different from a chessboard, which may also con-
tain just a few chunks but is vastly more complex. Chunks
contain other chunks, further obscuring their information
content. The psychological literature describes chunking
in many experimental situations (mostly having to do with
long-term memory) but it says nothing about the intrinsic,
mathematical properties of chunks. The cognitive science
literature discusses algorithms for forming chunks, each of
which provides a kind of explanation of why some chunks
rather than others are formed, but there are no explanations
of what these algorithms, and thus the chunks they find, have
in common.

The Signature of Chunks
Miller was close to the mark when he compared bits with
chunks. Chunks may be identified by an information the-
oretic signature. Although chunks may contain vastly dif-

ferent amounts of Shannon information, they have one thing
in common: Entropy within a chunk is relatively low, en-
tropy at chunk boundaries is relatively high. Two kinds of
evidence argue that this signature of chunks is general for
the task of chunking sequences and series (see (KB01) for
a similar idea applied to two-dimensional images). First,
the Voting Experts (VE) chunking algorithm and its several
variants, all of which detect this signature of chunks, per-
form very well in many domains. Second, when sequences
are chunked all possible ways and ranked by a “chunkiness
score” that combines within- and between-chunk entropy,
the highest-ranked chunks are almost always real chunks ac-
cording to a gold standard. Here, we focus primarily on the
former kind of evidence, but also provide some early evi-
dence of the latter kind.

Voting Experts
What properties should a general-purpose chunking algo-
rithm have? It must not simply exploit prior knowledge of a
particular domain, but rather must be able to learn to chunk
novel input. It must operate without supervision in novel do-
mains, and automatically set any parameters it has to appro-
priate values. For both humans and artificial agents, work-
ing memory is finite, and decisions must be made online,
so the algorithm must be efficient and rely on local informa-
tion rather than global optimization. Finally, learning should
be rapid, meaning that the algorithm should have relatively
modest data requirements.

VE has these properties. Its name refers to the “experts”
that vote on possible boundary locations. The original ver-
sion of VE had two experts: One votes to place bound-
aries after sequences that have low internal entropy, given
by HI(seq) = −log(p(seq)), the other places votes af-
ter sequences that have high boundary entropy, given by
HB(seq) = −

∑
c∈S p(c|seq)log(p(c|seq)), where S is the

set of successors to seq. All sequences are evaluated locally,
within a sliding window, so the algorithm is very efficient.

The statistics required to calculate HI and HB are stored
efficiently using an n-gram trie, which is constructed in a
single pass over the corpus. The trie depth is 1 greater than
the size of the sliding window. Importantly, all statistics in
the trie are normalized so as to be expressed in standard devi-
ation units. This allows statistics from sequences of different
lengths to be compared to one another.

31

The sliding window is passed over the corpus and each
expert votes once per window for the boundary location that
best matches its criteria. VE creates an array of vote counts,
each element of which represents a location and the number
of times an expert voted to segment at that location. The
result of voting on the string thisisacat could be repre-
sented as t0h0i1s3i1s4a4c1a0t, where the numbers
between letters are the total votes cast to split at the corre-
sponding locations.

With vote totals in place, VE segments at locations that
meet two requirements: First, the number of votes must
be locally maximal (this is called the zero crossing rule).
Second, the number of votes must exceed a threshold.
Thus, VE has three parameters: the window size, the vote
threshold, and whether to enforce the zero crossing rule.
For further details of the VE algorithm see Cohen et al.
(CAH07), and also Miller and Stoytchev (MS08). A fully-
unsupervised version to the algorithm, which sets its own
parameters, is described briefly later in the paper.

Extensions to Voting Experts
Some of the best unsupervised sequence-segmentation re-
sults in the literature come from the family of algorithms
derived from VE. At an abstract level, each member of the
family introduces an additional expert that refines or gener-
alizes the boundary information produced by the two origi-
nal VE experts to improve segmentation quality. Extensions
to VE include Markov Experts (CM05), Hierarchical Vot-
ing Experts - 3 Experts (HVE-3E) (MS08), and Bootstrap
Voting Experts (BVE) (HC09).

The first extension to VE introduced a “Markov Expert,”
which treats the segmentation produced by the original ex-
perts as a data corpus and analyzes suffix/prefix distributions
within it. Boundary insertion is then modeled as a Markov
process based on these gathered statistics. HVE-3E is sim-
pler: The third expert votes whenever it recognizes an entire
chunk found by VE on the first iteration.

The new expert in BVE is called the knowledge expert.
The knowledge expert has access to a trie (called the knowl-
edge trie) that contains boundaries previously found by the
algorithm, and votes to place boundaries at points in the
sequence that are likely to be boundaries given this in-
formation. In an unsupervised setting, BVE generates its
own supervision by applying the highest possible confidence
threshold to the output of VE, thus choosing a small, high-
precision set of boundaries. After this first segmentation,
BVE repeatedly re-segments the corpus, each time con-
structing the knowledge trie from the output of the previous
iteration, and relaxing the confidence threshold. In this way,
BVE starts from a small, high-precision set of boundaries
and grows it into a larger set with higher recall.

Related Algorithms
While Cohen and Adams (CA01) were the first to formulate
the information-theoretic signature of chunks that drives VE,
similar ideas abound. In particular, simpler versions of the
chunk signature have existed within the morphology domain
for some time.

Tanaka-Ishii and Jin (TIJ06) developed an algorithm
called Phoneme to Morpheme (PtM) to implement ideas
originally developed by Harris (Har55) in 1955. Harris no-
ticed that if one proceeds incrementally through a sequence
of phonemes and asks speakers of the language to list all the
letters that could appear next in the sequence (today called
the successor count), the points where the number increases
often correspond to morpheme boundaries. Tanaka-Ishii and
Jin correctly recognized that this idea was an early version
of boundary entropy, one of the experts in VE. They de-
signed their PtM algorithm based on boundary entropy in
both directions (not merely the forward direction, as in VE),
and PtM was able to achieve scores similar to those of VE
on word segmentation in phonetically-encoded English and
Chinese. PtM can be viewed as detecting an information-
theoretic signature similar to that of VE, but relying only on
boundary entropy and detecting change-points in the abso-
lute boundary entropy, rather than local maxima in the stan-
dardized entropy.

Also within the morphology domain, Johnson and Mar-
tin’s HubMorph algorithm (JM03) constructs a trie from a
set of words, and then converts it into a DFA by the pro-
cess of minimization. Within this DFA, HubMorph searches
for stretched hubs, which are sequences of states in the DFA
that have a low branching factor internally, and high branch-
ing factor at the edges (shown in Figure 1). This is a nearly
identical chunk signature to that of VE, only with succes-
sor/predecessor count approximating boundary entropy. The
generality of this idea was not lost on Johnson and Martin,
either: Speaking with respect to the morphology problem,
Johnson and Martin close by saying “We believe that hub-
automata will be the basis of a general solution for Indo-
European languages as well as for Inuktitut.”

Figure 1: The DFA signature of a hub (top) and stretched
hub in the HubMorph algorithm. Figure from Johnson and
Martin.

VE Domains

To demonstrate the domain-independent chunking ability
of VE, we now survey a variety of domains to which VE
has been successfully. Some of these results appear in the
literature, others are new and help to explain previous re-
sults. Unless otherwise noted, segmentation quality is mea-
sured by the boundary F-measure: F = (2 × Precision ×
Recall)/(Precision+Recall), where precision is the percent-
age of the induced boundaries that are correct, and recall is
the percentage of the correct boundaries that were induced.

32

Language
VE and its variants have been tested most extensively in lin-
guistic domains. Language arguably contains many levels
of chunks, with the most natural being the word. The word
segmentation task also benefits from being easily explained,
well-studied, and having a large amount of gold-standard
data available. Indeed, any text can be turned into a cor-
pus for evaluating word segmentation algorithms simply by
removing the word boundaries.

Word Segmentation Results for one corpus, in particular,
have been reported in nearly every VE-related paper, and so
is the most general comparison that can be drawn. This cor-
pus is the first 50,000 characters of George Orwell’s 1984.
Table 1 shows the aggregated results for VE and its deriva-
tives, as well as PtM.

Algorithm Precision Recall F-score
VE 0.817 0.731 0.772
BVE 0.840 0.828 0.834
HVE-3E 0.800 0.769 0.784
Markov Exp. 0.809 0.787 0.798
PtM 0.766 0.748 0.757
All Points 0.185 1.000 0.313

Table 1: Results for VE and VE variants for word segmen-
tation on an English text, 1984.

Similar results can be obtained for different underlying
languages, as well as different writing systems. Hewlett and
Cohen showed similar scores for VE in Latin (F=0.772) and
German (F=0.794) texts, and also presented VE results for
word segmentation in orthographic Chinese (“Chinese char-
acters”). VE achieved an F-score of 0.865 on a 100,000
word section of the Chinese Gigaword Corpus.

The higher score for Chinese than for the other languages
has a simple explanation: Chinese characters correspond
roughly to syllable-sized units, while the letters in the Latin
alphabet correspond to individual phonemes. By grouping
letters/phonemes into small chunks, the number of correct
boundary locations remains constant, but the number of po-
tential boundary locations is reduced. The means that even a
baseline like All Locations, which places a boundary at ev-
ery possible location, will perform better when segmenting
a sequence of syllables than a sequence of letters.

VE has also been tested on phonetically-encoded English,
in two areas: First, transcripts of of child-directed speech
from the CHILDES database (MS85). Second, on a phone-
mic encoding of 1984 produced with the CMU pronounc-
ing dictionary. On the CHILDES data, VE was able to find
word boundaries as well or better (F=0.860) than several
other algorithms, even though the other algorithms require
their inputs to be sequences of utterances from which in-
formation about utterance beginnings and endings can be
gathered (HC09). VE achieved an F-score of 0.807 on the
phonemically-encoded version of 1984 (MS08).

Morphology While the word segmentation ability of VE
has been studied extensively, its ability to find morphs has

not been examined previously. Morph segmentation is a
harder task to evaluate than word segmentation, because
intra-word morph boundaries are typically not indicated
when writing or speaking. We constructed a gold standard
corpus of Latin text segmented into morphs with the mor-
phological analyzer WORDS.

Algorithm Precision Recall F-score
PtM 0.630 0.733 0.678
VE 0.645 0.673 0.659
BidiVE 0.678 0.763 0.718
All Points 0.288 1.000 0.447

Table 2: Morph-finding results by algorithm. All Points is a
baseline that places a boundary at every possible location.

From the table above (Table 2), it is clear that VE in
its standard form has some difficulty finding the correct
morphs. Still, its performance is comparable to PtM on
this task, as expected due to the similarity in the two al-
gorithms. PtM’s advantage probably is due to its bidirec-
tionality: VE only actually examines the boundary entropy
at the right (forward) boundary. VE was modified with the
addition of an expert that places its votes before sequences
that have high boundary entropy in the backward direction.
This bidirectional version of VE, referred to as BidiVE, is
a more faithful implementation of the idea that chunks are
sequences with low internal entropy and high boundary en-
tropy. BidiVE performed better than VE at finding morphs
in Latin, as shown in the table.

For reference, when the task is to find word boundaries,
the F-score for VE is approximately 0.77 on this same cor-
pus. The reason for this is somewhat subtle: Because VE
only looks at entropy in the forward direction, it will only
consider the entropy after a morph, not before it. Consider
a word like senat.us: The entropy of the next character
following senat is actually fairly low, despite the fact that
it is a complete morph. This is because the set of unique
endings that can appear with a given stem like senat is
actually fairly small, usually less than ten. Furthermore, in
any particular text a word will only appear in certain syntac-
tic relationships, meaning the set of endings it actually takes
will be smaller still. However, the entropy of the character
preceding us is very high, because us appears with a large
number of stems. This fact goes unnoticed by VE.

Child Language Learning VE has also provided evi-
dence relevant to an important debate within the child lan-
guage learning literature: How do children learn to seg-
ment the speech stream into words? Famously, Saffran et
al. (SAN96) showed that 8-month-old infants were able to
distinguish correctly and incorrectly segmented words, even
when those words were nonsense words heard only as part
of a continuous speech stream. This result challenges mod-
els of word segmentation, such as Brent’s MBDP-1 (Bre99),
which cannot operate without some boundary information.
Saffran et al. proposed that children might segment continu-
ous sequences at points of low transitional probability (TP),
the simplest method which would successfully segment their

33

data.
However, TP alone performs very poorly on natural lan-

guage, a fact which has not escaped opponents of the view
that word segmentation is driven by distributional properties
rather than innate knowledge about language. Linguistic na-
tivists such as Gambell and Yang (GY05), argue that this
failure of TP to scale up to natural language suggests that
the statistical segmentation ability that children possess is
limited and likely orthogonal to a more powerful segmenta-
tion ability driven by innate linguistic knowledge. Gambell
and Yang demonstrate that an algorithm based on linguis-
tic constraints (specifically, constraints on the pattern of syl-
lable stress in a word) significantly outperforms TP when
segmenting a corpus of phonetically-encoded child-directed
speech. In fact, VE can further outperform Gambell and
Yang’s method (F=0.953 vs. F=0.946) even though VE has
no prior knowledge of linguistic constraints, suggesting that
adding innate knowledge may not be as useful as simply in-
creasing the power of the chunking method.

Algorithms like VE and PtM provide a counter-argument
to the nativist position, by fully explaining the results that
Saffran et al. observed, and also performing very well at seg-
menting natural language. When represented symbolically
as a sequence of phonemes, VE perfectly segments the sim-
ple artificial language generated by Saffran et al. (SAN96),
while also performing well in the segmentation of child-
directed speech. Miller et al. (MWS09) reinforce this case
by replicating the experimental setup of Saffran et al., but
feeding the speech input to VE instead of a child. The audio
signal had to be discretized before VE could segment it, but
VE was able to achieve an accuracy of 0.824.

Vision
Miller and Stoytchev (MS08) applied VE in a hierarchical
fashion to perform a visual task similar to optical charac-
ter recognition (OCR). The input was an image containing
words written in a particular font. VE was to first segment
this image into short sequences corresponding to letters, and
then chunk the short sequences into longer sequences cor-
responding to words. The image was represented as a se-
quence of columns of pixels, where each pixel was either
black or white. Each of these pixel columns can be repre-
sented by a symbol denoting the particular pattern of black
and white pixels within it, thus creating a sequence of sym-
bols to serve as input to VE. Depending on the font used, VE
scored between F=0.751 and F=0.972 on segmenting this
first sequence.

After finding letters, VE had to chunk these letters to-
gether into words, which is essentially the same as the well-
studied word segmentation problem except with some noise
added to the identification of each character. VE was still
able to perform the task, with scores ranging from F=0.551
to F=0.754 for the three fonts. With perfect letter identifica-
tion, VE scored F=0.776.

Robot Behaviors
Cohen et al. (CAH07) tested VE on data generated by a
mobile robot, a Pioneer 2 equipped with sonar and a pan-
tilt-zoom camera running a subsumption architecture. The

robot wandered around a large playpen for 20-30 minutes
looking for interesting objects, which it would orbit for a
few minutes before moving on. At one level of abstraction,
the robot engaged in four types of behaviors: wandering,
avoiding, orbiting and approaching. Each behavior was im-
plemented by sequences of actions initiated by controllers
such as move-forward and center-camera-on-object. The
challenge for Voting Experts was to find the boundaries of
the four behaviors given only information about which con-
trollers were on or off.

This experiment told us that the encoding of a sequence
matters: When the coding produced shorter behaviors (aver-
age length of 7.95 time steps), VE’s performance was com-
parable to that in earlier experiments (F=0.778), but when
the coding produced longer behaviors, performance is very
much worse (F=0.183). This is because very long episodes
are unique, so most locations in very long episodes have zero
boundary entropy and frequency equal to one. And when the
window size is very much smaller than the episode length,
then there will be a strong bias to cut the sequence inappro-
priately.

Instruction of an AI Student
The goal of the DARPA’s Bootstrapped Learning (BL)
project is to develop an “electronic student” that can be in-
structed by human teachers, in a natural manner, to perform
complex tasks. Currently, interaction with the electronic stu-
dent is not very different from high-level programming. Our
goal is to replace many of the formal cues or “signposts” that
enable the electronic student to follow the teacher, making
the interaction between them more natural. VE can largely
replace one of these cues: the need to inform the student
whenever the teacher’s instruction method changes.

In BL, teachers communicate with the student in a lan-
guage called Interlingua language (IL). Some IL messages
serve only to notify the student that a “Lesson Epoch” (LE)
has ended.

Several curricula have been developed for BL. VE finds
LE boundaries with high accuracy in all of them – and can
be trained on one and tested on another to good effect. To
illustrate, we will present results for the Unmanned Aerial
Vehicle (UAV) domain. To study the detection of LE bound-
aries, a training corpus was generated from version 2.4.01
of the UAV curriculum by removing all of the messages that
indicate boundaries between LEs. This training corpus con-
tains a total of 742 LEs. A separate corpus consisting of 194
LEs served as a test corpus. As the teacher should never have
to provide LE boundaries, the problem is treated as unsuper-
vised and both the training and test corpora are stripped of
all boundary information.

Each individual message in the corpus is a recursive struc-
ture of IL objects that together express a variety of relations
about the concepts being taught and the state of teaching.
LEs are defined more by the structure of the message se-
quence than the full content of each message. Thus, we rep-
resent each message as a single symbol, formed by concate-
nating the IL type of the two highest composite IL objects
(generally equivalent to the message’s type and subtype).
The sequence of structured messages is thus translated into

34

TRAINING TEST
Size P R F P R F

1.00 0.927 0.888 0.907 0.933 0.876 0.904
0.75 0.881 0.839 0.859 0.904 0.829 0.864
0.50 0.905 0.784 0.840 0.871 0.772 0.819
0.25 0.961 0.772 0.856 0.836 0.606 0.703

Table 3: BVE Results on UAV Domain trained on different
subsets of the training corpus. “Size” is percentage of the
training corpus given to BVE.

a sequence of symbols, and it is this symbol sequence that
will be segmented into LEs.

BVE is allowed to process the training corpus repeatedly
to gather statistics and segment it, but the segmentation of
the test corpus must be done in one pass, to model more
closely the constraints of a real teacher-student interaction.
If allowed to operate on the full UAV corpus, BVE finds LE
boundaries handily, achieving an F-score of 0.907. How-
ever, this domain is non-trivial: VE achieves an F-score of
0.753, only slightly lower than its score for word segmenta-
tion in English text. As a baseline comparison, segmenting
the corpus at every location results in an F-score of 0.315,
which indicates that LE boundaries are roughly as frequent
as word boundaries in English, and thus that high perfor-
mance is not guaranteed simply by the frequency of bound-
aries of the data.

Results from segmenting a test corpus (not drawn from
the training corpus) consisting of 194 lesson epochs are
shown in Table 3. “Training Size” refers to the percentage
of the training corpus processed by BVE before segmenting
the test corpus. From these results, it is evident that BVE
can perform very well on a new corpus when the training
corpus is sufficiently large. However, with a small training
corpus BVE does not encounter certain boundary situations,
and thus fails to recognize them during the test, resulting in
lower recall.

Evidence for Generality

So far, we have discussed in detail one kind of evidence for
the general applicability of VE, namely that VE success-
fully performs unsupervised segmentation in a wide variety
of domains. In order for VE to be successful in a given do-
main, chunks must exist in that domain that adhere to the
VE’s signature of chunks, and VE must correctly identify
these chunks. Thus, the success of VE in each of these
domains is evidence for the presence of chunks that ad-
here to the signature in each domain. Also, VE’s chunk
signature is similar to (or a direct generalization of) sev-
eral other independently-developed signatures, such as PtM,
HubMorph, and the work of Kadir and Brady (KB01). The
independent formulation of similar signatures by researchers
working in different domains suggests that a common prin-
ciple is at work across those domains.

Optimality of the VE Chunk Signature
Though the success of VE in a given domain provides in-
direct evidence that the chunk signature successfully iden-
tifies chunks in that domain, we can evaluate the validity
of the chunk signature much more directly. To evaluate the
ability of the chunk signature to select the true segmentation
from among all possible segmentations of a given sequence,
we developed a “chunkiness” score that can be assigned to
each possible segmentation, thus ranking all possible seg-
mentations by the quality of the chunks they contain. The
chunkiness score rewards frequent sequences that have high
entropy at both boundaries (Equation 1), just as in VE. The
score for a complete segmentation is simply the average of
the chunkiness of each segment. If the chunk signature is
correct, the true segmentation should have a very high score,
and so will appear close to the top of this ranking. Unfor-
tunately, due to the exponential increase in the number of
segmentations (a sequence of length n has 2n−1 segmenta-
tions), this methodology can only be reasonably applied to
short sequences. However, it can be applied to many such
short sequences to better gain a better estimate of the de-
gree to which optimizing chunkiness optimizes segmenta-
tion quality.

Ch(s) =
Hf (s) + Hb(s)

2
− log Pr(s) (1)

For each 5-word sequence (usually between 18 and 27
characters long) in the Bloom73 corpus from CHILDES, we
generated all possible segmentations and ranked them all by
chunkiness. On average, the true segmentation was in the
98.7th percentile. All probabilities needed for computing
the chunkiness score were estimated from a training corpus,
the Brown73 corpus (also from CHILDES). Preliminarily, it
appears that syntax is the primary reason that the true seg-
mentation is not higher in the ranking: When the word-order
in the training corpus is scrambled, the true segmentation is
in the 99.6th percentile. Still, based on these early results we
can say that, in at least one domain, optimizing chunkiness
very nearly optimizes segmentation quality.

Automatic Setting of Parameters
VE has tunable parameters, and Hewlett and Cohen (HC09)
showed that these parameters can greatly affect perfor-
mance. However, they also demonstrated how these pa-
rameters can be tuned without supervision. Minimum De-
scription Length (MDL) provides an unsupervised way to
set these parameters indirectly by selecting among the seg-
mentations each combination of parameters generates. The
Description Length for a given hypothesis and data set refers
to the number of bits needed to represent both the hypoth-
esis and the data given that hypothesis. The Minimum De-
scription Length, then, simply refers to the principle of se-
lecting the hypothesis that minimizes description length. In
this context, the data is a corpus (sequence of symbols), and
the hypotheses are proposed segmentations of that corpus,
each corresponding to a different combination of parameter
settings. Thus, we choose the vector of parameter settings
that generates the hypothesized segmentation which has the
minimum description length.

35

Extension to Non-Symbolic Data
Strictly speaking, VE can only operate over sequences of
discrete symbols. However, as already demonstrated by
Miller et al.’s applications of VE to the visual and auditory
domains, many sequences of multivariate or continuous-
valued data can be transformed into a symbolic representa-
tion for VE. Also, the SAX algorithm (LKWL07) provides
a general way to convert a stream of continuous data into a
sequence of symbols.

Allowing Supervision
While the ability of VE to operate in a fully unsupervised
setting is certainly a strength, the fact that VE contains no
natural mechanism for incorporating supervision may be
seen as a limitation: If some likely examples of ground truth
boundaries are available, the algorithm ought to be able to
take advantage of this information. While VE itself cannot
benefit from true boundary knowledge, one of its extensions,
BVE, does so handily. BVE’s knowledge trie can store pre-
viously discovered boundaries (whether provided to or in-
ferred by the algorithm), and the knowledge expert votes for
boundary locations that match this prior knowledge. The
Markov Experts version is able to benefit from supervision
in a similar way, and, if entire correct chunks are known,
HVE-3E can as well.

An Emergent Lexicon
VE does not represent explicitly a “lexicon” of chunks that
it has discovered. VE produces chunks when applied to a
sequence, but its internal data structures do not represent the
chunks it has discovered explicitly. By contrast, BVE stores
boundary information in the knowledge trie and refines it
over time. Simply by storing the beginnings and endings
of segments, the knowledge trie comes to store sequences
like #cat#, where # represents a word boundary. The set
of such bounded sequences constitutes a simple, but accu-
rate, emergent lexicon. After segmenting a corpus of child-
directed speech, the ten most frequent words of this lexicon
are you, the, that, what, is, it, this, what’s, to, and look. Of
the 100 most frequent words, 93 are correct. The 7 errors
include splitting off morphemes such as ing, and merging
frequently co-occurring word pairs such as do you.

Conclusion
Chunking is one of the domain-independent cognitive abili-
ties that is required for general intelligence, and VE provides
a powerful and general implementation of this ability. We
have demonstrated that VE and related algorithms perform
well at finding chunks in a wide variety of domains, and pro-
vided preliminary evidence that chunks found by maximiz-
ing chunkiness are almost always real chunks. This suggests
that the information theoretic chunk signature that drives VE
is not specific to any one domain or small set of domains.
We have discussed how extensions to VE enable it to operate
over nearly any sequential domain, incorporate supervision
when present, and tune its own parameters to fit the domain.

References
[Bre99] Michael R Brent. An Efficient, Probabilistically
Sound Algorithm for Segmentation and Word Discovery.
Machine Learning, pages 71–105, 1999.

[CA01] P Cohen and N Adams. An algorithm for segment-
ing categorical time series into meaningful episodes. Lec-
ture notes in computer science, 2001.

[CAH07] Paul Cohen, Niall Adams, and Brent Heeringa.
Voting Experts: An Unsupervised Algorithm for Segment-
ing Sequences. Intelligent Data Analysis, 11:607–625,
2007.

[CM05] Jimming Cheng and Michael Mitzenmacher. The
Markov Expert for Finding Episodes in Time Series. In
Proceedings of the Data Compression Conference (DCC
2005), pages 454–454. IEEE, 2005.

[GY05] Timothy Gambell and Charles Yang. Word Seg-
mentation: Quick but not Dirty. 2005.

[Har55] Zellig S. Harris. From Phoneme to Morpheme.
Language, 31:190, 1955.

[HC09] Daniel Hewlett and Paul Cohen. Bootstrap Vot-
ing Experts. In Proceedings of the Twenty-first Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
09), 2009.

[JM03] Howard Johnson and Joel Martin. Unsupervised
learning of morphology for English and Inuktitut. Proceed-
ings of the 2003 North American Chapter of the Associ-
ation for Computational Linguistics on Human Language
Technology (NAACL-HLT 03), pages 43–45, 2003.

[KB01] Timor Kadir and Michael Brady. Saliency, Scale
and Image Description. International Journal of Computer
Vision, 45:83–105, 2001.

[LKWL07] Jessica Lin, Eamonn Keogh, Li Wei, and Ste-
fano Lonardi. Experiencing SAX: a novel symbolic rep-
resentation of time series. Data Mining and Knowledge
Discovery, 15:107–144, April 2007.

[MS85] Brian McWhinney and Cynthia E. Snow. The child
language data exchange system (CHILDES). Journal of
Child Language, 1985.

[MS08] Matthew Miller and Alexander Stoytchev. Hierar-
chical Voting Experts: An Unsupervised Algorithm for Hi-
erarchical Sequence Segmentation. In Proceedings of the
7th IEEE International Conference on Development and
Learning (ICDL 2008), pages 186–191, 2008.

[MWS09] Matthew Miller, Peter Wong, and Alexander
Stoytchev. Unsupervised Segmentation of Audio Speech
Using the Voting Experts Algorithm. Proceedings of the
2nd Conference on Artificial General Intelligence (AGI
2009), 2009.

[SAN96] Jenny R Saffran, Richard N Aslin, and Elissa L
Newport. Statistical Learning by 8-Month-Old Infants. Sci-
ence, 274:926–928, 1996.

[TIJ06] Kumiko Tanaka-Ishii and Zhihui Jin. From
Phoneme to Morpheme: Another Verification Using a Cor-
pus. In Proceedings of the 21st International Conference
on Computer Processing of Oriental Languages (ICCPOL
2006), volume 4285, pages 234–244, 2006.

36

Grounding Possible Worlds Semantics in Experiential Semantics

Matthew Iklé
Adams State College

Ben Goertzel
Novamente LLC

Abstract

Probabilistic Logic Networks (PLN), a comprehensive
framework for uncertain inference currently in use in
the OpenCog and Novamente Cognition Engine AGI
software architectures, has previously been described in
terms of the “experiential semantics” of an intelligent
agent embodied in a world. However, several aspects
of PLN are more easily interpreted and formulated in
terms of “possible worlds semantics”; here we use a
formal model of intelligent agents to show how a form
of possible worlds semantics can be derived from expe-
riential semantics, and use this to provide new inter-
pretations of several aspects of PLN (including uncer-
tain quantifiers, intensional inheritance, and indefinite
probabilities.) These new interpretations have practi-
cal as well as conceptual benefits, as they give a unified
way of specifying parameters that in the previous in-
terpretations of PLN were viewed as unrelated.

Introduction

The mind of an intelligent agent accumulates knowl-
edge based on experience, yet also creates hypothetical
knowledge about “the world as it might be,” which is
useful for guiding future actions. This dichotomy – be-
tween experience and hypothesis – occurs in regard to
many types of knowledge; and in the context of declar-
ative knowledge, it is related to the distinction between
experiential and possible-worlds semantics. Here we
discuss how these two forms of semantics may be re-
lated to each other in the context of a generally intelli-
gent agent that interprets its experience (at least par-
tially) using probabilistic logic. Our treatment pertains
specifically to the Probabilistic Logic Networks (PLN)
inference framework, which is currently in use in the
OpenCog and Novamente Cognition Engine AGI soft-
ware architectures and has been used for applications
including natural language based reasoning (Gea06)
and virtual agent reinforcement learning (Goe08); how-
ever, many of the points raised could be extended more
generally to any probabilistic inference framework.

In much of our prior work on PLN, we have utilized
“experiential semantics”, according to which the mean-
ing of each logical statement in an agent’s memory is
defined in terms of the agent’s experiences. However

we have also found that certain aspects of PLN are best
interpreted in terms of “possible worlds semantics”, in
which the meaning of a statement is defined by refer-
ence to an ensemble of possible worlds including the one
the agent interpreting the statement has experienced.
The relation between these two semantic approaches in
the PLN context has previously been left informal; the
core goal of this paper is to specify it, via providing an
experiential grounding of possible worlds semantics.

We study an agent whose experience constitutes one
“actual world” drawn from an ensemble of possible
worlds. We use the idea of bootstrapping from statis-
tics to generate a set of “simulated possible worlds”
from the actual world, and prove theorems regarding
conditions under which, for a probabilistic predicate F ,
the truth value of F evaluated over these simulated pos-
sible worlds gives a good estimate of the truth value of
F evaluated over the ensemble of possible worlds from
which the agent’s actual world is drawn.

The reader with a logic background should note that
we are construing the notion of possible worlds seman-
tics broadly here, in the philosophical sense (Lew86),
rather than narrowly in the sense of Kripke semantics
(Gol03) and its relatives. In fact there are interesting
mathematical connections between the present formu-
lation and Kripke semantics and epistemic logic, but we
will leave these for sequel papers.

Then, we show how this apparatus of simulated pos-
sible worlds simplifies the interpretation of several as-
pects of PLN, providing a common foundation for set-
ting various PLN system parameters that were pre-
viously viewed as distinct. We begin with indefinite
probabilities (Iea07; Gea08), noting that the second-
order distribution involved therein may be interpreted
using possible worlds semantics. Then we turn to un-
certain quantifiers, showing that the third-order distri-
bution used to interpret these in (IG08) may be con-
sidered as a distribution over possible worlds. Finally,
we consider intensional inference, suggesting that the
complexity measure involved in the definition of PLN
intension (Gea08) may be derived from a probability
measure over possible worlds. By considering the space
of possible worlds implicit in an agent’s experience, one
arrives at a simpler unified view of various aspects of the

37

agent’s uncertain reasoning, than if one grounds these
aspects in the agent’s experience directly. This is not
an abandonment of experiential semantics but rather
an acknowledgement that a simple variety of possible
worlds semantics is derivable from experiential seman-
tics, and usefully deployable in the development of un-
certain inference systems for general intelligence.

We will not review the PLN inference framework here
but will assume the reader has a basic familiarity with
PLN terms and notation, as would be found by reading
(Gea08) or (Iea07).

A Formal Model of Intelligent Agents
We very briefly review a simple formal model of intelli-
gent agents: Simple Realistic Agent Model (SRAM).
Following Legg and Hutter’s framework (LH07), we
consider a class of active agents which observe and ex-
plore their environment and take actions in it. The
agent sends information to the environment by send-
ing symbols from some finite alphabet called the action
space Σ; and the environment sends signals to the agent
with symbols from an alphabet called the perception
space, denoted P. Agents can also experience rewards,
which lie in the reward space, denotedR, which for each
agent is a subset of the rational unit interval.

To Legg and Hutter’s framework, we add a set M
of memory actions, allowing agents to maintain memo-
ries (of finite size), and at each time step to carry out
internal actions on their memories as well as external
actions in the environment. Further extending the Legg
and Hutter framework, we also introduce the notions of
goals associated with symbols, drawn from the alphabet
G, and goal-seeking agents; and we consider the environ-
ment as sending goal-symbols to the agent along with
regular observation-symbols. We also introduce a con-
ditional distribution γ(g, µ) that gives the weight of a
goal g in the context of a particular environment µ.

In this extended framework, an interaction sequence
looks like

m1a1o1g1r1m2a2o2g2r2...

where the mi’s represent memory actions, the ai’s rep-
resent external actions, the oi’s represent observations,
the gi’s represent agent goals, and the ri’s represent re-
wards. The reward ri provided to an agent at time i is
determined by the goal function gi. Introducing w as
a single symbol denoting the combination of a memory
action and an external action, and y as a single symbol
denoting the combination of an observation, a goal and
a reward, we can simplify this interaction sequence as

w1y1w2y2...

Each goal function maps each finite interaction se-
quence Ig,s,t = wys:t into a value rg(Ig,s,t) ∈ [0, 1] indi-
cating the value or “raw reward” of achieving the goal
during that interaction sequence. The total reward rt
obtained by the agent is the sum of the raw rewards
obtained at time t from all goals whose symbols occur
in the agent’s history before t.

The agent is represented as a function π which takes
the current history as input, and produces an action
as output. Agents need not be deterministic and may
induce a probability distribution over the space of pos-
sible actions, conditioned on the current history. In
this case we may characterize the agent by a proba-
bility distribution π(wt|wy<t). Similarly, the environ-
ment may be characterized by a probability distribution
µ(yk|wy<k). The distributions π and µ define a proba-
bility measure over the space of interaction sequences.

Following Legg and Hutter, we will consider the class
of environments that are reward-summable, meaning
that the total amount of reward they return to any
agent is bounded by 1. We will also use the term “con-
text” to denote the combination of an environment, a
goal function and a reward function. If the agent is act-
ing in environment µ, and is provided with gt = g for
the time-interval T = t ∈ {t1, ..., t2}, then the expected
goal-achievement of the agent during the interval is

V πµ,g,T ≡
t2∑
t1

ri

where E is the space of computable, reward-summable
environments.

Next, we introduce a second-order probability distri-
bution ν over the space of environments µ. One such
distribution is the Solomonoff-Levin universal distribu-
tion in which one sets ν = 2−K(µ); but this is not the
only distribution of interest. A great deal of real-world
general intelligence consists of the adaptation of intel-
ligent systems to other particular distributions ν over
environment-space (Goe10; Goe09).

Inducing a Distribution over Predicates
and Concepts
Given a distribution over environments as defined
above, and a collection of predicates evaluated on sub-
sets of environments, we will find it useful to define
distributions (induced by the distribution over environ-
ments) defining the probabilities of these predicates.

Suppose we have a pair (F, T) where F is a function
mapping sequences of perceptions into fuzzy truth val-
ues, and T is an integer connoting a length of time. We
can define the prior probability of (F, T) as the average
degree to which F is true, over a random interval of
perceptions of length T drawn from a random environ-
ment drawn from the distribution over environments.
More generally, if one has a pair (F, f), where f is a
distribution over the integers, one can define the prior
probability of (F, f) as the weighted average of the prior
probability of (F, T) where T is drawn from f .

While expressed in terms of predicates, the above for-
mulation can also be useful for dealing with concepts,
e.g. by interpreting the concept cat in terms of the pred-
icate isCat. So we can use this formulation in inferences
where one needs a concept probability like P (cat) or a
relationship probability like P (eat(cat,mouse)).

38

Grounding Possible Worlds Semantics
in Experiential Semantics

Now we explain how to ground a form of possible worlds
semantics in experiential semantics. We explain how an
agent, experiencing a single stream of perceptions, may
use this to construct an ensemble of “simulated” pos-
sible worlds, which may then be used in various sorts
of inferences. This idea is closely related to a common-
place idea in the field of statistics: “subsampling,” a
form of “bootstrapping.”

In subsampling, if one has a single dataset D which
one wishes to interpret as coming from a larger popu-
lation of possible datasets, and one wishes to approxi-
mately understand the distribution of this larger pop-
ulation, then one generates a set of additional datasets
via removing various portions of D. By removing a por-
tion of D, one obtains another dataset. One can then
look at the distribution of these auxiliary datasets, con-
sidering it as a model of the population D.

This notion ties in closely with SRAM, which consid-
ers a probability distribution over a space of environ-
ments which are themselves probability distributions.
A real agent has a single series of remembered obser-
vations. It can induce an approximation of this distri-
bution over environments by subsampling its memory
and asking: what would it imply about the world if the
items in this subsample were the only things I’d seen?

It may be conceptually useful to observe that a re-
lated notion to subsampling is found in the literary
methodology of science fiction. Many SF authors have
followed the methodology of changing one significant as-
pect of our everyday world, and depicting the world as
they think it might exist if this one aspect were changed
(or, a similar methodology may be followed via chang-
ing a small number of aspects). This is a way of gener-
ating a large variety of alternate possible worlds from
the raw material of our own world.

The subsampling and SF analogies suggest two meth-
ods of creating a possible world within SRAM (and by
repetition, an ensemble of possible worlds) from the
agents experience. An agent’s interaction sequence with
its environment forms a sample from which it wishes to
infer its environment. To better assess this environ-
ment, the agent may, for example,

1. create a possible world by removing a randomly se-
lected collection of interactions from the agents mem-
ory. In this case, the agent’s interaction sequence
would be of the form Ig, s, t,(nt) = wy(nt) where (nt)
is some subsequence of 1 : t− 1.

2. create a possible world via assuming a counterfactual
hypothesis (i.e. assigning a statement a truth value
that contradicts the agents experience), and using
inference to construct a set of observations that is
as similar to its memory as possible, subject to the
constraint of being consistent with the hypothesis.

3. create a possible world by reorganizing portions of
the interaction sequence.

4. create a possible world by some combination of the
above.
Here we will focus on the first option, leaving the

others for future work. We denote an alteration of an
iteration sequence Iag,s,t for an agent a by Ĩag,s,t, and the
set of all such altered interaction sequences for agent a
by Ia.

An agent’s interaction sequence will presumably be
some reasonably likely sequence. We would therefore be
most interested in those cases for which dI(Iag,s,t, Ĩ

a
g,s,t)

is small, where dI(·, ·) is some measure of sequence simi-
larity. The probability distribution ν over environments
µ will then tend to give larger probabilities to nearby
sequences, than to ones that are far away. An agent
would typically be interested in considering only mi-
nor hypothetical changes to its interaction sequences,
and would have little basis for understanding the con-
sequences of drastic alterations.

Any of the above methods for altering interaction
sequences would alter an agent’s perception sequence
causing changes to the fuzzy truth values mapped by
the function F . This in turn would yield new probabil-
ity distributions over the space of possible worlds, and
thereby yielding altered average probability values for
the pair (F, T). This change, constructed from the per-
spective of the agent based on its experience, could then
cause the agent to reassess its action w. This is what
we mean by “experiential possible worlds” or EPW.

The creation of altered interaction sequences may,
under appropriate assumptions, provide a basis for cre-
ating better estimates for the predicate F than we
would otherwise have from a single real-world data
point. More specifically we have the following results,
which discuss the estimates of F made by either a single
agent or a population of agents, based on each agent in
the population subsampling their experience.
Theorem 1. Let En represent an arbitrary ensemble of
n agents chosen from A. Suppose that, on average over
the set of agents a ∈ En, the set of values F (I) for mu-
tated interaction sequences I is normal and unbiased,
so that,

E[F] =
1
n

∑
a∈En

∑
Iag,s,t∈Ia

F (Iag,s,t)P (Iag,s,t).

Suppose further that these agents explore their environ-
ments by creating hypothetical worlds via altered inter-
action sequences. Then an unbiased estimate for E[F]
is given by

F̂ =
1
n

∑
a∈En

∑
Ĩag,s,t∈Ia

F (Ĩag,s,t)P (Ĩag,s,t)

=
1
n

∑
a∈En

∑
Ĩag,s,t∈Ia

F (Ĩag,s,t)
∑
e∈E

[P (e|Iag,s,t)P (Ĩag,s,t|e)].

Proof. That F̂ is an unbiased estimate for E[F] follows
as a direct application of standard statistical bootstrap-
ping theorems. See, for example, (DE96).

39

Theorem 2. Suppose that in addition to the above as-
sumptions, we assume that the predicate F is Lipschitz
continuous as a function of the interaction sequences
Iag,s,t. That is,

dF

(
F (Ĩag,s,t), F (Iag,s,t)

)
≤ KdI(Ĩag,s,t, Iag,s,t),

for some bound K and dF (·, ·) is a distance measure in
predicate space. Then, setting both the bias correction
and acceleration parameters to zero, the bootstrap BCα
confidence interval for the mean of F satisfies

F̂BCα [α] ⊂ [F̂ −Kz(α)σ̂I , F̂ +Kz(α)σ̂I]

where σ̂I is the standard deviation for the altered in-
teraction sequences and, letting Φ denote the standard
normal c.d.f., z(α) = Φ−1(α).

Proof. Note that the Lipschitz condition gives

σ̂2
F =

1
n|Ia| − 1

×∑
a∈En

∑
Ĩag,s,t∈Ia

d2
F

(
F (Ĩag,s,t), F (Iag,s,t)

)
P (Ĩag,s,t)

≤ K2

n|Ia| − 1

∑
a∈En

∑
Ĩag,s,t∈Ia

d2
I(Ĩ

a
g,s,t, I

a
g,s,t)P (Ĩag,s,t)

= K2σ̂2
I .

Since the population is normal and the bias correction
and acceleration parameters are both zero, the BCα
bootstrap confidence interval reduces to the standard
confidence interval, and the result then follows (DE96).

These two theorems together imply that, on average,
through subsampling via altered interaction sequences,
agents can obtain unbiased approximations to F ; and,
by keeping the deviations from their experienced inter-
action sequence small, the deviations of their approxi-
mations will also be small.

While the two theorems above demonstrate the abil-
ity of the subsampling approach to generate probabilis-
tic possible-worlds semantics from experiential seman-
tics, they fall short of being relevant to practical AI
inference systems, because the Lipschitz condition in
Theorem 2 is an overly strong assumption. With this
in mind we offer the following modification, that is more
realistic and also in keeping with the flavor of PLN’s in-
definite probabilities approach. The following theorem
basically says that: If one or more agents evaluate the
truth value of a probabilistic predicate F via a series of
subsampled possible worlds that are normally and unbi-
asedly distributed around the agent’s actual experience,
and if the predicate F is mostly smoothly dependent on
changes in the world, then evaluating the truth value of
F using subsampled possible worlds gives roughly the
same results as would be gotten by evaluating the truth
value of F across the overall ensemble of possible worlds
from which the agent’s experience is drawn.

Theorem 3. Define the set

Ia;b =
{
Ĩag,s,t|d2

F

(
F (Ĩag,s,t), F (Iag,s,t

)
= b
}
,

and assume that for every real number b the perceptions
of the predicate F satisfy

1
n

∑
a∈En

P (Ia;b) ≤ M(b)
b2

σ2
I

for some M(b) ∈ R. Further suppose that∫ 1

0

M(b) db = M2 ∈ R.

Then under the same assumptions as in Theorem 1, and
again setting both the bias correction and acceleration
parameters to zero, we have

F̂BCα [α] ⊂ [F̂ −M
√
nz(α)σ̂I , F̂ +M

√
nz(α)σ̂I]

Proof.

σ̂2
F =

1
n · |Ia| − 1

×∑
a∈En

∑
Ĩag,s,t∈Ia

d2
F

(
F (Ĩag,s,t), F (Iag,s,t)

)
P (Ĩag,s,t)

=
1

n · |Ia| − 1
×

∑
a∈En

∫ 1

0

∑
Ĩag,s,t∈Ia;b

d2
F

(
F (Ĩag,s,t), F (Iag,s,t)

)
P (Ĩag,s,t) db

≤ 1
n · |Ia| − 1

×

∑
a∈En

∫ 1

0

∑
Ĩag,s,t∈Ia;b

d2
F

(
F (Ĩag,s,t), F (Iag,s,t)

)
P (Ĩag,s,t) db

≤ b2nM
2

b2
σ2
I =

(
M
√
n
)2
σ2
I .

In the following sections we show how this new for-
malization of possible worlds semantics can be used to
clarify the conceptual and mathematical foundations of
several aspects of PLN inference.

Reinterpreting Indefinite Probabilities
Indefinite probabilities (Iea07; Gea08) provide a nat-
ural fit with the experiential semantics of the SRAM
model, as well as with the subsampling methodology
articulated above. An indefinite probability truth-value
takes the form of a quadruple ([L, U], b, k). The mean-
ing of such a truth-value, attached to a statement S is,
roughly: There is a probability b that, after k more ob-
servations, the truth value assigned to the statement S
will lie in the interval [L, U]. We interpret an interval
[L, U] by assuming some particular family of distribu-
tions (usually Beta) whose means lie in [L,U].

40

To execute inferences using indefinite probabilities,
we make heuristic distributional assumptions, assuming
a “first order distribution of means, with [L,U] as a
(100b)% credible interval. Corresponding to each mean
in this “first-order” distribution is a “second order dis-
tribution, providing for an “envelope” of distributions.

The resulting bivariate distribution can be viewed
as an heuristic approximation intended to estimate un-
known probability values existing in hypothetical future
situations. Combined with additional parameters, each
indefinite truth-value object essentially provides a com-
pact representation of a single second-order probability
distribution with a particular, complex structure.

In the EPW context, the second-order distribution
in an indefinite probability is most naturally viewed as
a distribution over possible worlds; whereas, each first-
order distribution represents the distribution of values
of the proposition within a given possible world.

As a specific example, consider the case of two virtual
agents: one agent, with cat-like characteristics, called
“Fluffy” and the second a creature, with dog-like char-
acteristics, named “Muffin.” Upon a meeting of the two
agents, Fluffy might immediately consider three courses
of action: Fluffy might decide to flee as quickly as pos-
sible, might hiss and threaten Muffin, or might decide
to remain still. Fluffy might have a memory store of
perception sequences from prior encounters with agents
with similar characteristics to those of Muffin.

In this scenario, one can view the second-order distri-
bution as a distribution over all three courses of action
that Fluffy might take. Each first-order distribution
would represent the probability distribution of the re-
sult from the corresponding action. By hypothetically
considering all three possible courses of action and the
probability distributions of the resulting action, Fluffy
can make more rational decisions.

Reinterpreting Indefinite Quantifiers
EPW also allows PLN’s universal, existential and fuzzy
quantifiers to be expressed in terms of implications on
fuzzy sets. For example, if we have
ForAll $X

Implication
Evaluation F $X
Evaluation G $X

then this is equivalent to
AverageQuantifier $X

Implication
Evaluation F ∗ $X
Evaluation G∗ $X

where e.g. F ∗ is the fuzzy set of variations on F con-
structed by assuming possible errors in the historical
evaluations of F . This formulation yields equivalent
results to the one given in (Gea08), but also has the
property of reducing quantifiers to FOPLN (over sets
derived from special predicates).

To fully understand the equivalence of the above
two expressions, first recall that in (Gea08), we han-
dle quantifiers by introducing third-order probabilities.
As discussed there, the three levels of distributions are
roughly as follows. The first- and second-order levels
play the role, with some modifications, of standard in-
definite probabilities. The third-order distribution then
plays the role of “perturbing the second-order distribu-
tion. The idea is that the second-order distribution
represents the mean for the statement F (x). The third-
order distribution then gives various values for x, and
the first-order distribution gives the sub-distributions
for each of the second-order distributions. The final
result is then found via an averaging process on all
those second-order distributions that are “almost en-
tirely” contained in some ForAll proxy interval.

Next, AverageQuantifier F ($X) is a weighted aver-
age of F ($X) over all relevant inputs $X; and we define
the fuzzy set F ∗ as the set of perturbations of a second-
order distribution of hypotheses, and G∗ as the corre-
sponding set of perturbed implication results. With
these definitions, not only does the above equivalence
follow naturally, so do the “possible/perturbed worlds”
semantics for the ForAll quantifier. Other quantifiers,
including fuzzy quantifiers, can be similarly recast.

Specifying Complexity for Intensional
Inference

A classical dichotomy in logic involves the distinction
between extensional inference (involving sets with mem-
bers) and intensional inference (involving entities with
properties). In PLN this is handled by taking exten-
sion as the foundation (where, in accordance with ex-
periential semantics, sets ultimately boil down to sets
of elementary observations), and defining intension in
terms of certain fuzzy sets involving observation-sets.
This means that in PLN intension, like higher-order
inference, ultimately emerges as a subcase of FOPLN
(though a subcase with special mathematical properties
and special interest for cognitive science and AI). The
prior formulation of PLN intension contains a “free pa-
rameter” (a complexity measure) which is conceptually
inelegant; EPW remedies this via providing this param-
eter with a foundation in possible worlds semantics.

To illustrate how, in PLN, higher-order in-
tensional inference reduces to first-order infer-
ences, consider the case of intensional inheritance.
IntensionalInheritance A B measures the extensional
inheritance between the set of properties or patterns
associated with A and the corresponding set associated
with B. This concept is made precise via formally
defining the concept of “pattern,” founded on the
concept of “association.” We formally define the
association operator ASSOC through:

ExtensionalEquivalence
Member $E (ExOut ASSOC $C)
ExOut

Func

41

List
lnheritance $E $C
Inheritance

NOT $E
$C

where Func(x, y) = [x− y]+ and + denotes the positive
part.

We next define a pattern in an entity A as some-
thing that is associated with, but simpler than, A. Note
that this definition presumes some measure c() of com-
plexity. One can then define the fuzzy-set membership
function called the “pattern-intensity,” via

IN(F,G) = [c(G)− c(F)]+[P (F |G)− P (F | 6 G)]+.

The complexity measure c has been left unspecified in
prior explications of PLN, but in the present context we
may take it as the measure over concepts implied by the
measure over possible worlds derived via subsampling
as described above (or perhaps by counterfactuals).

Reinterpreting Implication between
Inheritance Relationships

Finally, one more place where possible worlds semantics
plays a role in PLN is with implications such as
Implication

Inheritance Ben American
Inheritance Ben obnoxious

We can interpret these by introducing predicates over
possible worlds, so that e.g.

ZInheritance Ben American(W) < t >

denotes that t is the truth value of
Inheritance Ben American in world W . A pre-
requisite for this is that Ben and American be defined
in a way that spans the space of possible worlds in
question. When defining possible worlds by differing
subsets of the same observation-set, this is straight-
forward; in the case of possible worlds defined via
counterfactuals it is subtler and we omit details here.

The above implication may then be interpreted as
AverageQuantifier $W

Implication
Evaluation ZInheritance Ben obnoxious $W
Evaluation ZInheritance Ben American $W

The weighting over possible worlds $W may be taken
as the one obtained by the system through the subsam-
pling or counterfactual methods as indicated above.

Conclusion
We began with the simple observation that the mind of
an intelligent agent accumulates knowledge based on ex-
perience, yet also creates hypothetical knowledge about
“the world as it might be,” which is useful for guiding

future actions. PLN handles this dichotomy via a foun-
dation in experiential semantics, and it is possible to
formulate all PLN inference rules and truth value for-
mulas in this way. Some PLN truth value formulas are
simplified by interpreting them using possible world se-
mantics. With this in mind we used subsampling to de-
fine a form of experientially-grounded possible-worlds
semantics, and showed its use for handling indefinite
truth values, probabilistic quantifiers and intensional
inference. These particular technical ideas illustrate the
more general thesis that a combination of experiential
and possible-worlds notions may be the best approach
to comprehending the semantics of declarative knowl-
edge in generally intelligent agents.

References
Thomas J. DiCiccio and Bradley Efron. Bootstrap
confidence intervals. Statistical Science, Vol. 11, No.
3, 189-228, 1996.
Ben Goertzel and Hugo Pinto et al. Using depen-
dency parsing and probabilistic inference to extract
gene/protein interactions implicit in the combination
of multiple biomedical research abstracts. In Proceed-
ings of BioNLP-2006 Workshop at ACL-2006, New
York, 2006.
Ben Goertzel and Matthew Iklé et al. Probabilistic
Logic Networks. Springer, 2008.
Ben Goertzel. An integrative methodology for teach-
ing embodied non-linguistic agents, applied to virtual
animals in second life. In Proceedings of the First AGI
Conference, Memphis, 2008.
Ben Goertzel. The embodied communication prior.
Proceedings of ICCI 2009, Hong Kong, 2009.
Ben Goertzel. Toward a formalization of real-world
general intelligence. Submitted to AGI-10, 2010.
Robert Goldblatt. Mathematical modal logic: a view
of its evolution. Journal of Applied Logic 1: 30992,
2003.
Matthew Iklé and Ben Goertzel et al. Indefinite proba-
bilities for general intelligence. In Proceedings of 2006
AGIRI conference, Bethesda, MD: IOS Press, 2007.
Matthew Iklé and Ben Goertzel. Probabilistic quanti-
fier logic for general intelligence: An indefinite proba-
bilities approach. In Proceedings of AGI-08. Memphis,
2008.
David Lewis. On the Plurality of Worlds. Basil Black-
well, 1986.
Shane Legg and Marcus Hutter. A formal measure
of machine intelligence. In Proceedings of Benelaam-
2006, Ghent, 2007.

42

Abstract
The evaluation of incremental progress towards ‘Strong AI’
or ‘AGI’ remains a challenging open problem. In this paper,
we draw inspiration from benchmarks used in artificial com-
monsense reasoning to propose a new benchmark problem—
the Toy Box Problem—that tests the practical real-world
intelligence and learning capabilities of an agent. An impor-
tant aspect of a benchmark is that it is realistic and plausibly
achievable; as such, we outline a preliminary solution based
on the Comirit Framework.

Introduction
The objective of commonsense reasoning is to give soft-
ware and robotic systems the broad every-day knowledge
and know-how that comes effortlessly to human beings
and that is essential for survival in our complex environ-
ment. While commonsense is, or at least appears to be, a
narrower problem than ‘Strong AI’ or ‘AGI’, it shares many
of the same representational, computational and philosophi-
cal challenges. Indeed, one might view commonsense as the
practical, immediate and situated subset of general purpose
intelligence.
 Thus, commonsense reasoning serves as a useful step-
ping-stone towards both the theory and practice of Strong
AI. Not only does commonsense provide a broad, deep and
accessible domain for developing theoretical conceptions of
real-world reasoning, but the practical experience of devel-
oping large scale commonsense provides useful insights into
the scalability challenges of general-purpose intelligence.
 In much the same way that evaluation challenges AGI re-
searchers today2, work in commonsense reasoning has long
been challenged by the difficulty of finding manageable, but
open-ended benchmarks.
 The difficulty of evaluation facing both commonsense
reasoning and AGI arises from the fact that the problems are
so great that we cannot today simply implement complete
systems and test them in their intended domains; it is neces-
sary to measure incremental progress. Unfortunately, incre-
mental progress can be difficult to judge: it is relatively easy
to demonstrate that a particular formalism supports or lacks
a given feature, but it is much harder to determine whether
that feature represents a meaningful improvement. For ex-
ample, even though a formalism or system appears to offer

1 This research supported in part by an ARC Discovery Grant
while at the University of Technology, Sydney.
2 Consider, for example, the ‘Developing an AGI IQ Test’
workshop that is affiliated with the AGI 2010 conference.

The Toy Box Problem (and a Preliminary Solution)

Benjamin Johnston1

Business Information Systems
Faculty of Economics and Business

The University of Sydney
NSW 2006, Australia

improvements in expressive power, efficiency and ease-of-
use, it may have sacrificed a ‘show-stopping’ crucial feature
that is overlooked in the evaluation.
 In the commonsense reasoning community, this problem
is addressed by defining non-trivial (but plausibly achiev-
able) reasoning problems, and then analyzing the ability of
a formalism to solve the problem and a number of elabora-
tions. While analysis is conducted with respect to the sys-
tem’s performance (rather than ‘features’), the formalism
itself is also considered in what might be termed a ‘grey box
analysis’ (rather than, say, a black-box comparison such as
used at RoboCup). To these ends, Morgenstern and Miller
(2009) have collected a set of non-trivial commonsense rea-
soning problems and a handful of proposed ‘solutions’.
 With any benchmark or challenge problem there is, of
course, the temptation to fine-tune a system to the problem,
rather than attempting to design more general and abstract
capabilities. As such, the benchmarks used in the common-
sense reasoning community are not formally defined, nor
are they strictly measurable. Instead, they offer a shared and
open-ended scenario to guide qualitative analysis of prog-
ress towards our goals. Even though this approach is less ob-
jective than a competition or a formal goal, these challenge
problems provide a meaningful context for evaluation that
helps temper unfounded wild claims, while at the same time
avoiding specifics that are readily gamed.
 To date, we have been developing a general purpose
commonsense-reasoning framework named Comirit, and
have evaluated the system on two benchmark problems: the
Egg Cracking Problem (Johnston and Williams 2007), and
the Eating on an Aircraft Problem (Johnston 2009). We have
found this methodology useful, but in charting a course to
more general intelligence, we found that the current selec-
tion of proposed benchmark problems offer little scope for
evaluating the ability of an agent to learn on its own and thus
demonstrate AGI-like capabilities.
 Our objective in this paper is therefore to present an open-
ended benchmark, the Toy Box Problem, in the style of Mor-
genstern and Miller (2009), which may be used to evaluate
progress towards commonsense reasoning and general intel-
ligence.
 In order to briefly illustrate the feasibility of the bench-
mark problem and the problem may be applied, we then use
the Toy Box Problem on the Comirit framework. In doing
so, we will introduce new capabilities in the framework, and
show how the framework may be used to partially solve the
Toy Box Problem.

43

The Toy Box Problem
As with existing benchmarks used within the commonsense
reasoning community (Morgenstern and Miller 2009), we pose
the Toy Box Problem problem as a hypothetical scenario:

A robot is given a box of previously unseen toys. The
toys vary in shape, appearance and construction materi-
als. Some toys may be entirely unique, some toys may be
identical, and yet other toys may share certain character-
istics (such as shape or construction materials). The robot
has an opportunity to first play and experiment with the
toys, but is subsequently tested on its knowledge of the
toys. It must predict the responses of new interactions
with toys, and the likely behavior of previously unseen
toys made from similar materials or of similar shape or
appearance. Furthermore, should the toy box be emptied
onto the floor, it must also be able to generate an appro-
priate sequence of actions to return the toys to the box
without causing damage to any toys (or itself).

The problem is intentionally phrased as a somewhat con-
strained (but non-trivial) scenario with open-ended possibili-
ties for increasing (or decreasing) its complexity. In particular,
we allow the problem to be instantiated in combinations of
four steps of increasing situation complexity and four steps of
toy complexity.
 That is, the problem may be considered in terms of one of
the following environments:

E1. A virtual robot interacting within a virtual 2-dimen-
sional world

E2. A real robot interacting within a real-world planar
environment (e.g., a table surface with ‘flat’ toys and
in which no relevant behavior occurs above the table
surface)

E3. A virtual robot interacting within a virtual 3-dimen-
sional world

E4. A real robot interacting within the real world, without
constraints

Similarly, the complexity of toys is themselves also chosen
from the following:

T1. Toys with observable simple structure, formed from
rigid solids, soft solids, liquids and gases

T2. Toys with complex, but observable mechanical struc-
ture (again, created from rigid solids, soft solids, liq-
uids and gases)

T3. Toys with complex, but observable mechanical struc-
ture, created from any material (including magnets,
gases and reactive chemicals)

T4. Toys with arbitrary structure and operation (including
electronic devices)

In each case, the world and the toys contained within, may
only be observed via ‘raster’ cameras. That is, even in virtual
worlds (E1 and E3), the robot is unable to directly sense the
type or the underlying model of a virtual toy (i.e., the problem
cannot be tested in a world such as Second Life, in which
agents can directly ‘sense’ the symbolic name, type and prop-
erties of an object).
 In fact, virtual worlds (of E1 and E3) should be as close
as possible to a physical world (including the ability for ob-
jects to be arbitrarily broken and joined). Virtual worlds are
included in the Toy Box Problem not to reduce the conceptual

challenge of the problem, but primarily to separate the effort
involved in dealing with camera noise, camera/hardware fail-
ures, color blurring and other sensory uncertainty.
 The Toy Box Problem may be used for evaluating an ‘intel-
ligent’ system by selecting a combination of environment and
toy challenges. For example, the pairing E1&T1 represents
the easiest challenge, whereas E4&T4 present the greatest dif-
ficulty. Note, however that the pairs do not need to match:
the next development step for a system which solves E1&T1
might be either E1&T2 or E2&T1.
 The Toy Box Problem is specifically designed as a stepping
stone towards general intelligence. As such, a solution to the
simplest instances of this problem should not require univer-
sal or human-like intelligence. While an agent must have an
ability to learn or identify by observation (because the toys
are new to the agent), it does not necessarily require the abil-
ity to ‘learn to learn’. For example, given a comprehensive
innate knowledge-base of naïve physics, it may be sufficient
for an agent to solve the problem with toys in T1 and T2 by
a process of identification rather than true learning. However,
the difficulty of the challenge increases with more complex
toys of T3 and T4, and it is unlikely that a system would con-
tinue to succeed on these challenges without deeper learning
capabilities (though, it would be a very interesting outcome
with deep implications for AGI research if a system without
learning capabilities does continue to succeed even on the
most challenging instances of the problem).
 While the pairing E1&T1 is the easiest challenge of the Toy
Box Problem, we believe that any solution to E1&T1 would
be a non-trivial accomplishment, far beyond the reach of
standard ‘Narrow AI’ techniques in use today. Nevertheless,
we expect that the pair E1&T1 should lie within reasonable
expectations of the capabilities of proposals for ‘Strong AI’
architectures today. One could readily conceive of systems
based on methods as diverse as logic, connectionist networks
or genetic programming to each be adapted to solving E1&T1
within a short-term project, and thus form the basis of mean-
ingful comparison and analysis between disparate methods.
 More difficult combinations, such as the pair E4&T4, are
currently far beyond all current technologies. While a system
that performs well for such pairings may not have true general
intelligence, it would be at the pinnacle of practical real-world
physical competence and would have serious real world ap-
plications. For example, this level of knowledge would en-
able a domestic robot or a rescue robot to deal with the many
unexpected objects and situations it would encounter during
its routine duties: whether cleaning a house or making way
through urban rubble.
 Finally, it is worthwhile noting a connection here with
recent discussions concerning the creation of virtual ‘pre-
schools’ for human-like AI development (Goertzel and Bugaj
2009). The Toy Box Problem may be viewed as a specific
and achievable ‘target’ for developing and evaluating real
systems, rather than simply aiming to provide an enriching
environment for robot ‘education’.
 In this rest of this paper, we further illustrate the problem
by outlining a preliminary solution to the Toy Box Problem,
and considering (in the first instance) how it may be ‘solved’
for the pair E1&T1.

44

Comirit Framework
Over the past four years, we have been developing Comirit; a
hybrid reasoning framework for commonsense reasoning. At
the core of the framework lies a generic graph-based scheme
for constructing simulations that implicitly capture practi-
cal commonsense knowledge. While the framework is not
intended to be biologically plausible, simulation in Comirit
may be viewed as a computational analog to human visual
imagination. Comirit uses simulations to reason about, predict
and speculate about a given situation, by first instantiating a
simulation of that situation and then using the simulation as
a mental playground for experimenting with possible actions
and anticipating reactions.
 However, while simulation is a powerful, computationally
efficient, and easy-to-engineer scheme for representing com-
monsense knowledge and predicting the outcome of a situa-
tion, the method is constrained to concrete reasoning and to
the ‘arrow-of-time’. That is, simulation by itself is not well
suited to the following kinds of reasoning:

1. Explaining the cause of an outcome (‘Why is there
split milk on the floor?’)

2. Fact-based reasoning (‘What is the capital of Rus-
sia?’)

3. Abstract deduction (‘What is 3 plus 7?’)
4. Learning about and predicting in novel domains (‘How

will this new toy behave?’)
We have therefore developed Comirit as an open-ended
multi-representational framework that combines simulation
with logical deduction, machine learning and action selection.
This integration is achieved by a uniform mechanism that is
based on the automated theorem proving method of analytic
tableaux (see e.g., Hähnle 2001). In Comirit, the tableau al-
gorithm is extended so that it searches and ranks spaces of
possible worlds, enabling the disparate mechanisms to be uni-
formly represented and reasoned in a unified tableau.
 In the remainder of this section, we provide an overview
of simulation, hybrid reasoning and learning in Comirit and
show how it relates to the Toy Box Problem. More detailed
explanations of Comirit may be found in our prior publica-
tions (Johnston and Williams 2007; 2008; 2009).

Simulation
In the Comirit framework, simulations are the primary repre-
sentation of commonsense knowledge. Comirit Simulations
are designed as a generalization and formalization of an early
proposal by Gardin and Meltzer (1989). In particular, Comirit

uses a generic graph-based representation that has been ex-
tended to use accurate 3D physics3.
 Complex objects are modeled by approximating the struc-
ture of the object as an annotated graphical structure, and then
iteratively updating the annotations according to the laws of
physics. That is, if we have an object to simulate—an egg,
for example—then a graph is instantiated comprising of ver-
tices that denote interconnected ‘masses’, ‘springs’, ‘torsion
springs’ and ‘convex hulls’ which approximate the structure
of an egg. Each such vertex is annotated with attributes to
drive appropriate behavior; for example, each ‘mass’ vertex
has a spatial position (x, y, z coordinates) and a local mass
density (among other attributes). Newton’s laws of motion are
then iteratively applied to the graph structure. For example,
the effects of springs, liquids and hulls are modeled using
Hooke’s law. Figure 1 illustrates some of the parts of a simu-
lation for the Egg Cracking Problem. Figure 2 also depicts
the result of running such a simulation to observe the effects
of dropping an egg into a bowl: the egg has cracked, and its
liquid contents have spilled out.
 Comirit uses 3D simulations and so is potentially applica-
ble to E3 and E4 in the Toy Box Problem, however the same
framework may be trivially adapted to the 2D environments
of E1 and E2. The translation of 3D physics into 2D physics
is straightforward: one axis is either fixed to be constant, or is
entirely removed from the equations of motion.
 A system may perform powerful reasoning about any ob-
ject for which it has a simulation. For example, it may con-
sider safe ways of handling eggs and toys by instantiating a
simulation in internal memory and then testing actions against
that ‘imagined’ instance. If the agent uses visualization to de-
termine that an heavy force will cause an egg to crack, it can
avoid causing damage to the egg in real life.

Simulation + Reasoning
Recalling that simulation only supports a ‘forward chaining’
inference mode, we have integrated simulation with logical
deduction in a hybrid architecture in order to combine the
strengths and complement the weaknesses of each mecha-
nism. That is, we use the deductive power of a general-pur-
pose logic to make up for the inflexibility of simulation.
 In combining simulation and logic, our experiences are that

3 Comirit may also support non-physical domains, such as
financial markets or organizational behavior but they are be-
yond the scope of this paper.

Mass

Corner

Hull

Spring

Figure 2: Simulation of an egg cracked into a bowl
(the beads represent spilled yolk and white)

Figure 1: Parts of a simulation of an egg

45

the conceptual mismatch between the mechanisms of simula-
tion and logic prevents the application of traditional integra-
tion techniques such as blackboard architectures. Our attempts
to use mainstream integration architectures invariably result-
ed in systems that were unworkably complex and difficult to
maintain. Instead, we sought a clear and unifying abstraction
to harmonize the semantics of the reasoning mechanisms; by
interpreting both simulation and logical deduction as opera-
tions that manipulate spaces of possible worlds.
 The method of analytic tableaux (see e.g., Hähnle 2001) is
an efficient method of automatic theorem proving. Analytic
tableaux have been successfully applied to large problems on
the semantic web, and there is a vast body of literature on
their efficient implementation (ibid.). The method involves
the automatic construction of search trees (tableaux) through
the syntactic decomposition of logical expressions, and then
eliminates branches of the tree that contain contradictions
among decomposed atomic formulae. Each branch of the re-
sultant tableau may be seen as a partial, disjunction-free de-
scription of a model for the input formulae.
 Logical deduction and simulation can be unified through
tableau reasoning. The tableau algorithm is designed for logi-
cal deduction, and its algorithm is effectively a search through
symbolically-defined spaces of worlds. Simulation is a pro-
cess that can be used to expand upon symbolic knowledge in
a given world (i.e., by forward chaining to future states based
on description of the current state), and so simulation can be
applied to generate information in the branches of a tableau.
 Comirit thereby incorporates a generalization of the tab-
leau method such that a tableau may contain not only standard
logical terms and formulas, but also non-logical structures
such as simulations, functions, data-structures and arbitrary
computer code. With some similarity to the methods of Poly-
Scheme (Cassimatis 2005), integration in Comirit is achieved
by translating diverse reasoning mechanisms into the tableau
operators for expansion, branching and closing of branches.
Traditional logical tableau rules are used unchanged, and sim-
ulation is treated as an expansion operator (like the conjunc-
tion rule).
 More detailed explanation of the workings of Comirit tab-
leau reasoning (including an explanation of how tableau rules,
heuristics and meta-rules are also recursively embedded inside
the tableau) may be found in our earlier publication (Johnston
and Williams 2008). In the following subsection, we will pro-
vide an example of a tableau as it is further extended and used
for machine learning.

Simulation + Reasoning + Learning + Action
Of course, even with a comprehensive knowledge base, an
intelligent system will be of limited use in any complex and
changing environment if it is unable to learn and adapt. In-
deed, in the Toy Box Problem, the agent has no prior knowl-
edge of the specific toys that it may encounter. The system
must autonomously acquire knowledge through interaction
and observation of the toys.
 It turns out that simulation is ideal for observation-based
learning. The laws of physics are generally constant and uni-
versal; an agent does not need to learn the underlying laws of
behavior of every object. Thus, when the underlying graphical

structure of an object can be approximated by direct observa-
tion, the learning problem is then reduced to discovering the
hidden parameters of the object by machine learning.
 For example, given a novel toy (e.g., a toy ring), direct ob-
servation may be used to directly instantiate a graph-based
mesh that approximates the structure. In the 3D case, this
would be achieved by using the 3D models extracted from
stereographic cameras, laser scanners or time-of-flight cam-
eras; in the 2D case, this might be achieved by simple image
segmentation.
 Once the shape of an object has been approximated by a
graph, machine learning is used to determine underlying val-
ues of annotations: mass densities, spring constants, rigidity
and breaking points that will result in an accurate simulation.
These can be discovered simply by collecting observations,
and using these observations as training instances for a pa-
rameter search algorithm (where fitness is measured by the
accuracy of the simulation given the parameters).
 However, while simulation is well suited to learning, it is
not necessarily obvious how to reconcile the search for con-
sistency that is fundamental to the tableau method with the
hypotheses search and evaluation of learning. A given hypoth-
esis can not be independently declared either true or false (as
demanded by tableau reasoning): it is only possible to com-
pare hypotheses against each other and select the ‘best’.
 Thus, in Comirit, learning is implemented by further ex-
tending the tableau reasoning algorithm. Learning in Comirit
is treated as a ‘generate-and-test’ algorithm. Generation of
candidate hypotheses is akin to the disjunctive branching of
the tableau, however the testing of hypotheses is implement-
ed as a special extension of the tableau algorithm to allow
branches to be closed due to sub-optimality.
 Learning is therefore implemented by introducing an order-
ing over branches, and then treating the tableau algorithm as
a search for both consistent and minimal models. A branch in
a tableau is no longer advanced or refined (as though ‘open’)
simply if it is consistent per the traditional tableaux algorithm:
it must be consistent and have no other consistent branch that
compares less in the partial order. A consistent but non-mini-
mal branch is therefore said to be ‘weakly closed’.
 We define the ordering over branches using symbols that are
stored within the tableau. The set of propositions rank(Index,
Value) are assumed to be tautologically true in any logical
context, but are used for evaluating the order of the branches.
The Index is an integer indicating the order in which the Val-
ues are to be sorted: branches are first compared by the values
with smallest indexes of any rank term in the branch; equal
values are compared using the next smallest rank term; and so
on4.
 To illustrate this process, consider a robot upon encounter-
ing a novel toy ball. Using just a naïve stochastic hill-climbing
strategy5 for generating hypotheses, it may use observations
of the object in order to build an accurate simulation of the

4 This extension does not affect the consistency or complete-
ness of logical deduction in the framework; the rank terms
simply prioritize the search towards minimal branches.
5 This strategy is effective in our example, but in real-world
settings, more powerful algorithms may be used.

46

object, as depicted in Figure 3:
Step 1. The tableau initially contains the first observation

of a ball and the initial hypothesis generated (many
other control objects, meshes, functions and other data
will be in the tableau, but these are not shown for sim-
plicity).

Step 2. The system observes movement in the ball. It gen-
erates new hypotheses, seeking to find a hypothesis
with minimal error.

Step 3. The system simulates each hypothesis. The result of
the simulation is compared with observations to deter-
mine the error in the hypothesis. The right branch has
smaller error so the left branch is ‘weakly closed’.

Step 4. As with Step 2, the system observes more move-
ment and generates new hypotheses, further refining
the current hypothesis.

Step 5. The system then simulates as with Step 3, but this
time the left branch is minimal.

Step 6 and later. The algorithm continues yet
again with more new observations and further
hypothesizing.

Note also that because learning occurs in an (extend-
ed) tableau containing logic, simulations and arbitrary
functions, the system may use logical constraints or
ad-hoc ‘helper functions’ even when searching for val-
ues in a simulation (e.g., it may use constraint such as
mass > 0, or a heuristic-driven hypothesis generator to
produce better hypotheses faster).
 Furthermore, the ordering induced by rank terms
finds application not only in driving the search for
good hypotheses, but also in selecting between ac-
tions. Possible actions are treated as disjunctions in the
tableau, and the error between the agent’s goals and
its simulated expectation is computed, so that the ex-
tended tableau algorithm may select the branch with
minimal error.

Comirit and the Toy Box Problem
The Comirit Framework combines simulation, logical
deduction and machine learning; as such, it is ideally
suited to the physical reasoning (well suited to simula-
tion), abstract reasoning (well-suited to tableau-based
logical deduction), learning (as parameter search in the
tableau) and action selection (as action search in the
tableau) in the Toy Box Problem.
 There is insufficient space here to provide a detailed
analysis of the problem, and indeed, this work is itself
ongoing (hence the ‘preliminary’ nature of the solu-
tion), however our early results are encouraging.
 We conduct an experiment as depicted in Figure 4.
A virtual 2D world is simulated with models of simple
toys including boxes, balls, bagels and bananas all of
varying, weight, appearance and strengths all of which
are subject to 2D physics. The agent may only observe
the world through 2D raster images (it cannot observe
the underlying models), and it must construct its own
internal models and predictions. Accuracy is measured
by projecting the agent’s belief back into a raster im-

observation0=

hypothesis0={friction=1, elastic=1}

observation1=

hypothesis1={friction=2, elastic=1}

simulation1=

rank(1, 0.80)

(weakly closed)

hypothesis1={friction=1, elastic=2}

simulation1=

rank(1, 0.20)

observation2=

hypothesis2={friction=2, elastic=2}

simulation2=

rank(2, 0.05)

observation3=

...

hypothesis2={friction=1, elastic=3}

simulation2=

rank(2, 0.15)

(weakly closed)

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 3: Learning in a tableau
age and performing a pixel-by-pixel comparison (this is a
demanding test since it makes no allowances for ‘nearly’ cor-
rect).
 In our early experiments we have the system learn two
hidden parameters (mass and spring constant). These two pa-
rameters are combined in a vector and serve as the hypoth-
esis space for the learning problem. Even though we use an
extremely simple machine learning algorithm (stochastic
hill-climbing search), a single pair of visual observations is
sufficient for the agent to achieve 95% accuracy in predict-
ing an object’s future behavior. This astounding learning rate
is depicted in Figure 5. The slight improvement from subse-
quent observations comes from the elimination of minor over-
fitting—the accuracy is as good as may be achieved given the
differences in the underlying models.
 This incredible learning rate is possible because a single
pair of images (before and after) contains thousands of pixels,
serving as thousands of data-points for training. Indeed, this
learning rate aligns with the human competence in develop-

47

ing a ‘good intuition’ for an object (whether it is heavy, hard,
smooth, fragile, etc.) after just a fl eeting interaction.
 We have also begun exploring the use of naïve Self-Orga-
nizing Maps (SOM) (Kohonen 1998) for learning the under-
lying structure of the world (e.g., that ‘bagels’ are generally
light, that balls are often soft, and that metallic objects are
usually solid). In this case, the hypothesis becomes an entire
SOM, combined with vectors for each visible object. When
beliefs about toys are refi ned, a standard update is applied
to the SOM. Our preliminary fi ndings are that the ability for
the SOM to generalize across instances roughly doubles the
learning rate and provides better initial hypotheses about un-
known objects. However, these are early fi ndings and we will
report on this in more detail once we have refi ned the model.
 Finally, while the concrete implementation of action selec-
tion remains as future work, action selection does not pres-
ent any theoretical challenge. Given simulation that has been
learnt, actions (or sequences of actions) are be selected by
searching (in an extended tableau) for a sequence that, when
performed in simulation, are closest to the agent’s goals (e.g.,
the goal of tidying-up the toys).

Conclusion
In this paper we have described an open ended benchmark
problem that we believe is useful for evaluating and compar-
ing the practical real-world intelligence.
 We have also presented a brief overview of the Comirit ar-
chitecture (with particular emphasis on the recent extensions
for learning), and sketched how its capabilities may be ap-
plicable to the Toy Box Problem. A comprehensive adapta-
tion and analysis remains, however our early indications (both
qualitative and quantitative) suggest that Comirit will be able
to ‘solve’ certain instances of the Toy Box Problem. As such,
we believe that the pairing E1&T1 are within the realm of
plausibility today.
 Of course, much future work remains: comprehensive
implementation and evaluation, more challenging environ-
ments and toys, and the development of methods for learn-
ing the fundamental laws of physics and ‘learning to learn’.
However, we believe that the Toy Box Problem provides an
exciting framework for guiding and evaluating incremental
progress towards systems with deep and practical real-world
intelligence.

References
Cassimatis, N. (2005) ‘Integrating Cognitive Models Based on Dif-

ferent Computational Methods’, Proceedings of the Tenth Annual
Conference of the Cognitive Science Society.

Gardin, F. and Meltzer, B. (1989) ‘Analogical Representations of
Naive Physics’, Artifi cial Intelligence, vol. 38, pp. 139–59.

Goertzel, B. and Bugaj, S.V. (2009) ‘AGI Preschool: A Framework
for Evaluating Early-Stage Human-like AGIs’, Proceedings of
the Second International Conference on Artifi cial General Intel-
ligence (AGI-09).

Hähnle, R. (2001) ‘Tableaux and Related Methods’, In Robinson,
J.A. and Voronkov, A. (eds.), Handbook of Automated Reasoning
Volume 1, MIT Press.

Johnston, B. and Williams, M-A. (2007) ‘A Generic Framework for
Approximate Simulation in Commonsense Reasoning Systems’,
Proceedings of the AAAI 2007 Spring Symposium on Logical For-
malizations of Commonsense Reasoning (Commonsense 2007).

Johnston, B. and Williams, M-A. (2008) ‘Comirit: Commonsense
Reasoning by Integrating Simulation and Logic’, Proceedings of
the First International Conference on Artifi cial General Intelli-
gence (AGI-08).

Johnston, B. and Williams, M-A. (2009) ‘Autonomous Learning of
Commonsense Simulations’, Proceedings of the Ninth Interna-
tional Symposium on Logical Formalizations of Commonsense
Reasoning (Commonsense 2009).

Johnston, B. (2009) Practical Artifi cial Commonsense, PhD Disser-
tation, Under Examination.

Kohonen, T. (1998) ‘The Self-Organizing Map’, Neurocomputing,
no. 21, pp. 1–6.

Morgenstern, L. and Miller, R. (2009) The Commonsense Problem
Page, <http://www-formal.stanford.edu/leora/commonsense/>,
Accessed 13 October 2009.

‘Imagined’ Model Imagined Impact Raster Projection of Imagery

Raster Projection of Impact

Comparison of
Raster Projections

Impact in 2D WorldInitial 2D World State

92%

94%

96%

98%

100%

1 2 3 4 5 6
Observations

Pi
xe

l-b
y-

pi
xe

l A
cc

ur
ac

y

Figure 5: Learning rate in a 2D world

Figure 4: Setup of initial experiments

48

Playing General Structure Rewriting Games

Łukasz Kaiser
Mathematische Grundlagen der Informatik

RWTH Aachen

Łukasz Stafiniak
Institute of Computer Science

University of Wrocław

Abstract

Achieving goals in a complex environment in which many
players interact is a general task demanded from an AI agent.
When goals of the players are given explicitly, such setting
can be described as a multi-player game with complete in-
formation. We introduce a general model of such games
in which states are represented by relational structures (hy-
pergraphs), possibly with real-valued labels, and actions by
structure rewriting rules. For this model, we develop an algo-
rithm which computes rational strategies for the players. Our
algorithm can be parametrized by a probabilistic evaluation
function and we devise a general procedure for learning such
evaluations. First tests on a few classical examples substanti-
ate the chosen game model and our algorithm.

Introduction
As frustrated users know, a computer sometimes simply
does not want to work. At other times, a car does not want
to start. These phrases show how natural it is to ascribe de-
sires and goals to active objects in an effort to understand
them. Not only is it natural: it is arguably very useful as
well. We encounter many complex objects in the environ-
ment, including ourselves and other people, and it is impos-
sible to understand their function in detail. Knowing their
goals and intentions, even vaguely, already allows to predict
their actions to a useful degree.

In this paper, we present a modeling system in which ex-
plicitly given goals of multiple players define the dynamics.
To run such a system, an algorithm making rational deci-
sions for the players is necessary. Our main contribution is
exactly such an algorithm, which gives reasonable results
by default and can take probabilistic evaluation functions as
an additional parameter. We also devise a general learning
mechanism to construct evaluation functions. This mecha-
nism is non-deterministic: the choice of the next hypothesis
is delegated to an external function. Still, even instantiated
with a very simple policy it manages to learn useful evalu-
ations, at least in a few basic examples. Some components
used in the presented algorithms may be of independent in-
terest. One of them is a solver for an expressive logic, an-
other one is a generalization of the Monte-Carlo playing al-
gorithm with Upper Confidence bounds for Trees (UCT).

The UCT algorithm has already been used in a general
game playing (GGP) competition. Cadia player [2], a pro-

gram using UCT, won the competition in 2007 demonstrat-
ing good performance of the UCT algorithm. Sadly, both the
way of representing games in the GGP framework and the
examples used in the competition lack true generality: These
are either board games (e.g. connect-4, chess, go) or maze
games (e.g. pac-man) described in a very basic prolog-like
language [4]. There is neither a way to represent continuous
real-time dynamics in the GGP framework, nor a way to de-
fine probabilistic choice. Moreover, in almost all examples it
is possible to distinguish a fixed board and pieces moved by
the players. Thus, for programs entering the GGP competi-
tion certain narrow board-game heuristics are crucial, which
reduces their applications to AGI. We give both a general
game model, representing states in a way similar to general-
ized hypergraphs [5] already used for AGI in OpenCog, and
a general algorithm which is capable to learn useful patterns
in specific situations without any fixed prior heuristic.

Organization. In the first two sections, we show how to
represent the state of the world in which the agents play and
their actions. The first section discusses discrete dynamics
and the second one specifies how continuous values evolve.
In the third section we introduce the logic used to describe
patterns in the states. We finalize the definition of our model
of games in the fourth section. Next, we proceed to the al-
gorithmic part: we first describe the generalized UCT algo-
rithm for playing games and then the learning procedure for
evaluation functions. Finally, we present a few experimental
results and conclude with perspectives on the applications of
our modeling system and algorithms in AGI projects.

Discrete Structure Rewriting
To represent a state of our model in a fixed moment of time
we use finite relational structures, i.e. labelled directed hy-
pergraphs. A relational structure A = (A,R1, . . . , Rk)
is composed of a universe A and a number of relations
R1, . . . , Rk. We denote the arity of Ri by ri, so Ri ⊆ Ari .
The signature of A is the set of symbols {R1, . . . , Rk}.

The dynamics of the model, i.e. the way the structure can
change, is described by structure rewriting rules, a gener-
alized form of term and graph rewriting. Extended graph
rewriting is recently viewed as the programming model of
choice for complex multi-agent systems, especially ones
with real-valued components [1]. Moreover, this form of
rewriting is well suited for visual programming and helps to

49

Rewriting Rule: a b
R

a b b

a b
R

Figure 1: Rewriting rule and its application to a structure.

make the systems understandable.
In the most basic setting, a rule L →s R consists of two

finite relational structures L and R over the same signature
and a partial function s : R→ L specifying which elements
of L will be substituted by which elements of R.

Let A,B be two structures, τe a set of relations sym-
bols to be matched exactly and τh a set of relations to be
matched only positively.1 A function f : A ↪→ B is a
(τe, τh)-embedding if f is injective, for eachRi ∈ τe it holds
that (a1, . . . , ari) ∈ RA

i ⇔ (f(a1), . . . , f(ari)) ∈ RB
i ,

and for Rj ∈ τh it holds that (a1, . . . , ari
) ∈ RA

j ⇒
(f(a1), . . . , f(ari

)) ∈ RB
j . A (τe, τh)-match of the rule

L →s R in another structure A is an (τe, τh)-embedding
σ : L ↪→ A. We define the result of an application of
L →s R to A on the match σ as B = A[L →s R/σ],
such that the universe of B is given by (A \ σ(L))∪̇R, and
the relations as follows. A tuple (b1, . . . , bri) is in the new
relation RB

i if and only if either it is in the relation in R

already, (b1, . . . , bri
) ∈ RR

i , or there exists a tuple in the
previous structure, (a1, . . . , ari

) ∈ RA
i , such that for each i

either ai = bi or ai = σ(s(bi)), i.e. either the element was
there before or it was matched and bi is the replacement as
specified by the rule. Moreover, if Ri ∈ τe then we require
in the second case that at least one bi was already in the orig-
inal structure, i.e. bi = ai. To understand this definition it is
best to consider an example, and one is given in Figure 1.

Continuous Evolution
To model continuous dynamics in our system, we supple-
ment relational structures with a number of labeling func-
tions f1, . . . , fl, each fi : A → R (A is the universe).2 Ac-
cordingly, each rewriting rule is extended by a system of
ordinary differential equations (ODEs) and a set of right-
hand update equations. We use a standard form of ODEs:
fki,l = t(f0

i,l, . . . , f
k−1
i,l), where fi are the above-mentioned

functions, l can be any element of the left-hand side struc-
ture and fk denotes the k-th derivative of f . The term t(x)
is constructed using standard arithmetic functions +,−, ·, /,
natural roots n

√
for n > 1 and rational numbers r ∈ Q in

addition to the variables x and a set of parameters p fixed

1In practice, we also allow some tuples in L to be optional; this
is a shorthand for multiple rules with the same right-hand side.

2In fact fi(a) is not in R; it is a function ε→ (x, x+δ), δ < ε.

for each rule. The set of right-hand side update equations
contains one equation of the form fi,r = t(fi,l) for each
function fi and each r from the right-hand side structure.

Let R = {(Li →si Ri,Di, Ti) | i < n} be a set of
rules extended with ODEs Di and update equations Ti as
described above. Given, for each rule inR, a match σi of the
rule in a structure A, the required parameters pi and a time
bound ti, we define the result of a simultaneous application
ofR to A, denoted A[R/{σi, ti}], as follows.3

First, the structure A evolves in a continuous way as given
by the sum of all equations Di. More precisely, let D be a
system of differential equations where for each a ∈ A there
exists an equation defining fki,a if and only if there exists an
equation in some Dj for fki,l for some l with σj(l) = a. In
such case, the term for fki,a is the sum of all terms for such l,
with each fmi,l replaced by the appropriate fmi,σj(l)

. Assum-
ing that all functions fi and all their derivatives are given at
the beginning, there is a unique solution for these variables
which satisfies D and has all other, undefined derivatives set
by the starting condition from A. This solution defines the
value of fi,a(t) for each a ∈ A at any time moment t.

Let t0 = mini<n ti be the lowest chosen time bound and
let i0, . . . , ik be all rules with this bound, i.e. each tim = t0.
We apply each of these rules independently1 to the structure
A at time t0. Formally, the relational part of A[R/{σi, ti}]
is equal to A[Li0 →si0

Ri0/σi0] · · · [Lik →sik
Rik/σik]

and the function values fi(a) are defined as follows. If the
element a was not changed, a ∈ A, then we keep the func-
tion value from the solution of D, i.e. fi(a) = fi,a(t0). In
the other case a was on the right-hand side of some rule,
a ∈ Rm. Let fi,a = t(fj,l) be the equation in Tm defining
fi,a. The new value of fi(a) is then computed by inserting
the appropriate values for fj,l from the solution of D into
t(fj,l), i.e. fi(a) = t(yj,l) where each yj,l = fj,σm(l)(t0).

Example. Let us define a simple two-dimensional model
of a cat chasing a mouse. The structure we use, A =
({c,m}, C,M, x, y), has two elements c and m, unary re-
lations C = {c} and M = {m} used to identify which ele-
ment is which and two real-valued functions x and y. Both
rewriting rules have only one element, both on the left-hand
side and on the right-hand side, and the element is in C for
the cat rule and in M for the mouse rule. The ODEs for
both rules are of the form x′ = px, y

′ = py , where px, py
are parameters. The update equations just keep the left-hand
side values, xr = xl, yr = yl. In this setting, simultaneous
application of the cat rule with parameters pcx, p

c
y for time tc

and the mouse rule with parameters pmx , p
m
y for time tm will

have the following effect: The cat will move with speed pcx
along the x-axis and pcy along the y-axis and the mouse anal-
ogously with pmx and pmy , both for time t0 = min(tc, tm).

Logic and Constraints
The logic we use for specifying properties of states is an
extension of monadic second-order logic with real-valued
terms and counting operators. The main motivation for the

3Assume no two intersecting rules have identical time bounds.

50

choice of such logic is compositionality: To evaluate a for-
mula on a large structure A which is composed in a regular
way from substructures B and C it is enough to evaluate cer-
tain formulas on B and C independently. Monadic second-
order logic is one of the most expressive logics with this
property and allows to define various useful patterns such as
stars, connected components or acyclic subgraphs.4

In the syntax of our logic, we use first-order variables
(x1, x2, . . .) ranging over elements of the structure, second-
order variables (X1, X2, . . .) ranging over sets of elements,
and real-valued variables (α1, α2, . . .) ranging over R, and
we distinguish boolean formulas ϕ and real-valued terms ρ:
ϕ := Ri(x1, . . . , xri) |xi = xj |xi ∈ Xj | ρ <ε ρ |ϕ ∧ ϕ |

ϕ ∨ ϕ | ¬ϕ | ∃xiϕ | ∀xiϕ | ∃Xiϕ | ∀Xiϕ | ∃αiϕ | ∀αiϕ,
ρ := αi | fi(xj) | ρu ρ | χ[ϕ] | minαi

ϕ |
∑
x|ϕ ρ |

∏
x|ϕ ρ.

Semantics of most of the above operators is defined in the
well known way, e.g. ρ+ρ is the sum and ρ ·ρ the product of
real-valued terms, and ∃Xϕ(X) means that there exists a set
of elements S such that ϕ(S) holds. Among less known op-
erators, the term χ[ϕ] denotes the characteristic function of
ϕ, i.e. the real-valued term which is 1 for all assignments for
which ϕ holds and 0 for all other. To evaluate minαi ϕ we
take the minimal αi for which ϕ holds (we allow±∞ as val-
ues of terms as well). The terms

∑
x|ϕ ρ and

∏
x|ϕ ρ denote

the sum and product of the values of ρ(x) for all assignments
of elements of the structure to x for which ϕ(x) holds. Note
that both these terms can have free variables, e.g. the set of
free variables of

∑
x|ϕ ρ is the union of free variables of ϕ

and free variables of ρ, minus the set {x}. Observe also the
ε in <ε: the values f(a) are given with arbitrary small but
non-zero error (cf. footnote 2) and ρ1 <ε ρ2 holds only if
the upper bound of ρ1 lies below the lower bound of ρ2.

The logic defined above is used in structure rewriting rules
in two ways. First, it is possible to define a new relation
R(x) using a formula ϕ(x) with free variables contained
in x. Defined relations can be used on left-hand sides of
structure rewriting rules, but are not allowed on right-hand
sides. The second way is to add constraints to a rule. A
rule L →s R can be constrained using three sentences (i.e.
formulas without free variables): ϕpre, ϕinv and ϕpost. In
both ϕpre and ϕinv we allow additional constants l for each
l ∈ L and in ϕpost special constants for each r ∈ R can be
used. A rule L →s R with such constraints can be applied
on a match σ in A only if the following holds: At the begin-
ning, the formula ϕpre must hold in A with the constants l
interpreted as σ(l). Later, during the whole continuous evo-
lution, the formula ϕinv must hold in the structure A with
continuous values changed as prescribed by the solution of
the system D (defined above). Finally, the formula ϕpost

must hold in the resulting structure after rewriting. During
simultaneous execution of a few rules with constraints and
with given time bounds ti, one of the invariants ϕinv may
cease to hold. In such case, the rule is applied at that mo-
ment of time, even before t0 = min ti is reached — but of
course only if ϕpost holds afterwards. If ϕpost does not hold,
the rule is ignored and time goes on for the remaining rules.

4We provide additional syntax (shorthands) for useful patterns.

Game Graph:

 P Q

Starting Structure:

C

C

C

C

C

C

R R

R R

R R

Figure 2: Tic-tac-toe as a structure rewriting game.

Structure Rewriting Games
As you could judge from the cat and mouse example, one
can describe a structure rewriting game simply by providing
a set of allowed rules for each player. Still, in many cases it
is necessary to have more control over the flow of the game
and to model probabilistic events. For this reason, we use
labelled directed graphs with probabilities in the definition
of the games. The labels for each player are of the form:

λ = (L→s R,D, T , ϕpre, ϕinv, ϕpost, It, Ip,m, τe).
Except for a rewriting rule with invariants, the label λ spec-
ifies a time interval It ⊆ [0,∞) from which the player can
choose the time bound for the rule and, if there are other con-
tinuous parameters p1, . . . , pn, also an interval Ipj ⊆ R for
each parameter. The element m ∈ {1, ∗,∞} specifies if the
player must choose a single match of the rule (m = 1), apply
it simultaneously to all possible matches (m = ∞, useful
for modeling nature) or if any number of non-intersecting
matches might be chosen (m = ∗); τe tells which relations
must be matched exactly (all other are in τh).

We define a general structure rewriting game with k play-
ers as a directed graph in which each vertex is labelled by k
sets of labels denoting possible actions of the players. For
each k-tuple of labels, one from each set, there must be an
outgoing edge labelled by this tuple, pointing to the next lo-
cation of the game if these actions are chosen by the players.
There can be more than one outgoing edge with the same la-
bel in a vertex: In such case, all edges with this label must be
assigned probabilities (i.e. positive real numbers which sum
up to 1). Moreover, an end-point of an interval It or Ip in a
label can be given by a parameter, e.g. x. Then, each out-
going edge with this label must be marked by x∼N (µ, σ),
x∼U(a, b) or x∼E(λ), meaning that x will be drawn from
the normal, uniform or exponential distribution (these 3 cho-
sen for convenience). Additionally, in each vertex there are k
real-valued terms of the logic presented above which denote
the payoff for each player if the game ends at this vertex.

A play of a structure rewriting game starts in a fixed first
vertex of the game graph and in a state represented by a
given starting structure. All players choose rules, matches
and time bounds allowed by the labels of the current vertex
such that the tuple of rules can be applied simultaneously.
The play proceeds to the next vertex (given by the labeling
of the edges) in the changed state (after the application of
the rules). If in some vertex and state it is not possible to
apply any tuple of rules, either because no match is found
or because of the constraints, then the play ends and payoff
terms are evaluated giving the outcome for each player.

Example. Let us define tic-tac-toe in our framework. The
state of the game is represented by a structure with 9 el-

51

ements connected by binary row and column relations, R
and C, as depicted on the right in Figure 2. To mark the
moves of the players we use unary relations P and Q. The
allowed move of the first player is to mark any unmarked el-
ement with P and the second player can mark withQ. Thus,
there are two states in the game graph (representing which
player’s turn it is) and two corresponding rules, both with
one element on each side (left in Figure 2). The two diag-
onal relations can be defined by D1(x, y) = ∃z(R(x, z) ∧
C(z, y)) and D2(x, y) = ∃z(R(x, z) ∧ C(y, z)) and a line
of three by L(x, y, z) = (R(x, y) ∧ R(y, z)) ∨ (C(x, y) ∧
C(y, z))∨(D1(x, y)∧D1(y, z))∨(D2(x, y)∧D2(y, z)). Us-
ing this definitions, the winning condition for the first player
is given by ϕ = ∃x∃y∃z(P (x)∧P (y)∧P (z)∧L(x, y, z))
and for the other player analogously with Q. To ensure that
the game ends when one of the players has won, we take
as a precondition of each move the negation of the winning
condition of the other player.

Playing the Games
When playing a game, players need to decide what their
next move is. To represent the preferences of each player,
or rather her expectations about the outcome after each step,
we use evaluation games. Intuitively, an evaluation game is
a statistical model used by the player to assess the state after
each move and to choose the next action. Formally, an eval-
uation game E for G is just any structure rewriting game5

with the same number of players and with extended signa-
ture. For each relation R and function f used in G we have
two symbols in E : R and Rold, respectively f and fold.

To explain how evaluation games are used, imagine that
players made a concurrent move in G from A to B in which
each player applied his rule Li →si

Ri to certain matches.
We construct a structure C representing what happened in
the move as follows. The universe of C is the universe of B
and all relations R and functions f are as in B. Further, for
each b ∈ B let us define the corresponding element a ∈ A as
either b, if b ∈ A, or as si(b), if bwas in some right-hand side
structure Ri and replaced a. The relation Rold contains the
tuples b which replaced some tuple a ∈ RA. The function
fold(b) is equal to fold(a) (evaluated in A) if b replaced a
and it is 0 if b did not replace any element. We use C as
the starting structure for the evaluation game E . This game
is then played (as described below) and the outcome of E is
used as an assessment of the move C for each player.

As you can see above, the evaluation game E is used to
predict the outcomes of the game G. This can be done in
many ways: In one basic case, no player moves in the game
E — there are only probabilistic nodes and thus E represents
just a probabilistic belief about the outcomes. In another ba-
sic case, E returns a single value — this should be used if
the player is sure how to assess a state, e.g. if the game ends
there. In the next section we will construct evaluation games
in which players make only trivial moves depending on cer-
tain formulas — in such case E represents a more complex
probability distribution over possible payoffs. In general, E
can be an intricate game representing the judgment process

5In fact it is not a single game E but one for each vertex of G.

of the player. In particular, note that we can use G itself
for E , but then without evaluation games any more to avoid
circularity. This corresponds to a player simulating the game
itself as a method to evaluate a state.

We know how to use an evaluation game E to get a payoff
vector (one for each player) denoting the expected outcome
of a move. These predicted outcomes are used to choose the
action of player i as follows. We consider all discrete actions
of each player and construct a matrix defining a normal-
form game in this way. Since we approximate ODEs by
polynomials symbolically, we keep the continuous parame-
ters playing E and get the payoff as a piecewise polynomial
function of the parameters. This allows to solve the normal-
form game and choose the parameters optimally. To make a
decision in this game we use the concept of iterated regret
minimization (over pure strategies), well explained in [7].

The regret of an action of one player when the actions of
the other players are fixed is the difference between the pay-
off of this action and the optimal one. A strategy minimizes
regret if it minimizes the maximum regret over all tuples of
actions of the other players. We iteratively remove all ac-
tions which do not minimize regret, for all players, and fi-
nally pick one of the remaining actions at random. Note that
for turn-based games this corresponds simply to choosing
the action which promises the best payoff. In case no evalu-
ation game is given, we simply pick an action randomly and
the parameters uniformly, which is the same as described
above if the evaluation game E always gives outcome 0.

With the method to select actions described above we can
already play the game G in the following basic way: Let
all players choose an action as described and play it. While
we will use this basic strategy extensively, note that, in case
of poor evaluation games, playing G like this would nor-
mally result in low payoffs. One way to improve them is the
Monte-Carlo method: Play the game in the basic way K
times and, from the first actions in theseK plays, choose the
one that gave the biggest average payoff. Already this sim-
ple method improves the play considerably in many cases.
To get an even better improvement we simulateously con-
struct the UCT tree, which keeps track of certain moves and
associated confidence bounds during these K plays.

A node in the UCT tree consists of a position in the game
G and a list of payoffs of the plays that went through this
position. We denote by n(v) the number of plays that went
through v, by µ(v) the vector of average payoffs (for each of
the players) and by σ(v) the vector of square roots of vari-

ances, i.e. σi =
√∑

pi
(p2
i)/n− µ2

i if pi are the recorded
payoffs for player i. First, the UCT tree has just one node,
the current position, with an empty set of payoffs. For each
of the next K iterations the construction of the tree pro-
ceeds as follows. We start a new play from the root of the
tree. If we are in an internal node v in the tree, i.e. in one
which already has children, then we play a regret minimiz-
ing strategy (as discussed above) in a normal-form game
with payoff matrix given by the vectors µ′(w) defined as

follows. Let σ′i(v) = σi(v)2 + ∆ ·
√

2 ln(n(v)+1)
n(w)+1 be the up-

per confidence bound on variance and to scale it let si(v) =

52

Evaluation Game:

¬∃x(P (x) ∧M(x))

∃x(P (x) ∧M(x))

(1, 0)

(0, 0)

(0, 1)

(1, 0)

(0, 0)

(0, 1)

0.4

0.4

0.2

0.7

0.2

0.1

UCT Tree:

Figure 3: Evaluation game for tic-tac-toe and a UCT tree.

min(1/4, σ′i(v)/∆), where ∆ denotes the payoff range, i.e.
the difference between maximum and minimum possible

payoff. We set µ′i(w) = µi(w) +C ·∆ ·
√

ln(n(v)+1)
n(w)+1 si(v).

The parameter C balances exploration and exploitation and
the thesis [3] gives excellent motivation for precisely this
formula (UCB1-TUNED). Note that for turn-based games,
when player i moves, we select the child w which maxi-
mizes µ′i(w). When we arrive in a leaf of the UCT tree,
we first add all possible moves as its children and play the
evaluation game a few (E > 1) times in each of them. The
initial value of µ and σ is computed from these evaluation
plays (both must be set even if n = 0). After the children
are added, we select one and continue to play with the very
basic strategy: Only the evaluation game is used to choose
actions and the UCT tree is not extended any more in this it-
eration. When this play of G is finished, we add the received
payoff to the list of recorded payoffs of each node on the
played path and recalculate µ and σ. Observe that in each of
theK iterations exactly one leaf of the UCT tree is extended
and all possible moves from there are added. After the K-th
iteration is finished, the action in the root of the UCT tree is
chosen taking into account only the values µ of its children.

Example. Consider the model of tic-tac-toe presented
previously and let the formula M(x) = ∃y C(x, y) ∧
∃y C(y, x) ∧ ∃y R(x, y) ∧ ∃y R(y, x) express that x is the
position in the middle of the board. In Figure 3 we depicted a
simple evaluation game, which should be interpreted as fol-
lows. If the first player made a move to the middle position,
expressed by ∃x(P (x)∧M(x)), then the probability that the
first player will win, i.e. of payoff vector (1, 0), is 0.7. The
probability that the second player will win is 0.1 and a draw
occurs with probability 0.2. On the other hand, if the first
player did not move to the middle, then the respective prob-
abilities are 0.4, 0.2 and 0.4. When the construction of the
UCT tree starts, a payoff vector is assigned to the state after
each of the 9 possible moves of the first player. The payoff
vector is one of (1, 0), (0, 1) and (0, 0) and is chosen ran-
domly with probabilities 0.7, 0.1, 0.2 for the middle node in
the UCT tree and with probabilities 0.4, 0.2, 0.4 for all other
8 nodes, as prescribed by the evaluation game. The first it-
eration does not expand the UCT tree any further. In the
second iteration, if the middle node is chosen to play, then
its 8 children will be added to the UCT tree. The play in this
iteration continues from one of those children, as depicted
by the snaked line in Figure 3.

Learning Evaluation Games
Even during a single play of a game G we construct many
UCT trees, one for each move of each player, as described
above. A node appearing in one of those trees represents a
state of G and a record of the payoffs received in plays from
this node. After each move in G, we collect nodes from the
UCT tree from which a substantial number of plays were
played, i.e. which have n bigger than a confidence thresh-
old N . These nodes, together with their payoff statistics, are
used as a training set for the learning procedure.

The task of the learning mechanism started on a training
set is to construct an evaluation game E , preferably as sim-
ple as possible, which, started in a state from the training set,
gives payoffs with a distribution similar to the one known for
that state. Observe that the game E constructed for a train-
ing set from some plays of G is therefore a simplified proba-
bilistic model of the events which occured during simulated
plays of G. Further — a game E costructed from plays of G
which already used an evaluation game E ′ models plays be-
tween players who already “know” E ′. Note how this allows
incremental learning: each evaluation game can be used to
learn a new one, modeling plays between smarter players.

We present a non-deterministic construction of candidate
evaluation games, i.e. we provide only the basic operations
which can be used and leave the choice to an external func-
tion. Still, as we show next, even very simple choices can
produce useful evaluation games. During the whole con-
struction process the procedure maintains a few sets: a setG
of evaluation games, a set S of structures, a set T of equa-
tion terms, and a set Φ of formulas and real-valued terms.
Initially the set G contains at least a trivial game, S a trivial
structure and T and Φ may be empty. The learning proce-
dure constructs new games, structures, terms and formulas
until, at some point, it selects one game fromG as the result.

The rules for adding new formulas and terms to Φ closely
resemble the syntax of our logic presented before. For each
syntactic rule we allow to add to Φ its result if the required
formulas and terms are already in Φ. For example, we can
add the literal P (x) to an empty set Φ, then add Q(x), cre-
ate P (x) ∧ Q(x), and finally use the existential quantifier
to create ∃x(P (x) ∧ Q(x)). The rules for construction of
equational terms are analogous. For structures, we allow to
add a single element or a single relation tuple to a structure
from S and to take disjoint sum of two structures from S.
Finally for games we allow compositional rules similar to
the constructions in Parikh’s Game Logic, cf. [10].

Clearly, the rules above are very general and it is up to
the external function to use them to create a good evalua-
tion game. In our first experiments, we decided to focus
on a very simple heuristic which does not create any struc-
tures or equations. It uses only formulas and probabilistic
vertices and the payoff is always one of the vectors already
occuring in the training set. Moreover, we do not allow arbi-
trary formulas but only existentially quantified conjunctions
of literals. Evaluation games created by our function have
thus similar form to the one presented on the left side of
Figure 3. To decide which formula to add next, our function
extends formulas already kept in Φ by a literal and keeps the
one which is the best selector. This is very similar to the

53

White uses E Black uses E
Gomoku 78% 82%

Breakthrough 77% 73%

Table 1: Playing with a learnt evaluation against pure UCT.

Apriori algorithm for frequent itemset mining, just instead
of items we use literals and a set of literals is understood as
their conjunction, existentially quantified. Transactions in
this sense are sets of states with average payoff in a specific
interval. The found formulas are then used as constraints of
a transition to a probabilistic node which is constructed so
as to model the distribution of payoffs in the states from the
training set which satisfy this formula. (cf. Figure 3).

Experimental Results
The described algorithms are a part of Toss (toss.
sourceforge.net), an open-source program imple-
menting the presented game model and a GUI for the play-
ers.6 To construct a scalable solver for our logic we used
a SAT solver (MiniSAT) to operate on symbolic representa-
tions of MSO variables and implmented a quantifier elim-
ination procedure for real numbers based on Muchnik’s
proof. The UCT algorithm and the rewriting engine were
implemented in OCaml and the GUI in Python using the
Qt4 library. In Toss, we defined a few board games and
some systems with continuous dynamics. In this paper, we
present preliminary results for Breakthrough and Gomoku,
two games often used to evaluate game playing programs.

The strength of the UCT algorithm has been evaluated be-
fore: it is respectable, but can only go so far without any
evaluation function. We used our learning procedure to get
an evaluation game for both Breakthrough and Gomoku.
Only top-performing formulas were selected, in case of
Breakthrough it was one simple formula meaning “beat if
possible” and for Gomoku the formulas suggested to put
stones near the already placed ones. While these formulas
are basic, we present in Table 1 the percentage of plays won
by a UCT player using the evaluation game against an oppo-
nent using none. As you can see, this is a significant majority
of cases — even playing black in Breakthrough and white in
Gomoku, i.e. starting second, which is a weaker position.

Perspectives
We presented a general model of games and an algorithm
which can both play the game in a reasonable way and learn
from past plays. There are several phenomena which we
did not include in our model. On the side of games, we
allowed neither imperfect nor incomplete information, so
players must fully know the game and its state, which is not
realistic. On the modeling side, relational structures give
no direct way to represent hierarchies, which should be im-
proved as well. For practical use of our system on larger ex-
amples it is also important to introduce a type system, which

6Currently released version 0.3 of Toss does not support all the
features we described. Our tests were conducted on a recent ver-
sion in code repository and will be included in the next release.

should be integrated with our logic. We started to investigate
this problem from the theoretical side in [8]. To improve the
learning procedure, we plan to investigate classical learning
algorithms (e.g. C4.5), and recent program induction meth-
ods (e.g. [9]). These can hopefully find new rewriting rules
and in this way generate novel evaluation games. One could
also try to analyze UCT using higher-order probabilities [6].

Even with the drawbacks mentioned above, the model we
presented is, to our knowledge, the most general kind of
games for which a playing algorithm is implemented. In
addition to this generality, we have chosen a hypergraph rep-
resentation for states, which is already used in AGI projects.
Our playing algorithm is based on the upper confidence
bounds method, which is not only established for board
games but also scales to other domains, e.g. robotic visual
learning [11]. Thus, it could be opportune to use our sys-
tem as a basis for an AGI project and we look forward to
cooperating with AGI system builders on such integration.

References
[1] S. Burmester, H. Giese, E. Münch, O. Oberschelp,

F. Klein, and P. Scheideler. Tool support for the design
of self-optimizing mechatronic multi-agent systems.
International Journal on Software Tools for Technol-
ogy Transfer, 10(3):207–222, 6 2008.

[2] H. Finnsson and Y. Björnsson. Simulation-based ap-
proach to general game playing. In Proc. of AAAI’08.
AAAI Press, 2008.

[3] S. Gelly. A Contribution to Reinforcement Learning;
Application to Computer-Go. Dissertation, University
Paris-Sud 11, 2007.

[4] M. R. Genesereth, N. Love, and B. Pell. General game
playing: Overview of the AAAI competition. AI Mag-
azine, 26(2):62–72, 2005.

[5] B. Goertzel. Patterns, hypergraphs and embodied gen-
eral intelligence. In Proc. of IJCNN’06, pages 451–
458, 2006.

[6] B. Goertzel, M. Ikle, and I. L. Freire Goertzel. Proba-
bilistic Logic Networks: A Comprehensive Framework
for Uncertain Inference. Springer, 2008.

[7] J. Y. Halpern and R. Pass. Iterated regret minimization:
A new solution concept. In Proc. of IJCAI’09), pages
153–158, 2009.

[8] Ł. Kaiser. Synthesis for structure rewriting systems. In
Proc. of MFCS’09, volume 5734 of LNCS, pages 415–
427. Springer, 2009.

[9] M. Looks and B. Goertzel. Program representation for
general intelligence. In Proc. of AGI’09, 2009.

[10] R. Ramanujam and S. Simon. Dynamic logic on games
with structured strategies. In Proc. of KR’08, pages
49–58. AAAI Press, 2008.

[11] M. Salganicoff, L. H. Ungar, and R. Bajcsy. Active
learning for vision-based robot grasping. Machine
Learning, 23:251–278, 1996.

54

Towards Automated Code Generation
for Autonomous Mobile Robots

D. Kerr
Intelligent Systems

Research Centre
University of Ulster

Londonderry, BT48 7JL, UK

U. Nehmzow
Intelligent Systems

Research Centre
University of Ulster

Londonderry, BT48 7JL, UK

S.A. Billings
Department of Automatic Control

and Systems Engineering
University of Sheffield
Sheffield, S1 3JD, UK

Abstract

With the expected growth in mobile robotics the de-
mand for expertise to develop robot control code will
also increase. As end-users cannot be expected to de-
velop this control code themselves, a more elegant solu-
tion would be to allow the end-users to teach the robot
by demonstrating the task.

In this paper we show how route learning tasks may be
“translated” directly into robot control code simply by
observing the task. We show how automated code gen-
eration may be facilitated through system identifica-
tion — which algorithmically and automatically trans-
fers human behaviour into control code, using trans-
parent mathematical functions. We provide two route
learning examples where a mobile robot automatically
obtains control code simply by observing human be-
haviour, identifying it using system identification, and
copying the behaviour.

Introduction
Motivation
Mobile robotics will play an ever more important role
in the future. We expect one growth area to be ser-
vice robotics, especially home care robots for the el-
derly and infirm. Other important growth areas will be
entertainment robotics and games, as well as security
applications.

All of these applications require some high-level, so-
phisticated programming, but the bulk of the program-
ming work will be “standard” components of robot con-
trol, that will consume a lot of programmer resources —
resources that could be better used.

In this paper we show that it is possible for trajec-
tory learning to obtain robot control code automati-
cally, through system identification (Akanyeti et al.,
2007): Control code was obtained by observing a hu-
man demonstrator following the desired route, and by
translating his behaviour directly into code, without pro-
gramming.

Learning by demonstration is by now a widely used
technique in robotics (see, for instance, (Demiris, 2009)
and (Demiris and Dearden, 2005)). In terms of applica-
tion (route learning), (Coates et al., 2008) are perhaps
the most interesting here to mention: an expert was

used to control a model helicopter, the desired optimal
behaviour was obtained and modelled from a number
sub-optimal demonstrations performed by the expert.
This model was then used to control the helicopter. In
contrast to our work, (Coates et al., 2008) use a spe-
cialist to provide the demonstration, and their control
model incorporates a priori knowledge such as that the
helicopter has to remain stationary for certain manoeu-
vres. In our experiments the trainer is not an expert in
the task, and only needs the ability to demonstrate the
behaviour to the robot.

The experiments in this paper develop our approach
further, their purpose is to show that even more com-
plex behaviour behaviour of an agent — route learning
in this case — can the “translated” directly into robot
control code, namely by observing it, identifying it, us-
ing system identification, and using the identified model
of the observed behaviour control the robot (Figure 1).

Demonstrator’s

Behaviour

Behaviour is

observed and logged

Behaviour is modelled

through NARMAX

system identification

Obtained model is

analysed for stability,

sensitivity to noise, etc.

Sensors

Motors

NARMAX

Obtained model

controls the robot

Figure 1: The “behaviour copier”: a behaviour is
observed and subsequently identified using system
identification. The obtained model is then used to
control the robot directly, no human intervention
is required at any point (other than that the human
demonstrates the desired behaviour to the robot).

In essence the experiments reported here form a “be-
haviour copier”, which produces a canonical “carbon
copy” of an observed behaviour that can be used to
control an autonomous mobile robot.

55

Approach
We have used a NARMAX approach (Billings and
Chen, 1998) to obtain the models we need for auto-
mated programming of a robot, because
• The Narmax model itself provides the executable

code straight away,
• The model is analysable, and gives us valuable infor-

mation regarding
– How the robot achieves the task,
– Whether the model is stable or not,
– How the model will behave under certain operating

conditions, and
– How sensitive the model is to certain inputs, i.e.

how “important” certain input are.

NARMAX system identification The NARMAX
modelling approach is a parameter estimation method-
ology for identifying both the important model terms
and the parameters of unknown non-linear dynamic sys-
tems. For multiple input, single output noiseless sys-
tems this model takes the form given in equation 1:

y(n) = f [~u(n−Nu)l, y(n−Ny)],
∀ Nu = 0 . . . Nmax

u ,

l = 1 . . . lmax, Ny = 1 . . . Nmax
y . (1)

were y(n) and ~u(n) are the sampled output and in-
put signals at time n respectively, Ny and Nu are the
regression orders of the output and input respectively.
The input vector ~u is d-dimensional, the output y is a
scalar. f() is a non-linear function and it is typically
taken to be a polynomial or wavelet multi-resolution
expansion of the arguments. The degree lmax of the
polynomial is the highest sum of powers in any of its
terms.

The NARMAX methodology breaks the modelling
problem into the following steps: i) Structure detec-
tion (i.e. determining the form of the non-linear poly-
nomial), ii) parameter estimation (i.e. obtaining the
model coefficients), iii) model validation, iv) prediction,
and v) analysis. A detailed description of how these
steps are done is presented in (Billings and Chen, 1998;
Korenberg et al., 1988; Billings and Voon, 1986).

The calculation of the NARMAX model parameters
is an iterative process. Each iteration involves three
steps: i) estimation of model parameters, ii) model val-
idation and iii) removal of non-contributing terms.

Using System Identification to Obtain Robot-
Executable Narmax models It is difficult for a
programmer to teach a particular task to a robot as
humans and robots perceive and act in the world dif-
ferently; humans and robots have different sensor and
actuator modalities (Alissandrakis et al., 2005). We
have adopted a similar approach to (Nehmzow et al.,
2007) where the mobile robot’s trajectory of the desired
behaviour is used as a suitable communication channel
between the human and the robot.

In this paper we present an approach to show how
route learning can be translated directly into control
code using system identification. The trajectory of the
human is used as reference and this is translated algo-
rithmically and automatically into robot control code.
An outline this method is illustrated in Figure 2.

P(t)= f(ϕx(t), y(t), sin (t), cos (t))ϕ

position and orientation

Robot explores environment and logs

laser perception and ground truth from
logging system

perception as a function of robot’s
Obtain model of robot’s laser

Human walks desired trajectory

P(t))f(ω (t)=

Obtain model of rotational velocity as
a function of modelled perception

Let model of rotational velocity drive
robot

His poses along the trajectory are logged

Figure 2: System Identification Process used to ob-
tain Robot-Executable Narmax models

1. Obtaining the sensorgraph: The robot explores
the environment and obtains a detailed log of sensor
perceptions throughout the working environment. This
detailed log, the sensorgraph, contains information such
as laser readings and the robot’s pose < x, y, ϕ >, i.e.
its position < x, y > and heading ϕ within the environ-

56

ment.
2. Obtain environment models: The system identi-

fication method is used to obtain a number of polyno-
mial models that model the robots laser perception as
a function of the robot’s pose within the environment.

These models allow us to estimate the robot’s laser
perceptions along new novel trajectories that have been
demonstrated by a human in the next stage.

3. Obtaining a human-demonstrated trajectory : The
human user demonstrates the desired trajectory by per-
forming the task in the target environment. During this
demonstration period the demonstrator’s pose is contin-
uously observed and logged by a tracking system. These
poses are then used to compute the translational and
rotational velocities of the human by using consecutive
poses along the trajectory.

4. Obtain the final, environment-model-based, hu-
man demonstrated controller : The final controller is ob-
tained by using the system identification technique to
obtain a sensor-based controller. The human demon-
strator’s location is used with the environment models
(from stage 2) to obtain the robot’s laser perception
at that position. The modelled laser perceptions are
then used as inputs to the system identification process
with the computed velocities of the human demonstra-
tor (from stage 3) as outputs.

5. Robot copies behaviour : The controller (from
stage 4) can then be used to drive the robot along the
human-demonstrated trajectory within the target envi-
ronment, copying the behaviour of the human.

Experiments

The experiments in this paper where carried out in
the robotics arena of the Intelligent Systems Research
Centre in the University of Ulster. The robotics arena
measures 100 m2 and is equipped with a Vicon motion
tracking system that delivers highly accurate position
data (x, y, z) for targets using reflective markers and
high speed high resolution cameras. In the experiments
presented here we use the Metralabs SCITOS G5 au-
tonomous robot Swilly, shown in Figure 3.

Figure 3: Swilly, the Metralabs SCITOS G5 mobile
robot used in the experiments

The robot is equipped with 24 sonar sensors dis-
tributed around the its circumference, and a SICK
laser range finder, which scans the front of the robot
([0◦, 270◦]) with a radial resolution of 0.5◦. In our
experiments the laser range finder was configured to
scan the front semi-circle of the robot in the range
([0◦, 180◦]).

Experimental Setup The robotics arena is config-
ured with artificial walls to consist of a working envi-
ronment measuring 4m×3m, as illustrated in Figure 4.

Figure 4: Overhead image of the Robot Arena Setup
with the robot visible in the lower left of the test
area

The robot explores the test area using a random walk
obstacle avoidance behaviour whilst simultaneously log-
ging its laser perceptions and the robot’s actual x, y, x
positions, obtained from the Vicon motion tracking sys-
tem.

We ensure that adequate data to model the environ-
ment has been logged by computing histograms for the
robot’s actual position using the Vicon tracking system
along the x -axis and y-axis. It is equally important to
consider the robot’s heading whilst exploring the envi-
ronment as the modelling process needs to consider all
possible orientations of the robot. Thus, we also con-
struct a histogram of the robot’s headings where the
robot has logged sensor data. By obtaining an almost
uniform distribution with the histograms we can ensure
that adequate data has been logged.

The laser data is then median-filtered over 30◦ seg-
ments. So rather than 360 laser readings we have six
median filtered segments that are used as input to the
first modelling process.

Using the Narmax system identification method we
obtain a number of polynomial models that model the
robots laser perception as a function of the robot’s <
x, y > position and heading ϕ (here we use sin(ϕ) and
cos(ϕ)) to form the function

~P (t) = f(x(t), y(t), sin ϕ(t), cos ϕ(t)) (2)

.
The Narmax method used in this work has multiple

inputs and a single output. Thus, we require at least
one model per laser segment (6 in this case). When
computing this model we need to consider all the pos-
sible (x, y) positional locations the robot may visit,

57

as well as the robots orientation ϕ at these positions.
The dimensionality of this space is very high, and in
order to manage the task of constructing a model we
have restricted the number of laser models to only 4
models, modelling 90◦ heading segments, thus cover-
ing the entire 360◦ range of possible robot headings
with 4 models. Put differently, we constructed four
models, one for each 30◦ laser segment, of the form
Pk = f < x, y > ∀ϕ = k, where Pk is a model of
the predicted laser reading when the robot assumes a
heading ϕ of k degrees.

The accuracy of the obtained environment models
have been assessed by driving the robot along a novel
trajectory within the test environment (see Figure 5)
and logging the real laser perceptions along with the
robot’s position.

−100 −50 0 50 100 150
−150

−100

−50

0

50

100

Vicon x [cm]

V
ic

on
 y

 [c
m

]

Figure 5: Novel trajectory driven by the robot
in the test area during which real laser data was
logged and compared with model predicted laser
data

The robot’s position was used as input into the ob-
tained environment models and the logged laser reading
and modelled laser reading compared. In Figure 6 we
have plotted the real and modelled laser values for laser
segment 1, and plotted the absolute error between the
values. The standard error for all the lasers is shown in
Table 1.

Table 1: Absolute Mean error and Standard error
in centimetres for all lasers over validation tra-
jectory (Figure 5)

Laser Mean and Standard error [cm]
L̃1 14.7 ± 1.2
L̃2 16.9 ± 1.0
L̃3 16.9 ± 1.1
L̃4 19.9 ± 1.6
L̃5 16.9 ± 1.5
L̃6 14.7 ± 1.1

0 10 20 30 40 50 60 70 80 90 100
60
80

100
120
140
160
180
200
220
240

Predicted (dashed) vs real data (solid) for laser 1

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120
Prediction error

R
an

ge
 [c

m
]

R
an

ge
 [c

m
]

Sample number [n]

Sample number [n]

Figure 6: Logged trace from laser 1 compared with
modelled trace from laser 1 whilst being driven
along the trajectory in Figure 5 and absolute er-
ror between logged and modelled lasers.

Having obtained environment models with satisfac-
tory accuracy we conduct experiments where a hu-
man follows two different trajectories, S -shaped and
U -shaped.

Experiment 1 - S-shaped trajectory
The human demonstrated to the robot how to move
within the test area in a S -shaped trajectory. The
demonstrator started in the lower left side of the en-
vironment and walked in a S -shape finishing in the up-
per right side. The demonstrator’s x and y position was
again obtained from the Vicon system and logged ev-
ery 250ms as the human demonstrator moved along the
desired path 5-times in total. The logged trajectories
are shown in Figure 7.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

Vicon x [cm]

V
ic

on
 y

 [c
m

]

Figure 7: Five trajectories of the desired S -shape
behaviour demonstrated by the human in the test
environment

The human demonstrator’s < x, y > positions are
then used to compute the translational and rotational

58

velocities of the human along the trajectory by using
consecutive < x, y > samples. Next, we obtain a series
of expected robot perceptions along this trajectory of
logged < x, y > positions using the environment mod-
els.

The final controller is obtained by using the Nar-
max system identification technique to obtain an
environment-model sensor-based controller. The com-
puted human demonstrator’s rotational velocity is used
with the series of expected robot perceptions forming
the function

ω(t) = f(~P (t)). (3)
The modelled laser perceptions are used as inputs to

the Narmax system with the computed rotational veloc-
ities of the human demonstrator as outputs. We used
parameters with an input regression of 10 and poly-
nomial degree 2 to obtain the following final Narmax
model that had 20 terms, shown in equation 4.

ω(t) = −0.311

+0.001267 ∗ u(n, 1)

−0.007369 ∗ u(n, 2)

−0.001245 ∗ u(n, 3)

+0.00374 ∗ u(n, 4)

+0.00787 ∗ u(n, 5)

+0.00384 ∗ u(n, 6)

−0.0000078 ∗ u(n, 1)2

−0.000014 ∗ u(n, 2)2

−0.000011 ∗ u(n, 3)2

−0.0000053 ∗ u(n, 4)2

−0.0000034 ∗ u(n, 6)2

+0.000038 ∗ u(n, 1) ∗ u(n, 2)

−0.000034 ∗ u(n, 1) ∗ u(n, 5)

−0.0000059 ∗ u(n, 1) ∗ u(n, 6)

−0.00000399 ∗ u(n, 2) ∗ u(n, 5)

+0.0000163 ∗ u(n, 3) ∗ u(n, 4)

+0.0000129 ∗ u(n, 3) ∗ u(n, 6)

−0.00000166 ∗ u(n, 4) ∗ u(n, 5)

−0.0000178 ∗ u(n, 5) ∗ u(n, 6)

(4)

Results In the final stage of the experiment the ob-
tained final controller is used to drive the robot whilst
the robot’s actual positions during this stage of the ex-
periment are logged as illustrated in Figure 8.

A visual inspection of Figure 8 shows that, although
not perfect, the obtained controller produces a be-
haviour that resembles the humans demonstrator’s ini-
tial trajectory.

Experiment 2 - U -shaped trajectory
The human demonstrated to the robot how to move
within the test area in a U -shaped trajectory. The

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

Vicon x [cm]

V
ic

on
 y

 [c
m

]

Figure 8: Six trajectories of the robot under con-
trol of the S -shape sensor based controller in the
test environment (compare with figure 7).

demonstrator started in the lower left side of the en-
vironment and walked in a U -shape finishing in the up-
per left side. The demonstrator’s x and y position was
again obtained from the Vicon system and logged ev-
ery 250ms as the human demonstrator moved along the
desired path 5-times in total. The logged trajectories
are shown in Figure 9.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

Vicon x [cm]

V
ic

on
 y

 [c
m

]

Figure 9: Five trajectories of the desired U -shape
behaviour demonstrated by the human in the test
environment.

The human demonstrator’s < x, y > positions are
then used to compute the translational and rotational
velocities of the human along the trajectory by using
consecutive < x, y > samples. Next, we obtain a series
of expected robot perceptions along this trajectory of
logged < x, y > positions using the environment mod-
els.

The final controller is obtained by using the Nar-
max system identification technique to obtain an
environment-model sensor-based controller. The com-
puted human demonstrator’s rotational velocity is used
with the series of expected robot perceptions. The mod-
elled laser perceptions are used as inputs to the Narmax

59

system with the computed rotational velocities of the
human demonstrator as outputs. We used parameters
with an input regression Nu of 10 and polynomial de-
gree l of 2 to obtain the final Narmax model that had
96 terms.

Results In the final stage of the experiment the ob-
tained final controller is used to drive the robot whilst
the robot’s actual positions during this stage of the ex-
periment are logged as illustrated in Figure 10.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

Vicon x [cm]

V
ic

on
 y

 [c
m

]

Figure 10: Six trajectories of the robot under con-
trol of the U -shape sensor based controller in the
test environment.

A visual inspection of Figure 10 shows that, although
not perfect, the obtained controller produces a be-
haviour that resembles the human demonstrator’s ini-
tial trajectory.

Summary and Conclusion

Summary

In this paper we present experiments that show that an
agent’s behaviour — in this case a human demonstra-
tor — can be translated into directly-executable robot
control code, meaning that no programming is at all
necessary. The method of “translating” behaviour into
code is shown in Figure 2.

Conclusions

There are a number of decisive advantages to the
presented method of automatically generating robot-
controlling code in this way:

1. Code generation is very quick,

2. The generated code is canonical, which allows the de-
velopment of analysis tools such as sensitivity analy-
sis methods,

3. The generated code is parsimonious, which is relevant
when the code is to be used on robots with little on-
board computing resources.

Future Work Our next experiments at the Intelli-
gent Systems Research Centre here in Londonderry will
address the following weaknesses of our current imple-
mentation:

1. The external-camera-based tracking system we used
here is very precise, but also very expensive. In future
we plan to use a camera-based tracking system, where
the camera used is the one mounted on Swilly.

2. Developing models of higher accuracy, and
3. Developing smaller models.

Acknowledgements The authors gratefully ac-
knowledge the support of the Leverhulme trust under
grant number F00430F.

References
Akanyeti, O., Nehmzow, U., Weinrich, C., Kyriacou, T.,
and Billings, S. (2007). Programming mobile robots by
demonstration through system identification. In European
Conference on Mobile Robotics (ECMR), pages 162–167.

Alissandrakis, A., Nehaniv, C., Dautenhahn, K., and Saun-
ders, J. (2005). An approach for programming robots by
demonstration: Generalization across different initial con-
figurations of manipulated objects. In Proceedings of the
IEEE international symposium on computational intelli-
gence in robotics and automation, page 61.

Billings, S. and Chen, S. (1998). The determination of
multivariable nonlinear models for dynamical systems. In
Leonides, C., (Ed.), Neural Network Systems, Techniques
and Applications, pages 231–278. Academic press.

Billings, S. and Voon, W. S. F. (1986). Correlation based
model validity tests for non-linear models. International
Journal of Control, 44:235–244.

Coates, A., Abbeel, P., and Ng, A. (2008). Learning for
control from multiple demonstrations. In Proceedings of the
25th international conference on Machine learning, pages
144–151. ACM.

Demiris, Y. (2009). Knowing when to assist: developmen-
tal issues in lifelong assistive robotics. In Proceedings of
the 31st Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society (EMBC 2009),
pages 3357–3360, Minneapolis, Minnesota.

Demiris, Y. and Dearden, A. (2005). From motor bab-
bling to hierarchical learning by imitation: a robot devel-
opmental pathway. In Berthouze, L., Kaplan, F., Kozima,
H., Yano, H., Konczak, J., Metta, G., Nadel, J., Sandini,
G., Stojanov, G., and Balkenius, C., (Eds.), Proceedings of
the Fifth International Workshop on Epigenetic Robotics:
Modeling Cognitive Development in Robotic Systems, pages
87–93.

Korenberg, M., Billings, S., Liu, Y. P., and McIlroy, P. J.
(1988). Orthogonal parameter estimation algorithm for
non-linear stochastic systems. International Journal of
Control, 48:193–210.

Nehmzow, U., Akanyeti, O., Weinrich, C., Kyriacou, T.,
and Billings, S. (2007). Robot programming by demon-
stration through system identification. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
2007. IROS 2007, pages 801–806.

60

Searching for Minimal Neural Networks in Fourier Space

Jan Koutnı́k, Faustino Gomez, and Jürgen Schmidhuber
IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland

University of Lugano & SUPSI, Switzerland

Abstract
The principle of minimum description length suggests look-
ing for the simplest network that works well on the training
examples, where simplicity is measured by network descrip-
tion size based on a reasonable programming language for
encoding networks. Previous work used an assembler-like
universal network encoding language (NEL) and Speed Prior-
based search (related to Levin’s Universal Search) to quickly
find low-complexity nets with excellent generalization per-
formance. Here we define a more natural and often more
practical NEL whose instructions are frequency domain co-
efficients. Frequency coefficients may get encoded by few
bits, hence huge weight matrices may just be low-complexity
superpositions of patterns computed by programs with few
elementary instructions. On various benchmarks this weight
matrix encoding greatly accelerates the search. The scheme
was tested on pole-balancing, long-term dependency T-maze,
and ball throwing. Some of the solutions turn out to be un-
expectedly simple as they are computable by fairly short bit
strings.

Introduction
Given some training experience, what is the best way of
computing a weight matrix for a neural network such that
it will perform well on unseen test data? Let us ignore
for the moment the numerous gradient and evolution based
training methods (both with or without teachers), and fo-
cus on the essential. The principle of minimum description
length (MDL) [WB68, Ris78, LV97] suggests one should
search for the simplest network that works well on the train-
ing examples, where simplicity is measured by the descrip-
tion size of the network, in a reasonable (possibly uni-
versal) programming language. In theory, the simplest or
most compressible weight matrix for a given problem is
the one with lowest algorithmic information or Kolmogorov
complexity, i.e. the one computable by the shortest pro-
gram. Unfortunately, there is no general way of finding
this program, due to lack of an upper bound on its run-
time [Sol64, Kol65, LV97].

However, there is a theoretically “best” way of taking
runtime into account [Lev73, Sch02]. This is the ba-
sis of previous work on optimal search for simple net-
works [Sch95, Sch97], which used an assembler-like uni-
versal network encoding language (NEL) and Speed Prior-
based search [Sch02] (related to Levin’s Universal Search

[Lev73]), to quickly find low-complexity weight matrices
with excellent generalization performance.

In related work, in the context of neuroevolution [Gru92,
GS07, BKS09], less general NELs have been used to en-
code network parameters indirectly in symbol strings which
are evolved using a genetic algorithm. Like the early work
[Sch95, Sch97], these approaches allow short descriptions
to specify networks of arbitrary size.

Here we define a NEL whose instructions are bit repre-
sentations of Fourier series coefficients, and network weight
matrices are computed by applying inverse Fourier-type
transforms to the coefficients. This not only yields continu-
ity (a small change to any coefficient changes all weights by
a small amount) but also allows the algorithmic complexity
of the weight matrix to be controlled by the number of co-
efficients. As frequency domain representations decorrelate
the signal (weight matrix), the search space dimensionality
can be reduced in a principled manner by discarding high-
frequency coefficients, as is common lossy image coding
(note that ignoring high frequencies in the initial phase is en-
couraged by observations of factorial redundancy in trained
weight matrices [Rad93]). Therefore, the search for a good
weight matrix can be performed systematically starting with
smooth weight matrices containing only low frequencies,
and then successively adding higher frequencies.

Encoding in the frequency domain also means that the
size of the program is independent of the size of the net-
work it generates, so that networks can be scaled to high-
dimensional problems, such as vision, since a very short pro-
gram consisting of frequency coefficients, each encoded by
a few bits, can compute huge weight matrices. While this
is the main motivation for most indirect network encoding
schemes, here we consider indirect encoding in the opposite
direction: given a problem for which a relatively small net-
work solution is known, is there a short encoding that allows
the network space to be searched exhaustively?

The next section describes the neural network encoding
scheme in detail and the variant of universal search used to
find solutions. We then present experimental results in three
test domains, showing how some of the solutions turn out
to be surprisingly simple, as they are computable by fairly
short, network-computing bit strings.

61

(a)

(b)

Figure 1: DCT network representation. The coefficients
are selected according to their order along the second diago-
nals, going from upper-left corner to the bottom right corner.
Each diagonal is filled from the edges to the center starting
on the side that corresponds to the longer dimension. (a)
Shows and example of the kind of weight matrix (right) that
is obtained by transforming the full set of coefficients (left).
The grayscale levels denote the weight values (black = low,
white = high). (b) Shows the weight matrix when only the
first four coefficients from (a) are used. The weights in (b)
are more spatially correlated than those in (a).

Searching in Compressed Network Space
The motivation for representing weight matrices as fre-
quency coefficients is that by spatially decorrelating the
weights in the frequency domain it might be possible to dis-
card the least significant frequencies, and thereby reduce the
number of search dimensions. This in turn makes it possi-
ble to search “universally” from small networks that can be
represented by few coefficients, to larger networks requiring
more complex weight matrices.

The next two sections describe how the networks are rep-
resented in the frequency domain using the Discrete Cosine
Transform (DCT), and the version of universal search that is
used to systematically find solutions to the experiments that
follow.

DCT Network Representation
All networks are fully connected recurrent neural networks
(FRNNs) with i inputs and single layer of n neurons where
some of the neurons are treated as output neurons. This ar-
chitecture is general enough to represent e.g. feed-forward
and Jordan/Elman networks, as they are just sub-graphs of
the FRNN.

An FRNN consists of three weight matrices: an n × i
input matrix, I, an n × n recurrent matrix, R, and a bias
vector t of length n. These three matrices are combined
into one n× (n+ i+ 1) matrix, and encoded indirectly us-
ing c ≤ N DCT coefficients, where N is the total number
of weights in the network. Figure 1 illustrates the relation-
ship between the coefficients and weights for a hypothetical
4 × 6 weight matrix. The left side of the figure shows two

Algorithm 1: Universal Network Search (r)

for x← 1 to 22r

do1
for n← nmin to x do2

for b← 1 to x do3
for c← 1 to MIN(b,N) do4

if MAX(n,b,c)=x then5

for s← 1 to 2b do6
D← DECODE(n,c,BINARY(s))7
network← INVERSEDCT(D)8
if SOLVED?(EVALUATE(network)) then9

return ENCODE(r,n,b,BINARY(s))10

end11

weight matrix encodings that use different numbers of coef-
ficients {C1, C2, . . . , Cc}. Generally speaking, coefficient
Ci is considered to be more significant (associated with a
lower frequency) than Cj , if i < j. The right side of the
figure shows the weight matrices that are generated by ap-
plying the inverse DCT transform to the coefficients. In the
first case (figure 1a), all of the 24 coefficients is used, so that
any possible 4 × 6 weight matrix can be represented. The
particular weight matrix shown was generated from random
coefficients in [−20, 20]. In the second case (figure 1b), each
Ci has the same value as in figure 1a, but the full set has been
truncated to only the four most significant coefficients.

The more coefficients, the more high frequency informa-
tion that is potentially expressed in the weight matrix, so that
the weight values become less spatially correlated—large
changes can occur from one weight to its neighbors. As c
approaches one, the matrix becomes more regular, with only
gradual, correlated, changes in value from weight to weight.

Universal Network Search
In order to search the space of networks universally, a strict
total ordering must be imposed on the possible DCT encod-
ings. We accomplish this by representing the c coefficients
using a total of b bits, and iterating over all possible bit-
strings using Universal Network Search (UNS), described in
Algorithm 1. The outer-most loop imposes an upper limit,
x, for n, b and c. The next three loops examine all combina-
tions of neurons, bits and coefficients, constrained by, nmin,
the number of output units required by problem in question
(second loop), and, N , the total number of weights in the
network. Each of the 2b bit-strings (third loop) is partitioned
in b different ways (fourth loop); each partitioning denot-
ing a different number of coefficients. If (b mod c) 6= 0
then the modulo is distributed into the coefficients from the
beginning. For example, if b = 3, each of the 23 = 8 possi-
ble bit-strings has three possible partitionings: (1) only one
coefficient, C1, is represented using all three bits, (2) two
coefficients, C1 using two bits, and C2 using the remaining
bit, and (3) three coefficients, C1, C2 and C3, each using
one bit. The set a values that a coefficient C can take on is
determined by dividing [−α, α] ∈ < into 1/(2`(C)−1) inter-
vals, where `(C) is the number of bits used to represent C,
and α is just a scaling factor. For example, if `(C) = 2 and

62

Figure 2: Network representation and encoding. A network with two neurons (right) is obtained by applying the inverse
DCT of the matrix (middle), where three of the coefficients (C1, C2, C3) are non-zero, in this example. The weight matrix can
be encoded (left) by a total of 12 bits, five for the coefficient values, and seven for the “meta” information: three bits for the
precision, p, which determines the size of the bit-fields representing n, the number of neurons, and c, the number of coefficients.
This is all of the information needed to reconstruct (decode) the complete network.

α = 1.0, then the set of valuesC can take is {−1,− 1
3 ,

1
3 , 1}.

Finally, in the inner-most loop, each of the 2b networks
specified by each unique (n, b, c) is decoded into a coef-
ficient matrix D, which is then transformed into a weight
matrix via the inverse DCT. The search terminates if either
x > 22r

or a network that solves the problem is found, in
which case the successful network is encoded as described
in figure 2, and returned.

To completely describe a network, simply storing the bit-
string b is not sufficient, the number of neurons, n, and coef-
ficients, c, must be encoded as well. To encode this informa-
tion in minimal way, we first encode the number of bits that
will be used to represent the parameters and then store the
parameters with the fixed number of bits. The bit-string that
completely describes the network consists of the following
fields (see figure 2): r bits represent the bit precision, p, of
the n and c fields, p bits each for n and c, and b bits for the
actual coefficient values, b ≥ c, for a total of r+2p+ b bits,
where p ≤ 2r. For the example 001 01 10 10011, shown in
figure 2, the first field has size r = 3, and a decimal value of
2, so that n and c are represented by 2 bits, with values of 2
and 3, respectively, meaning that the network has 2 neurons,
where 3 coefficients are described with by the last five bits
10011.

A universal search over all possible bit-strings would
needlessly examine a large number of invalid bit-strings
(having b < c). Therefore, we use Algorithm 1 which con-
strains the search to only valid, decodable strings, and is
therefore an instance of Practical Universal Search [SS10].

Experimental Results
Universal Network Search was tested one three tasks:
Markovian and non-Markovian pole balancing, the long
term dependency T-maze, and the ball throwing task. In all
experiments, the scaling factor, α, was set to 20, and the
number of bits, r, used to represent the precision of n and c
was set to three, which means that the search can continue
up to networks with 223

= 256 neurons, more than enough
for the tasks in question. In each task, the encoding scheme
described in the previous section is used to quantify the com-
plexity of network solutions, and is indicated by the “Total
Bits” column in the tables.

Table 1: Pole balancing results. Each row describes the
minimal (1-neuron) network solution for each task, the num-
ber of evaluations that UNS required to find it, and the total
number of bits required to encode it. Notice that just 8 evalu-
ations are needed to find a solution to the single pole Markov
task.

Task b c Eval. Total Bits

1 pole Markov 2 2 8 7
1 pole non-Markov 6 3 290 13
2 poles Markov 16 6 773,070 25
2 poles non-Markov 17 5 1,229,012 26

Pole Balancing
Pole balancing (figure 3a) is a standard benchmark for learn-
ing systems. The basic version consists of a single pole
hinged to a cart, to which a force must applied in order to
balance the pole while keeping the cart within the bound-
aries of a finite stretch of track. By adding a second pole
next to the first, that task becomes much more non-linear and
challenging. A further extension is to limit the controller to
only have access to the position of the cart, and the angle
of the pole(s), and not the velocity information, making the
problem non-Markovian (see [Wie91] for setup and equa-
tions of motion). The task is considered solved if the pole(s)
can be balanced for 100,000 time steps.

Table 1 summarizes the results for the four most com-
monly used versions of the task. For the Markov single
pole task, a successful network with just one neuron whose
weights are represented by 2 DCT coefficients is found after
just 8 evaluations. This result shows how simple the sin-
gle pole balancing is: the single neuron, which solves it has
monotonically distributed weights. Non-Markovian single
pole balancing increases complexity of the task only slightly.

For the two-pole versions, 16 (17 for non-Markovian
case) bits are required to solve the problem using a single
neuron. Notice that the solution to the Markovian 2-pole
task, requiring 8 weights (6 input + 1 recurrent + 1 thresh-
old), has been compressed to 6 parameters, C1, ..C6. The
non-Markovian 2-pole network has 5 weights and 5 coeffi-
cients were used, meaning that in this task it does not DCT

63

(a) Pole balancing (b) T-maze (c) Ball throwing

Figure 3: Evaluation tasks. (a) Pole balancing: the goal is to apply a force F to the cart such that the pole(s) do not fall down.
(b) T-maze: the agent must travel down the corridor remembering the signal X which indicates the location of the goal. The
length of the corridor is variable. (c) Ball throwing: the ball attached to the end of the arm must be thrown as far as possible by
applying a torque to the joint and then releasing the ball.

Table 2: T-maze results. The table shows the two networks
with the shortest bit descriptions, found by UNS. The check
marks in the “T-maze length” column indicate the corridor
lengths the network was able to solve. Note that the seven
neuron network is found before the four neuron network
since it requires fewer bits to encode (19 vs. 21).

T-maze length
n b c Eval. 5 50 1000 Total Bits

7 10 10 85, 838
√ √ √

19
4 12 11 306, 352

√
– – 21

compress the weight matrix. In the other words, the num-
ber of bits per coefficient is the restriction which makes the
exhaustive search possible.

Long Term Dependency T-maze
The T-maze task is a discrete non-Markovian problem con-
sisting of a corridor of n rooms with a start state S at one end
and a T-junction at the opposite end (figure 3b). Starting in
S, the objective is to travel down to the end of the corridor
and go either north or south at the T-junction depending on
a signal X received in S indicating the location of the goal
G. In order to chose the correct direction at the junction, the
network must remember X for at least n time-steps.

The agent always sees a binary vector of length three. At
the start, the observation is either 011 if the goal is to the
north, or 110 if it is to the south. In the corridor, the agent
sees 101 and at the junction it sees 010. The agent RNN has
three output units, one for each of the possible actions (go
east, north or south), where the action corresponding to the
unit with the highest activation is taken at each time-step.
The agent receives a reward of −0.1 if tries to go north or
south in the corridor, or go east or in wrong direction at the
T-junction, and a reward of 4.0 if it achieves the goal.

All agents are initially evaluated on a corridor of length
5. If the agents achieve the goal, they are also evaluated in
corridors of length 50 and 1000 in order to test the general-
ization ability.

Table 2 shows the results. A four neuron RNN described
with 21 bits can achieve the goal in a corridor of length of

Table 3: Ball throwing results. The table shows the first
three network near optimal networks found by UNS (all net-
work have two neurons). The d column indicates the dis-
tance, in meters, the ball was thrown by each network using
the strategy indicated in the first column (compare to the dis-
tance, dopt, of the corresponding optimal controller).

strategy b c Eval. d [m] dopt[m] Total Bits

fwd 4 4 70 4.075 5.391 11
bwd-fwd 8 8 2516 5.568 5.391 17
bwd-fwd 9 9 5804 9.302 10.202 20

5. A network with seven neurons described with 19 bits can
find the goal in a maze of any length (the outputs of the
network become stable while in the corridor and the input
pattern at the end causes a recall of the goal position stored
in the network activation). The 7-neuron network was found
before the 4-neuron network because it requires fewer bits
and coefficients.

Ball Throwing
In the ball throwing task (figure 3c), the goal is to swing
a one-joint artificial arm by applying a torque to the joint,
and then releasing the ball such that it is thrown as far as
possible. The arm-ball dynamical system is described by:

(θ̇, ω̇) =
(
ω,−c · ω︸︷︷︸

friction

− g · sin(θ)
l︸ ︷︷ ︸

gravity

+
T

m · l2︸ ︷︷ ︸
torque

)

where θ is the arm angle, ω its angular speed, c = 2.5s−1

the friction constant, l = 2m the arm length, g = 9.81ms−2,
m = 0.1kg the mass of the ball, and T the torque applied
(Tmax = [−5Nm, 5Nm]). In the initial state, the arm hangs
straight down (θ = 0) with the ball attached to the end. The
controller sees (θ, ω) at each time-step and outputs a torque.
When the arm reaches the limit θ = ±π/2, all energy is
absorbed (ω = 0). Euler integration was used with a time-
step of 0.01s.

In the experiments, we compare the networks found by
Algorithm 1 with two optimal control strategies. The first

64

æ æ

æ

æ æ

æ
æ

æ

æ
æ æ æ

2 4 6 8 10 12
0

2

4

6

8

10

12

bits

di
st

an
ce

@m
D

forward

backward-forward

Figure 4: Ball throwing experiment. The figure plots the
distance reached by the thrown ball against the number of
bits, b, used to encode the corresponding two-neuron FRNN
weights. Each datapoint denotes the best solution for a given
b. The network with weights described with four bits al-
ready swings the arm forward and releases the ball with near
optimal timing. The network described with eight bits sur-
passes the optimal forward swing strategy by using a slight
backward swing. Nine bits produce a network which swings
backward and forward and releases the ball at nearly opti-
mal time. The distances for the two optimal strategies are
marked with dashed lines.

applies the highest torque to swing the arm forward, and re-
leases the ball at the optimal angle (which is slightly below
45 degrees, because the ball is always released above the
ground). The second, more sophisticated, strategy first ap-
plies a negative torque to swing the arm backwards up to the
maximum angle, and then applies a positive torque to swing
the arm forward, and release the ball at the optimal angle of
43.03 degrees. The optimal distances are 5.391m for the for-
ward swing strategy, and 10.202m for the backward-forward
swing strategy.

The results are summarized in Table 3. In 70 evaluations,
UNS finds a network with four single-bit coefficients, de-
scribed by a total of 11 bits, that can throw the ball within
almost meter of the optimal forward-swing distance. A more
complex 17-bit network is found at evaluation 2516 that
uses a slight backward-forward strategy to cross the 5.391m
boundary. And finally after 5804 evaluations, a 20-bit net-
work is found that implements a nearly optimal backward-
forward swing strategy. Figure 4 shows graphically how the
performance progresses as the number of bits, b, represent-
ing the coefficient values is increased.

Discussion and Future Directions
The experimental results revealed that, using our approach,
the solution networks to some widely used control learning
benchmarks are actually quite simple, requiring very short
descriptions. However, the question remains whether or not
the compressed representation improves search efficiency?
In order to quantify the advantage gained by searching for
weights indirectly in coefficient space, we compared the per-
formance of random search in weight space against random

æ

æ

æ

æ

æ

æ

1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

no. of coefficients

so
lu

tio
n

pr
ob

ab
ili

ty

Figure 5: Coefficient search vs. direct weight search.
The curve shows the probability of finding a solution to the
Markov single-pole balancing task within 100 random sam-
ples of coefficient space, defined by different numbers of
coefficients (calculated of over 1000 runs). The horizon-
tal dashed line at 0.24 indicates the probability of finding
a solution by sampling the 6-dimensional weight space di-
rectly. Searching for coefficients is more reliable searching
weights, for this task, when the number of coefficients is less
that five.

search in DCT coefficient space.
Figure 5 shows the results for this comparison in the

Markovian single-pole balancing task. Each data-point de-
notes the probability of finding a successful six-weight neu-
ral network (the same architecture that solved the task in
Table 1) within 100 random samples, for each number of
coefficients. The dashed horizontal line indicates the prob-
ability (p = 0.24) of finding such a network by randomly
sampling the six-dimensional weight space directly. A net-
work represented by just one coefficient is too simple (all
weights are equal), and cannot solve the task (p = 0). For
two, and three coefficients, the task is solved very reliably
(p > 0.9). As the dimensionality of the coefficient space
approaches that of the weights, most of the sampled weight
matrices are unnecessarily complex, and, consequently, the
probability of finding a solution at random declines rapidly,
and falls below the baseline for five and six coefficients (i.e.
no compression). This result shows that, on this particular
task, just searching the frequency domain without compres-
sion only makes the problem harder. It remains to be seen
whether compression has a similar profile for all problems,
such that there is a sweet-spot in a number of coefficients
necessary to represent a successful network. However, is
seems plausible that, just as with natural signals (e.g. im-
ages, video, sound, etc.) most of the energy in useful weight
matrices is concentrated in the low frequencies.

In these preliminary experiments, we have focused on
benchmark problems for which small network solutions are
known to be sufficient. And we have made the implicit
assumption that such solutions will have spatially corre-
lated weights. It is possible that, for each task examined
here, there exists a permutation in the weight ordering for
which the only solutions are those with spatially uncorre-

65

lated weights, i.e. requiring the full set of coefficients. How-
ever, we have made no attempt to predefine amenable weight
orderings, and, ultimately, the potential of this approach
lies in providing compact representations for large networks,
such as those required for vision, where many thousands of
inputs have a natural, highly correlated ordering.

In the current implementation, input, recurrent, and bias
weights are all combined in a single matrix. For networks
with more layers, it may be desirable to specify a separate
set of coefficients for each layer, so that the complexity of
each matrix can be controlled independently. Also, the way
that bits are currently allocated to each coefficient may be
too restrictive. A better approach might be to search all par-
titionings of the bit-string b, instead of roughly according
to (b mod c), such that the precision of each coefficient is
less uniform. For example, fewer bits could be assigned to
the lowest frequencies, thereby freeing up more bits for the
higher frequencies where more resolution may be needed.

The Universal Network Search algorithm was motivated,
in part, by the goal of measuring the complexity of well-
known test problems by finding minimal solutions, and
made possible because of the small number of bits required
to encode the DCT representation. While there is a practi-
cal limit on number of bits that can be searched exhaustively
(e.g. 32), any, more scalable, optimization method can be
applied to search larger numbers of coefficients. Immedi-
ate future work will use the indirect DCT network repre-
sentation in conjunction with evolutionary methods to grow
large-scale networks vision-capable robots.

Acknowledgments
The research was supported by the STIFF EU Project (FP7-
ICT-231576) and partially by the Humanobs EU Project
(FP7-ICT-231453). The authors would like to thank Tom
Schaul for extensive consultations.

References

[BKS09] Zdeněk Buk, Jan Koutnı́k, and Miroslav
Šnorek. NEAT in HyperNEAT substituted with
genetic programming. In International Confer-
ence on Adaptive and Natural Computing Al-
gorithms (ICANNGA 2009), 2009.

[DDWA91] S. Dominic, R. Das, D. Whitley, and C. Ander-
son. Genetic reinforcement learning for neural
networks. In Proceedings of the International
Joint Conference on Neural Networks (Seat-
tle, WA), pages 71–76. Piscataway, NJ: IEEE,
1991.

[Gru92] Frederic Gruau. Cellular encoding of genetic
neural networks. Technical Report RR-92-21,
Ecole Normale Superieure de Lyon, Institut
IMAG, Lyon, France, 1992.

[GS07] Jason Gauci and Kenneth Stanley. Generating
large-scale neural networks through discover-
ing geometric regularities. In Proceedings of
the Conference on Genetic and Evolutionary
Computation, pages 997–1004, New York, NY,
USA, 2007. ACM.

[Kol65] A. N. Kolmogorov. Three approaches to the
quantitative definition of information. Prob-
lems of Information Transmission, 1:1–11,
1965.

[Lev73] L. A. Levin. Universal sequential search prob-
lems. Problems of Information Transmission,
9(3):265–266, 1973.

[LV97] M. Li and P. M. B. Vitányi. An Introduction
to Kolmogorov Complexity and its Applications
(2nd edition). Springer, 1997.

[Rad93] Nicholas J. Radcliffe. Genetic set recombina-
tion and its application to neural network topol-
ogy optimisation. Neural Computing and Ap-
plications, 1(1):67–90, 1993.

[Ris78] J. Rissanen. Modeling by shortest data descrip-
tion. Automatica, 14:465–471, 1978.

[Sch95] J. Schmidhuber. Discovering solutions with
low Kolmogorov complexity and high general-
ization capability. In A. Prieditis and S. Rus-
sell, editors, Proceedings of the Twelfth In-
ternational Conference on Machine Learning
(ICML), pages 488–496. Morgan Kaufmann
Publishers, San Francisco, CA, 1995.

[Sch97] J. Schmidhuber. Discovering neural nets
with low Kolmogorov complexity and high
generalization capability. Neural Networks,
10(5):857–873, 1997.

[Sch02] J. Schmidhuber. The Speed Prior: a new
simplicity measure yielding near-optimal com-
putable predictions. In J. Kivinen and R. H.
Sloan, editors, Proceedings of the 15th Annual
Conference on Computational Learning The-
ory (COLT 2002), Lecture Notes in Artificial
Intelligence, pages 216–228. Springer, Sydney,
Australia, 2002.

[Sol64] R. J. Solomonoff. A formal theory of inductive
inference. Part I. Information and Control, 7:1–
22, 1964.

[SS10] Tom Schaul and Jürgen Schmidhuber. Towards
a practical universal search. In Submitted to the
Third Conference on Artificial General Intelli-
gence, 2010.

[WB68] C. S. Wallace and D. M. Boulton. An informa-
tion theoretic measure for classification. Com-
puter Journal, 11(2):185–194, 1968.

[Wie91] Alexis Wieland. Evolving neural network con-
trollers for unstable systems. In Proceedings of
the International Joint Conference on Neural
Networks (Seattle, WA), pages 667–673. Pis-
cataway, NJ: IEEE, 1991.

66

Remarks on the Meaning of Analogical Relations

Ulf Krumnack1 and Helmar Gust1 and Angela Schwering2 and Kai-Uwe Kühnberger1

1 Institute of Cognitive Science
University of Osnabrück, Germany
{krumnack, hgust, kkuehnbe}@uos.de

2 Institute of Geoinformatics
University of Münster

schwering@uni-muenster.de

Abstract

Analogical reasoning plays an important role in the
context of higher cognitive abilities of humans. Analo-
gies can be used not only to explain reasoning abilities
of humans, but also to explain learning from sparse
data, creative problem solving, abstractions of con-
crete situations, and recognition of formerly unseen
situations, just to mention some examples. Research
in AI and cognitive science has been proposing sev-
eral different models of analogy making. Nevertheless,
no approach for a model theoretic semantics of anal-
ogy making is currently available. This paper gives
an analysis of the meaning (the semantics) of analogi-
cal relations that are computed by the analogy engine
HDTP (Heuristic-Driven Theory Projection).

Introduction
Humans show remarkable higher cognitive abilities
comprising not only (abstract) types of reasoning,
learning from sparse data, and planning, but also the
ability to creatively finding new conceptualizations of
an unknown domain, to solve problems based on simi-
lar solutions for other problems, and to recognize and
categorize perceptual input that was never seen before.
At least to a certain extent it is possible to explain and
to model such types of higher cognitive abilities with
frameworks for analogical reasoning (GHK01).

Because of the wide range of applicability of anal-
ogy making mechanisms for the explanation of vari-
ous higher cognitive abilities, analogies are of interest
not only for artificial intelligence and cognitive science,
but also for artificial general intelligence. Classical AI
methodologies suffer from various deficiencies that re-
sult from highly specialized models. For example, it
is hard to find uniform frameworks for the variety of
different reasoning types (GKSK09), for creativity as-
pects of human cognition (Ind92), or for problem solv-
ing in unknown situations (GP07). As a consequence
of these deficiencies the desired generalization capabil-
ities of appropriate AGI systems are currently far from
being reachable. To tackle this problem we propose the
usage of analogy mechanisms for AGI systems.

Frameworks for analogy making cover a large part
of cognitive abilities that are usually considered to be

central for AGI systems. A good source to support this
claim is (KHG09) where analogies are used to model
aspects of reasoning, creativity, problem solving, learn-
ing, perception, or motor control, just to mention some
of them. Furthermore, even from a more abstract per-
spective the establishment of analogical relations seems
to be one of the rare possibilities to explain many cog-
nitive phenomena in a uniform way: quite often we act
(alternatively perceive, reason, learn etc.) as if we were
in another (well-known and analogous) situation. It
rarely happens that humans can reason in a purely de-
ductive (abductive, inductive etc.) way to act in real
life. A natural description of such cognitive phenomena
can be provided by analogies, because vagueness, learn-
ing, and the transfer of knowledge about old situations
to new ones are intrinsically embedded in the very idea
of analogy making.

Due to the fact that analogies are considered to be a
central mechanism of human cognition and intelligence,
a number of models have be proposed to explain differ-
ent aspects of analogies, varying in complexity and in
their degree of formalization. A few examples of such
frameworks are SME (FFG89), interactionism (DIS03),
LISA (HH96), Copycat (Hof95), and AMBR / DUAL
(KP01).1 Most of these analogy making models use spe-
cial means for representation and computation of ana-
logical inferences. For example, the structure mapping
engine (FFG89), probably the currently best known
analogy model, uses a graph-based representation and
a heuristic-governed matching algorithm.

Although, we can conclude that there is a broad vari-
ety of different computational models, it is hard to find
a spelled out semantics of analogical relations computed
by algorithmic models. Even worse, for all established
frameworks even an endeavor to find a semantics of the
underlying computations cannot be found. However,
from an AGI perspective, it would be desirable to have
a model that could be combined with standard mecha-
nisms of knowledge representation and reasoning.

1A good overview of various theoretical and practical ap-
proaches for the modeling of analogy making can be fur-
thermore found in the special issue of Cognitive Systems
Research about analogical reasoning as a means for the in-
tegration of cognitive abilities (SKK09).

67

In this paper, we will discuss heuristic-driven the-
ory projection (HDTP), a formal framework to com-
pute analogies between domains that are described by
classical first-order formulas (GKS06). HDTP’s match-
ing algorithm is based on the syntactic representation
and analogies are computed as mappings of formula sets
induced by their domain axiomatizations (SKKG09).
This approach fits into the classical paradigm of sym-
bol processing, where operations are performed on a
symbolic level in a way that a coherent semantic in-
terpretation can be provided. However, from this per-
spective, the framework remains incomplete, until a se-
mantic characterization of the syntactic operations is
provided.

In this paper, we will show, that the syntactic map-
ping procedure of HDTP can be given a sensible inter-
pretation on the semantic side. Not only, the syntactic
mapping can be shown to induce a mapping between
models (this was already shown in (GKKS07)), but
furthermore, the generalized formulas constructed by
HDTP during the mapping process can be interpreted
as a new, abstract domain theory, which can be given
a model theoretic semantics. To our knowledge this is
the first concrete approach to make the semantics of
analogy making formally precise.

The paper has the following structure. First, we
will sketch the syntactic basis of HDTP and the chal-
lenges of developing a semantics for HDTP, then we will
sketch the theory of institutions. We will continue with
describing an institution theoretic analysis of analogy
making. Finally, we will sketch an example and we will
add some concluding remarks.

Heuristic-Driven Theory Projection

The Theory in a Nutshell
HDTP is a framework for discovering analogous struc-
tures of pairs of logical theories. In this section, we
sketch the main ideas of the syntactic anti-unification
process of HDTP. For a thorough introduction to the
syntactic principles of HDTP, the reader is referred to
(SKKG09).

• Two sets of formulas AxS and AxT are provided as
input specifying an axiomatization of the source and
target domain, respectively. Each axiomatization de-
scribes (some aspects) of a domain of knowledge.
These sets of formulas AxS and AxT induce corre-
sponding theories ThS and ThT (i.e. the deductive
closure of AxS and AxT).

• A pair of clauses cS ∈ ThS and cT ∈ ThT is selected
and (syntactically) generalized by anti-unification to
a clause cG.2 For generalization, domain symbols

2Anti-unification can be understood as the dual construc-
tion of unification, i.e. instead of computing the most gen-
eral unifier, the most specific (least general) generalization
of terms and formulas is computed. Anti-unification was
introduced by Plotkin (Plo70).

– can be kept, if they occur in both domains (e.g. a
relation symbol >)

– can be generalized into a new variable, e.g. sun,
nucleus are generalized to an individual variable X
in the famous Rutherford analogy describing the
analogy between the solar system and the atom
model

– can be dropped by an “argument insertion” sub-
stitution, i.e. symbols are “integrated” into a com-
plex function.

As a by-product, the computed generalization pro-
vides a pair of substitutions 〈σ, τ〉 with cGσ = cS
and cGτ = cT . In other words, the source and tar-
get clauses cs and cT can be gained by applying the
substitutions to the corresponding generalized clause
cG, respectively.

• A set AxG of generalized clauses is incrementally built
by repeating the described generalization step. This
set is considered to be good, if it has a low substitu-
tion complexity and a high degree of coverage3

• The substitutions belonging to a (good) set of gen-
eralizations can be used to establish an analogical
relation

• Based on this relation, formulas of the source domain
that are not anti-unified yet can be transferred (pro-
jected) to the target domain in order to allow new
conceptualizations of the target.

Challenges
There are several challenges of this approach if one
wants to develop a model theoretic semantics for HDTP.
First, the generalized expression AxG are not necessar-
ily first-order logical formulas (FOL formulas). The
anti-unification process may result in a second-order
generalization, for example, by introducing a relation
or function variable. Second, the variables introduced
by anti-unification might be treated differently than or-
dinary (universally quantified) variables. In particu-
lar, second-order variables can be interpreted as exis-
tentially quantified in order to prevent inconsistencies
or they need to get a treatment as described below.
Third, the question arises how an adequate notion for
a “model” (in the logical model theoretic sense) of the
resulting analogy might look like.

Here are the basic ideas of the present approach: In
(GKS06), it is proposed, that the generalized terms can
be seen as axioms of a generalized theory. A framework
is sketched that integrates a semantics for the ana-
logical relation and the generalized theory. However,
some questions are left open and especially the status
of the variables introduced by anti-unification remains

3Coverage is the concept that “measures” the degree of
specificity of a generalization. Intuitively, we can say that an
anti-unifier <AxG, σ, τ > has at least the same coverage as
the anti-unifier <Ax′G, σ

′, τ ′> if there exists a substitution
Θ : Ax′G → AxG, such that σ′ = σ ◦ Θ and τ ′ = τ ◦ Θ.
Compare (SKKG09) for the details of this concept.

68

unclear. If these generalized symbols would be con-
sidered as logical variables, the resulting formulas leave
the realm of first-order logic, as anti-unification can also
generalize function and predicate symbols. Therefore,
we propose to see the generalized symbols not as vari-
ables, but as elements of a new vocabulary. The gener-
alized theory is then a classical first-order theory with
formulas built from these symbols. The substitutions
induce a mapping between the generalized theory and
the domain theories.

An Institutional View on Analogies

To make these ideas more precise, we will use the lan-
guage of the theory of institutions (GB92).4 Institu-
tions provide a framework to describe model theory at
an abstract level using methods from category theory.
Informally, an institution consists of a collection of sig-
natures Sign and to each signature Σ, first the collec-
tion Sen(Σ) of all Σ-sentences is assigned. In the case
of FOL, the Σ-sentences correspond to the set of all
FOL formulas that can be built using symbols from Σ.
Second, for each signature Σ the collection Mod(Σ)
of all Σ-models is assigned. In the case of FOL, this
collection correspond to all possible interpretations of
symbols from Σ. The Σ-models and Σ-sentences are re-
lated by the relation of Σ-satisfaction, usually denoted
by |=Σ.

A central idea of the theory of institutions is, that
truth is invariant under the change of notation. Within
an institution, signatures can be mapped to other sig-
natures by so called signature morphisms, i.e. struc-
ture preserving functions. In FOL, this translates into
the constraint that arity and sortal restrictions have
to match. A signature morphism f : Σ → Σ′ induces
functions Sen(f) : Sen(Σ) → Sen(Σ′) and Mod(f) :
Mod(Σ′)→Mod(Σ) which have to be consistent with
Σ-satisfaction as specified by the following contravari-
ant satisfaction constraint: for all ϕ ∈ Sen(Σ) and
M ′ ∈Mod(Σ′):

M ′ |=Σ Sen(f)(ϕ) ⇔ Mod(f)(M ′) |=Σ ϕ

Every collection T of Σ-sentences (called Σ-theory)
determines a class of Σ-models:

T ∗ = {M |M |=Σ ϕ for all ϕ ∈ T}
Dually, every collection V of Σ-models determines a

Σ-theory:

V∗ = {ϕ |M |=Σ ϕ for all M ∈ V}
As a natural consequence we get that the double ap-

plication of these operators provides the closure under
semantic entailment: T • = T ∗∗.

4For a thorough discussion of logic systems in the lan-
guage of the theory of institutions the reader is referred to
the monograph (Dia08).

The Generalized Theory
We now describe HDTP within the framework of in-
stitutions, more precisely, within the institution FOL.
The new variables introduced by the process of anti-
unification are placeholders, which are instantiated by
different terms on the source and target side. In what
follows, we will treat these variables as new symbols
which can be used as a signature for a generalized the-
ory of both domains. Using this idea we can give the
intuitive notion of “generalized theory” a formal mean-
ing.

The signature ΣG will consist of all symbols used in
the generalized formulas AxG, i.e. symbols from ΣS ∩
ΣT and the variables introduced by anti-unification.
The generalized formulas AxG are then ordinary first-
order formulas over the signature ΣG in the usual sense.
The theory spanned by these formulas will be called (as
above) the generalized theory ThΣG(AxG).5

The generalized axioms AxG are related to the ax-
iomatizations AxS and AxT of the source and target
domain by the the following relations

AxGσ ⊆ (AxS)• and AxGτ ⊆ (Axτ)•

with σ and τ being the substitutions computed by
HDTP. The application of the substitutions σ and
τ defines mappings σ∗ : Sen(ΣG) → Sen(ΣS) and
τ∗ : Sen(ΣG) → Sen(ΣT). It can be shown that these
mappings can be restricted to the respective theories,
i.e. that σ∗| : (AxG)• → (AxS)• and τ∗| : (AxG)• →
(AxT)•. However, in general the induced mappings are
not theory morphisms in the sense of (GB92), as there
are no underlying signature morphisms. To overcome
this problem, we will extend the original domain signa-
tures ΣS and ΣT .

Substitutions
In the setting of HDTP, there exists a set of (higher-
order) generalized formulas, which can be instantiated
via substitution to domain formulas over given signa-
tures. We will describe this situation in terms of signa-
tures and signature morphisms.

Let Ax be a set of (higher-order) formulas and θ be
a substitution such that Axθ is a set of (first-order)
formulas over some signature Σ. Now we can define a
signature Σθ which allows to interpret the formulas Ax
as first-order formulas as follows:

(i) We extend Σ by taking into account the pairs X/t
in θ and by introducing a new symbol X for each
such pair. Notice, that there is an obvious embed-
ding Σ ↪→ Σθ.

(ii) A system of equations and equivalences is used to
relate new symbols in Σθ to those in Σ.

5From now on we will use ThΣ(Ax) to denote the clo-
sure under semantic entailment of an axiomatization Ax re-
stricted to sentences over a signature Σ, i.e. ThΣ(Ax) =
(Ax)• ∩ Sen(Σ).

69

Consider again a substitution θ as above. We can
define a set of Σθ-formulas Defθ as follows:6

Pair in substitution θ Formula in Defθ
X/c X = Xθ
F/f1 ◦ . . . ◦ fn ∀x̄F (x̄) = Fθ(x̄)
P/p P ↔ p
P/p(f1 ◦ . . . ◦ fn) ∀x̄P (x̄)↔ Pθ(x̄)

The idea is, that Defθ provides a description that
allows the application of substitutions as a logical de-
duction in the HDTP algorithm. One can make this
more precise by noticing the following fact: If Ax, θ,Σ
are given as above, then the following two facts hold:

• ThΣθ (Ax ∪Defθ) ∩ Sen(Σ) = ThΣ(Axθ).
• There is a (natural) isomorphism

ModΣθ (Ax ∪Defθ)
∼=−→ ModΣ(Axθ).

The crucial point is, that the additional newly in-
troduced symbols do not allow to derive new sentences
in Sen(Σ). Notice that they cannot introduce inter-
relations between existing symbols provided that these
additional symbols are really new. On the semantic
level, the additional symbols do not provide new mod-
els, as the interpretations of these symbols are fully
constrained by the formulas from Defθ.

Coverage
Usually, an analogy does not establish a complete map-
ping between two domains. Quite often only parts of
the domains are associated with each other. This fact
can be used to motivate the concept of coverage in
HDTP. A domain formula ϕ from Sen(Σ) is said to
be covered by an analogy iff ϕ ∈ Th(AxGθ), i.e. φ is
either an instantiation of a generalized formula or can
be derived from such instantiations. The set Th(AxGθ)
is called the part of the domain that is covered by the
generalization (or analogy).

Assume that AxD is a set of domain axioms over
some signature Σ, AxG a set of generalized formulas,
θ a substitution that instantiates AxG in Sen(Σ), i.e.
AxGθ ⊆ ThΣ(AxD). Then one can easily observe that
the following relations (i) - (iv) hold:

(i) ThΣ(AxGθ) ⊆ ThΣ(AxD)
(ii) ThΣθ (AxG ∪Defθ) ∩ Sen(Σ) = ThΣ(AxGθ)
(iii) ThΣθ (AxG ∪Defθ) ∩ Sen(Σ) ⊆ ThΣ(AxD)
(iv) ThΣθ (AxG ∪Defθ ∪AxD) ∩ Sen(Σ) = ThΣ(AxD)

The first formula just states that all covered formulas
are domain formulas, a necessary condition to call AxG

6The Σθ-formulas Defθ are naturally induced by the the-
ory of “restricted higher-order anti-unification” as described
in (SKKG09).

a generalization of the domain. The second formula
describes the covered part of the domain theory as a
(subset of) the closure under semantic entailment of
AxG ∪Defθ. The third formula is a trivial consequence
from (i) and (ii). The fourth formula states that adding
AxG∪Defθ does not change the set of entailed formulas
in Sen(Σ). It is an immediate consequence of (iii).

Using the contravariant satisfaction constraint of the
theory of institutions, we can characterize the corre-
sponding model classes as dual statements of the above
results as follows:

(i) ModΣ(AxGθ) ⊇ModΣ(AxD)
(ii) ModΣθ (AxG ∪Defθ) ∼= ModΣ(AxGθ)
(iii) ModΣθ (AxG ∪Defθ)←↩ ModΣ(AxD) is injective.
(iv) ModΣθ (AxG ∪Defθ ∪AxD) ∼= ModΣ(AxD)

The crucial point is again, that we have no choice
when interpreting the new symbols, as their value is
determined by the defining equations from Defθ.

Describing Analogies
We will now turn to analogies and their description
in HDTP. The starting point is given by two domain
axiomatizations AxS and AxT over signature ΣS and
ΣT , respectively. HDTP will then compute a set of
generalized formulas AxG and substitutions σ, τ such
that ThΣS (AxGσ) ⊆ ThΣS (AxS) and ThΣT (AxGτ) ⊆
ThΣT (AxT). Following the HDTP process described
above we can construct signatures ΣS,σ and ΣT,τ such
that AxG are first-order formulas over these signa-
tures. We set ΣG = ΣS,σ ∩ ΣT,τ and conclude that
AxG ⊂ Sen(ΣG).

For the following discussion we introduce some ab-
breviations:

Σ+
S := ΣS ∪ ΣG and Σ+

T := ΣT ∪ ΣG

Then the sets of equations Defσ and Defτ are formulas
over Σ+

S and Σ+
T , respectively. Furthermore, we will set

Ax+
S := AxS ∪ Defσ and Ax+

T := AxT ∪ Defτ . We have
the following inclusion relations between signatures:

ΣG � p

!!B
BB

BB
BB

BN n

}}||
||

||
||

ΣS
� � // Σ+

S Σ+
T ΣT? _oo

These signature inclusions induce inclusions on the
syntactic level (notice that we work in the institution
FOL):

Sen(ΣS)� _

��

Sen(ΣG)� s

&&LLLLLLLLLLK k

yyrrrrrrrrrr
Sen(ΣT)� _

��
Sen(Σ+

S) Sen(Σ+
T)

Dually the above signature inclusions induce the in-
verse inclusions on the semantic level:

70

Mod(ΣS) Mod(ΣG) Mod(ΣT)

Mod(Σ+
S)

OO 88ppppppppppp
Mod(Σ+

T)

ffNNNNNNNNNNN

OO

We will now examine the subsets of these sets, that
are associated with the domain theories. Compare Fig-
ure 1 for these subset relations. The claim that iS and
iT are inclusions, follows from

(Ax+
S ∪AxG)

∗∗
= (Ax+

S)
∗∗

On the semantic level ̃S and ̃T are isomorphisms (even
though jS and jT are not), while ı̃S and ı̃T are in general
neither injective nor surjective.

Analogical Relation
Given the considerations so far, we can define the fol-
lowing mappings (cf. Figure 1):

mS : (AxS)∗ → (AxG)∗ and

mT : (AxT)∗ → (AxG)∗

by mS = ı̃S ◦ ̃−1
S and mT = ı̃T ◦ ̃−1

T . Given mod-
els MS ∈ (AxS) and MT ∈ (AxT), for every symbol
x ∈ ΣG we get two interpretations mS(MS)(x) ∈ US
and mT (MT)(x) ∈ UT . Associating those elements es-
tablishes the analogical relation. Briefly, this is the idea
to relate MS(xσ) ∼ MT (xτ) which corresponds to the
relation xσ ∼ xτ on the syntactic level. Clearly, it is
possible to extend this association to terms and even
formulas.

Example: Heat Flow
It might be worth to spell out these ideas in an exam-
ple. We have chosen the heat flow analogy, which mod-
els the creation of new concepts “heat” and “heat flow”
by analogical inference, given a model of water flow as
the source domain. In the context of HDTP, this anal-
ogy seems to be especially interesting as it makes some
complex mappings necessary. For a detailed discussion
of the computation compare (SKKG09)).

We will follow (GB92) and describe signatures by two
sets: function symbols and predicate symbols, both an-
notated with arity. So we start with the following do-
main signatures and axiomatizations:

ΣS =
{
{height/2, in/2,water/0, beaker/0, vial/0,

t1/0, t2/0}, {> /2}
}

AxS =
{

height(water in beaker, t1) >
height(water in vial, t1)→ (t1 > t2)
∧ height(water in beaker, t1) >

height(water in beaker, t2)
∧ height(water in vial, t2) >

height(water in vial, t1),
. . .

}

The signatures ΣS of the source domain provides the
vocabulary to describe the flow of water in two con-
nected vessels, a beaker and a vial. Due to space re-
striction we have only depicted one particular fact from
the axiomatization: if the water level in the beaker is
higher than the water level in the vial at a given time
point t1, then for every subsequent observation the wa-
ter level will decline in the beaker while it will increase
in the vial. For the target domain we provide the fol-
lowing axiomatization:

ΣT =
{
{temp/2, in/2, coffee/0, cup/0, cube/0,

t1/0, t2/0}, {> /2}
}

AxT =
{

temp(coffee in cup, t1) > temp(cube, t1)
→ (t1 > t2)
∧ temp(coffee in cup, t1) >

temp(coffee in cup, t2)
∧ temp(cube, t2) > temp(cube, t1),

. . .
}

The vocabulary provides elements to describe a situ-
ation in which a cup of hot coffee, when connected with
an cold ice cube, will cool down, while the ice warms
up. From this axiomatization, HDTP will compute the
set of generalized formulas:

AxG =
{

E(X, t1) > E(Y, t1)
→ (t1 > t2)
∧ E(X, t1) > E(X, t2)
∧ E(Y, t2) > E(Y, t1),

. . .
}

and substitutions

σ = {E/λu, v.height(water in u, v), X/beaker, Y/vial }
τ = {E/λu, v.temp(u, v), X/coffee in cup, Y/cube }

The formulas in AxG are (higher-order) formulas over
the signature

ΣS ∩ ΣT =
{
{t1/0, t2/0}, {> /2}

}
with generalization variables E,X, Y . Now, inter-

preting these variables (that occur in the domain sub-
stitutions) as new symbols, we get an extended signa-
ture:

ΣG =
{
{E/2,X/0,Y/0, t1/0, t2/0}, {> /2}

}
The defining equations Defσ and Defτ are con-

structed as sets of formulas over the signatures Σ+
G∪ΣS

and Σ+
G ∪ ΣT , respectively:

71

(AxG)∗∗� s
iT

%%KKKKKKKKKK k

iS

yysssssssss
|=

(AxS)∗∗ �
�

jS
//

|=

(Ax+
S)
∗∗

|=

(AxG)∗ (Ax+
T)
∗∗

|=

(AxT)∗∗? _

jT
oo

|=

(AxS)∗ (Ax+
S)
∗

ı̃S

99tttttttttt

̃S
oo (Ax+

T)
∗

ı̃T

eeJJJJJJJJJJ

̃T
// (AxT)∗

Figure 1: Subset relations that are associated with the domain theories.

Defσ = { ∀u, v : E(u, v) = height(water in u, v),
X = beaker, Y = vial }

Defτ = { ∀u, v : E(u, v) = temp(u, v),
X = coffee in cup, Y = cube }

As can be seen from these formulas, the complex ex-
pression height(water in u, v) on the source side corre-
sponds to the less complex term temp(u, v) on the target
side, while the complex expression coffee in cup on the
target corresponds to the constant beaker on the source.

Conclusions
In this paper, we propose that analogy making can be
used for various applications in the AGI context. We
sketched the framework HDTP for analogy making that
is intended to compute a generalized theory of given in-
put source and target domains. The main contribution
of this paper is a new institution-based formal seman-
tics of the established analogical relation together with
the model theory of the computed generalized theory.
A classical example of analogy making is also roughly
sketched. Future work will be a complete specification
of the model theory of analogical relations, a represen-
tative set of worked out examples, and the discussion
of potential alternatives to the present approach.

References
R. Diaconescu. Institution-Independent Model Theory.
Studies in Universal Logic. Birkhäuser, 2008.
M. Dastani, B. Indurkhya, and R. Scha. An algebraic
approach to modeling analogical projection in pattern
perception. Journal of Experimental and Theoretical
Artificial Intelligence, 15(4):489–511, 2003.
B. Falkenhainer, K. Forbus, and D. Gentner. The
structure-mapping engine: Algorithm and examples.
Artificial Intelligence, 41(1):1–63, 1989.
J. Goguen and R. Burstall. Institutions: Abstract
model theory for specification and programming.
Journal of the ACM, 39(1):95–146, 1992.
D. Gentner, K. Holyoak, and B. Kokinov, editors. The
Analogical Mind. Perspectives from Cognitive Science.
MIT Press, Cambridge, Mass, 2001.

H. Gust, U. Krumnack, K.-U. Kühnberger, and
A. Schwering. An approach to the semantics of analog-
ical relations. In Proceedings of the EuroCogSci 2007,
2007.
H. Gust, K.-U. Kühnberger, and U. Schmid.
Metaphors and heuristic-driven theory projection.
Theoretical Computer Science, 354(1):98–117, 2006.
H. Gust, U. Krumnack, A. Schwering, and K.-U.
Kühnberger. The role of logic in AGI systems: To-
wards a Lingua Franca for general intelligence. In Pro-
ceedings of the Second Conference of Artificial General
Intelligence, 2009.
B. Goertzel and C. Pennachin. Preface. In B. Goertzel
and C. Pennachin, editors, Artificial General Intelli-
gence. Springer, 2007.
J. Hummel and K. Holyoak. LISA: A computational
model of analogical inference and schema induction. In
Proceedings of 16th Meeting of the Cognitive Science
Society, 1996.
D. Hofstadter. Fluid Concepts and Creative Analogies.
Basic Books, 1995.
B. Indurkhya. Metaphor and Cognition. Kluwer Aca-
demic Publishers, Dordrecht, 1992.
B. Kokinov, K. Holyoak, and D. Gentner, editors.
Proceedings of the Second International Analogy Con-
ference – Analogy 09, New Frontiers in Analogy Re-
search. NBU Press, 2009.
B. Kokinov and A. Petrov. Integrating memory and
reasoning in analogy-making: The AMBR model. In
D. Gentner, K. Holyoak, and B. Kokinov, editors, The
Analogical Mind. Perspectives from Cognitive Science,
pages 59–124. MIT Press, 2001.
G. Plotkin. A note on inductive generalization. Ma-
chine Intelligence, 5:153–163, 1970.
A. Schwering, K.-U. Kühnberger, and B. Kokinov, edi-
tors. Special Issue on Analogies - Integrating Cognitive
Abilities, volume 10 of Cognitive Systems Research. El-
sevier, 2009.
A. Schwering, U. Krumnack, K.-U. Kühnberger, and
H. Gust. Syntactic principles of heuristic-driven theory
projection. Cognitive Systems Research, 10(3):251–
269, 2009.

72

Quantitative Spatial Reasoning for General Intelligence

Unmesh Kurup and Nicholas L. Cassimatis
Rensselaer Polytechnic Institute

110 8th St, Troy, NY 12180
{kurup,cassin}@rpi.edu

Abstract
One of the basic requirements of an intelligent agent is the
ability to represent and reason about space. While there are
a number of approaches for achieving this goal, the recent
gains in efficiency of the Satisfiability approach have made it
a popular choice. Modern propositional SAT solvers are ef-
ficient for a wide variety of problems. However, conversion
to propositional SAT can sometimes result in a large number
of variables and/or clauses. Diagrams represent space as col-
lections of points (regions) while preserving their overall ge-
ometric character. This representation allows reasoning to be
performed over (far fewer number of) regions instead of indi-
vidual points. In this paper, we show how the standard DPLL
algorithm augmented with diagrammatic reasoning can be
used to make SAT more efficient when reasoning about space.
We present DPLL-S, a complete SAT solver that utilizes dia-
grammatic representations when reasoning about space, and
evaluate its performance against other SAT solvers.

Introduction
One of the fundamental aspects of general intelligence is the
ability to represent and reason about space. Successful ap-
proaches such as the Region Connection Calculus (Randell,
Cui, and Cohn 1992) have concentrated on qualitaive spatial
reasoning but an intelligent agent must be capable of rea-
soning about quantitative (or metric) space as well. With
the advent of faster and more efficient SAT solvers, reason-
ing via translation to SAT has yielded results that are often
as good as or even better than standard approaches. How-
ever, one drawback of propositionalizing first-order theo-
ries is the inherent explosion in variables and clauses. This
is particularly true in quantitative spatial reasoning where
space is usually represented using a simple Cartesian sys-
tem. An object in this representation has a (x, y) coordi-
nate that uniquely identifies where it lies in the space. This
coordinate is also used to reason about the spatial relation-
ships that the object forms with other objects in the same
space. Translating a problem in this metric domain into
propositional SAT involves propositions that capture the re-
lationships between each pair of points in the space as well
as instantiating propositions that capture the possibility that
an object can be located anywhere in the space. As the
space grows larger, the number of variables and clauses in
the translation increase, making it more difficult to solve the
problem.

The inclusion of domain-specific knowledge into the
satisfiability process is captured under the umbrella of
Satisfiability-Modulo Theories or SMT (DeMoura and Rue
2002). In SMT, parts of the formula that refer to the specific
theory are handed over to the theory-specific solver while
the rest is handled by the SAT solver. Quantifier Free Inte-
ger Difference Logic (QF-IDL) is one of the theories com-
monly used for reasoning about space in the SMT approach.
In QF-IDL, spatial relationships between objects are repre-
sented as a set of inequalities. For example, the inequality
ax ≤ bx − 1, where ax and bx are the x-coordinates of ob-
jects a and b respectively, represents the fact that object a is
to the left of object b. The inequalities can represented as a
graph structure and efficient algorithms exist that can check
for satisfiability by checking for the prescence of loops in
the graph (Cotton 2005). However, while these inequalities
are efficient in capturing the relationship between point ob-
jects, expanding their use to capture the representation of 2-d
shapes has at least two drawbacks - One, the number of in-
equalities needed to represent a shape increases as the com-
plexity of the shape increases since a shape is represented as
a set of inequalities between its vertices. Two, when a shape
(even a simple one such as rectangle) is allowed to rotate,
the relationship between its vertices change and inequali-
ties will have to be written for each possible rotation of the
shape. The number of such sets of inequalities depends on
the fineness to which the rotation needs to be captured. In
this paper, we propose the use of diagrammatic models as
the appropriate theory for representing and reasoning about
space and show how the SAT approach can be augmented
to use diagrammatic models as appropriate during solving.
We evaluate our approach against the MiniMaxSat algorithm
(Heras, Larrosa, and Oliveras 2008) in a spatial constraint
satisfaction problem.

Satisfiability with Spatial Reasoning
Consider a 3x3 grid. To encode the information that object
a isNext to object b, we would need a SAT formula like the
following (in non-CNF form): (AT (a, 1, 1)∧(AT (b, 1, 2)∨
AT (b, 2, 1)∨AT (b, 2, 2)))∨(AT (a, 1, 2)∧(AT (b, 1, 1)∨
AT (b, 2, 1)∨AT (b, 2, 2)∨AT (b, 1, 3)∨AT (b, 2, 3)))∨ . . .
and so on till every location in the grid has been accounted
for. Even for simple spatial relations such as Left or Above
the number of variables and clauses needed will grow as the

73

size of the grid grows. Propositionalizing space for the pur-
poses of SAT is, thus, an expensive approach. Diagrams, on
the other hand, can represent information more compactly
by abstracting individual locations that share constraints into
groups. We extend the current satisfiability approach to in-
clude diagrammatic models as part of the representation. We
first introduce the concept of a diagram.

Diagram
Definition 2.1 (Object Location) Given a grid of size Ng

and an object a, we define
• L(a) = (x, y)|1 ≤ x, y ≤ Ng where (x, y) is the location

of object a in the grid.
• Lx(a) = x|1 ≤ x ≤ Ng and Ly(a) = y|1 ≤ y ≤ Ng

where x and y are the x- and y-coordinates of a in the grid

Definition 2.2 (Relations) Spatial reasoning is based
on the constraints that hold between objects in the
space. We define five spatial constraint types (T =
{Left|Right|Above|Below|Near}) that we use in this pa-
per. More can be defined and added as necessary.

Given a grid of size Ng , objects a, b and Ne a nearness
value, a constraint c holds between objects a and b iff one of
the following hold
• c = Left and Lx(a) < Lx(b)
• c = Right and Lx(a) > Lx(b)
• c = Above and Ly(a) < Ly(b)
• c = Below and Ly(a) > Ly(b)
• c = Near and Lx(b) − Ne ≤ Lx(a) ≤ Lx(b) +
Ne, Ly(b)−Ne ≤ Ly(a) ≤ Ly(b) +Ne

Definition 2.3 (Possibility Space) As mentioned earlier,
one of the disadvantages of propositionalizing space is the
need to account for the possibility of an object being in ev-
ery location in the space. However, in qualitative reason-
ing, it is the relationships that hold between objects that
matter rather than their exact locations in space. For ex-
ample, in satisfying the constraint Left(b) for an object a,
we don’t care whether a is one spot to the left of b or two
spots to the left and so on. This means that we can gen-
eralize away from exact locations to location groups where
the members of each group share certain common spatial
constraints. Generalization in this manner leads to lesser
number of individuals resulting in better performance when
converted to propositional SAT. The concept of the possi-
bility space (Wintermute and Laird 2007) allows us to do
this generalization. A possibility space is a set of points
that satisfy some set of spatial constraints. Every object
in a diagram resides in a possibility space and spatial re-
lationships between objects can be computed by finding
intersections between these possibility spaces. For exam-
ple, given a 3x3 grid, an object a at location (2,2), and an
object b with constraints C(b) = {Left(a), Above(a)},
Ps(Left(a)) = {(1, 1), (1, 2), (1, 3)}, Ps(Above(a)) =
{(1, 1), (2, 1), (3, 1)} and Ps(b) = (Ps(Left(a)) ∩
Ps(Above(a))) = {(1, 1)}.

We define possibility spaces as follows: Given a grid of
side Ng , an object a and c ∈ T , we define

1. Ps(c(a), Ii), the possibility space of a spatial constraint
c(a) with truth value Ii as follows

• c = Left, Ii = true, Ps(c(a), Ii) = {(xi, yi)|1 ≤
xi, yi ≤ Ng; xi < Lx(a)}

• c = Left, Ii = false, Ps(c(a), Ii) = {(xi, yi)|1 ≤
xi, yi ≤ Ng; xi ≥ Lx(a)}

• similarly for c = Right, Above, Below and Ii =
true, false

• c = Near, Ii = true, Ps(c(a), Ii) = {(xi, yi)|1 ≤
xi, yi ≤ Ng; Lx(a) − Ne ≤ xi ≤ Lx(a) +
Ne; Ly(a)−Ne ≤ yi ≤ Ly(a)+Ne; 1 ≤ Ne ≤ Ng}
• c = Near, Ii = false, Ps(c(a), Ii) = {(xi, yi)|1 ≤
xi, yi ≤ Ng; (xi, yi) /∈ Ps(Near(a), true)}

2. Ps1 ∩ Ps2 , the intersection of two possibility spaces as
follows

• Ps1 ∩ Ps2 = {(xi, yi)|(xi, yi) ∈ Ps1 , (xi, yi) ∈ Ps2

3. Ps(a), the possibility space of an object a as follows

• Ps(a) =
⋂|C(a)|

i=1 Ps(ci(a), I(ci(a)) where C(a) =
{c1, ..., ck} is the set of spatial constraints on a and
I(ci(a)) = true|false is the truth value of the con-
straint ci(a)

Definition 2.4 (Diagram) Finally, object locations, pos-
sibility spaces and relations come together in the diagram-
matic representation. A diagram is a collection of objects
with their locations and possibility spaces. Reasoning about
the spatial relationships between objects in a diagram can be
accomplished using the objects’ possibility spaces and loca-
tions. Formally, we define a diagram as follows:

A diagram d is a 6-tuple < Nd, O, T, C, I, L > where

• Nd denotes the side of the diagram (for the purposes of
this paper, diagrams are considered to be square)

• O = {a1, a2, . . . , ak}is a set of objects

• T = {Left|Right|Above|Below|Near} is a set of rela-
tion types

• C is a set of spatial constraints from T that holds between
objects in O

• I : C → true|false is an assignment of truth values to
the constraints in C

• L : O → Nd×Nd, the location of objects in the diagram

C is a set of spatial constraints for objects in the diagram. If
C(ai) = ∅, then a’s possibility space is the entire diagram.
L(ai) is the location of ai in the diagram such that L(ai) ∈
Ps(ai). This location is chosen such that it is at the center
of the object’s possibility space.

Definition 2.5 A diagram d satisfies a set of spatial con-
straints C iff for each c(a, b) ∈ C and a, b ∈ O, the con-
straint C holds between a and b in d.

Satisfiability with Spatial Reasoning (SAT-S)
In order to combine the best of both SAT and diagrammatic
reasoning, we introduce a version of SAT called SAT-S, that

74

allows for the representation of spatial information using di-
agrammatic models. Formally,

A problem specification in SAT-S is given by the 6-tuple
Ss =< φ,P,O, T,C,M >where

• φ is a SAT formula in CNF form

• P is the set of variables in φ

• O is a set of objects

• T = {Left|Right|Above|Below|Near} is a set of spa-
tial relation types

• C is a set of constraints of the form c(a, b) where c ∈ T
and a, b ∈ O
• M : P → C is a mapping from P to C

φ and P are the same as in SAT. O is a set of objects in
the domain. T is the set of spatial relation types that are
relevant in the domain. C is a set of constraints from the
set T × O × O and represents the spatial relations that are
important in the domain. Finally, M is a mapping from the
set of variables to the set of relations. This mapping allows
the SAT-S solver to recognize variables that represent spatial
literals. For convenience, in the remainder of this paper, we
refer to such variables as spatial variables, even though they
are first-order propositions.

Solutions in SAT-S
A solution (model) to a problem in SAT-S is an assignment of
truth values, Ip = {true, false, neutral} to the variables
in P . A valid model in SAT-S is an assignment Ip such that

• Every clause in the φ evaluates to true and

• [∃P ′ ⊆ P |(∀p ∈ P ′)Ip(p) 6= neutral ∧M(p) 6= ∅] ⇒
|D| > 0 ∧ (∀d ∈ D, p ∈ P ′)d satisfies M(p), where D is
a set of diagrams constructed during the solving process.

The set of diagramsD represents the possible configurations
of objects in O given the spatial variables that have been as-
signed values. If a problem in SAT-S has propositions that
denote spatial relations and these propositions have been as-
signed values in the solution then there must be at least one
diagram in D and every diagram in D must satisfy these spa-
tial relations.

DPLL-S - An Algorithm for Solving Problems
in SAT-S

Algorithm 1 shows the DPLL-S algorithm. The main dif-
ference from the original DPLL algorithm is as follows:
When a value is set for a variable, DPLL-S checks to see
if it is a spatial variable. If it is not, the algorithm pro-
ceeds like in standard DPLL. If it is a spatial variable, say
M(v) = c(a, b), DPLL-S constructs a set of diagrams that
satisfy the proposition in the following way –

1. If there are no diagrams (this is the first spatial proposition
whose value has been set), it creates an empty diagram d
and adds b (assigns its possibility space and a location
within the possibility space) to this diagram.

Algorithm 1 DPLL-S
Procedure DPLL-S(C,P,D,M)
if C is empty, return satisfiable
if C contains an empty clause,
return unsatisfiable
if C contains a unit clause
if variable in unit clause is spatial
D’ = Propagate(D,M(v),true);
if D’ is empty, return unsatisfiable
return DPLL-S(C(v=true),P,D’,M)

return DPLL-S(C(v=true),P,D,M)
pick an unassigned variable v
if v is spatial
D’ = Propagate(D,M(v),true)
if D is empty, return unsatisfiable
else
D’=D
if DPLL-S(C(v=true),P,D’,M) is satisfiable,
return satisfiable

else
if v is spatial
D’ = Propagate(D,M(v),false)
if D is empty, return unsatisfiable
else
D’=D
return DPLL-S(C(v=false),P,D’,M)

2. If one of the objects is present in the diagrams in D, then
from each diagram di in D, new diagrams {di1, . . . , dik}
are constructed such that every dijsatisfies c(a, b). In ad-
dition, each dij also satisfies a different subset of the set
of all possible relevant relations between a and O given
di where O is the set of all objects in d. Thus, the new set
of diagrams D′ = {d11 ∪ . . . ∪ dlk} where |D| = l. If
D′ = ∅, the procedure returns unsatisfiable.

3. If both objects are present in D, D′ = {di|d ∈ D; di

satisfies c(a, b)}. If D′ = ∅, the procedure returns unsat-
isfiable.

Figure 1: Diagrams created by Propagate for Above(c,a)

The creation of new diagrams once a spatial variable is
found is done by the propagate method (shown in Algorithm
2) which takes a spatial constraint M(v), the truth value Iv
of this constraint and a set of diagramsD that satisfy a set of
constraints C and produces a new set of diagrams D′ such
that every diagram in D′ satisfies C ∪M(v) (if Iv = true)
or C ∪ ¬M(v) (if Iv = false). Each individual diagram
in D′ is constructed such that it captures some subset of the

75

Algorithm 2 Propagate
Procedure Propagate(D,c(a,b),tvalue)
if a and b in d ∈ D,
eliminate all d from D
that do not satisfy c(a,b).
return D
if D is empty,
create a new diagram d,
add b to d
D’ = empty set of diagrams
for every d ∈ D

C = {c(a, o)|c ∈ T ; o ∈ O}
I is the set of all
possible truth value assignments
to c ∈ C and Ii(cj) is the ith
truth value assignment for cj.

D’ = D ∪ d
′
i where

d
′

i = di ∪ a where
Ps(a) =
Ps(r(b)) ∩

(⋂
P
|C|
j= Ps(cj , Ii(cj)

)
, Ps(a) 6= ∅

set of all possible relevant spatial relationships between the
new object being introduced into the diagram and the objects
currently in the diagram. Together, these diagrams capture
all possible spatial relationships that the new object can be
in given the constraint set C ∪M(v).

As an example, consider the diagram in Fig 1(a). It has
two objects A and B with C(A) = Left(B). For exposi-
tory purposes, let us assume that there are only two types of
spatial relations that are relevant to our problem – Left and
Above, i.e., T = {Left,Above}. Let M(v) = Above(c, a)
where c is the new object being introduced into the diagram.
Then,

d1 = d+ c where P (c) = Ps(Above(A) ∩ ¬Left(A) ∩
¬Left(B) ∩ ¬Above(b))

...
d8 = d+ c where Ps(c) = Ps(Above(A) ∩ Left(A) ∩

Left(B) ∩Above(b))
In general, given a diagram d, a new object c, a set of con-

straints C and an assignment of truth values I to elements in
C,

D′ = D + di, where
di = d+ c where Ps(c) = Ps(r(b)) ∩(⋂

P
|C|
j= Ps(cj , I(cj)

)
, Ps(c) 6= ∅

In the worst case, there are |D|×2|T |×|C|−1diagrams pro-
duced at each propagate step. On average, only a subset
of these diagrams are possible. In the previous example,
the diagrams where Ps(c) = Ps(Above(A) ∩ Left(A) ∩
¬Left(B) ∩ Above(B)) is not possible because an object
cannot be both to the Left of A and not to the Left of B

given C(a) = {Left(b)}. In such a case, Ps(c) = ∅ and the
diagram is eliminated.

Completeness
Lemma 3.1 - By definition of Left, Right, Above, Below
and Near, the following are true

1. Left(a, b) = Right(b, a) and vice versa
2. Above(a, b) = Below(b, a) and vice versa
3. Near(a, b) = Near(b, a)
Lemma 3.2 - Given a diagram of size Nd, set of spa-
tial constraints C(b) = {c1(a1), . . . , cj(ak)} on object b,
there is a location L(b) for object b that satisfies C(b) iff(⋂|C(b)|

j=1 Ps(cj,I(cj))
)
6= ∅

Proof: By definition of L in diagrams.

Theorem 3.1 Given a problem in SAT-S, Ss =<
φ,P,O, T,C, I,M > for which a solution < I ′D > ex-
ists, where |D| > 0, DPLL-S will find at least one diagram
d such that d satisfies the constraints C

Proof: In each execution step DPLL-S handles one of the
following cases

1. Not a spatial variable. Continue as in DPLL
2. |C| = k + 1 and |O| = m + 1. A new object am+1is

added to D with the constraint ck+1(aj) where aj ∈ O is
an object in D. Then, by construction and by lemma 3.2,
all possible relationships between am+1and all objects in
D including aj are satisfied by D′.

3. |C| = k + 1 and |O| = m. A new constraint ck+1(aj) is
added to an existing object ai.

(a) ai was added after aj - By construction and lemma 3.2,
all possible relationships between ai and aj given C
are satisfied.

(b) aj was added after ai - By construction, lemma 3.2 and
lemma 3.1, all possible relationships between ai and aj

given C are satisfied.

Hence proved.

Experiments
We compared the performance of DPLL-S to that of Min-
iMaxSAT (Heras, Larrosa, and Oliveras 2008) in a spatial
reasoning problem called the placement problem, a generic
version of the 8-queens puzzle. The choice of MiniMaxSAT
as the standard for a traditional SAT solver was one of con-
venience. zChaff or SATzilla may have been marginally bet-
ter but the reasons why MiniMaxSAT performs so poorly
holds for the other solvers as well.

The Placement Problem
The objective of the Placement problem is to locate a set
of objects in a grid space such that they satisfy a set of
spatial relations. Formally, a placement problem P can
be defined as a 4-tuple P =< Ng, O, T,R > where Ng

is the side of a square grid , O is a set of objects, T =
{Left|Right|Above|Below|Near} is a set of spatial rela-
tion types, Ne = Ng/3 is a nearness value and R is a set

76

SAT SAT-S
#Near=1 #Near=2 #Near=3 #Near=1 #Near=2 #Near=3

Grid Size #vars #clauses #vars #clauses #vars #clauses #vars #clauses #vars #clauses #vars #clauses
25 153 128893 153 161952 153 377511 3 3 3 3 3 3
35 213 461408 213 765482 213 1217816 3 3 3 3 3 3
45 273 770949 273 2103939 273 2282724 3 3 3 3 3 3
55 333 1795243 333 5752032 333 5340666 3 3 3 3 3 3
65 393 3609053 393 10913087 393 16353831 3 3 3 3 3 3
75 453 10119709 453 16119434 453 22119159 3 3 3 3 3 3
85 513 10239193 513 20424402 513 36685921 3 3 3 3 3 3

Table 1: Number of variables and clauses for SAT and SAT-S

Grid Size MiniMaxSAT times DPLL-S times MiniMaxSAT(SAT-PP) times
#Near=1 #Near=2 #Near=3 #Near=1 #Near=2 #Near=3 #Near=1 #Near=2 #Near=3

25 0.34s 0.43s 1.31s 0.016s 0.0s 0.0s 0.82s 0.25s 0.02s
35 1.590s 2.46s 3.87s 0.0s 0.016s 0.0s 0.06s 0.02s 0.63s
45 2.334s 6.61s 6.93s 0.0s 0.0s 0.0s 0.5s 0.27s 0.06s
55 5.36s 17.46s 15.83s 0.0s 0.0s 0.0s 1.13s 0.18s 0.19s
65 10.97s 1m22.7s 2m26.4s 0.0s 0.0s 0.0s 1.09s 0.17s .07s
75 1m54.5s 2m31.6s 10m39s 0.0s 0.0s 0.0s 0.23s 0.26s 0.32s
85 1m59.6s 5m31.2s - 0.0s 0.0s 0.0s 0.36s 0.03s 0.21s
90 9m38.8s - - 0.0s 0.0s 0.0s 5.22s 0.03s 0.25s

Table 2: Comparison of MiniMaxSat and DPLL-S on Placement problems of increasing grid size

of spatial relations that hold between objects in O. A solu-
tion to the placement problem P is given by an assignment
S : O → Ng ×Ng that identifies a unique location for each
object a∈O such that all constraints in R are satisfied.
Translation from P to SAT
Literals For every object ai ∈ O and location (k, l) in
the grid, we assign two variables of the form ATxk

(ai) and
ATyl

(ai), corresponding to the object’s x and y-coordinates.
A pair of variables ATxk

(ai) and ATyl
(ai) are true iff the

object ai is at location (k, l) in the grid. For every relation
r(ai, aj) in R, we add a variable rm such that rm is true iff
r(ai, aj) ∈ R.
Clauses For every object ai, we add two
clauses

(
(ATx1(ai)) ∨ . . . ∨ATxNg

(ai)
)

and(
(ATy1(ai)) ∨ . . . ∨ATyNg

(ai)
)

For each Left relation Left(ai, aj), we add clauses
that capture the following constraint Left(ai, aj) ⇒[(

(ATx1(ai) ∧ATx2(aj)) ∨ . . . ∨ (ATx1(ai) ∧ATxNg
(aj))

)
∨ . . . ∨

(
(ATxNg−1(ai) ∧ATxNg

(aj))
)

]

We add similar constraints for each Above, Right,
and Below relations.

For each Near relation Near(ai, aj), we
add clauses that capture the following constraint
Near(ai, aj) ⇒

∨Ng,Ng

k=1,l=1 (ATxk
(ai) ∧ ATyl

(ai) ∧
(
∨k+Ne,l+Ne

m=k−Ne,n=l−Ne
(ATxm

(aj) ∧ ATyn
(aj)))) where

1 ≤ m,n ≤ Ng

For every object ai, we add clauses that capture the con-
straint that an object can be only at one location in the
grid [(ATx1(ai) ∧ ATy1(ai) ∧ ¬(ATx1(ai) ∧ ATy2(ai)) ∧
. . . ∧ ¬(ATxNg

(ai) ∧ ATyNg
(ai))) ∨ . . . ∨ (ATxNg

(ai) ∧
ATyNg

(ai))]
For every location (k, l), we add clauses that capture

the constraint that there can be only object at that location
[((A(Txk

(a1) ∧ ATyl
(a1)) ∧ ¬(A(Txk

(a2) ∧ ATyl
(a2)) ∧

. . .∧¬(A(Txk
(a|O|)∧ATyl

(a|O|)))∨ . . .∨ (A(Txk
(a|O|)∧

ATyl
(a|O|))]

All constraints were converted to CNF form without an
exponenetial increase in the number of clauses. Due to space
constraints, we do not provide a proof of this translation but
a proof by contradiction is straightforward.

Translation from P to SAT-S
Literals For every relation r(ai, aj) in R, we add a vari-
able rm, and set M(rm) = r(ai,aj)

Clauses For every relation r(ai, aj) that is true, we add a
clause containing the single literal rm. We add a clause with
the single literal ¬rm otherwise.

Results
We ran MiniMaxSAT and DPLL-S on a set of problems that
varied based on the grid size Ng , the number of relations R
and the number of objects O. All problems in the set were
solvable and were created by randomly placing the requisite
number of objects in a grid of the relevant size. Relations
were then randomly chosen. Table 1 shows the number of
variables and clauses for SAT and SAT-S problems for dif-

77

#relations MiniMaxSAT DPLL-S
5 0.9s 3.89s

10 2.49s 5.8s
15 3.49s 5.69s
20 4.19s 6.12
25 5.37s 6.19s
30 23.01s 1.46s
35 8.09s 6.52s
40 13.59s 4.76s

Table 3: MiniMaxSAT and DPLL-S runtimes for increasing
number of relations

#objects MiniMaxSAT DPLL-S
3 0.43s 0.02s
4 1.46s 0.02s
5 1.33s 0.76s
6 1.95s -

Table 4: MiniMaxSat and DPLL-S runtimes for increasing
number of objects

ferent grid sizes. The size of a SAT-S problem depends
on the number of relations that have to be satisfied. Prob-
lem sizes in SAT vary on the grid size, number of objects,
number of relations and relation type. Near relations are
more costlier as they result in many more clauses than the
other four relation types. For this reason, we have broken
down Tables 1 and 2 based on the number of Near rela-
tions as well. Table 2 shows the execution times for Mini-
MaxSAT and DPLL-S for increasing grid size. We stopped
a run if it did not produce a result within 15 minutes. For
comparison purposes, we used the propagate method to pre-
processes a SAT-S problem into a SAT problem whose run-
times are shown in the table as SAT-PP. The runtime for a
single problem in SAT-PP is the sum of the times required to
pre-process it into SAT and solve using MiniMaxSAT. From
the table it is clear that a SAT-S problem requires virtually
no time to run. This is despite the fact that the DPLL-S im-
plementation is not geared towards efficiency. It was writ-
ten using convenient but inefficient data structures and run
in parallel with other processes on the system.The speedup
obtained is purely due to the use of diagrammtic models.

Table 3 shows the comparison between MiniMaxSAT and
DPLL-S for increasing number of relations given a stan-
dard grid size of 25x25 and 5 objects. For MiniMaxSAT,
as the number of relations increase, the runtime increases.
For DPLL-S, the increase is minimal because given a fixed
number of objects, as the relations increase, the propagate
method merely has to eliminate diagrams that do not satisfy
relations instead of having to generate new diagrams.

Table 4 shows the comparison between MiniMaxSAT and
DPLL-S for increasing number of objects with the grid size
fixed at 25. This is where DPLL-S underperforms Mini-
MaxSAT. By the time the number of objects gets to six,
there are so many diagrams being generated by the propa-
gate method that it becomes impossible for the algorithm to

finish within the 15 minute limit. Since the number of di-
agrams generated increases exponentially, even an efficient
implementation of the current DPLL-S algorithm would not
be able to solve problems with more than 7 or 8 objects.
There are, however, approaches that could allow us to effec-
tively deal with this problem. Our current work is focused
on maintaining a single diagram rather than the entire set of
diagrams. As spatial constraints arise, this diagram is ma-
nipulated to satisfy these constraints. This strategy, while
preserving completeness will provide better overall scalabil-
ity at the expense of run times with small number of objects.

Conclusion
The satisfiability approach to problem solving has shown
great promise in recent years. However, the effects of propo-
sitionalizing space, makes the satisfiability approach to spa-
tial reasoning expensive. In this work, we have shown how
the satisfiability approach can be augmented with the use
of diagrammatic models to reduce the problem space. Our
approach utilizes diagrams to represent space as discrete re-
gions instead of individual points. This leads to savings in
both problem size and solution times. We introduced a com-
plete solver called DPLL-S, a variation of DPLL, and evalu-
ated it against a current SAT solver MiniMaxSAT in a spatial
reasoning problem. Our approach greatly reduced the num-
ber of variables and clauses in the formula and led to nearly
instantaneous runtimes in many cases for solving the place-
ment problem. One of the problems with the current DPLL-
S approach is the explosions in the number of diagrams as
a function of the number of objects and relations. In future
work, we address these concerns and compare our algorithm
against SMTs such as QF-IDL.

References
Cotton, S. 2005. Satisfiability Checking With Difference
Constraints. Master’s thesis, IMPRS Computer Science.
DeMoura, L., and Rue, H. 2002. Lemmas on demand
for satisfiability solvers. In In Proceedings of the Fifth In-
ternational Symposium on the Theory and Applications of
Satisfiability Testing (SAT), 244–251.
Heras, F.; Larrosa, J.; and Oliveras, A. 2008. Mini-
MaxSAT: An efficient Weighted Max-SAT Solver. Journal
of Artificial Intelligence Research 31:1–32.
Randell, D. A.; Cui, Z.; and Cohn, A. G. 1992. A spa-
tial logic based on regions and connection. In Proceedings
3rd International Conference on Knowledge Representa-
tion and Reasoning.
Wintermute, S., and Laird, J. 2007. Predicate projection in
a bimodal spatial reasoning system. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence.
Vancouver, Canada: Morgan Kaufmann.

78

Cognitive Architecture Requirements for Achieving AGI

John E. Laird
*
, Robert E. Wray III

**

*
Division of Computer Science and Engineering, University of Michigan, Ann Arbor, MI 48109-2121

**
Soar Technology, Inc., 3600 Green Court, Suite 600, Ann Arbor, MI 48105

Abstract

We outline eight characteristics of the environments, tasks,
and agents important for human-level intelligence. Treating
these characteristics as influences on desired agent
behavior, we then derive twelve requirements for general
cognitive architectures. Cognitive-architecture designs that
meet the requirements should support human-level behavior
across a wide range of tasks, embedded in environment
similar to the real world. Although requirements introduced
here are hypothesized as necessary ones for human-level
intelligence, our assumption is the list is not yet sufficient to
guarantee the achievement of human-level intelligence
when met. However, attempts to be explicit about
influences and specific requirements may be more
productive than direct comparison of architectural designs
and features for communication and interaction about
cognitive architectures.

Introduction

This paper explores requirements on cognitive
architectures for artificial general intelligence. The goal of
the analysis is to determine the requirements for cognitive
architectures that support the full-range of human-level
intelligent behavior. Although many different architectures
have been proposed (and some built), understanding the
relative strengths and weaknesses of these architectures
and their unique contributions to the pursuit of human-
level intelligence has proven elusive, whether via analytic
comparison (e.g., Anderson & Lebiere, 2003; Jones and
Wray, 2006) or empirical comparisons on task
performance (e.g., Gluck & Pew. 2005).

However, as suggested by Cohen (1995), three influences
determine an agent’s behavior: the agent’s structure, its
environment, and tasks.

1
 Given the diversity of

environments and tasks, we are not attempting to create
architectures that are necessarily the best or even sufficient
for all possible environments and all possible tasks. We
assume that agents exist in an environment and pursue
tasks similar to those we find in the world we inhabit. The
challenge is to take advantage of the structure of the
environment and tasks in our architecture design, while
avoiding optimizations that apply to only a subset of tasks.
For specific problems, specialized architectures can be
more appropriate (e.g., Deep Blue for chess, Campbell,
Hoane & Hsu 2002).

1
 We use “task” for any type of problem, goal, drive, or reward that

provides direction for agent behavior.

Figure 1 illustrates how the characteristics of the
environment, tasks, and agent structure determine a set of
requirements for a cognitive architecture. These
requirements in turn are the basis for a specific architecture
design. Cognitive architectures must provide a
comprehensive computational story that puts all the pieces
of intelligence together from end to end.

Figure 1: Influences on architecture design.

In practice, researchers have typically focused on
communicating the architectural design of their systems
and its performance on specific tasks rather than
motivating the design via specific requirements. We
propose to orient future discussion around requirements
rather than specific designs. There will be two immediate
benefits to this approach. First, it makes little sense to
compare architectures (as works in progress) when they
share few requirements. If one architecture attempts to
satisfy a requirement that all decisions must be made in
bounded time, whereas another is developed independent
of that requirement, we would expect to see very different
approaches that would be difficult, if not meaningless to
compare. Being explicit about requirements will make it
easier to see what “spaces” architectures are attempting to
occupy – what environments and problems they are
appropriate for. Secondly, because human-level
intelligence is so broad, there is no existing list of
necessary and sufficient requirements of AGI. This paper,
drawing from our experience, proposes an initial list of
these requirements. We expect it to be refined, extended,
and corrected via interaction with other researchers.

We recognize this attempt is not novel. John Anderson
took a step in this direction with the design of specific
components of ACT-R using a rational analysis (Anderson,
1990). He determined optimal methods for primitive
architectural functions, such as retrieving an item from
declarative memory given the expected use of that memory
in the future. This revolutionized his design process and
led to significant advances in ACT, including the
development of a new process for retrieving items from
long-term declarative memory. Although rational analysis

Architecture

Requirements

Tasks

Architecture

Design

Environment

Agent

Structure

79

is useful for designing the performance of specific
components, it is difficult to apply to the specification of a
complete cognitive architecture as it does not specify what
components there should be, or how they combine together
to provide general intelligent behavior.

The analysis also builds on previous descriptions of
evaluation criteria for cognitive architectures (Langley,
Laird & Rogers, 2009; Laird et al. 2009; Laird et al., 1996;
Laird, 1991) and theories of cognition (Anderson &
Lebiere, 2003; Newell, 1990). For example, previously
identified criteria include a mixture of constraints on
behavior (flexible behavior, real-time performance)
architecture (support vast knowledge bases), and
underlying technology (brain realization) (Newell, 1990,
Anderson & Lebiere, 2003). We separate characteristics of
the environment, tasks, agent structure, and the behavior of
an agent, which are described below, and then use them to
derive requirements for cognitive architectures.

Environment, Task, and Agent Characteristics

In this section, we list characteristics of environments,
tasks, and agents that lead to requirements for architectures
that support human-level intelligent agents. Some of these
characteristics are obvious, or so ingrained in the literature
that they are rarely made explicit, such as the existence of
regularities at different time scales in the environment.
Some of these are characteristics of one of the three
components, independent of the others, but many of them
are characteristics of interactions between two or even all
three. The interactions are important because the
characteristics of an environment are only important to the
extent they influence the agent’s ability to pursue its tasks.

C1. ENVIRONMENT IS COMPLEX WITH DIVERSE

INTERACTING OBJECTS
The world is large and complex. Agents can usefully
interpret the environment as if it consists of independent
objects (together with materials that do not have object-like
structure, such as air, water, and sand). There are many
objects and the objects interact with each other (i.e., via
physics). Objects have numerous diverse properties.

C2. ENVIRONMENT IS DYNAMIC
The agent’s environment can change independently of the
agent so that the agent does not determine the state of the
environment and the agent must respond to the dynamics
of the world. Because the world can change while an agent
is reasoning, an agent must be able to respond quickly
relative to the dynamics of the environment. Moreover, the
dynamics of the environment are so complex that an agent
cannot always accurately predict future states in detail.

C3. TASK-RELEVANT REGULARITIES EXIST AT

MULTIPLE TIME SCALES
An environment, while it may be complex and dynamic, it
is not arbitrary. The environment is governed by laws of
interaction that are constant, often predictable, and lead to

recurrence and regularity that impact the agent’s ability to
achieve goals. Regularities exist at a variety of time scales.

C4. OTHER AGENTS IMPACT TASK PERFORMANCE
The agent is not alone, and must interact with other agents
in pursuit of its goals. Other agents may help or hinder the
agent’s achievement of its tasks. The agent can
communicate with the other agents to share knowledge,
indicate intent, etc. In addition, some agents have similar
structure and capabilities to the agent (similar perception,
action, and mental capabilities), making it possible to learn
from other agents by observing the methods they use for
solving problems. This characteristic is a special case of
C1, C2, and C3, but has sufficient impact on the structure
of agents to warrant distinct enumeration.

C5. TASKS CAN BE COMPLEX, DIVERSE, AND NOVEL
A general, intelligent agent must be able to work on a
diverse set of novel, complex tasks. Tasks can interact so
that in some cases, achieving one task aids in achieving
another, while in other cases, achieving one makes it more
difficult to achieve another. Tasks can also vary in the time
scales required to achieve them, where the agent must
achieve some tasks at close to the timescale of relevant
changes in the environment, while others tasks can require
extended behavior over time.

C6. AGENT/ENVIRONMENT/TASK INTERACTIONS ARE

COMPLEX AND LIMITED
There may be many regularities in the environment, but
they are only relevant if they can be detected and influence
the agent’s ability to perform its tasks. Thus, an agent has
sufficient sensory capabilities that it can detect (possibly
only through extensive learning) task-relevant regularities
in the environment. An agent also has many mechanisms
for acting in the environment in order to pursue a task.
Although sensing and action modalities can be extensive,
they are limited. The environment is partially observable,
both from inherent physical limits in the sensors and the
size of the environment. Sensors have noise and can be
occluded by objects, have limited range, etc. making the
agent’s perception of its environment incomplete and
uncertain. The agent’s actions must obey the physical
limitations of the environment. For example, actions
usually take time to execute and have limited extent.

C7. AGENT COMPUTATIONAL RESOURCES ARE LIMITED
The agent has physical limits on its computational
resources relative to the dynamics of the environment. The
agent is unable to perform arbitrary computation in the
time it has available to respond to the environment. Thus,
an agent has bounded rationality (Simon, 1969) and cannot
achieve perfect rationality (or universal intelligence, Legg
& Hutter, 2007) in sufficiently complex environments and
tasks when it has large bodies of knowledge.

C8. AGENT EXISTENCE IS LONG-TERM AND CONTINUAL
The agent is always present in its environment and it needs
to actively pursue core tasks (such as self-protection)
related to its survival. The agent may act to position itself

80

so that the dynamics of the environment have little impact
on it for extended times (e.g., hide in a protected area), but
it has no guarantee that those efforts will be successful.
Further, the agent has a long-term existence relative to its
primitive interactions with its environment. Its activity
extends indefinitely across multiple tasks, and possibly
multiple instances of the same task.

Architectural Requirements

Based on the characteristics of environments, tasks, and
agents presented in the previous section, we derive the
following requirements for cognitive architectures related
to knowledge acquisition, representation, and use. Our goal
is to generate a list that is necessary, such that all human-
level agents must meet these requirements and that it is
sufficient, such that meeting these requirement guarantees
human-level behavior. The requirements we derive do not
include criteria related to how well they model human
behavior, nor the ease with which humans can create,
debug, maintain, or extend agents developed in cognitive
architectures. We also have not included criteria related to
properties of the theory underlying the architecture, such as
parsimony (Cassimatis, Bello, & Langley, 2008).

R0. FIXED STRUCTURE FOR ALL TASKS

An individual agent adapts to its environment not through

changes in its architecture but through changes in

knowledge. Architectures should not depend on parameters

that are tuned to improve performance on a new task;

although parameters can be useful for introducing variation

across agents. Architectures also should not allow escape

to a programming language for task-specific extensions.

The rationale for this requirement is that environmental

regularities exist [C3] at time scales that approach or

exceed the life of the agent [C8] that are worth capturing in

a fixed architecture.

R1. REALIZE A SYMBOL SYSTEM
The consensus in AI and cognitive science is that in order
to achieve human-level behavior, a system must support
universal computation. Newell (1990) makes the case that
symbol systems provide both sufficient and necessary
means for achieving universal computation; that is, a
symbol system is capable of producing a response for
every computable function. Possibly most important,
symbol systems provide flexibility. In particular, they
provide the ability to manipulate a description of some
object in the world “in the head” without having to
manipulate the object in the real world. Symbol structures
also provide arbitrary composability to match the
combinatoric complexity and regularity of the environment
[C1, C3]. Thus, structures encountered independently can
be combined later to create novel structures never
experienced together [C5]. This generative capability is
what we do when we combine letters or sounds to make
new words, and when we combine words to make new
sentences, and so on. Symbol systems also allow us to
accept instructions from another agent and then use those

instructions later to influence behavior (interpretation) –
providing additional flexibility and more generality – so
that not everything must be programmed into a symbol
system beforehand. In addition, symbols are required for
communication that does not cause the meaning to be
directly experienced by the agent [C4]. For example,
striking someone directly causes an experience in another
agent, while a verbal threat involves the transmission of
symbols that require interpretation.

Requiring that the agent realize a symbol system does not
imply that symbolic processing must be implemented
directly via some symbolic knowledge representation.
Neural and connectionist models can obviously support
human-level behavior. Rather, this requirement posits that
such approaches must implement symbol systems to some
degree (Barsalou, 2005).

R2. REPRESENT AND EFFECTIVELY USE MODALITY-

SPECIFIC KNOWLEDGE
Although pure symbol systems support universal
computation, they rely on modality-independent methods
for representing and reasoning to achieve universality and
complete composability. However, complete composability
is not always necessary. Modality-specific representations
can support more efficient processing through regularities
[C3] in sensory processing [C6]. For example, some
representations and associated processes for visual input
have qualitatively different computational properties for
image operations. Examples include rotation and inversion,
and detecting and reasoning about spatial relations. For
some tasks [C5] given limited computational resources
[C7], modality-specific representations are necessary for
achieving maximal efficiency, especially in tasks that
require real-time performance [C2].

R3. REPRESENT AND EFFECTIVELY USE LARGE BODIES

OF DIVERSE KNOWLEDGE
The agent must be able to represent and use large bodies of
knowledge. This wealth of knowledge that arises from the
complexity of the environment [C1] and its associated
regularities [C3], the variety of tasks the agent must pursue
[C5], its complex interaction with the environment [C6],
and the agent’s continual existence [C8]. This knowledge
is diverse, including memories of experiences, facts and
beliefs, skills, and knowledge about other agents [C4].

R4. REPRESENT AND EFFECTIVELY USE KNOWLEDGE

WITH DIFFERENT LEVELS OF GENERALITY
The agent must represent and use general knowledge that
takes advantage of the environmental regularities [C3]. The
agent must also be sensitive to details of its current
situation and its relationship to its tasks. These details are
ubiquitous in complex [C1], dynamic [C2] environments
where the agent can have many tasks [C5].

R5. REPRESENT AND EFFECTIVELY USE DIVERSE

LEVELS OF KNOWLEDGE
An agent must be able to take advantage of whatever
knowledge is available. For novel tasks and environments,

81

its knowledge is limited, and even for familiar tasks and
environments, its knowledge may be incomplete,
inconsistent, or incorrect. If there is extensive knowledge
available for a task, the agent must be able to represent and
effectively use it. There are regularities in the environment
worth knowing [C3], the complexity of an agent’s limited
sensing of its environment [C6], the complexity of its
environment and tasks [C5], and limits on its
computational resources [C7]. Planning systems often fail
on this requirement. They often have a required and fixed
set of input knowledge (the task operators and a declarative
description of the goal). Without this knowledge, they are
unable to attempt the problem. Further, if additional
knowledge is available (such as knowledge about the
likelihood of an operator leading to the goal), the planner is
often unable to use it to improve behavior.

R6. REPRESENT AND EFFECTIVELY USE BELIEFS

INDEPENDENT OF CURRENT PERCEPTION
The agent must be able to represent and reason about
situations and beliefs that differ from current perception.
Perceptual information is insufficient because perception is
limited [C6], the environment is dynamic [C2], and there
are regularities in the environment worth remembering
[C3] for task completion [C5]. Thus, the agent must be
able to maintain history of prior situations as well as the
ability to represent and reason about hypothetical
situations, a necessary component of planning. An agent
that satisfies this requirement can make decisions based not
just on its current situation, but also on its memory of
previous situations and its prediction of future situations.

R7. REPRESENT AND EFFECTIVELY USE RICH,

HIERARCHICAL CONTROL KNOWLEDGE
The agent must have a rich representation for control,
because the actions it can perform are complex [C6].
Because of the dynamics of the environment [C2], and the
multiplicity of the tasks playing out at multiple time scales
[C5], some actions may need to occur in rapid sequence
while others may need to execute in parallel. To keep up
with a rapidly changing environment [C2] with limited
computational resources [C7], the agent must take
advantage of the structure of regularities of the
environment [C3], maximizing the generality of the
knowledge it encodes because of the complexity and
variability of the environment and the agent's tasks [C1,
C5]. This often means organizing knowledge about actions
hierarchically. The agent can then decompose some of its
actions into sequences of simpler actions, using the context
of higher-level actions to constrain choices and reduce the
knowledge required to generate action.

R8. REPRESENT AND EFFECTIVELY USE META-

COGNITIVE KNOWLEDGE
In addition to the different types of knowledge discussed
above, it is sometime necessary for an agent represent and
use knowledge about itself and about its own knowledge
(meta-knowledge). An agent invariably faces novel tasks
[C5] where its task knowledge and/or computational
resources [C7] are insufficient to determine the appropriate

behavior given the environmental complexity [C1], but in
which there are regularities it can take advantage of [C3].
In these situations, an intelligent agent can detect its lack
of task knowledge, and then use meta-knowledge to
acquire new task knowledge. An agent can use other types
of meta-cognitive knowledge to set its own goals and to
direct future behavior in preparation for tasks, events, and
situations that it expects to arise in the future. This is in
response to the characteristics listed above as well as to the
fact that the agent exists beyond a single task or problem
[C8]. The exact range of necessary meta-cognitive
knowledge is unclear – some appears to be necessary, but
complete meta-cognitive knowledge is not required, at
least in humans. Humans do not always know exactly what
they know and often only discover what they know when
they are put in a situation where that knowledge is useful.

R9. SUPPORT A SPECTRUM OF BOUNDED AND

UNBOUNDED DELIBERATION
At one extreme, the agent must be able to react with
bounded computation [C5] for tasks with time constraints
close to those of the dynamics of the environment [C2]. It
cannot reason or plan from first principles for all tasks
because of inherent limits to its computational resources
[C7]. At its most primitive level, the absolute time to
respond must be bounded by the environmental dynamics
for some subclass of its responses. Reactivity would be
sufficient if the agent's knowledge of the environment and
other agents was complete and correct and encoded for
bounded access below the level of dynamics of the
environment. However, in general, that is not possible
because of the complexity of the environment [C1], the
diversity of tasks [C5] and the limitations on
environmental interaction [C6]. Moreover, at the other
extreme, when there are sufficient computational resources
available relative to the dynamics of the environment and
task, the agent should have the ability to compose novel
responses based on its knowledge that takes advantage of
regularities in the tasks and environment [C3]. This
composition is the basis for planning and it takes time, but
allows the agent to integrate its diverse and potentially
large bodies of knowledge for novel situations [R1-R8]. In
between these two extremes, the agent must balance the
tradeoff between deliberation and reaction based on its
knowledge of the situation.

R10. SUPPORT DIVERSE, COMPREHENSIVE LEARNING
An agent with long-term existence [C8] requires different
learning mechanisms when exposed to diverse
environments [C1] and tasks [C5] having complex
interactions [C6]. Learning takes advantage of regularities
[C3], some of which can be extracted from a single
situation in which all of the information is available at the
same time, whereas in others; the information may be
spread across time. Although general learning mechanisms
exist, they are invariably biased toward specific types of
knowledge that are available to the agent in different ways
and often at different time scales. Moreover, a general
cognitive architecture should be able to learn all the types

82

of task-specific knowledge it represents and uses, a
property we call the learning completeness principle. A
significant component of our own research is to explore
what types of knowledge different learning mechanisms
can contribute to achieving learning completeness.

R11. SUPPORT INCREMENTAL, ONLINE LEARNING
An agent with long-term existence [C8] that is in a
complex active environment [C1, C2] with regularities
[C3] must learn and modify its knowledge base so that it
can take advantage of the environmental regularities [C3]
when they are available. Once the experience has
happened, it is gone. Only the information that the agent
itself stores while it is behaving is available to guide its
future behavior. This is not to suggest that an agent cannot
recall prior situations and perform additional analysis at
some future time [R6]; however, some primitive learning
mechanism must store away the experience for that future,
more deliberative learning. Moreover, the mechanisms for
storing and retrieving those experiences must scale as more
and more experiences are captured. Incremental learning
incorporates experiences when they are experienced.

One implication of this requirement (together with the need
for large bodies of knowledge) is that new knowledge must
be acquired at low, bounded computational cost in real
time; learning should not disrupt the agent’s ongoing
behavior by significantly slowing overall processing and
negatively impacting its ability to react to its environment.

Summary

In this paper, we outlined characteristics of the
environments, tasks, and agents important for human-level
intelligence and, from these characteristics, derived
requirements for general cognitive architectures.
Architectural designs following from meeting the
requirements should support human-level behavior across a
wide range of tasks, embedded in environment similar to
the real world. Figure 2 summarizes the analysis described

above. The figure highlights the dense connectivity
between characteristics and requirements – no single
characteristic is solely responsible for any requirement and
no characteristic influences only a single requirement.

Many characteristics are necessary to derive most of their
associated requirements because eliminating a
characteristic allows for extreme simplification. Simple
environments [C1] require only simple agents. There is no
need to have large bodies of knowledge, no need for rich
representations of action, and limited need to learn. An
agent that only pursues simple well-known tasks [C5], or
has unlimited computation [C7] can be much simpler than
one that supports agents and tasks, in an environments with
these characteristics. At the extreme is the requirement for
task-relevant regularities [C3], which has universal impact
because only with environmental regularities are
knowledge, reasoning, learning, and architecture useful.

Discussion & Conclusion

The requirements we derived (R0-R11) define a rough
design envelope for underlying architectures. However, the
role of knowledge in agent development complicates
attempts to match the achievement of specific requirements
with specific architectural components. Behavior in an
agent is the result of the interaction between knowledge
and architecture; some requirements may be achieved
through general knowledge combined with multiple
architectural components. For example, many cognitive
architectures do not have explicit architectural support for
planning. Not including such architectural support
simplifies these architectures, but requires encoding of
knowledge representation(s) and algorithms for planning
using architectural primitives. Achieving a requirement
directly with the architecture allows for a more efficient
implementation. Achieving a requirement in knowledge
usually leads to a simpler architecture while providing
more flexibility and the possibility of improving the
capability through learning. This tension is analogous to

 C1

Complex

Environ.

C2

Dynamic

Environ.

C3

Task

Regularities

C4

Social

Environ.

C5

Complex

Tasks

C6

Limited

Interaction

C7

Limited

Computation

C8

Long-term

existence

R0 Fixed structure X X

R1 Symbol system X X X X

R2 Modularity knowledge X X X X X

R3 Large bodies knowledge X X X X X X

R4 Levels of generality X X X X

R5 Levels of knowledge X X X X

R6 Non-perceptual represent. X X X X

R7 Rich action representations X X X X X X

R8 Meta-cognitive knowledge X X X X X

R9 Spectrum of deliberation X X X X X X

R10 Comprehensive learning X X X X X

R11 Incremental learning X X X X X

Figure 2: Connections between environment, task, and agent characteristics (C1-C8) and requirements (R0-R11).

83

RISC vs. CISC trade-offs in traditional computer
architecture.

Our own hypothesis is that significant bodies of knowledge
in combination with the architecture are required for many
of the cognitive capabilities needed to achieve human-level
performance. Examples include natural language
processing, logical thinking, qualitative reasoning, and
multi-agent coordination. However, the requirements listed
above do not address what knowledge is necessary to
support such capabilities, or how that knowledge is
acquired and encoded. Thus, even if we create
architectures that satisfy all of the listed requirements, we
will still fall short of creating human-level agents until we
encode, or the systems learn on their own, the content
required for higher-level knowledge-intensive capabilities.

Even when we restrict ourselves to considering the
requirements within the context of cognitive architecture
independent of knowledge, it is difficult to evaluate the
sufficiency of these requirements by examination alone.
Many of the requirements are qualitative and vague,
making them difficult to apply to existing architectures.
For example, how do we judge whether an architecture
supports sufficient levels of generality in its knowledge
representations, or sufficient representations of meta-
cognitive knowledge, or sufficiently comprehensive
learning mechanisms? Thus, an important goal for future
research in human-level agents is to refine these
requirements as we learn more about the capabilities that
are necessary for human-level behavior.

The current list or requirements emphasizes necessity and
may be missing some yet to be discovered requirements
that are needed to guarantee human-level behavior. These
requirements may arise from interactions among the
existing characteristics (C1-C8) or they may arise because
of the existence of yet additional characteristics of agents,
tasks, and environments that are relevant to achieving
human-level intelligence.

Our own hypothesis is that one of the best ways to refine
and extend these sets of requirements and characteristics is
to develop agents using cognitive architectures that test the
sufficiency and necessity of all these and other possible
characteristics and requirements on a variety of real-world
tasks. One challenge is to find tasks and environments
where all of these characteristics are active, and thus all of
the requirements must be confronted. A second challenge
is that the existence of an architecture that achieves a
subset of these requirements, does not guarantee that such
an architecture can be extended to achieve other
requirements while maintaining satisfaction of the original
set of requirements. Usually there are too many potential
interactions between architectural components to guarantee
such an incremental approach. It is for these reasons that
our own research is inspired by studies of human
psychology. We know that the human cognitive
architecture is sufficient for generating the behavior we
seek from our agents, and if we build systems that capture

the core functionality of components of the human
architecture, it is more likely that we will avoid dead ends
in cognitive architecture development. Independent of
what approach is used to develop a cognitive architecture,
we propose that exploring how different architectures
address (or do not address) these requirements, both
theoretically and empirically, is our best chance to advance
our knowledge of how cognitive architecture can support
human-level intelligence.

References

Anderson, J. R. (1990). The Adaptive Character of Thought,

Hillsdale, NJ: Erlbaum.

Anderson, J. R. & Lebiere, C. L. (2003). The Newell Test for a

Theory of Cognition. Behavioral & Brain Science 26, 587-637.

Barsalou, L. W. (2008). Grounded Cognition. Annual Review of

Psychology, 59, 617-645.

Campbell, M., Hoane, A. J., & Hsu, F. (2002). Deep Blue.

Artificial Intelligence, 134(1-2) 57-83.

Cassimatis, N.L., Bello, P., & Langley, P. (2008). Ability,

Parsimony and Breadth in Models of Higher-Order Cognition.

Cognitive Science. 33(8), 1304-1322.

Cohen, P. R., (1995). Empirical Methods for Artificial

Intelligence, Cambridge, MA: MIT Press.

Gluck, K., & Pew, R., eds. (2005). Modeling Human Behavior

with Integrated Cognitive Architectures: Comparison,

Evaluation, and Validation. Lawrence-Erlbaum Associates,

Matawan, NJ.

Jones, R. M., & Wray, R. E. (2006). Comparative Analysis of

Frameworks for Knowledge-Intensive Intelligent Agents. AI

Magazine 27, 57-70.

Laird, J. E. (1991). Preface for Special Section on Integrated

Cognitive Architectures. SIGART Bulletin, 2(12), 123.

Laird, J. E., Wray, R. E. III, Marinier, R. P. III, & Langley, P.

(2009). Claims and Challenges in Evaluating Human-Level

Intelligent Systems, Proceedings of the Second Conference on

Artificial General Intelligence.

Laird, J. E., Pearson, D. J., Jones, R. M., & Wray, R. E. (1996).

Dynamic Knowledge Integration During Plan Execution. Papers

from the 1996 AAAI Fall Symposium on Plan Execution:

Problems and Issues, 92-98. AAAI Press, Cambridge, MA.

Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive

Architectures: Research Issues and Challenges. Cognitive Systems

Research 10(2), 141-160.

Legg, S., & Hutter, M. (2007). Universal Intelligence: A

Definition of Machine Intelligence. Minds and Machines.17(4).

Newell, A. (1990). Unified Theories of Cognition, Harvard

University Press, Cambridge, Massachusetts.

Simon, H. A. (1969). The Sciences of the Artificial (First

Edition), MIT Press.

84

Sketch of an AGI architecture with illustration

András Lőrincz and Zoltán R. Bárdosi and Dániel Takács
Eötvös Loránd University

Pázmány Péter s. 1/C, Budapest, Hungary 1117

Abstract

Here we present a framework for AGI inspired by
knowledge about the only working prototype: the
brain. We consider the neurobiological findings as di-
rectives. The main algorithmic modules are defined
and solutions for each subtasks are given together with
the available mathematical (hard) constraints. The
main themes are compressed sensing, factor learning,
independent process analysis and low dimensional em-
bedding for optimal state representation to be used by
a particular RL system that can be integrated with a
robust controller. However, the blending of the sug-
gested partial solutions is not a straightforward task.
Nevertheless we start to combine these modules and il-
lustrate their working on a simulated problem. We will
discuss the steps needed to complete the integration.

Introduction

In recent years, attempts have been made to under-
stand the algorithmic principles of general intelligence.
The first issue of the Cognitive Computation Journal
reviews questions, including, e.g., if human like intelli-
gence is achievable [McC09], ‘howto’ do the reverse en-
gineering of the vertebrate brain [Gur09] among others
that are relevant for artificial general intelligence (AGI)
and neuroscience. Some of the AGI works started early
and built upon theories of cognition, like SOAR (for
a review, see [Lai09]) and Clarion (see, e.g., [Sun07]
and references therein). Recent works consider univer-
sal searches [Hut09] and [Sch09] and build universal al-
gorithms.

Another approach tries to limit the number of avail-
able algorithms and considers constraints [Lőr09b]: di-
rective soft constraints come from neuroscience and cog-
nition. These constraints are soft, because the interpre-
tation of the findings is debated in many cases. Another
type of constraints comes from mathematics. These are
hard constraints. However, care should be taken as they
may also have their own pitfalls hidden deeply in the
conditions of the different theorems applied. The cen-
tral question to these types of constraints is what algo-
rithms can limit combinatorial explosion. In this paper
we elaborate on the control issues of this approach.

The main contributions of the paper is the illus-
tration of (i) how high-dimensional sensory informa-
tion can be connected to autoregressive exogenous
(ARX) processes via low-dimensional embedding, (ii)
how one can estimate the inverse dynamics from
the ARX model, and (iii) how one can connect the
low-dimensional map to the event-learning framework
[STL03] of reinforcement learning.

In the next section we review the basic components
of the architecture. Then we highlight the working of
some of the components through an illustrative exam-
ple. Short discussion and conclusions about some ex-
perimental possibilities close the paper.

Background
We extend the architecture detailed in [Lőr09b]. We
also consider missing components. We start from the
observation that natural data – in many cases, but not
always – exhibit heavy-tailed distributions. Such dis-
tributions may satisfy the conditions of Compressive
Sensing (CS), a highly advantageous feature if part of
the information is missing (see Compressive Sensing Re-
sources http://dsp.rice.edu/cs).

Since heavy-tailed distribution is not warranted,
the processing of sensory information in the architec-
ture utilizes ‘cross entropy’ global probabilistic search
[Rub97] to optimize overcomplete sparse representation
using L0 norm [LPS08]. Recent results on CS indicate
(see, [DTDS07,NV07] and references therein) and nu-
merical studies reinforce [PL09a] that certain versions
of orthogonal matching pursuit complement and speed-
up the cross entropy method.

One can alleviate the problem of combinatorial ex-
plosion by separating information of different kinds into
(quasi-) independent lower-dimensional subspaces. As
an example, facial speech and expressions can be rep-
resented in lower dimensions, respectively, by apply-
ing bilinear factorization [CDB02]. Since sparse codes
and independent component analysis are related to each
other [OF97], one option is that multi-linear extensions
of Independent Process Analysis (IPA) [SL09a], similar
to the multi-linear extension of Independent Compo-
nent Analysis [VT05] may solve the separation problem.
It is reassuring soft information from neuroscience that

85

Figure 1: Squares: algorithmic components. Pen-
tagons: emergent problems that need to be solved to
proceed further. Hexagons: reassuring soft information
from neuroscience and cognition, ‘OMP’: some version
of orthogonal matching pursuit, L0: probabilistic spar-
sification using L0 norm.

the constraint of Hebbian learning on IPA gives rise to
an architecture that closely resembles the entorhinal-
hippocampal loop [Lőr09a, LS09a] that plays a central
role in the encoding of episodic memory, or events in
the brain.

There are a number of missing parts before this por-
tion of the AGI architecture could be built, such as
(i) the method to fuse information from different in-
formation sources (or modalities), (ii) the method to
learn and embed the independent factors into differ-
ent low-dimensional networks, and (iii) the method to
extend the linear recurrent IPA network to non-linear
ones (for a comprehensive lists on recurrent networks,
see http://www.idsia.ch/~juergen/rnn.html and
[LH09]).

From the point of view of controlling, IPA separates
the relevant sensory information, such as position and
direction [LS09a]. Furthermore, one can learn the ef-
fect of control – in an exogenous autoregressive (ARX)
process – by optimal experimental design both for the
observed [PL09b] and for the hidden variables [SL09a].
Inversion of the learned relations can be used as es-
timates of the inverse dynamics: it can derive control
values for a desired state given the actual (experienced)
one. This feature is advantageous for our architecture
that applies robust controllers [LHS01].

Approximate inverse dynamics is a necessary pre-
sumption of event-learning [STL03] that works with a
background controller and optimizes policy with regard
to desired (planned) states. We note that event learning
admits robust controllers.

Combinatorial explosion, however, spoils event-
learning, unless factors and thus factored RL methods
are available. It has been shown that (i) factored meth-
ods combined with sampling converge in polynomial
time [SL08a], (ii) the exploration–exploitation dilemma
can be overcome for optimistic initial models even for
factored RL [SL09b], and (iii) the RL optimization re-
mains polynomial.

We list two problems that need to be solved in this
architecture:
Factor learning. It is unclear how to learn the factors

in general. One suggestion considers factors as the
primitives of symbols and the ‘symbol learning prob-
lem’ as structure-noise separation of graphs [Lőr09b].
The corresponding graph partitioning problem is
polynomial even for extreme graphs [Tao06]

Control of an under-controlled plant. The robust
controller assumes an over-controlled plant (i.e., the
number of controls is larger than the number of free-
dom). This condition may not be satisfied in general.
In what follows, we illustrate how to solve the last

point. We shall start from high-dimensional space, will
embed it into a low-dimensional one, but the control
will remain undercomplete. We will use optimal control
methods to overcome this obstacle.

Architecture for the under-controlled
case

We present a simplified version of the architecture de-
scribed in [Lőr09b]. We treat the following stages:
Sample selection: This stage selects samples under

random control. Selected states are not too close to
each other.

Low-dimensional embedding: In our illustration,
the dimension of the low dimensional manifold is
known, so we do not have to estimate it. Se-
lected samples are embedded into the low dimen-
sional space.

Identification of the ARX process: Out-
of-sample estimations in the low-dimensional space
are used for the identification of the ARX process.

LQR solution to the inverse dynamics: We have
an under-controlled situation. We use a linear-
quadratic regulator (LQR) to overcome this problem.

Exploring the space: Optimistic initial model
(OIM) is used for exploring the space and for learn-
ing the values of different initial and final state-pairs,
or events.

Now, we introduce the illustration.

Illustration with a pendulum
In the early phase of learning, the pendulum was sub-
ject to random control:

ψ̈ = −g

l
sin(ψ)− γψ̇

ml2
+

f

ml2

86

50 100 150 200

50

100

150

200
50 100 150 200

50

100

150

200
50 100 150 200

50

100

150

200
50 100 150 200

50

100

150

200

50 100 150 200

50

100

150

200
50 100 150 200

50

100

150

200
50 100 150 200

50

100

150

200

Figure 2: Selected sensors.

where ψ is the angle of the pendulum, and parameters
were set as g = 9.81 m

s2 , m = 1kg, l = 100m, and γ =
500. We limited the value of control f either to 100N ,
or to 200N in our experiments.

Sample selection

We used 200 × 200 images of a pendulum (Fig. 2), so
the input dimension was 40,000. In order to lower the
dimension, we choose only a few samples (our sensors)
from the input space. For similarity estimation, we used
a Gaussian kernel: K(x, y) = exp

(
− ||x−y||2

σ2

)
with σ =

0, 75. For a set of sensors S = {s1, . . . s|S|} the sensor
space is determined by this kernel: for any input x, the
sensed values form a vector in R|S|

φS(x) = (K(s1, x), . . . , K(s|S|, x))T .

During sample generation we used frnd
max = 100N and

limited by time

Algorithm 1 Time limited sample generation
Given: duration of training T , initial angle ψ0

img0 ← genPendImage(a0)
for t = 0 . . . T − 1 do

ft ← genRandControl()
ψ̈t+1 ← simulatePendulum(ft)
imgt+1 ← genPendImage(ψ̈t+1)

end for

Algorithm 2 Similarity based sensor selection
S ← {img0}
for t = 1 . . .T do

if ∀s ∈ S : K(s, imgt) < 0.3 then
S ← S ∪ {imgt}

end if
end for

After time limited sensor selection, low dimensional
embedding takes place.

Low-dimensional embedding and
out-of-sample estimation
We used different input sets, including the set of simple
views of the pendulum. We have tried a number of em-
bedding algorithms and found that ISOMAP [BST+02]
suits our input sets the best. On the selected data
we applied the ISOMAP embedding algorithm with 3
nearest neighbors and generated a 1-dimensional em-
bedding.

For inputs, which were not included into set S we
approximated the corresponding 1-dimensional value
by means of the partial least square (PLS) regression
method (for a review and the extensions of the method,
see [RK06]). The procedure is summarized below:

Algorithm 3 Embedding and out-of-sample estima-
tion
{Data to be embedded:}
A ← ∅
for all s ∈ S do

A ← A ∪ {φS(s)}
end for

{Embedding:}
G ← ISOMAP (A, 1D,3-NN)
{Then G ⊂ R, G = {ga|a ∈ A}}

{Out-of-state estimations}
for t = 0 . . . T do

φt ← φS(imgt)
N ← SelectNearest(A,φt, 3)
x̂t ← PLS(N, {ga ∈ G|a ∈ N}, φt)

end for

Results are shown in Fig. 3

Identification of the ARX process
The following equation of motion has been assumed

xt+1 = A1xt + A2xt−1 + But + εt (1)

where A1, A2, B ∈ R, ε is a normally distributed
stochastic variable with 0 mean and covariance σ. Note,
however, that this assumption may not hold; it is sub-
ject to our estimation errors, including the error of the
PLS estimation. We have estimated parameters B, A1

and A2 with a least squares estimation derived from the
cost function:

J(A1, A2, B) =
T∑

t=1

(x̂t+1 −A1x̂t −A2st−1 −But)
2

where x̂ denotes the PLS estimated coordinates. We
also tried an on-line Bayesian method that gave similar
results.

LQR solution to the inverse dynamics
We define the control problem by means of event learn-
ing RL algorithm [STL03] that provides the actual and

87

20 40 60 80 100 120
−10

−5

0

5

10

(a) Motion of the pendulum as a function of time in
angle space between ±10 ◦. Motion is subject to ran-
dom control. Red dots: positions of selected sensors

20 40 60 80 100 120

2

4

6

(b) Responses in sensor space. The outputs of the
sensors are shown vs. time. Sensors are ordered ac-
cording to their 1-dimensional embeddings.

20 40 60 80 100 120
−200

−100

0

100

200

(c) PLS position estimation in the embedded 1-
dimensional space during the motion of the pendulum

Figure 3: Motion of the pendulum in real space, in
sensor space and in embedded 1-dimensional space.

desired states to a backing controller. The controller
tries to satisfy ‘desires’. For given experienced state
and desired state pair the controller provides a control
value or a control series. Then, event learning learns
the limitations of the backing controller and optimizes
the RL policy in the event space accordingly.

In the present scenario, we have a 1-dimensional plant
of second order, so the state of the plant is determined
by its position and its speed, or alternatively, by its
present and previous positions. The same holds for the
desired state, which thus has two degrees of freedom.
For our 1D control problem, 2 time steps are needed to
reach the desired state, if it is possible at all. If it is,
then there are many solutions, out of which an optimal
control can help to choose: one assumes costs associ-
ated with the trajectory and the value of the control.
Denoting the state by qt = (xt, xt−1)T , we can convert
Eq. 1 into the following form qt+1 = Fqt + Cvt + εt,
where

F =
[

A1 A2

0 I

]
(2)

C = (B, 0)T , vt = (ut, 0)T , and εt = (εt, 0)T .
For N -step experienced state qi and desired state qd

i
(i = 1, . . . N) one may use quadratic cost functions both

for the qi−qd
i differences and for the control values using

the cost function

J(U) =
N∑

i=0

(qi − qd
i)T Qi(qi − qd

i)

+
N−1∑

i=0

vT
i Rivi (3)

where Qi = QT
i ≥ 0 and similarly, Ri = RT

i ≥ 0. Then,

q1

...
qN

 = H

v0

...
vN−1

 +

I
...

FN

 q0

where

H =

0 . . .
C 0 . . .

FC C 0 . . .
...

...
FN−1C FN−2C . . . C

that we can write in the following short form: q =
Hv+Gq0, where q = (q0, . . . , qN)T , v = (v0, . . . , vN)T ,
and G = (I, . . . FN)T . Now, the cost function can be
rewritten into the following quadratic form

J(U) = ||diag(Q
1
2
0 , . . . , Q

1
2
N)(Hv + Gq0 − q)||2

+ ||diag(R
1
2
0 , . . . , R

1
2
N−1)v||2 (4)

that can be solved by simple routines. In our case,
Q0, . . . QN−2 = 0, QN−1, QN = 1, and R0 . . . RN−1 =
R.

Now, we turn to the optimization of the RL problem.

Exploring the space: experienced transitions
The estimated value of an event Eπ

i,j in event learning is
the estimated long-term cumulated discounted reward
of event e = (qi, q

+
j) in a Markov decision process under

fixed policy π = π(q, q+), with actual state q and de-
sired state q+. The plus sign indicates that the second
argument of event e is the successor state of the state
represented by the first argument. We note that the
OIM policy [SL08b] is not fixed, but it converges to the
optimal policy. Here we use OIM for the exploration
of the space. OIM, however, could be used for diverse
tasks, e.g., for inverting the pendulum, like in [STL03].

We used fOIM
max = 200N in this case to allow OIM to

connect a larger number of states. Experimental results
are shown in Figs. 4 and 5.

Discussion and conclusions
The presented toy problem and its solution highlight
the following issues relevant to AGI
• Factors like position, speed, etc. can be learned by

neural mechanisms [LS09b]. On the other hand, we
do not know how to learn factors in general. Multi-
linear IPA might work for some cases.

88

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

 7.3195

 6.5062

 5.6929

 4.8797

 4.0664

 3.2531

 2.4398

 1.6266

0.81328

 0

(a) LQR: N=2, R=0.01

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

2 4 6

2

4

6

 7.3195

 6.5062

 5.6929

 4.8797

 4.0664

 3.2531

 2.4398

 1.6266

0.81328

 0

(b) LQR: N=4, R=10−4

Figure 4: Color coded error between desired and expe-
rienced states using OIM. Each block represents one of
the 7 × 7 = 49 actual states. The horizontal and ver-
tical indices of the subfigures represent the number of
the actual position and the number of the previous po-
sition, respectively. Each square within the each block
represents a desired state and is also indexed according
to the actual and the previous positions. The warmer
the color the larger the error. Transitions correspond-
ing to large blue areas have not occurred during the
course of the experiment. The larger the number of
time steps used by LQR and the smaller the cost of the
control, the more states can be reached. OIM addresses
the exploration-exploitation dilemma by estimating the
transition probabilities and thus enabling planning.

• We suspect factors correspond to a highly simplified
directed bipartite graph derived from a highly com-
plex graph connecting the products of observed ac-
tual and desired states to the next state. Weights of
this graph represent the transition probabilities. Ac-
cording to the conjecture [Lőr09b], one can use the
separated structured part of the graph. The vertices
of this graph make the factors. The rest of the orig-
inal graph is made of noisy Erdős-Rényi-like blocks
and the structured part saves the transition proba-
bilities. It has been shown that such compression is
possible even for extreme graphs [Tao06].

• We used low-dimensional embedding – suggested
by neuronal control systems, like the ‘gelatinous
medium’ surrounding the limb [GG93] – in order to
transform high-dimensional information for the sake
of lower dimensional and possibly robust control.

• Optimal control can serve the optimization of under-
controlled plants. Beyond the presented LQR
method, which assumes no noise, extensions to ob-
servations spoiled by Gaussian noise are available
[SL04]. Further extensions to stochastic optimal con-
trol are desired.

• ARX based optimal control, such as LQR control, has
feedforward characteristics. On the other hand, ro-
bust control works by error correction. Experienced
events that emerge through the application of these
controllers or their combinations require further op-

0 200 400
4

6

8

10

Time step / 100

E
st

im
at

ed
 e

ve
nt

 v
al

ue
s

First 10 states

(a) Estimation vs. time

0 200 400
4

6

8

10

12

Time step / 100

E
st

im
at

ed
 e

ve
nt

 v
al

ue
s

States 10, 20, ..., 100

(b) Estimation vs. time

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

2 4 6 8

2
4
6
8

9.9

8.8

7.7

6.6

5.5

4.4

3.3

2.2

1.1

 0

(c) LQR: N=4, R=10−4

−5

0

5

10

Angle [degrees]

P
LS

 r
es

po
ns

e

−30 −20 −10 0 10 20 30
0

2000

4000

(d) PLS value vs. angle

Figure 5: Convergence of event values Ei,j (see text).
(a): Convergence of the OIM estimation for the first
10 events. (b): Convergence of every 10th event from
the first 100 events. (c): Estimated values of all found
events 40,000 steps. The warmer the color, the larger
the OIM estimated value. Transitions corresponding to
large blue areas have not occurred until the experiment
was finished. (d): Out-of-sample estimation vs. pendu-
lum angle and histogram of positions in arbitrary units
after 40,000 steps. Spikes and sudden drops correspond
to the discoveries of new states and to visits to known
states, respectively.

timization using RL based optimal control.

From the point of view of neuroscience, the roles of
the two control related networks, the cerebellum and
the basal ganglia are controversial [Bas06,YBK09]. We
suspect that this controversy arises from the fact that
optimal control appears in two ways: once for feedfor-
ward control of plants, and once for optimal decision
making. We conjecture that one might gain more in-
sight into the functioning of these neural architectures
by comparing their roles in over-controlled and under-
controlled control tasks.

Acknowledgements

We are most grateful to Zoltán Szabó for helpful dis-
cussions and to Gábor Szirtes for careful reading of the
manuscript. This research has been partially supported
by the EC NEST ‘Percept’ grant under contract 043261.
Opinions and errors in this manuscript are the author’s
responsibility, they do not necessarily reflect the opin-
ions of the EC or other project members.

89

References
[Bas06] A. J. Bastian. Learning to predict the future:
the cerebellum adapts feedforward movement control.
Current Opinion in Neurobiology, 16:645–649, 2006.

[BST+02] M. Balasubramanian, E. L. Schwartz, J. B.
Tenenbaum, V. de Silva, and J. C. Langford. The
ISOMAP algorithm and topological stability. Science,
290:2319–2323, 2002.

[CDB02] E. S. Chuang, H. Deshpande, and C. Bre-
gler. Facial expression space learning. In
Proc. Pacific Conf. Comp. Graphics Appl., 2002.
http://cims.nyu.edu/~bregler/pubs.html.

[DTDS07] D. L. Donoho, Y. Tsaig, I. Drori,
and J.-L. Starck. Sparse solution of underde-
termined linear equations by stagewise orthogo-
nal matching pursuit. Technical Report, 2007.
http://stat.stanford.edu/~idrori/StOMP.pdf.

[GG93] M. S. Graziano and C. G. Gross. A bimodal
map of space: somatosensory receptive fields in the
macaque putamen with corresponding visual receptive
fields. Experimental Brain Research, 97:96–109, 1993.

[Gur09] K. N. Gurney. Reverse engineering the verte-
brate brain. Cogn. Comput., 1:29–41, 2009.

[Hut09] M. Hutter. Feature reinforcement learning:
Part I. Unstructured MDPs. J. of AGI, 1:3–24, 2009.

[Lai09] J. Laird. Soar cognitive architecture tutorial.
In 2nd Conf. on Artificial General Intelligence, AGI-
2009, 2009. http://agi-conf.org/2009/slides/.

[LH09] M. Lukosevicius and J. Herbert. Reservoir com-
puting approaches to recurrent neural network train-
ing. Comp. Sci. Rev., 3:127–149, 2009.

[LHS01] A. Lőrincz, Gy. Hév́ızi, and Cs. Szepesvári.
Ockham’s razor modeling of the matrisome channels
of the basal ganglia thalamocortical loop. Int. J. of
Neural Syst., 11:125–143, 2001.

[Lőr09a] A. Lőrincz. Hebbian constraint on the resolu-
tion of the homunculus fallacy leads to a network that
searches for hidden cause-effect relationships. In AGI-
2009, volume 8 of Adv. in Intell. Syst. Res. (ISSN:
1951-6851), pages 126–131. Atlantis Press, 2009.

[Lőr09b] A. Lőrincz. Learning and representation:
From compressive sampling to the ’symbol learning
problem’. In Handbook of Large-Scale Random Net-
works, pages 445–488. Springer, Germany, 2009.

[LPS08] A. Lőrincz, Zs. Palotai, and G. Szirtes. Spike-
based cross-entropy method for reconstruction. Neu-
rocomputing, 71:3635–3639, 2008.

[LS09a] A. Lőrincz and G. Szirtes. Here and now: how
time segments may become events in the hippocam-
pus. Neural Networks, 22:738–747, 2009.

[LS09b] A. Lőrincz and G. Szirtes. Representation the-
ory meets anatomy: Factor learning in the hippocam-
pal formation. In Connectionist Models of Behaviour
and Cognition II, volume 18, pages 253–264, Singa-
pore, 2009. World Scientific.

[McC09] J. L. McClelland. Is a machine realization of
truly human-like intelligence achievable? Cogn. Com-
put., 1:17–21, 2009.

[NV07] D. Needell and R. Vershynin. Signal recov-
ery from incomplete and inaccurate measurements
via regularized orthogonal matching pursuit. 2007.
http://arxiv.org/abs/0712.1360.

[OF97] B. A. Olshausen and D. J. Field. Sparse coding
with an overcomplete basis set: A strategy employed
by V1? Vision Research, 37:3311–3325, 1997.

[PL09a] Zs. Palotai and A. Lőrincz. OMP speeds up
CE in L0 norm optimizations. unpublished, 2009.

[PL09b] B. Póczos and A. Lőrincz. Identification of
recurrent neural networks by Bayesian interrogation
techniques. J. of Mach. Learn. Res., 10:515–554, 2009.

[RK06] R. Rosipal and N. Kramer. Subspace, La-
tent Structure and Feature Selection Techniques, chap-
ter Overview and Recent Advances in Partial Least
Squares, pages 34–51. Springer, 2006.

[Rub97] R. Y. Rubinstein. Optimization of computer
simulation models with rare events. European Journal
of Operations Research, 99:89–112, 1997.

[Sch09] J. Schmidhuber. Ultimate cognition á la Gödel.
Cogn. Comput., 1:177–193, 2009.

[SL04] I. Szita and A. Lőrincz. Kalman filter control
embedded into the reinforcement learning framework.
Neural Comp., 16:491–499, 2004.

[SL08a] I. Szita and A. Lőrincz. Factored value itera-
tion converges. Acta Cyb., 18:615–635, 2008.

[SL08b] I. Szita and A. Lőrincz. The many faces of
optimism: a unifying approach. In ICML 2008, pages
1048–1055, Helsinki, 2008. Omnipress.

[SL09a] Z. Szabó and A. Lőrincz. Controlled complete
ARMA independent process analysis. In Int. Joint
Conf. on Neural Networks (IJCNN 2009), pages 3038–
3045, 14-19 June 2009. ISSN: 1098-7576.

[SL09b] I. Szita and A. Lőrincz. Optimistic initializa-
tion and greediness lead to polynomial time learning
in factored MDPs. In ICML 2009, Montreal, 2009.
Omnipress.

[STL03] I. Szita, B. Takács, and A. Lőrincz. Epsilon-
MDPs: Learning in varying environments. J. of Mach.
Learn. Res., 3:145–174, 2003.

[Sun07] R. Sun. The importance of cognitive architec-
tures: An analysis based on CLARION. J. of Exp.
and Theor. Artif. Intell., 19:159–193, 2007.

[Tao06] T. Tao. Szemerédi’s regularity lemma revisited.
Contrib. Discrete Math., 1:8–28, 2006.

[VT05] M. A. O. Vasilescu and D. Terzopoulos. Mul-
tilinear independent components analysis. In Proc.
Comp. Vision and Pattern Recog., 2005.

[YBK09] K. Yarrow, P. Brown, and J. W. Krakauer.
Inside the brain of an elite athlete. Nature Reviews
Neuroscience, 10:585–596, 2009.

90

GQ(λ): A general gradient algorithm for temporal-difference
prediction learning with eligibility traces

Hamid Reza Maei and Richard S. Sutton
Reinforcement Learning and Artificial Intelligence Laboratory, University of Alberta, Edmonton, Canada

Abstract

A new family of gradient temporal-difference learning
algorithms have recently been introduced by Sutton,
Maei and others in which function approximation is
much more straightforward. In this paper, we intro-
duce the GQ(λ) algorithm which can be seen as exten-
sion of that work to a more general setting including
eligibility traces and off-policy learning of temporally
abstract predictions. These extensions bring us closer
to the ultimate goal of this work—the development
of a universal prediction learning algorithm suitable
for learning experientially grounded knowledge of the
world. Eligibility traces are essential to this goal be-
cause they bridge the temporal gaps in cause and effect
when experience is processed at a temporally fine reso-
lution. Temporally abstract predictions are also essen-
tial as the means for representing abstract, higher-level
knowledge about courses of action, or options. GQ(λ)
can be thought of as an extension of Q-learning. We ex-
tend existing convergence results for policy evaluation
to this setting and carry out a forward-view/backward-
view analysis to derive and prove the validity of the new
algorithm.

Introduction
One of the main challenges in artificial intelligence (AI)
is to connect the low-level experience to high-level rep-
resentations (grounded world knowledge). Low-level
experience refers to rich signals received back and forth
between the agent and the world. Recent theoretical
developments in temporal-difference learning combined
with mathematical ideas developed for temporally ab-
stract options, known as intra-option learning, can be
used to address this challenge (Sutton, 2009).

Intra-option learning (Sutton, Precup, and Singh,
1998) is seen as a potential method for temporal-
abstraction in reinforcement learning. Intra-option
learning is a type of off-policy learning. Off-policy
learning refers to learning about a target policy while
following another policy, known as behavior policy. Off-
policy learning arises in Q-learning where the target
policy is a greedy optimal policy while the behavior
policy is exploratory. It is also needed for intra-option
learning. Intra-option methods look inside options and
allow AI agent to learn about multiple different options

simultaneously from a single stream of received data.
Option refers to a temporally course of actions with a
termination condition. Options are ubiquitous in our
everyday life. For example, to go for hiking, we need
to consider and evaluate multiple options such as trans-
portation options to the hiking trail. Each option in-
cludes a course of primitive actions and only is excited
in particular states. The main feature of intra-option
learning is its ability to predict the consequences of each
option policy without executing it while data is received
from a different policy.

Temporal difference (TD) methods in reinforcement
learning are considered as powerful techniques for pre-
diction problems. In this paper, we consider predictions
always in the form of answers to the questions. Ques-
tions are like “If of follow this trail, would I see a creek?”
The answers to such questions are in the form of a single
scalar (value function) that tells us about the expected
future consequences given the current state. In general,
due to the large number of states, it is not feasible to
compute the exact value of each state entry. One of the
key features of TD methods is their ability to generalize
predictions to states that may not have visited; this is
known as function approximation.

Recently, Sutton et al. (2009b) and Maei et al. (2009)
introduced a new family of gradient TD methods in
which function approximation is much more straightfor-
ward than conventional methods. Prior to their work,
the existing classical TD algorithms (e.g.; TD(λ) and
Q-learning) with function approximation could become
unstable and diverge (Baird, 1995; Tsitsiklis and Van
Roy, 1997).

In this paper, we extend their work to a more gen-
eral setting that includes off-policy learning of tempo-
rally abstract predictions and eligibility traces. Tempo-
rally abstract predictions are essential for representing
higher-level knowledge about the course of actions, or
options (Sutton et al., 1998). Eligibility traces bridge
between the temporal gaps when experience is processes
at a temporally fine resolution.

In this paper, we introduce the GQ(λ) algorithm
that can be thought of as an extension to Q-learning
(Watkins and Dayan, 1989); one of the most popular
off-policy learning algorithms in reinforcement learning.

91

Our algorithm incorporates gradient-descent ideas orig-
inally developed by Sutton et al. (2009a,b), for option
conditional predictions with varying eligibility traces.
We extend existing convergence results for policy evalu-
ation to this setting and carry forward-view/backward-
view analysis and prove the validity of the new algo-
rithm.

The organization of the paper is as follows: First, we
describe the problem setting and define our notations.
Then we introduce the GQ(λ) algorithm and describe
how to use it. In the next sections we provide derivation
of the algorithm and carry out analytical analysis on the
equivalence of TD forward-view/backward-view. We
finish the paper with convergence proof and conclusion
section.

Notation and background
We consider the problem of policy evaluation in finite
state-action Markov Decision Process (MDP). Under
standard conditions, however, our results can be ex-
tended to MDPs with infinite state–action pairs. We
use a standard reinforcement learning (RL) framework.
In this setting, data is obtained from a continually
evolving MDP with states st ∈ S, actions at ∈ A, and
rewards rt ∈ <, for t = 1, 2, . . ., with each state and
reward as a function of the preceding state and action.
Actions are chosen according to the behavior policy b,
which is assumed fixed and exciting, b(s, a) > 0,∀s, a.
We consider the transition probabilities between state–
action pairs, and for simplicity we assume there is a
finite number N of state–action pairs.

Suppose the agent find itself at time t in a state–
action pair st, at. The agent likes its answer at
that time to tell something about the future sequence
st+1, at+1, . . . , st+k if actions from t + 1 on were taken
according to the option until it terminated at time t+k.
The option policy is denoted π : S × A → [0, 1] and
whose termination condition is denoted β : S → [0, 1].

The answer is always in the form of a single number,
and of course we have to be more specific about what we
are trying to predict. There are two common cases: 1)
we are trying to predict the outcome of the option; we
want to know about the expected value of some function
of the state at the time the option terminates. We call
this function the outcome target function, and denote
it z : S → <, 2) we are trying to predict the transient;
that is, what happens during the option rather than
its end. The most common thing to predict about the
transient is the total or discounted reward during the
option. We denote the reward function r : S ×A → <.
Finally, the answer could conceivably be a mixture of
both a transient and an outcome. Here we will present
the algorithm for answering questions with both an out-
come part z and a transient part r, with the two added
together. In the common place where one wants only
one of the two, the other is set to zero.

Now we can start to state the goal of learning more
precisely. In particular, we would like our answer to
be equal to the expected value of the outcome target

function at termination plus the cumulative sum of the
transient reward function along the way:

Qπ(st, at) (1)

≡ E
[
rt+1 + γrt+2 + · · ·+ γk−1rt+k + zt+k | π, β

]
,

where γ ∈ (0, 1] is discount factor and Qπ(s, a) de-
notes action value function that evaluates policy π given
state-action pair s, a. To simplify the notation, from
now on, we drop the superscript π on action values.

In many problems the number of state-action pairs
is large and therefore it is not feasible to compute the
action values for each state-action entry. Therefore, we
need to approximate the action values through gener-
alization techniques. Here, we use linear function ap-
proximation; that is, the answer to a question is always
formed linearly as Qθ(s, a) = θ>φ(s, a) ≈ Q(s, a) for all
s ∈ S and a ∈ A, where θ ∈ <n is a learned weight
vector and φ(s, a) ∈ <n indicates a state–action feature
vector. The goal is to learn parameter vector θ through
a learning method such as TD learning.

The above (1) describes the target in a Monte Carlo
sense, but of course we want to include the possibility
of temporal-difference learning; one of the widely used
techniques in reinforcement learning. To do this, we
provide an eligibility-trace function λ : S → [0, 1] as
described in Sutton and Barto (1998). We let eligibility-
trace function, λ, to vary over different states.

In the next section, first we introduce GQ(λ); a gen-
eral temporal-difference learning algorithm that is sta-
ble under off-policy training, and show how to use it.
Then in later sections we provide the derivation of the
algorithm and convergence proof.

The GQ(λ) algorithm
In this section we introduce the GQ(λ) algorithm for
off-policy learning about the outcomes and transients of
options, in other words, intra-option GQ(λ) for learning
the answer to a question chosen from a wide (possibly
universal) class of option-conditional predictive ques-
tions.

To specify the question one provides four functions:
π and β, for the option, and z and r, for the target
functions. To specify how the answers will be formed
one provides their functional form (here in linear form),
the feature vectors φ(s, a) for all state–action pairs, and
the eligibility-trace function λ. The discount factor γ
can be taken to be 1, and thus ignored; the same effect
as discounting can be achieved through the choice of β.

Now, we specify the GQ(λ) algorithm as follows: The
weight vector θ ∈ <n is initialized arbitrarily. The sec-
ondary weight vector w ∈ <n is initialized to zero. An
auxiliary memory vector known as the eligibility trace
e ∈ <n is also initialized to zero. Their update rules
are

θt+1 = θt + αθ,t

[
δtet − κt+1(w>t et)φ̄t+1

]
, (2)

wt+1 = wt + αw,t
[
δtet − (w>t φt)φt

]
, (3)

92

and
et = φt + (1− βt)λtρtet−1, (4)

where,

δt = rt+1 + βt+1zt+1 + (1− βt+1)θ>t φ̄t+1 − θ>t φt, (5)

φ̄t =
∑
a

π(st, a)φ(st, a),

ρt =
π(st, at)
b(st, at)

, κt = (1− βt)(1− λt),

φt is an alternate notation for φ(st, at), and αθ,t > 0,
αw,t > 0, are constant or decreasing step-size parame-
ters for θ and w weights respectively. Here, δt, can be
seen as one-step TD error.

In the next section we introduce a Bellman error ob-
jective function and later show that the GQ(λ) algo-
rithm follows its gradient-descent direction and even-
tually converges to what that can be described as the
fixed-point of TD(λ) under off-policy training.

Objective function
The key element in this paper is to extend the
mean-square projected Bellman error objective function
(MSPBE), first introduced by Sutton et al. (2009b),
to the case where it incorporates eligibility traces and
option-conditional probabilities. We start with an off-
policy, λ-weighted version of the projected-Bellman-
error objective function:

J(θ) = ‖ Qθ −ΠTλβπ Qθ ‖2D (6)

where Qθ = Φθ ∈ <N is the vector of approximate ac-
tion values for each state–action pair, Φ is an N × n
matrix whose rows are the state–action feature vectors
φ(s, a), Π = Φ(Φ>DΦ)−1Φ>D is a projection matrix
that projects any point in the action value space into
the linear space of approximate action values, D is an
N × N diagonal matrix whose diagonal entries corre-
spond to the frequency with which each state–action
pair is visited under the behavior policy, Tλβπ is a λ-
weighted state–action version of the affine N ×N Bell-
man operator for the target policy π with termination
probability β, and finally the norm, ‖ v ‖2D, is defined
as v>Dv . The operator Tλβπ takes as input an arbi-
trary vector Q ∈ <N and returns a vector giving for
each state–action pair the expected corrected λ-return
if the Markov decision process was started in that state-
action pair, actions were taken according to π, and Q
was used to correct the return truncations. When Qθ
is used for the corrections we can write

Tλβπ Qθ(s, a) = Eπ
[
gλβt | st = s, at = a

]
, (7)

where gλβt is the λ-return (while following behavior pol-
icy) starting from state-action pair st, at :

gλβt = rt+1 + βt+1zt+1 (8)

+(1− βt+1)
[
(1− λt+1)θ>φt+1 + λt+1g

λ
t+1

]
,

where φt is an alternate notation for φ(st, at).
It would be easier to work with this objective function

if we write it in terms of statistical expectations. To do
this, first, let’s consider the following identities:

Eπ
[
δλβt | st = s, at = a

]
= Tλβπ Qθ(s, a)−Qθ(s, a),

where
δλβt ≡ g

λβ
t − θ>φt, (9)

Eπ
[
δλβt φt

]
=

∑
s,a

Dsa,saφ(s, a)Eπ
[
δλβt | st = s, at = a

]
= Φ>D(Tλβπ Qθ −Qθ),

and

Eb
[
φφ>

]
=
∑
s,a

Dsa,saφ(s, a)φ>(s, a) = Φ>DΦ.

Note that Dsa,sa indicates the diagonal entry of matrix
D and corresponds to the frequency with which state-
action pair s, a, is visited under the behavior policy b.
Here, Eπ[.] =

∑
s,aDsa,saEπ[. | s, a] because the data

has been generated and observed according to the be-
havior policy.

Given identities above, one can follow similar steps
as in Sutton et al. (2009); as follows, to show that the
objective function can be written in terms of statistical
expectations:

J(θ)

= ‖ Qθ −ΠTλβπ Qθ ‖2D
= ‖ Π(Tλβπ Qθ −Qθ) ‖2D
= (Π(Tλβπ Qθ −Qθ))>D(Π(Tλβπ Qθ −Qθ))
= (Tλβπ Qθ −Qθ)>Π>DΠ(Tλβπ Qθ −Qθ)
= (Tλβπ Qθ −Qθ)>D>Φ(Φ>DΦ)−1Φ>D(Tλβπ Qθ −Qθ)
= (Φ>D(Tλβπ Qθ −Qθ))>(Φ>DΦ)−1Φ>D(Tλβπ Qθ −Qθ)

= Eπ
[
δλβφ

]> Eb
[
φφ>

]−1 Eπ
[
δλβφ

]
, (10)

where we have used the identity Π>DΠ =
D>Φ(Φ>DΦ)−1Φ>D.

In our off-policy setting, however, we cannot work
with expectations conditional on π; we need to convert
them to expectations conditional on b (the behavior pol-
icy) which we can then directly sample from. To do this,
we introduce an off-policy version of the multi-step TD
error, δλβρt ,

δλβρt ≡ gλβρt − θ>t φt, (11)

where

gλβρt ≡ rt+1 + βt+1zt+1 (12)

+(1− βt+1)[(1− λt+1)θ>φ̄t+1 + λt+1ρt+1g
λβρ
t+1],

93

is off-policy λ-return and

φ̄t =
∑
a

π(st, a)φ(st, a) and ρt =
π(st, at)
b(st, at)

.

The next theorem makes this transformation very sim-
ple.

Theorem 1. Transforming conditional expectations.
Let b and π denote the behavior and target policies re-
spectively, and δλβ, δλβρ are defined in equations (9
,11), then

Eπ
[
δλβt φt

]
= Eb

[
δλβρt φt

]
. (13)

Proof. First, we show Eb
[
gλβρt | st, at

]
=

Eπ
[
gλβt | st, at

]
. To do this, let’s write gλβρt (12)

in the following compact form:

gλβρt = ζt+1 + κt+1θ
>φ̄t+1 + (1− βt+1)λt+1ρt+1g

λβρ
t+1 ,

where ζt ≡ rt + βtzt, and κt ≡ (1 − βt)(1 − λt). Now
consider the identity Eb

[
φ̄t | st, at

]
= Eπ[φt | st, at] as

we expand the term Eb
[
gλβρt | st, at

]
, thus we have

Eb
[
gλβρt | st, at

]
= Eb

[
ζt+1 + κt+1θ

>φ̄t+1 | st, at
]

+Eb
[
(1− βt+1)λt+1ρt+1g

λβρ
t+1 | st, at

]
= Eπ

[
ζt+1 + κt+1θ

>φt+1|st, at
]

+Eb
[
(1− βt+1)λt+1ρt+1g

λβρ
t+1 | st, at

]
= Eπ

[
ζt+1 + κt+1θ

>φt+1|st, at
]

+
∑
st+1

P(st+1|st, at)
∑
at+1

b(st+1, at+1)
π(st+1, at+1)
b(st+1, at+1)

×(1− βt+1)λt+1Eb
[
gλβρt+1 |st+1, at+1

]
= Eπ

[
ζt+1 + κt+1θ

>φt+1|st, at
]

+
∑
st+1

P(st+1|st, at)
∑
at+1

π(st+1, at+1)

×(1− βt+1)λt+1Eb
[
gλβρt+1 |st+1, at+1

]
= Eπ

[
ζt+1 + κt+1θ

>φt+1|st, at
]

+Eπ
[
(1− βt+1)λt+1Eb

[
gλβρt+1 |st+1, at+1

]
| st, at

]
,

which as it continues to roll out, and as a result, gives
us Eb

[
gλβρt | st, at

]
= Eπ

[
gλβt | st, at

]
. From definitions

of δλβt and δλβρt , it is immediate that Eπ
[
δλβt φt

]
=

Eb
[
δλβρt φt

]
.

Thus, the objective function J(θ) in Equation (10)
can be written in the following form

J(θ) = Eb
[
δλβρφ

]> Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
, (14)

in which the expectations are conditioned over behav-
ioral policy.

Derivation of GQ(λ) algorithm:
forward-view/backward-view analysis

We derive GQ(λ) algorithm based on gradient-descent
in the J(θ) objective function (14). Thus, we update
the modifiable parameter θ proportional to − 1

2∇J(θ).
Note that all the gradients in this paper are with respect
to the main weight vector θ, and so are denoted simply
by ∇, thus we have

−1
2
∇J(θ)

= −1
2
∇
(
Eb
[
δλβρφ

]>Eb
[
φφ>

]−1 Eb
[
δλβρφ

])
= −

(
∇Eb

[
δλβρφ

])>Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
= −∇Eb

[
δλβρφ>

]
Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
= −Eb

[
(∇δλβρ)φ>

]
Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
= −Eb

[(
∇gλβρ − φ

)
φ>
]
Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
=

(
Eb
[
φφ>

]
− Eb

[
∇gλβρφ>

])
Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
= Eb

[
δλβρφ

]
− Eb

[
∇gλβρφ>

]
Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
≈ Eb

[
δλβρφ

]
− Eb

[
∇gλβρφ>

]
w, (15)

where, in the final expression, we assume that we have
a quasi-stationary estimate w ∈ <n such that

w ≈ Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
. (16)

Because the expectations in the final expression (15)
are not known, to update the modifiable parameter θ,
we use stochastic gradient-descent approach; that is,
we sample from the final expression (15) and update θ
along this sample direction, where it yields the following
forward-view algorithm:

θt+1 = θt + αθ,t

(
δλβρt φt −∇gλβρt φ>twt

)
, (17)

where αθ,t is a sequence of positive step-size parameters.
The desired approximation for w (16), is the solution
to a least-squares problem, which can be found incre-
mentally with linear complexity by the LMS algorithm
that uses δλρt as its target. The standard algorithm for
doing this is the following forward-view algorithm

wt+1 = wt + αw,t

(
δλβρt − w>t φt

)
φt, (18)

where αw,t is another sequence of positive step-size pa-
rameters. Note that w fixed-point in the above expres-
sion is Eb

[
φφ>

]−1 Eb
[
δλβρφ

]
.

94

We now turn to converting these forward-view algo-
rithms to backward-view forms that are more conve-
nient for low-memory mechanistic implementation. For
the first term in equation (17); that is, δλβρt φt, which is
called forward-view version of TD update, we can sub-
stitute δtet (backward-view TD update), just as in con-
ventional TD(λ) algorithm (Sutton and Barto ,1998).
This has been shown in the following theorem:

Theorem 2. Equivalence of TD forward-view and
backward-view. The forward-view description of TD
update is equivalent to the mechanistic backward-view;
that is,

Eb
[
δλβρt φt

]
= Eb[δtet] , (19)

where δλβρt is multi-step TD error, δt is one-step TD
error and et denotes eligibility trace defined in equations
(11, 4,5) respectively.

Proof. We start by finding a recursive way of writing
the multi-step off-policy TD error. Let ζt = rt + βtzt,
then

δλβρt

= gλβρt − θ>t φt
= ζt+1 + (1− βt+1)

[
(1− λt+1)θ>t φ̄t+1

+λt+1ρt+1g
λρ
t+1

]
− θ>t φt

= ζt+1 + (1− βt+1)θ>t φ̄t+1 − θ>t φt
−(1− βt+1)λt+1θ

>
t φ̄t+1 + (1− βt+1)λt+1ρt+1g

λβρ
t+1

= δt

−(1− βt+1)λt+1θ
>
t φ̄t+1 + (1− βt+1)λt+1ρt+1g

λβρ
t+1

+(1− βt+1)λt+1

(
−ρt+1θ

>
t φt+1 + ρt+1θ

>
t φt+1

)
= δt + (1− βt+1)λt+1ρt+1

(
gλβρt+1 − θ>t φt+1

)
+(1− βt+1)λt+1θ

>
t

(
ρt+1φt+1 − φ̄t+1

)
= δt + (1− βt+1)λt+1ρt+1δ

λβρ
t+1

+(1− βt+1)λt+1θ
>
t

(
ρt+1φt+1 − φ̄t+1

)
.

Note that the last part of the above equation has ex-
pected value of vector zero under the behavior policy
because

Eb[ρtφt | st] =
∑
a

b(st, a)
π(st, a)
b(st, a)

φ(st, a)

=
∑
a

π(st, a)φ(st, a) ≡ φ̄t.

Putting all these together, we can write the TD update
(in expectation) in a simple way in terms of eligibility

traces which leads to backward-view:

Eb
[
δλβρt φt

]
= Eb

[(
δt + (1− βt+1)λt+1ρt+1δ

λβρ
t+1

)
φt

]
+Eb

[
(1− βt+1)λt+1θ

>(ρt+1φt+1 − φ̄t+1

)
φt
]

= Eb[δtφt] + Eb
[
(1− βt+1)λt+1ρt+1δ

λβρ
t+1φt

]
+ 0

= Eb[δtφt] + Eb
[
(1− βt)λtρtδλβρt φt−1

]
= Eb[δtφt] + Eb[(1− βt)λtρt

(
δt + (1− βt+1)λt+1ρt+1

×δλβρt+1 + (1− βt+1)λt+1θ
>(ρt+1φt+1 − φ̄t+1

))
φt−1]

= Eb[δtφt] + Eb[(1− βt)λtρtδtφt−1]

+Eb
[
(1− βt)λtρt(1− βt+1)λt+1ρt+1δ

λβρ
t+1φt−1

]
+ 0

= Eb[δt (φt + (1− βt)λtρtφt−1)]

+Eb
[
(1− βt−1)λt−1ρt−1(1− βt)λtρtδλβρt φt−2

]
...

= Eb
[
δt

(
φt + (1− βt)λtρtφt−1

+(1− βt)λtρt(1− βt−1)λt−1ρt−1φt−2 + · · ·
)]

= Eb[δtet] , (20)

where et = φt+(1−βt)λtρtet−1, which gives us a back-
ward view algorithm for the TD(λ) update.

For the second term of the gradient update (15),
we can use the following trick: we take the gra-
dient of the forward-backward relationship just es-
tablished in theorem 2; that is, ∇Eb

[
δλβρt φt

]
=

∇Eb[δtet], then Eb
[
∇δλβρt φ>t

]
= Eb

[
∇δte>t

]
, and

consequently we get, Eb
[
∇gλβρt φ>t

]
− Eb

[
φtφ
>
t

]
=

Eb
[(

(1− βt+1)φ̄t+1 − φt
)
e>t
]
. By arranging the terms

and using Equation (4), and Eb[ρtφt | st = s] = φ̄t , we
get

Eb
[
∇gλβρt φ>t

]
= Eb

[
φtφ
>
t

]
+ Eb

[
(1− βt+1)φ̄t+1e

>
t

]
− Eb

[
φte
>
t

]
= Eb

[
φtφ
>
t

]
+ Eb

[
(1− βt+1)φ̄t+1e

>
t

]
−Eb

[
φt (φt + (1− βt)λtρtet−1)>

]
= Eb

[
(1− βt+1)φ̄t+1e

>
t

]
− Eb

[
(1− βt)λtρtφte>t−1

]
= Eb

[
(1− βt+1)φ̄t+1e

>
t

]
− Eb

[
(1− βt)λtφ̄te>t−1

]
= Eb

[
(1− βt+1)φ̄t+1e

>
t

]
− Eb

[
(1− βt+1)λt+1φ̄t+1e

>
t

]
= Eb

[
(1− βt+1)(1− λt+1)φ̄t+1e

>
t

]
. (21)

Returning now to the forward-view equation for up-
dating θ (17), it should be clear that for the first term

95

we can substitute δtet, based on (19), just as in conven-
tional TD(λ), and for the second term we can substitute
based on (21), thus the backward-view update is as fol-
lows:

θt+1 = θt + αθ,t

[
δtet − κt+1(e>twt)φ̄t+1

]
, (22)

where κt = (1 − βt)(1 − λt). The forward-view algo-
rithm for w, (18), is particularly simple to convert to a
backward-view form. The first term is again the same
as the conventional linear TD(λ) update, and the sec-
ond term is already in a suitable mechanistic form. The
simplest backward-view update is

wt+1 = wt + αw,t

[
δtet − (w>t φt)φt

]
. (23)

Convergence of GQ(λ)
In this section, we show that GQ(λ) converges with
probability one to the TD(λ) fixed-point under stan-
dard assumptions. The TD(λ) fixed-point, θ∗, is a point
which satisfies in

0 = Eb[δtet] = −Aθ∗ + b, (24)

where

A = Eb
[
et
(
φt − (1− βt+1)φ̄t+1)

)>]
, (25)

b = Eb[(rt+1 + βt+1zt+1) et] . (26)

Theorem 3. Convergence of GQ(λ). Consider the
GQ(λ) iterations (2,3,4) with step-size sequences αθ,t
and αw,t satisfing αθ,t, αw,t > 0,

∑∞
t=0 αθ,t =∑∞

t=0 αw,t = ∞,
∑∞
t=0 α

2
θ,t,

∑∞
t=0 α

2
w,t < ∞ and that

αθ,t
αw,t

→ 0 as t → ∞. Further assume that φt is a

Markov process with a unique invariant distribution and
that the φt, et, zt, and rt sequences have uniformly
bounded second moments. Assume that A (25) and
C = Eb

[
φtφ
>
t

]
are non-singular matrices. Then the

parameter vector θt converges with probability one to
the TD(λ) fixed-point θ∗ (24).

Proof. We use Lemma 6.7 (Bertsekas and Tsitsiklis
1996) that can be applied here and follow the proof
of convergence for the TDC algorithm in Sutton et
al. (2009b). For the brevity, we have omitted the
proof.

Conclusion
The GQ(λ) algorithm, which has been introduced
in this paper, incorporates varying eligibility traces
and option-conditional probabilities for policy evalu-
ation. To derive GQ(λ), we carried out a forward-
view/backward-view analysis. We extended the exist-
ing convergence results to show that GQ(λ) is guaran-
teed to converge to the TD(λ) fixed-point. GQ(λ) is a
general gradient TD method for off-policy learning and
as such can be seen as extension of Q-learning. GQ(λ)
is able to learn about temporally abstract predictions,

which makes it suitable to use for learning experientially
grounded knowledge. In addition, GQ(λ) is online, in-
cremental and its computational complexity scales only
linearly with the size of features. Thus, it is suitable for
large-scale applications. Our work, however, is limited
to policy evaluation. Interesting future works is to ex-
tend GQ(λ) for control problems and gather extensive
empirical data on large-scale real-world applications.

References
Baird, L. C. (1995). Residual algorithms: Reinforcement

learning with function approximation. In Proceedings of
the Twelfth International Conference on Machine Learn-
ing, pp. 30–37. Morgan Kaufmann.

Bertsekas, D. P., Tsitsiklis, J. (1996). Neuro-Dynamic Pro-
gramming. Athena Scientific, 1996.

Maei, H. R., Szepesvári, Cs, Bhatnagar, S., Precup, D.,
Silver D., Sutton, R. S. (2009). Convergent Temporal-
Difference Learning with Arbitrary Smooth Function
Approximation. In Accepted in Advances in Neural In-
formation Processing Systems 22. MIT Press.

Sutton, R. S. (1988). Learning to predict by the method of
temporal differences. Machine Learning 3:9–44.

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning:
An Introduction. MIT Press.

Sutton, R. S., Precup, D., Singh, S. (1998). Intra-option
learning about temporally abstract actions. Proceedings
of the 15th International Conference on Machine Learn-
ing, pp. 556564.

Sutton, R. S., Szepesvári, Cs., Maei, H. R. (2009a). A con-
vergent O(n) algorithm for off-policy temporal-difference
learning with linear function approximation. In Ad-
vances in Neural Information Processing Systems 21.
MIT Press.

Sutton, R. S., Maei, H. R, Precup, D., Bhatnagar, S., Sil-
ver, D., Szepesvári, Cs., Wiewiora, E. (2009b). Fast
gradient-descent methods for temporal-difference learn-
ing with linear function approximation. In Proceedings
of the 26th International Conference on Machine Learn-
ing, Montreal, Canada.

Sutton, R. S. (2009). The grand challenge of predictive
empirical abstract knowledge. Working Notes of the
IJCAI-09 Workshop on Grand Challenges for Reason-
ing from Experiences.

Tsitsiklis, J. N., and Van Roy, B. (1997). An analysis of
temporal-difference learning with function approxima-
tion. IEEE Transactions on Automatic Control 42:674–
690.

Watkins, C. J. C. H., and Dayan, P. (1992). Q-learning.
Machine Learning, 8:279–292.

96

A Generic Adaptive Agent Architecture

Integrating Cognitive and Affective States and their Interaction

Zulfiqar A. Memon1,2, Jan Treur1

1VU University Amsterdam, Department of Artificial Intelligence, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
2Sukkur Institute of Business Administration (Sukkur IBA), Air Port Road Sukkur, Sindh, Pakistan

Email: {zamemon, treur}@few.vu.nl URL: http://www.few.vu.nl/~{zamemon, treur}

Abstract
In this paper a generic adaptive agent architecture is

presented that integrates the interaction between cognitive

and affective aspects of mental functioning, based on

variants of notions adopted from neurological literature. It is

discussed how it addresses a number of issues that have

recurred in the recent literature on Cognitive Science and

Philosophy of Mind.

Introduction

Recent neurological findings suggest that studying
cognitive and affective aspects of mental functioning
separately may not be a fruitful way to go. For example,
Phelps (2006, pp. 46-47) states: ‘The mechanisms of emotion

and cognition appear to be intertwined at all stages of stimulus

processing and their distinction can be difficult. (..) Adding the

complexity of emotion to the study of cognition can be daunting,

but investigations of the neural mechanisms underlying these

behaviors can help clarify the structure and mechanisms’.
Similar claims have been made recently by Dolan (2002),
Pessoa (2008), and others.

This paper describes a generic agent architecture that
integrates cognitive and affective aspects of mental
functioning and their interaction. Abstracted variants of a
number of notions adopted from neurological literature
served as ingredients for this architecture: cognitive,
affective states, and (causal) relations between such states
as having strengths expressed by real numbers, body loops
and as if body loops (Damasio, 1999), the mirroring
function of preparation neurons (Rizzolatti and Sinigaglia,
2008; Iacoboni, 2008; Pineda, 2009), the process of
somatic marking (Damasio, 1994, 2003), and Hebbian
learning (Hebb, 1949). In this paper first the generic
architecture is described in some detail. Next it is shown
how it addresses a number of issues that have been
recurring themes in the literature on Cognitive Science and
Philosophy of Mind over the last 20 years or more:
subjectivity in observing and believing, simulation theory
vs theory theory of mind, the reverse causation paradox in
mindreading, empathic understanding, adaptivity,
rationality and emotion in decision making, causal efficacy
of qualia, and physical grounding.

As described in more detail in (Memon and Treur,

2009a; Memon and Treur, 2009b; Bosse, Memon, and

Treur, 2009; Memon and Treur, 2008), the proposed

generic agent architecture has been applied by developing

specialisations for a number of cases involving, for

example, emotion generation, emotion reading, empathic

understanding, believing, and trusting. The current paper

describes the generic agent architecture behind these

specialisations and reviews how it addresses a number of

recurring themes in the literature on mind and cognition.

The Generic Adaptive Agent Architecture

A first design choice for the agent architecture was to
represent (cognitive and affective) states as having certain
levels or extents. This is a crucial choice as it enables
dynamics of states by small changes, for example in
recursive loops. A related choice is to assign strengths to
causal relations between states, which also enables
adaptivity. A specific agent model can be designed by
using a number of such states and causal relations between
them with connection strengths fixed or based on learning.
In Figure 2 an overview of such basic elements is given.

Informally described theories in, for example,

biological or neurological disciplines, often are formulated

in terms of causal relationships or in terms of dynamical

systems. To adequately formalise such a theory the hybrid

dynamic modelling language LEADSTO has been

developed that subsumes qualitative and quantitative

causal relationships, and dynamical systems; cf. (Bosse,

Jonker, Meij and Treur, 2007). Within LEADSTO the

dynamic property or temporal relation a →→D b denotes that

when a state property a occurs, then after a certain time

delay (which for each relation instance can be specified as

any positive real number D), state property b will occur.

Below, this D will be taken as the time step ∆t, and

usually not be mentioned explicitly. In LEADSTO both

logical and numerical calculations can be specified in an

integrated manner, and a dedicated software environment

is available to support specification and simulation, in

which the presented agent model has been formally

specified and which was used for simulation experiments.

First the process of sensing is addressed. Here W is a

variable for world state properties and V for real values in

the interval [0, 1]. For an overview, see also Figure 2.

97

LP1 Sensing a world state

world_state(W, V) &

connection_strength(world_state(W), sensor_state(W), ω)

→→ sensor_state(W, f(ωV))

LP2 Generating a sensory representation for a world state

sensor_state(W, V) &

connection_strength(sensor_state(W), srs(W), ω)

 →→ srs(W, f(ωV))

In these specifications, the function f(W) (with W = ωV)

can be specified by a threshold function h(σ, τ, W) =

1/(1+exp(-σ(W-τ))), with steepness σ, and threshold τ, or

simply by the identity function g(W) = W.

In principle direct connections can be made from

sensory representation states to preparation states (not

depicted in Figure 2), or intermediate cognitive states can

be used as depicted in Figure 2. Property LP3 describes the

response to a cognitive state c in the form of the

preparation for a specific (bodily) reaction b. This specifies

part of the recursive loop between cognitive and affective

states; see Figure 1. It is calculated based on a

parameterised function f(W1,W2) of the original levels Vi

(with Wi = ωiVi).

LP3 Generating a preparation state

cognitive_state(c, V1) & feeling(b, V2) & preparation_state(b, V3)

& connection_strength(cognitive_state(c), preparation_state(b), ω1)

& connection_strength(feeling(b), preparation_state(b), ω2)

→→ preparation_state(b, V3+γ1 (f(ω1V1, ω2V2)-V3) ∆t)

In different applications of the generic agent architecture,
two templates of functions f(W1, W2) have been taken:

g(β,W1, W2) = β(1-(1-W1)(1-W2)) + (1-β)W1W2
h(σ, τ, W1, W2) = 1/(1+exp(-σ(W1+W2-τ)))

Note that the latter formula is often used as threshold

function in neural models. The first formula describes a

weighted sum of two cases. The most positive case

considers the two source values as strengthening each

other, thereby staying under 1: combining the imperfection

rates 1-W1 and 1-W2 of them provides a decreased rate of

imperfection 1-(1-W1)(1-W2). The most negative case

considers the two source values in a negative combination:

combining the imperfections of them provides an increased

imperfection expressed by W1W2. The factor β is a

characteristic that expresses the person’s orientation (from

0 as most negative to 1 as most positive). The parameter γ1

indicates the speed of change: how flexible the state is.

A further choice was to use body loops and as if body
loops for preparations of actions, adopted from (Damasio,
1999, 2003; Bosse, Jonker, and Treur, 2008). This
provides a second type of recursive loop: between
preparation and feeling states (see Figure 1).
Thus a combination of two loops is obtained, where

connection strengths within these loops in principle are

person-specific (and might be subject to learning).

Depending on these personal characteristics, from a

dynamic interaction within and between the two loops, for

a given stimulus an equilibrium is reached for the strength

of the cognitive, preparation, and feeling state.

Figure 1: The two recursive loops related to a cognitive state

The existence of a connection from feeling to cognitive
state can be supported by Damasio’s Somatic Marker
Hypothesis; cf. (Damasio, 1994, 1996, 2003; Bechara and
Damasio, 2004). This is a theory on decision making
which provides a central role to emotions felt. Each
decision option induces (via an emotional response) a
feeling which is used to mark the option. For example,
when a negative somatic marker is linked to a particular
option, it provides a negative feeling for that option.
Similarly, a positive somatic marker provides a positive
feeling for that option. Usually the Somatic Marker
Hypothesis is applied to provide endorsements or
valuations for options for a person’s actions. However, it
may be considered plausible that such a mechanism is
applicable to valuations of internal cognitive states (e.g.,
beliefs) as well. In detail the recursive loops between
preparation and feeling are specified by LP4 to LP8 (see
also Figure 2). Here B is a variable for body states.

LP4 From preparation to effector state for body modification

preparation_state(B, V) &

connection_strength(preparation_state(B), effector_state(B), ω)

 →→ effector_state(B, f(ωV))

LP5 From effector state to modified body state

effector_state(B, V) &

connection_strength(effector_state(B), body_state(B), ω)

 →→ body_state(B, f(ωV))

LP6 Sensing a body state

body_state(B, V) &

connection_strength(body_state(B), sensor_state(B), ω)

 →→ sensor_state(B, f(ωV))

LP7 Generating a sensory representation of a body state

sensor_state(B, V1) & preparation_state(B, V2) & srs(B, V3) &

connection_strength(preparation_state(B),srs(B), ω1) &

connection_strength(sensor_state(B), srs(B), ω2)

→→ srs(B, V3+γ2 (f(ω1V1, ω2V2)-V3) ∆t)

LP8 From sensory representation of body state to feeling

srs(B, V) & connection_strength(srs(B), feeling(B), ω)

 →→ feeling(B, f(ωV))

Next the property for generation of the cognitive state c is
described, where both a sensory representation of w and a
feeling of b play their role. This specifies another part of

 cognitive-

 affective

 loop

feeling

 cognitive

 state

 preparation

 state

 preparation-

 feeling

 loop

98

the loop between cognitive and affective states, in addition
to LP3 (see Figure 1). The resulting level for the cognitive
state c is calculated based on a parameterised function
f(U1,U2) of the original levels Vi (with Ui = ωiVi). Here w,
c, and b are specific instances of world state, cognitive
state and body state.

LP9 Generating a cognitive state

srs(w, V1) & feeling(b, V2) & cognitive_state(c, V3) &

connection_strength(srs(w), cognitive_state(c), ω1) &

connection_strength(feeling(b), cognitive_state(c), ω2)

→→ cognitive_state(c, V3 + γ3 (f(ω1V1, ω2V2) - V3) ∆t)

Within the agent architecture the adaptive element is
incorporated by making (some of the) connection
strengths adaptive. From a Hebbian neurological
perspective (Hebb, 1949), strengthening of connections
over time may be considered plausible, when neurons
involved in the connected nodes often are activated
simultaneously. Therefore such a connection can be
adapted based on a Hebbian learning mechanism (Hebb,
1949; Bi and Poo, 2001; Gerstner and Kistler, 2002).
Based on these considerations, in the agent architecture
connection strengths ω can be adapted using the following
Hebbian learning rule. It takes into account a maximal
connection strength 1, a learning rate η, and an extinction
rate ζ. A similar Hebbian learning rule can be found in
(Gerstner and Kistler, 2002, p. 406). Here Ni are variables
over neural states.

LP10 Hebbian learning rule template

N1(V1) & N2(V2) & connection_strength(N1, N2, ω) &

learning_rate(N1, N2, η) & extinction_rate(N1, N2, ζ)

→→ connection_strength(N1, N2, ω + (ηV1V2 (1 - ω) - ζω) ∆t)

By the factor 1 - ω the learning rule keeps the level of ω
bounded by 1 (which could be replaced by any number).
When extinction is neglected, the upward changes during
learning are proportional to both V1 and V2, which in
particular means that no learning takes place whenever
one of them is 0, and maximal learning takes place when
both are 1.

Figure 2: Basic elements of the architecture

How the Different Issues Are Addressed

This section addresses how the presented agent
architecture addresses a number of recurring issues in the
literature on cognition and mind.

• The role of subjectivity in observing and believing

How states and characteristics of the subject affect his or
her observation and beliefs is a first theme discussed. In an
idealised rational agent the generation of cognitive states
might only depend on informational sources and be fully
independent from non-informational aspects such as
emotions. However, in real life persons may, for example,
have a more optimistic or pessimistic character and affect
their beliefs and other cognitive states in the sense that an
optimist person strengthens beliefs that have a positive
feeling associated and a pessimistic person strengthens
beliefs with a negative associated feeling. Thus the
strengths may depend on non-informational aspects of
mental processes and related personal characteristics. The
presented agent architecture allows to associate emotional
responses to sensory representations that are felt (through
connections LP3, LP4, LP5, LP6, LP7, LP8), and affect
further cognitive processing (through LP9). This has been
worked out in more detail for beliefs in (Memon and Treur,
2009a). For this specialisation in Figure 2 for the cognitive
state c, the belief that w holds is taken.

• The reverse causation paradox in mindreading

A next issue discussed is in how far mindreading makes
use of the own mental states that are counterparts of the
attributed mental states. A nontrivial obstacle for the
Simulation Theory perspective (e.g., Goldman, 2006) on
mindreading is what can be called the reverse causation

paradox: how to simulate a process which in principle has
the reverse order compared to the causal relations used in
the simulation. Further analysis reveals that his paradox in
fact originates from the often made assumption that the
causal relations used by the observed person flow from
mental states to actions and body states, whereas the latter
is what the observing agent observes. As within the
observing agent this observation is the starting point for
the simulation process to determine the observed person’s
mental states, this would be against the direction of the
causal relations used. This issue is encountered, for
example, in (Goldman and Sripada, 2004; Goldman, 2006,
pp. 124-132), where four possible informal emotion
reading models from the Simulation Theory perspective
are sketched and discussed. Partly inspired by these
models, in (Memon and Treur, 2008) an emotion reading
model was introduced, based on the agent architecture
presented here, to address this paradox.

In (Goldman, 2006), for model 1, to resolve the reverse
causation paradox, a ‘generate and test process’ for
emotional states was assumed, where on the basis of a
hypothesized emotional state an own facial expression is
generated, and this is compared to the observed facial
expression of the other person. In the assessment of this
model, the unspecified hypothesis generation process for a

LP3

LP5

LP4

LP6

LP7
LP8

body state b

sensory

 representation of b

feeling

state of b

 sensor

state for b

sensor

state for w

sensory

representation of w

cognitive

state c

LP1 LP2 LP9

preparation

state for b

effector

state for b

world

state w

99

given observed face was considered as a less satisfactory
aspect. Models 2 and 3 discussed in (Goldman, 2006) are
based on a notion of what he calls ‘reverse simulation’.
This means that for the causal relation from emotional state
to (the preparation of) a facial expression which is used to
generate the own facial expressions, also a reverse relation
from prepared own facial expression to emotional state is
assumed, which is used for the mind reading process. A
point of discussion concerning these two models is that
whereas the emotional states and facial expression
(preparation) states used for mindreading are the same as
used for the own emotions and facial expressions, the
causal relations between them used in the two cases are not
the same. Model 4 is based on a so-called ‘mirroring
process’, where a correlation between the emotional state
of the other person and the corresponding own emotional
state is assumed, based on a certain causal chain between
the two. However, the relation of such a causal chain with
the causal relations used to generate the own emotional
states and facial expressions is not made clear.

The model presented in (Memon and Treur, 2008)
based on the agent architecture presented in the current
paper, addresses the reverse causation paradox in the
following manner. The picture for this specialisation is as
in Figure 2, but with cognitive state c left out: the sensory
representation of w has a direct connection to the
preparation for b (which is assumed to have a mirroring
function). Moreover, an additional cognitive imputation
state is present to connect the own feeling and the stimulus
representing the other person’s face. Within this
specialised model the recursive (as if) body loop addresses
the problems of Goldman’s model 1, as it can be viewed as
an efficient and converging way of generating and testing
hypotheses for the emotional states, where the (as if) body
loop takes care of the generation process. Moreover, it
solves the problems of models 2 and 3, as the causal chain
used from facial expression to emotional state is not a
reverse simulation, but just the circular causal chain
(recursive body loop) which is used for generating the own
responses and feeling states as well. Finally, compared to
model 4, the model put forward in (Memon and Treur,
2008) can be viewed as an efficient manner to obtain a
mirroring process between the emotional state of the other
person on the own emotional state, based on the machinery
available for the own emotional states.

• Empathic understanding

For humans, one of the deepest and most fundamental
forms of mutual understanding is based on the notion of
empathy; e.g., (Ickes, 1997; Preston and Waal, 2002;
Decety and Jackson, 2004; Lamm, Batson, and Decety,
2007; Iacoboni, 2005, 2008). Originally (cf. Lipps, 1903)
the notion of empathy was named by the German word
‘einfühlung’ which could be translated as ‘feeling into’;
e.g., (Preston and Waal, 2002). As this word indicates
more explicitly, the notion has a strong relation to feeling:
empathic understanding is a form of understanding which
includes (but is not limited to) feeling what the other
person feels. A particular challenge here is how to enrich

understanding of any cognitive state (such as an attention,
belief, desire or intention state) of another person to a form
of understanding which includes feeling the same emotion
associated to this cognitive state as the other person. So a
crucial aspect for empathic understanding is the way in
which feelings and other mental states are interrelated. For
example, a belief that something bad is to happen, may
relate to feeling fear, or the belief that something good has
happened may relate to feeling happiness. Another
example of such a relationship is the role of cognitive
elements (for example, certain thoughts) in the
development, persistence and recurrence of mood disorders
such as depressions; e.g., (Ingram, Miranda & Segal,
1998). So, in empathic understanding both cognitive and
affective states are to be involved in their mutual
relationship, of both the observed and observing person.

In (Memon and Treur, 2009b) this challenging notion
of empathic understanding was addressed, based on the
agent architecture presented here. The model describes
how the empathic agent does not only understand another
agent’s cognitive state but at the same time feels the
accompanying emotion. It was based on two main
assumptions:

(1) The observing agent performs mindreading using the
same mental states as the observed agent

(2) Both agents have a similar mechanism to associate
feelings to a given cognitive state

Concerning assumption (1), the Simulation Theory
perspective was followed; cf. (Goldman, 2006). For
assumption (2) the body loop was exploited. Assuming
that the observed agent and the observing agent indeed
have a similar mechanism for this, makes it possible that
for a given cognitive state the observing agent generates
the same feeling as the observed agent. The picture for this
specialisation is as in Figure 2, with c the cognitive state
for which empathic understanding takes place. Moreover,
two additional cognitive imputation states are present to
connect both the cognitive state c and the own feeling state
to the other person.

Especially in relation to assumption (2) it can be
questioned to which extent the mechanisms to associate
feelings to a given mental state are always the same for
two persons. As it may be considered plausible that
basically the mechanisms are similar, it is not difficult to
imagine that both due to innate and learned individual
differences in the strengths of the connections in the body
loops, the extent of the empathic reaction may differ.
Indeed, it is often reported that identical twins have a much
higher level of mutual empathy than any two persons
which are not identical twins. Moreover, it is also often
considered that more empathy is shown between two
persons when they have had similar experiences in life.
Nevertheless, a certain extent of empathy still seems
possible between persons which are not genetically
identical and have not exactly the same experiences. The
connection strengths may be considered parameters by
which such innate and acquired individual differences can
be characterised.

100

• Adaptivity

The issue of adaptivity concerns how a transparent
mechanism can be obtained describing how the internal
mental processes adapt to the subject’s experiences with
the world. Classical symbolic models usually have limited
or no adaptivity, as states are often taken binary. In the
agent architecture presented here such adaptivity is
modelled based on the fact that states and connections are
expressed by real numbers, and by use of an abstracted
variant of Hebb’s learning principle (Hebb, 1949; Bi and
Poo, 2001; Gerstner and Kistler, 2002). It has been shown
in a number of cases how this enables an agent to adapt to
experiences with the world, for example, involving notions
such as trust based on experiences, and learning direct
emotion recognition by a form of classification of face
expressions, (Bosse, Memon, and Treur, 2009;
Hoogendoorn, Jaffry, and Treur, 2009; Jaffry and Treur,
2009). In (Memon, Treur, and Umair, 2009) it has been
analysed how this Hebbian learning principle compares to
some other well-known learning principles based on
temporal discounting and memory traces.

• Rationality and emotion in decision making

Another recurring theme is how rational and emotional
aspects in decision making can be understood in a coherent
fashion. A neurological theory addressing the interaction
between cognitive and affective aspects in decision making
is Damasio’s Somatic Marker Hypothesis; cf. (Damasio,
1994, 1996; Bechara and Damasio, 2004; Damasio, 2003).
This is a theory on decision making which provides a
central role to emotions felt. Within a given context, each
represented decision option induces (via an emotional
response) a feeling which is used to mark the option. For
example, a strongly negative somatic marker linked to a
particular option occurs as a strongly negative feeling for
that option. Similarly, a positive somatic marker occurs as
a positive feeling for that option. This theory provides an
account on how emotions and rational aspects cooperate in
the decision process and also explains how this can take
the form of an adaptive process leading to decision making
by intuition or based on ‘experience’. This has been
exploited in the context of the role of trust states in
decision making, modelled based on the agent architecture
presented here, in (Hoogendoorn, Jaffry, and Treur, 2009;
Jaffry and Treur, 2009).

• Physical grounding of agent models

Yet another recurring theme is in how far agent models are
embodied, or have some form of physical grounding.
Agent models can be designed at different levels of
abstraction. For example, the well-known BDI-model
makes use of higher-level cognitive concepts such as
beliefs, desires and intentions. In order to ground models
for embodied agents in a physical, chemical or
neurological context, often the focus is on their interaction
as a coupled system with the environment; e.g., (Clancey,
1997; Clark, 1997). However, they can be related to
physical reality in a still more fundamental manner when
the model of their internal functioning is fully immersed in

a model of the world’s dynamics, and to this end concepts
from a lower level are used in the model, or it is indicated
how the concepts used in the model relate to such lower-
level concepts. In this way cognition can be addressed by
an artificial life like approach; e.g., (Steels and Brooks,
1995; Port and van Gelder, 1995). The agent architecture
presented has adopted abstracted variants of a number of
neurological principles, among which body loops, Hebbian
learning, and a mirroring function of preparation states.
Therefore it is easily embeddable in a model at the
physiological and neurological level. Such an embedding
has been described in more detail in (Memon and Treur,
2008; Treur, 2010).

• Causal efficacy of feelings and qualia

A recurring theme in relation to conscious experiencing or
qualia is whether qualia have causal efficacy; e.g., (Kim,
1996, pp. 155-183; Duch, 2005). In neurological literature
such as (Damasio 1999), qualia have been associated to
certain representations of body states. Within the presented
agent architecture specific types of body states and feelings
associated to internal representations of them, take part in
recursive loops. As such these feeling states can be said to
be both causing and caused by preparation states and
cognitive states. Their efficacy with respect to the
preparation and cognitive states through these loops
depends on the strengths of the connections in the loops.
This shows that at least such feeling states have a certain
extent of causal efficacy. Of course, these feeling states
may be considered as being rather simplified as compared
to qualia, so it is still open for discussion in how far this
pattern can also count as a perspective on the question of
causal efficacy of qualia.

Discussion

The generic agent architecture presented in this paper

integrates the interaction between cognitive and affective

aspects of mental functioning, using abstracted variants of

notions adopted from neurological literature: cognitive,

affective states, and (causal) relations between such states

with strengths expressed by real numbers, body loops and

as if body loops (Damasio, 1999), the mirroring function of

preparation neurons (Rizzolatti and Sinigaglia, 2008;

Iacoboni, 2008; Pineda, 2009), the process of somatic

marking (Damasio, 1994, 2003), and Hebbian learning

(Hebb, 1949).

This agent architecture has been applied by developing

specialisations for a number of cases involving, for

example, emotion generation, emotion reading, empathic

understanding, believing, and trusting. The current paper

describes the generic agent architecture behind these

specialisations and reviews how it addresses a number of

recurring themes in the literature on mind and cognition.

The architecture has been formally specified in the

hybrid modelling language LEADSTO (Bosse et al., 2007).

It allows for both mathematical analysis and logical

101

analysis (verification) as has been shown in work on

specialisations of the architecture, such as (Bosse, Memon

and Treur, 2009; Memon and Treur, 2009a, 2009b).

The generic agent architecture illustrates how recent
developments within the neurological area can be adopted
and shaped to obtain innovative design elements for agent
models. It shows how cognitive modelling and artificial
(general) intelligence can benefit of such developments.

References

Bechara, A., and Damasio, A. (2004). The Somatic Marker

Hypothesis: a neural theory of economic decision. Games and

Economic Behavior, vol. 52, pp. 336-372.

Bi, G.Q., and, Poo, M.M. (2001) Synaptic Modifications by

Correlated Activity: Hebb’s Postulate Revisited. Ann Rev

Neurosci, vol. 24, pp. 139-166.

Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J., (2007). A

Language and Environment for Analysis of Dynamics by

Simulation. International Journal of Artificial Intelligence

Tools, vol. 16, 2007, pp. 435-464.

Bosse, T., Jonker, C.M., and Treur, J., (2008). Formalisation of

Damasio's Theory of Emotion, Feeling and Core

Consciousness. Consciousness and Cognition Journal, vol. 17,

2008, pp. 94–113.

Bosse, T., Memon, Z.A., and Treur, J., (2009). An Adaptive

Agent Model for Emotion Reading by Mirroring Body States

and Hebbian Learning. In: Yang, J.-J., et al. (eds.), Proc. of the

12th International Conference on Principles of Practice in

Multi-Agent Systems, PRIMA'09. Lecture Notes in Artificial

Intelligence, vol. 5925, Springer Verlag, 2009, pp. 552-562.

Clancey, W. (1997). Situated Cognition: On Human Knowledge

and Computer Representations. Cambridge University Press.

Clark, A. (1997). Being There: Putting Brain, Body and World

Together Again. Cambridge, MA: MIT Press.

Damasio, A. (1994). Descartes’ Error: Emotion, Reason and the

Human Brain, Papermac, London.

Damasio, A. (1996). The Somatic Marker Hypothesis and the

Possible Functions of the Prefrontal Cortex. Philosophical

Transactions of the Royal Society: Biological Sciences, vol.

351, pp. 1413-1420

Damasio, A. (1999). The Feeling of What Happens. Body and

Emotion in the Making of Consciousness. New York: Harcourt

Brace, 1999.

Damasio, A. (2003). Looking for Spinoza: Joy, Sorrow, and the

Feeling Brain. Vintage books, London, 2004.

Decety, J. and Jackson, P.L. (2004) The functional architecture of

human empathy. Behav. Cogn. Neurosci. Rev. 3, 71–100.

Dolan, R.J. (2002). Emotion, Cognition, and Behavior. Science,

vol 298, 2002, pp. 1191-1194.

Gerstner, W., and Kistler, W.M. (2002). Mathematical

formulations of Hebbian learning. Biol. Cybern., vol. 87, 2002,

pp. 404–415

Goldman, A.I. (2006). Simulating Minds: The Philosophy,

Psychology, and Neuroscience of Mindreading. New York:

Oxford Univ. Press.

Goldman, A.I., and Sripada, C.S. (2004). Simulationist models of

face-based emotion recognition. Cognition, vol. 94, pp. 193–

213.

Hebb, D.O. (1949). The Organization of Behaviour. John Wiley

& Sons, New York, 1949.

Hoogendoorn, M., Jaffry, S.W., and Treur, J., (2009). Modelling

Trust Dynamics from a Neurological Perspective. In: Proc. of

the Second International Conference on Cognitive

Neurodynamics, ICCN'09. Springer Verlag, 2009, to appear.

Iacoboni M. (2008). Mirroring People: the New Science of How

We Connect with Others. New York: Farrar, Straus & Giroux

Ickes, W. (1997). Empathic Accuracy. Guilford Press, New York.

Jaffry, S.W., and Treur, J., (2009). Comparing a Cognitive and a

Neural Model for Relative Trust Dynamics. In: Proceedings of

the 16th International Conference on Neural Information

Processing, ICONIP'09. Lecture Notes in Computer Science,

vol. 5863. Springer Verlag, 2009, pp. 72-83

Kim, J. (1996). Philosophy of Mind. Westview Press.

Lamm, C., Batson, C.D., and Decety, J. (2007). The neural basis

of human empathy – effects of perspective-taking and cognitive

appraisal. J. Cogn. Neurosci., vol. 19, 2007, pp. 42-58.

Lipps, T. (1903) Einfühlung, innere Nachahmung und

Organempfindung. Archiv für die gesamte Psychologie, vol. 1,

pp. 465–519.

Memon, Z.A., and Treur, J., (2008). Cognitive and Biological

Agent Models for Emotion Reading. In: Jain, L., et al. (eds.),

Proceedings of the 8th IEEE/WIC/ACM International

Conference on Intelligent Agent Technology, IAT'08. IEEE

Computer Society Press, 2008, pp. 308-313.

Memon, Z.A., and Treur, J., (2009a). Modelling the Reciprocal

Interaction between Believing and Feeling from a Neurological

Perspective. In: N. Zhong et al. (eds.), Proc. of the First Intern.

Conf. on Brain Informatics, BI'09. Lecture Notes in Artificial

Intelligence, vol. 5819. Springer Verlag, 2009, pp. 13-24.

Memon, Z.A., and Treur, J., (2009b). Designing Social Agents

with Empathic Understanding. In: Nguyen, N.T., et al. (eds.),

Proc. of the First International Conference on Computational

Collective Intelligence, ICCCI'09. Lecture Notes in Artificial

Intelligence, vol. 5796. Springer Verlag, 2009, pp. 279–293.

Memon, Z.A., Treur, J., and Umair, M., (2009). A Comparative

Analysis on Adaptive Modelling of Induced Feelings. In: Proc.

of the Second International Conference on Cognitive

Neurodynamics, ICCN'09. Springer Verlag, 2009, to appear.

Pessoa, L. (2008). On the relationship between emotion and

cognition. Nature Reviews: Neuroscience, vol. 9, 2008, pp.

148-158.

Phelps, E.A. (2006). Emotion And Cognition: Insights from

Studies of the Human Amygdala. Annu. Rev. Psychol. 2006.

57:27–53

Pineda, J.A. (ed.), (2009). Mirror Neuron Systems: the Role of

Mirroring Processes in Social Cognition. Humana Press Inc.

Port, R.F., Gelder, T. van (eds.), (1995). Mind as Motion:

Explorations in the Dynamics of Cognition. MIT Press,

Cambridge, Mass, 1995.

Preston, S.D. and Waal, F.B.M. de (2002). Empathy: its ultimate

and proximate bases. Behav. Brain Sci. 25, 1–72.

Rizzolatti, G, and Sinigaglia, C., (2008). Mirrors in the Brain:

How Our Minds Share Actions and Emotions. Oxford

Univsersity Press, 2008.

Steels, L. & Brooks, R. (1995). The artificial life route to

artificial intelligence: Building embodied, situated agents.

Erlbaum.

Duch, W. (2005), Brain-inspired conscious computing

architecture. Journal of Mind and Behavior 26(1-2) (2005) 1-22

Treur, J., (2010). On the Use of Reduction Relations to Relate

Different Types of Agent Models. Web Intelligence and Agent

Systems Journal, 2010, to appear.

102

A Cognitive Architecture for Knowledge Exploitation

G.W. Ng, Y.S. Tan, L.N. Teow, K.H. Ng, K.H. Tan, R.Z. Chan

Cognition and Fusion Laboratory, DSO National Laboratories, Singapore

{ngeewah,tyuansin,tloonin,nkhinhua,tkhenghw,cruizhon}@dso.org.sg

Abstract

A cognitive architecture specifies a computational
infrastructure that defines the various regions/functions
working as a whole to produce human-like intelligence [1].
It also defines the main connectivity and information flow
between various regions/functions. These functions and the
connectivity between them in turn facilitate and provide
implementation specifications for a variety of algorithms.
Drawing inspirations from Computational Science,
Neuroscience and Psychology, a top-level cognitive
architecture which models the information processing in
human brain is developed. Three key design principles [2]
inspired by the brain – Hierarchical Structure, Distributed
Memory and Parallelism – are incorporated into the
architecture. A prototype cognitive system is developed and
it is able to bring to bear different types of knowledge to
solve a problem. It has been applied to object recognition in
images. The cognitive system is able to exploit bottom up
perceptual information, top down contextual knowledge and
visual feedback in a way similar to how human utilizes
different knowledge to recognize objects in images.

Introduction

A cognitive architecture specifies a computational
infrastructure that defines the various regions/functions
working as a whole to produce human-like intelligence. It
also defines the main connectivity and information flow
between various regions/functions. These functions and the
connectivity between them in turn facilitate and provide
implementation specifications for a variety of algorithms.
There exist a number of excellent cognitive architectures
but many have overlooked the importance of biological
validity.
 Many artificial intelligence (AI) techniques and
computational theories have been developed over the last
few decades. However, the vast majority of them focus on
modeling only specific aspects of human intelligence.
Hallmarks of human intelligence, such as robustness and
adaptability, are usually “programmed” into systems and
not as outcomes. To achieve human-like intelligence, we
need to look into the seat of human intelligence – the
human brain. We need to understand the different parts of
the human brain, how they are connected, what kind of
information they process and how they process it.
Advances in medical science, especially Neuroscience,
over the years have allowed us to answer some of these
questions. With the help of more sophisticated measuring

devices such as functional Magnetic Resonance Imaging
(fMRI), Neuroscience has provided some insights into this
area. Although current understanding of the biological
aspects of human brain is still quite limited, we can draw
inspirations from what can be observed about it. In other
words, we can try to model the behaviors of Man, and to a
certain extent, the human brain. It is in this aspect that
psychology plays a part.
 Drawing inspirations from the fields of Computational
Science, Neuroscience and Psychology, a top-level
cognitive architecture is developed. Various key parts of
the human brain and their functions are identified and
included in the design. Some of the desired behaviors are
set as design principles. The cognitive architecture also
models information processing in the human brain. The
human brain is able to process information in parallel and
is able to bring to bear different types of knowledge,
distributed throughout the brain, to solve a problem.
 The top-level cognitive architecture design and the
design principles will be presented here, together with a
description of a prototype cognitive system developed
based on this design. This is followed by a discussion on
how the cognitive system has been applied to object
recognition in images, using contextual knowledge and
visual feedback, in a way similar to how a human
recognizes objects in images.

Top-level Cognitive Architecture

Figure 1: Top-level Cognitive Architecture Design

103

Core Modules

Five core regions in the human brain, namely, Frontal
Cortex, Perception, Limbic System, Association Cortex
and Motor Cortex, are identified and shown in Figure 1.
Each of these five regions represents a class of functions or
processes in the brain. The corresponding classes of
functions are Executive Functions, Perception, Affective
Functions, Integrative Functions and Motor Control,
respectively.

Pre-Frontal Cortex (Executive Functions). The
prefrontal cortex (PFC) is the anterior part of the frontal
lobes of the brain. It has been implicated in planning
complex cognitive behaviors, personality expression, and
moderating correct social behavior. It is important when
“top-down” processing is needed; that is, when behavior is
guided by internal states or intentions [3]. The basic
activity of this brain region is considered to be
orchestration of thoughts and actions in accordance with
internal goals. Executive function relates to abilities to
differentiate among conflicting thoughts, determine good
and bad, better and best, same and different, future
consequences of current activities, working towards a
defined goal, prediction of outcomes, expectation based on
actions, and social “control”.

Perception. Perception is the process of acquiring,
interpreting, selecting, and organizing sensory information.

Limbic System (Affective Functions). The limbic system
[4] is a term for a set of brain structures including the
hippocampus and amygdala that support a variety of
functions including emotion, behavior and formation of
long term memory.

Association Cortex (Integrative Functions). John
Hughlings Jackson first proposed in the 1870s that the
cortex is organized hierarchically and that some cortical
areas serve higher-order integrative functions that are
neither purely sensory nor purely motor but associative [5].
These higher-order cortices are what we call today the
association areas, associating sensory inputs to motor
outputs and performing mental task mediating between
sensory inputs and motor outputs. Although the association
areas are located at various parts of the brain, we have
grouped them together as a functional region.

Motor Cortex (Motor Control). It is a term that describes
regions of the cerebral cortex involved in the planning,
control, and execution of voluntary motor functions.

Key Design Principles

Three main characteristics, Hierarchical Structure,
Distributed Memory and Parallelism, of how the human
brain works are identified and these characteristics serve as
the key design principles for the cognitive architecture. We
believe that modeling the different parts of the human

brain and applying these principles will give rise to the
robustness, speed, adaptability and other features we have
come to associate with human intelligence.

Hierarchical Structure. The neurologist Paul MacLean
has proposed that our skull holds not one brain but three
[3], each representing a distinct evolutionary stratum that
has formed upon the older layer before it, like an
archaeological site. He calls it the “triune brain”. He refers
to these three brains as the neocortex or neo-mammalian
brain, the limbic or paleo-mammalian system, and the
reptilian brain that includes the brainstem and cerebellum.
Each of the three brains is connected by nerves to the other
two, but each seems to operate as its own brain system
with distinct capacities.
 The archipallium or primitive (reptilian) brain, or “Basal
Brain”, called by MacLean the “R-complex” and which
includes the brain stem and the cerebellum, is the oldest
brain. It consists of the structures of the brain stem -
medulla, pons, cerebellum, mesencephalon, and the oldest
basal nuclei - the globus pallidus and the olfactory bulbs.
In animals such as reptiles, the brain stem and cerebellum
dominate. For this reason it is commonly referred to as the
“reptilian brain”. It keeps repeating the same behaviors
over and over again, never learning from past mistakes.
This part of the brain is active, even in deep sleep.
 In 1952, MacLean first coined the name “limbic system”
for the middle part of the brain. It can also be termed the
paleopallium or intermediate (old mammalian) brain. It
corresponds to the brain of most mammals, especially the
earlier ones. The old mammalian brain residing in the
limbic system is concerned with emotions and instincts,
feeding, fighting, fleeing, and sexual behavior. To this
brain, survival depends on avoidance of pain and repetition
of pleasure. Physiologically, it includes the hypothalamus,
hippocampus, and amygdala. It has vast interconnections
with the neocortex, so that brain functions are neither
purely limbic nor purely cortical but a mixture of both. As
MacLean understands it, this lowly mammalian brain of
the limbic system tends to be the seat of our value
judgments, instead of the more advanced neocortex. It
decides whether our higher brain has a “good” idea or not,
whether it feels true and right.
 The Neocortex, alternatively known as the cerebrum, the
neopallium, or the superior or rational (neomammalian)
brain, comprises almost the whole of the hemispheres
(made up of a more recent type of cortex) and some
subcortical neuronal groups. It corresponds to the brain of
primates and, consequently, the human species. The higher
cognitive functions which distinguish Man from the
animals are in the cortex. MacLean refers to the cortex as
“the mother of invention and father of abstract thought”. In
Man, the neocortex takes up two thirds of the total brain
mass. Although all other animals also have a neocortex, it
is usually relatively small, with few or no folds (indicating
the surface area, which is a measure of complexity and
development).

104

Figure 2: Three levels of Hierarchy in the Human Brain

 These three brains form a hierarchy of three brains in
one. The cognitive architecture adopts this hierarchical
structure in its design to be used as a guide to where
various types of knowledge are stored and how information
should flow. The various modules in each level of the
hierarchy are shown in Figure 2.

Distributed Memory. There are three main types of
memory. Semantic Memory consists of facts of the world,
disassociated from the place and time when you learned
them. Procedural Memory is knowledge about how to do
things in the world – it includes your knowledge about how
to ride a bicycle, how to type, how to read and understand
language, and in general, how to make decisions in
selecting actions to achieve goals. Episodic Memory
consists of historical episodes or snapshots of specific
experiences that are situated in space and time. Studies
have shown that memory is not located in any one area in
the human brain [6, 7]. Instead, it is distributed throughout
the brain. Based on this concept, the cognitive architecture
does not have a single module where all the memory or
knowledge resides. Each module may have its own
memory which it can use to perform its functions or send
to other modules when necessary. This will add robustness
to the system as it can still function even when some of the
functions are down or when knowledge is not complete.

Parallelism. The third key design principle is Parallelism.
The human brain does not work in a sequential manner but
rather, all the different parts of the brain are constantly
running in parallel. This enables the human brain to handle
multiple tasks and threads of thoughts at one time. This
implies that the brain is able to process different
information at the same time. Following this key design
principle, the different modules in the cognitive
architecture will also be running in parallel. Each module
will be developed as an individual running program. The
ideal case is to have each of the modules running in one
computer in a network. This will allow for true parallelism
and hence efficient multi-tasking.

Prototype Cognitive System

A prototype cognitive system (Figure 3) is developed
based on the top level design. Some functions from each of
the five core regions are developed as modules which form
the basic building blocks.
 A module is the smallest functional unit of the
computational architecture and provides a certain
capability. A module is fully encapsulated, with its own
knowledge base (distributed long term memory), internal
representation schemes and inference methods. Thus a
module can be treated like a black box. Other modules in
the system do not have to know how it works internally.
Each module communicates with other modules either
directly or through the Relay (Thalamus) module. Since
different modules may have different internal
representation schemes, a potential communication
problem among the modules may arise in the
computational architecture. This problem can be solved by
adopting a common representation scheme for all the
outputs of the modules.
 Modules that perform similar functions are grouped
together into classes. For instance, the Perception class
comprises of all modules that perform perceptual
functions. The reason for grouping similar modules into
classes is because different algorithms may be used to find
the solution for different problem spaces. By having the
concept of classes, each module in the same class can
implement just one specific algorithm. This makes the
code of each module smaller and easier to maintain. The
modules in a class can have complementary, competitive
or cooperative relationships. A meta-module for each class
may be required to manage the outputs from the different
modules within the class.
 The prototype system implements each module as an
individual executable program. This is in concordance with
the parallelism principle of the cognitive architecture.

Description

Perception class: Modules belonging to the Perception
class act as receivers to the external world. They take in
raw inputs from the external world and process them into
useful information. The processed information is then sent
to the Relay module for distribution to the rest of the
modules in the agent. The current implementation involves
a biologically inspired pattern recognition algorithm,
Hierarchical Temporal Memory (HTM) [8]. It has an edge
over other approaches as it is able to do generalization by
exploiting the role of time in vision. In the human eyes,
there are short and swift movements called saccades and
stops called fixation. We actually make use of these
saccades and fixations to visualize and learn the objects we
see. This temporal aspect of learning has not been taken
into account by many approaches but it is one of the
fundamental aspects of HTM that makes it capable of
imagery classification.
 Motor class: Modules in the Motor class are used to alter
both the external environment and the internal state of the

105

agent. These modules receive instructions from modules
such as Selector and apply the necessary actions to the
external environment or internal state of the agent.
 Association class: Association modules retrieve a list of
plausible actions or states when presented with a situation
picture. This list of actions or states is associated with the
current decision or situation picture. The list is then sent
back to the Relay module for further processing by other
modules. The current implementation contains a module
which builds upon a rule-based engine.
 Reasoner class: Reasoner modules analyze situations
and proposed actions. They are responsible for higher-level
reasoning. The current implementation contains a Dynamic
Reasoner module which uses D’Brain [9] for its internal
algorithm. D'Brain employs the idea of knowledge
fragments and Bayesian reasoning to perform its analysis.
The Dynamic Reasoner can be used to fuse different
knowledge fragments together.
 Selector class: The role of Selector modules is to select
an action or a decision from a list of proposed actions or
decisions so as to reach the current goals or sub-goals.
Currently, the selection process takes into account the
probability values provided by the Reasoner modules if
they are available. The current implementation contains a
FALCON module [10] which enables reinforcement
learning in the cognitive system. Reinforcement learning is
learning what to do – how to map situations to actions – so
as to maximize a numerical reward signal. The learner is
not told which actions to take, as in most forms of machine
learning, but instead must discover which actions yield the
most reward by trying them. Reinforcement learning
methods typically have both inductive and deductive
aspects: they inductively improve their credibility space on
a stage-by stage basis; they deductively select an
appropriate response to incoming stimuli using their
credibility space. This will enable the Selector module to
make better selections over time.
 Relay module: The Relay module distributes
information to the relevant modules and maintains the
current situation picture, in a form of working memory, for
all the modules in the system. It functions like the
Thalamus in the Limbic System. The current Relay module
is able to combine information from different modules and
distribute the information to the relevant modules.
 Goals Monitoring module: The purpose of the Goals
Monitoring module is to produce appropriate sub-goals
from the top level goals and then monitor the current
situation to check for status of these goals. The status of
the goals can be used to update the other modules which
may affect their processing of information.

Object Classification in Images

This section will describe how the cognitive system has
been applied to object classification in images. Although
there has been much research in imagery classification,
most algorithms consider each potential target
independently and are based solely on measurements of

that target. Due to the nature of the images, the
performance of these classification methods generally
cannot meet all the operational requirements for accurate
classification/recognition.
 Human interpreters do not rely solely on the images to
do their classification. In reality, they also consider
contextual information and inputs from other sources.
Hence, regardless of how well the classifier can perform,
as long as it does not take into account other information,
especially contextual information, users may not have the
confidence to use the results of the classification. This is
not unlike how we, humans, “classify” objects. We also
consider different inputs and contextual information when
we are trying to identify objects.

Figure 3: Prototype Cognitive System

Using the Cognitive System
As described previously, the cognitive system is developed
based on three key design principles – Parallelism,
Hierarchical Structure and Distributed Memory. This leads
to certain design features, one of which is the ability to
process different kinds of knowledge. This is similar to
how Man uses different types of knowledge to solve
problems. As mentioned above, there is a need to consider
contextual information in the classification process to
make it more useful for actual operations. The cognitive
system, with its ability to fuse together different types of
knowledge, can be used to achieve this.
 We, as humans, typically use top-down and bottom-up
information to solve problems in a kind of signal-symbol
fusion. Contextual knowledge captured in the form of
long-term memory is a form of top-down symbolic input
while the actual image provides the bottom-up signal
information. Contextual knowledge can be seen as a form
of prior knowledge which may be learned or gathered
through experience. Another top-down information process
is feedback to Perception. Previous research has shown
that our visual pathways are not unidirectional [11]; in
other words, there are also feedback signals to our visual
cortex. The system models this by storing templates (the
same templates that the Perception module is trained on) in
the Association module and retrieving associated templates
to send to the Perception module as a visual feedback.

106

 The arrows in Figure 3 show how the perceptual inputs
from the image are sent to the different parts of the
cognitive system via the Relay module. Certain contextual
information may be present in the image itself, for
example, a particular formation of objects or other objects
in the same image which can help to identify the object of
interest. This can be extracted and sent together with the
classification results and other contextual information that
is outside the image to the other parts of the cognitive
system. These form the bottom-up information.

Figure 4: Contextual Information

Contextual knowledge is stored in the Executive Function
as shown in Figure 4. The current implementation uses
D’Brain as the reasoning engine and the contextual
knowledge is captured in the form of Bayesian Network
fragments. The HTM output and the contextual
information will instantiate some of these fragments which
will piece together to form a situation specific Bayesian
network. In this way, the bottom-up perceptual inputs are
fused with the contextual knowledge. The inference results
from the Reasoning engine are then sent to the Selector
module. The Selector module will choose the top few
classes (classification classes) based on the results and
send them to the Association module via the Relay module.
 Next, the Association module will retrieve the
corresponding templates based on the selected classes. It
then sends them to the Perception module, via the Relay
module, as feedback to the Perception module. At the
Perception module, each template will be “blended” with
the original target chip. The blending mechanism is
modeled after the human visual recognition process
whereby perceived images are adjusted with respect to
preconceived templates. Humans model objects and derive
the preconceived templates by key features as well as the
stabilities of these features. Thus, when we are blending a
perceptual input with a potential template, we take into
account the features stabilities - features which are more
stable are less adjusted. The blended image is then sent to
the HTM for classification. This feedback forms part of the
top-down information. It is similar to how we retrieve
images of objects we have seen before from our long term
memory, when we “feel” that the object we are seeing may
be one of them. It is important to note here that more than
one template is retrieved from the Association module.

When the correct template is used, the feedback should
help to boost the confidence that the object belongs to the
same class as the template. However, when a template of
the wrong class is used, the confidence that the object
belongs to this wrong class should be lowered. This can
help to prevent the system from being biased to a particular
class or self-reinforcing wrongly.

Figure 5: Feedback to the Perception

An Example

An example is used to illustrate how the cognitive system
works. The image used for the example is shown in Figure
6. The objective is to identify certain targets in the image.
At the start, the user is allowed to enter any contextual
information about the image which he may have gathered
from other sources. In this example, the user inputs the
information that the image is taken near a certain area. The
image is passed into the Perception module which carries
out a target detection process to find the location of the
targets. This is indicated by the square boxes. Next, the
Perception module tries to extract whatever contextual
information that might exist in the image. The extraction
process relies on the contextual knowledge to tell it what to
look out for. As formation is one of the contextual
knowledge stored, the Perception module tries to see if the
targets are deployed in any of known formations. For this
case, the targets are found to be deployed in a line
formation, as shown by the straight line. Finally, the first
target chip on the left is fed into the HTM framework.

Figure 6: Image

107

The image processing done to extract the target chip is
without the removal of clutter or other image pre-
processing. Pre-processing is usually done to “clean up”
the image in order to achieve better performance.
However, we want to demonstrate how the system can
work even when the image quality is far from ideal. As a
result, HTM gives a low confidence level of 6% for the
correct target class.

Figure 7: Contextual Knowledge

 This result is sent to the Reasoner module which fuses it
with the contextual information by instantiating the
corresponding contextual knowledge fragments given in
Figure 7. As mentioned, two pieces of contextual
information were exploited – there is a formation of five
targets deployed in a straight line and secondly, this image
was taken near a particular area known to contain a certain
type of target. One can treat these two pieces of contextual
information as belief inputs on the target class from two
experts that are conditioned on the information outside the
image. The fusion is based on a series of multiplication
operations and renormalization [9]. As a result of
considering the contextual information, the reasoning
engine is able to increase the confidence level for the
correct target class to 46%.
 This result is then sent to the Selector module which
selects the classes of templates to retrieve from the
Association module. The selected templates are then sent
to the Perception module where it is blended with the
original target chip. The blended image is fed into the same
HTM framework. Through blending, the template of the
correct class is able to fill up some of the missing gaps in
the original image as well remove some of the noise. This
helps to push the confidence level for the correct target
class up to 67%. Finally, the Reasoner fuses this new
output from the Perception module with the contextual
information to give a high confidence level of 97%. The
system stops here as the top-level goal of achieving at least
80% confidence has been met.

Conclusions

A cognitive architecture that models after the human brain
information processing is presented here. It identifies core
regions of the human brain and functions that exist in each
region. Key design principles inspired by the human brain
are discussed and used in the cognitive architecture. It is
believed that the hallmarks of human intelligence is an
outcome of the way the human brain is designed and the
cognitive architecture attempts to reproduce these.

 A prototype cognitive system has been developed and
described here. Various modules from the cognitive
architecture are implemented using existing algorithms and
programs. One key feature of the cognitive system is its
ability to bring to bear different types of knowledge to
solve problems and this is demonstrated with an imagery
classification example.
 Results show that incorporating contextual information
and visual feedback in a human-like approach helps to
improve the performance of imagery classification. In the
example, the confidence of correct classification increases
from 6%, when only the target chip is considered, to 97%,
when all information are considered.
 Like the human brain, the cognitive system is developed
to be a generic intelligent system which has many potential
applications. It can be used to perform different tasks by
feeding the relevant knowledge to the system. Current
work includes applying the cognitive system to Computer
Generate Forces and Unmanned Ground Vehicle
navigation.

References

[1] Newell, A. 1990. Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.

[2] Ng, G.W. 2009. Brain-Mind Machinery. World
Scentific.

[3] Miller E.K., Cohen J.D. 2001. An integrative theory of
prefrontal cortext function. Annu. Rev. Neurosci. 24: 167-
202.

[4] MacLean, P. D. 1990. The triune brain in evolution:
Role in paleocerebral functions. New York: Plenum Press.

[5] Kandel E.R., Schwartz J.H. & Jessell T.M. 2000,
Principles of Neural Science. Stamford, Conn: McGraw-
Hill.

[6] Lashley, K. S. 1950. In search of the engram. Society of
Experimental Biology, Symposium 4: 454-482.

[7] Fuster J.M. 1998. Distributed Memory for Both Long
and Short. Neurobiology of Learning and Memory. Vol.
70, Issues 1-2: 268-274.

[8] Hawkins Jeff. 2004. On Intelligence. Times Books,
New York.

[9] Ng, G. W., Ng, K. H., Tan, K. H., & Goh, C. H. K.
2006. The Ultimate Challenge of Commander's Decision
Aids: The Cognition Based Dynamic Reasoning Machine.
In Proceeding of 25th Army Science Conference.

[10] Tan, A.H., Carpenter, G.A., and Grossberg, S. 2007.
Intelligence through interaction: Towards a unified theory
for learning. In Proceedings ISNN, LNCS4491, 1098-1107.

 [11] Edward M. C. 2004. Feedforward, feedback and
inhibitory connections in primate visual cortex. Neural
Networks, Vol. 17, No. 5-6, pp. 625-632.

108

An Artificial Intelligence Model that Combines Spatial and Temporal Perception

Jianglong Nan and Fintan Costello
School of Computer Science and Informatics

University College Dublin
Belfield, Dublin 4, Ireland

jianglong.nan@ucdconnect.ie, fintan.costello@ucd.ie

Abstract

This paper proposes a continuous-time machine learning
model that learns the chronological relationships and the in-
tervals between events, stores and organises the learnt knowl-
edge in different levels of abstraction in a network, and makes
predictions about future events. The acquired knowledge is
represented in a categorisation-like manner, in which events
are categorised into categories of different levels. This inher-
ently facilitates the categorisation of static items and leads to
a general approach to both spatial and temporal perception.
The paper presents the approach and a demonstration show-
ing how it works.

Introduction
The general goal of artificial intelligence requires the intelli-
gent agent to learn and acquire the knowledge not only from
the data set that represents a static environment, but also
from a dynamic world in which some events may always
happen after others and the intervals between them may fol-
low some patterns. Tackling both the spatial and the tempo-
ral aspects of the problem has attracted the interest of other
researchers as well (Sur09).

Intelligence arises first from getting to know the similari-
ties and differences between different items. This has been
well studied by psychologists in the area of categorisation
and concept formation. However, in the very wide range
of models presented in the literature of this area (Ros78)
(Ham95) (Nos86) (Kru92), the items are presented as a set of
features in a static way, in which each presentation is a sin-
gle discrete event, independent of and unrelated to all other
events.

The shortcomings of this static view of concept formation
lie in two aspects. Firstly, it lacks the ability to deal with
irregular dynamic events that last a period of time, which, we
think, can also be handled in a similar way to the static items.
And secondly, human beings and animals actually always
perceive an environment that continuously changes. What is
missing in the static view is how the dynamic perception can
be transformed into the static items.

An experiment described in (Car02) showed that the vi-
sion of our eyes is actually very small. What is usually
thought to be observed at once by the eyes is actually per-
ceived piece by piece and step by step. To our nervous sys-
tem, even the perception of a static world is a multi-step ob-

servation process that spans over a period of time, which
needs to be converted to or treated as an integrated item
somehow to facilitate the intelligence of a higher level.

On the other hand, the learning of time-spanning events
has been studied independently of concept formation. In
Pavlov’s studies (Pav28), dogs were trained or conditioned
by being presented with a conditioning stimulus (e.g. the
ringing of a bell) that was followed, after a certain con-
trolled interval, by an unconditioned stimulus (e.g. the pre-
sentation of food). The critical observation in these studies
was that the timing of a trained dog’s conditioned response
(e.g. salivation) depended on the interval between the con-
ditioned and unconditioned stimuli (between the ringing of
the bell and the presentation of food). The longer the inter-
val between the bell and the presentation of food, the longer
the interval between the bell and the start of salivation: the
shorter the interval between the bell and food, the shorter
the interval between the bell and salivation. Skinner (Ski38)
similarly found that the timing of operant response in trained
pigeons was also dictated by the intervals between reinforce-
ment.

However, unlike the studies of categorisation, all these
studies focused only on one or two specific events and the
corresponding intervals, rather than the relationships be-
tween various events and the acquisition of knowledge. This
paper presents a machine learning approach based on the ar-
gument that time-spanning events can be considered in the
same way as the concepts that are learnt and categorised in
the traditional categorisation perspective.

Figure 1: Demonstration of our Machine Learning Ap-
proach at http://csserver.ucd.ie/˜jlongnan/
agi.html. We invite readers to play with this demo be-
fore reading on.

109

An agent-environment perception is taken. And the model
is designed to serve the purpose of making predictions of
what will happen in the environment.

The remainder of the paper is organised as follows. First,
we present an overview of the model. Then, we go through
different aspects of the model in detail. Finally, we present a
demonstration as illustrated in Figure 1 that shows how the
model works.

Overview
Basically, the model is based on a network of knowledge.
Each node of the network is a rule in the form of

If something happens, then something (else) will hap-
pen, in some time.

which includes three elements: an antecedent, a conse-
quence, and an interval. Note that the antecedent and the
consequence can be the same thing.

Such a node can also be considered as an individual event
in which

First something happens, and then after some time,
something (else) happens.

And this event, represented by an individual node in the net-
work, can take the role of the antecedent or the consequence
of some other rules, i.e. nodes.

In this way, nodes are connected with each other. And al-
though a node consists of only one antecedent and one con-
sequence, it can represent a long series if it is on a higher
level and thus contains a lot of other lower level nodes in-
directly. Ultimately, every node refers to a set of sensory
inputs. Despite that we can create as many nodes as needed,
we do have a fixed set of sensory inputs for any given agent
in this model. These sensory inputs are supposed to receive
pulse-like stimuli to perceive the changes of the environ-
ment. And the nodes not only define sets of sensory inputs,
but also define the patterns and rhythms in which they get
stimulated. Figure 2 shows an example. Note that the inter-
val between the antecedent and the consequence is defined
to be the interval between the first stimulus of the antecedent
and the first stimulus of the consequence.

Unlike the Temporal Causal Networks described by
Bouzid and Ligeza (BL00), the causality of not only the in-
dividual inputs but also specific sequences of inputs is rep-
resented in this network.

This knowledge representation is designed to allow the
predictions of what will happen in the environment to be
made in a distributed manner. Each node, having observed
that its antecedent has happened or is happening, makes a
prediction that its consequence will happen.

Both the concrete experiences and the abstractions are
represented by and handled through the network nodes in
exactly the same way. For a particular series of perceived
stimuli, in addition to the node representing the whole event,
different nodes covering different aspects of the event are
also created. The latter is considered the abstraction.

Less abstract nodes refer to more abstract ones. For ex-
ample, in Figure 2, A refers to B and D. A represents that if
S1, S2 and S3 get stimulated in this particular pattern then

Figure 2: An Example of the Network: (a)Four nodes,
A, B, C, and D, denoted by the circles are formed based on
four sensory inputs, S1, S2, S3, and S4, which are denoted
by the dots. The intervals are written in the brackets be-
low the nodes. Arrows are used to point the antecedent of a
node to the node and also the node to its consequence. The
antecedent and consequence of a node are always drawn be-
low it. (b)The series represented by node A happens first
with S1 getting stimulated. Assuming that it is at time 0, S2
then gets stimulated at time 2s. S3 gets stimulated twice at
time 3s and 5s respectively. And finally S4 gets stimulated
at time 6s. As mentioned previously, the interval between B
and D is defined to be the interval between the time when S1
gets stimulated and the time when S3 gets stimulated for the
second time as the antecedent of D.

S3 and S4 will get stimulated in another pattern. It is con-
sidered less abstract than B and D because it contains more
details. A part of A, e.g. B, may be the useful part while the
rest may be just the trivial details. In this case, A can be con-
sidered as an instance of category B. A node can be referred
to by multiple other nodes. This leads to a semi-hierarchical
network, in which the knowledge represented by the nodes
may arbitrarily overlap with one another and no strict tree
structure is constructed. The nodes can be viewed not only
as different events, but also as the categories they fall into.
A more abstract node can be considered as the category of
all the less abstract nodes that refer to it. And in this way,
the network can be considered both as a collection of events
and as the categorisation of these events.

This model deals with categorisation from a perspective
of perception. The perception is categorised based on the
similarity between different experiences.1 For example, my
car as observed this morning and my car as observed this
evening are considered as two different instances or items.
Both of them are represented by a node and they may both
refer to a more abstract one representing my car. In other
words, they are categorised as my car. Meanwhile, my car

1Although we do believe the things that are categorised together
by human beings must, from a perspective of perception, share
something in common, e.g., hearing other people call those things
the same name, this paper does not discuss whether this principle
is appropriate or not. The proposed prediction-oriented model in-
herently deals with categorisation this way.

110

may refer to and thus be categorised into a more abstract
node, car. Unlike the traditional categorisation models such
as (Ros78) and (Kru92), this model does not differentiate
between the items and the categories they fall into. In the
above example, my car is not only an item but also a cate-
gory.

The generalisation happens when some nodes are consid-
ered more reliable than others. The nodes that are more
likely to make the right predictions and more reliable in re-
flecting what really is going on in the environment dominate
the others.

The following sections focus on the three major aspects of
the model, which are learning, recognition, and prediction
respectively.

Learning
Event
Unlike most conventional machine learning models, the sen-
sory system of this model is designed to receive pulse-like
stimuli input instead of maintain a set of state variables that
can be retrieved freely. The intelligent agent possesses an
array of sensory inputs. An event is simply one or more sen-
sory inputs getting stimulated in some pattern, in which an
individual sensory input may be stimulated more than once.

For the sake of discussion, an event is considered to be
a sub-event of another if all its stimuli are also presented
in the other, and the intervals between them are the same.
Equivalently, the latter is called a super-event of the former.

There are two types of sub-events. A segment sub-event
is a continuous fragment of its super-event. It contains every
stimulus in this fragment. While a non-segment sub-event is
a concatenation of more than one continuous segments, with
missing stimuli from its super-event in between. Figure 3
illustrates this.

Figure 3: Segment Sub-events and Non-segment Sub-
events: (a)The event denoted by node A in Figure 2, in
which the sensory inputs S1, S2, S3 and S4 get stimulated
in a specific tempo. (b)A segment sub-event of it. (c)A
non-segment sub-event of it.

Memory
As described previously, network nodes are formed to de-
note the memories of the perceived events in the form of
antecedent-consequence pairs with intervals, for future use.

Simple nodes, which usually form in the early stage of
a simulation, have sensory inputs as both their antecedents
and consequences. They represent simple events that consist
of only two stimuli to the sensory inputs. Meanwhile, nodes
that represent long and complicated events can be formed
based on existing nodes.

Concrete Experience
When an event is perceived, i.e. some sensory inputs are
stimulated in some pattern, the event itself and all its sub-
events will be stored, assuming none of them has ever been
perceived before.

Take the event shown in Figure 4(a) for example. First,
as shown in Figure 4(b), a node for the first two stimuli
is formed based directly on the sensory inputs (Node A1).
Next, a node for the first three stimuli is formed based on
the first node and the third sensory input (Node A2). The
rest of the event stimuli is all included this way. And finally
the node for the whole event is formed (Node A).

Figure 4: Nodes Formed for Segment Sub-events

But that’s not all. Only the nodes for the segment sub-
events that start with the first stimulus have been formed. In
addition to that, the nodes for the segment sub-events start-
ing with the second stimulus of the event are formed in a
similar way as shown in Figure 4(c). And the nodes for
the segment sub-events starting with each of the rest of the
stimuli are all formed this way.

As a result, a node is formed for every possible fragment
of the event, which may start from anywhere in the event
and end anywhere after the starting point.

Abstraction
Abstraction, in this continuous-time event-based model, is
viewed as the formation of sub-events that are shared by
multiple events.

Sub-events that may possibly be contained by the events
perceived in the future form nodes so that they can be re-
ferred to later. This actually has been partially demon-
strated in the example shown in Figure 4, in which the nodes

111

for only one type of the sub-events of the perceived event,
namely the segment ones, are formed.

Actually, the nodes for all the non-segment sub-events
are also formed similarly. For example, the second and the
fourth stimulus of an event will form a node with the interval
between them, based on which another node for the second,
the fourth, and the fifth stimulus will also be formed.

Any sub-event of a perceived event is considered to be
a possible pattern that the event may be following. When
a number of events indeed follow a particular pattern, they
share that sub-event by referring to the node representing it
either directly as the antecedent or the consequence of them,
or indirectly. Meanwhile, the node for the pattern itself,
is probably sharing some more general patterns with other
nodes. And a network of events of different levels of detail,
that is, different levels of abstraction, is formed this way.

The generalisation of the model works in a way in which,
in the beginning of the learning, the perceived item is anal-
ysed and all various aspects of it are represented individu-
ally. These aspects, which overlap with each other, actually
include all possible more general and more abstract items,
i.e. categories. For example, when a particular car as ob-
served this morning is perceived, various aspects of it such
as a particular car, car, vehicle, wheel, a particular wheel
and a lot of things we do not have names for are also rep-
resented and stored at the same time. As more and more
items are perceived by the agent, some aspects of the percep-
tion, e.g. car, are found to be more useful than others, e.g.
a particular wheel, because they are shared by more items
and thus are more reliable in making the predictions. These
aspects gain more credit and have stronger influence. And
they can be considered as the basic level categories defined
by Rosch (Ros78).

Short-term Memory
The nodes that are formed for a single event are discussed
in the previous sections. However, the intelligent agent is
supposed to receive a continuous series of stimuli, without
separators.

One option is to take all the stimuli from the start till
present as a big event. But that will cost too much space
and time. In the model, when a sensory input is stimulated,
only a limited number of previous stimuli will be linked to
it to form new nodes. The stimuli that occur too early are
simply ignored, as if they have never occurred. The number
of nodes that are formed is limited this way. Those stimuli
that are used to form new nodes are considered to be in a
short-term memory.

A limited size of short-term memory may seem to com-
pletely prevent long series from being learnt. But actually it
does not. This is discussed in the next section.

Recognition
Recurring Event
When an event that has been previously perceived occurs,
no new node is formed. Rather, the event is recognised by
an existing node. This recognition process takes place when

1. The antecedent and consequence of an existing node is
perceived and both of them are still being held in the
short-term memory; and

2. The difference between the perceived interval and that of
the existing node is within a tolerance range.

When either of the above two conditions is not met, even
if the other one is, no recognition takes place and instead a
new node is formed.

Familiarity
The capacity of the short-term memory is designed in rela-
tion to the number of nodes instead of the number of stim-
uli of the events being held.2 When the recognition pro-
cess happens, the existing node will take the place of its an-
tecedent and consequence in the short-term memory. This
makes more space in the short-term memory so that more
information can be held in it. Note that just like more than
one stimulus of a single sensory input can be held in the
short-term memory, a single node can be recognised more
than once in a short period of time and thus has more than
one instance being held in the short-term memory.

Recognition can happen recursively. The nodes that refer
to other nodes can be recognised after their antecedents and
consequences are recognised.

The learning process can also take place upon the recog-
nition. New nodes can be formed based on the recognised
ones or combinations of the recognised nodes and raw stim-
uli.

Therefore, no matter how long a series is, it can still be
learnt piece by piece, as long as it recurs enough times.

Overlapping Events
Assuming two events that have already been learnt indepen-
dently recur in an overlapping manner, in which, one event
starts before the other finishes. Both events will be recog-
nised. And a new node will be formed with one of them as
the antecedent and the other as the consequence. The inter-
val, by definition, is the delay between their first stimuli.

Such nodes, with their antecedents overlapping with their
consequences, are dealt with in the same way as other nodes.
They are also used to make the predictions, as discussed in
detail in the next section.

Prediction
Knowledge and its Use
A node is not only an event. It is also a piece of knowledge.
It is a fraction of the understanding of what the environment
is like. It is a prediction that if its antecedent happens, its
consequence happens after the interval.

The possession of a collection of nodes is the possession
of the knowledge of some aspects of the environment. To
make use of the knowledge, an intelligent agent makes pre-
dictions.

2In the current model, the short-term memory is represented by
a fixed number of spaces, each of which can store either a stimulus
or a recognised node.

112

The sole purpose of this knowledge structure is to allow
the model to make predictions of what will happen based on
what has already happened. Whenever the antecedent of a
node is perceived, it makes a prediction that its consequence
will happen after the interval. A large number of predic-
tions may be made simultaneously by multiple nodes from
all over the network. These predictions can then be used to
make decisions when the model is put into a decision mak-
ing process.

Confidence
The prediction is actually made in the form of the confi-
dence, which is an attribute of the node, ranging from 0
to 1. From one perspective, the confidence of a node can
be viewed as the degree of certainty held by the node that
its consequence is about to happen at the given time. From
another perspective, it can also be viewed as the degree of
certainty held by the node that the event represented by the
node itself is actually happening at the given time.

The confidence of a node is determined by various factors,
the most important of which is the time since its antecedent
last happened.

We define the expectation of a node, which ranges from 0
to 1. It usually stays at 0. When the antecedent of the node is
perceived and the exact interval has passed, it reaches 1. The
time when the expectation reaches 1 is called the expected
time. When the time is around the expected time and within
a tolerance range, the expectation gets a value between 0 and
1. The closer the time is to the expected time, the higher the
expectation is. Currently a cosine function is adopted. See
Figure 5 for illustration.

Figure 5: Expectation Changing over Time: Assuming the
antecedent of the node occurs at time 0 and the conse-
quence does not happen, the expectation of the node starts
to increase when the time is within the tolerance range and
reaches its maximum value of 1 at the expected time. After
that, it gradually decreases to 0.

If the consequence of the node does happen when its ex-
pectation is greater than 0, the prediction is considered to be
verified and the node stops making the prediction by chang-
ing its expectation to 0 immediately.3

3Note that the antecedent is assumed to have completely hap-
pened at this point. More complicated cases are discussed in sub-
sequent sections.

In the simplest case, the confidence of a node is simply its
expectation as in

c = e (1)

where c is the confidence of the node and e is the expec-
tation of it. Other factors that influence the confidence are
discussed in subsequent sections.

Reliability
The predictions made by different nodes are not treated the
same way.

A prediction made by a particular node at a specific time
may turn out to be either right or wrong. On the one hand,
some nodes may tend to always make right predictions. On
the other hand, some nodes may tend to always make wrong
predictions. The knowledge represented by the former better
reflect what the environment is like than the latter.

Each node has its reliability, which may range from 0 to 1.
The higher the reliability of a node is, the stronger influence
the node has on the overall perspective. And the reliability
of a node is actually defined as its degree of accuracy as
follows.

r =
p

a
(2)

where r is the reliability of the node, p denotes how many
times the event represented by the node has been perceived,
and a denotes how many times the event represented by its
antecedent has been perceived. This is because every time
the antecedent of the node is perceived, it makes a predic-
tion, but only when the node itself is perceived afterwards,
the prediction is considered to be accurate.4

The confidence of a node is always influenced by its reli-
ability. Having taken into account the reliability, r, we can
now define the confidence of a node, c, as

c = re (3)

Interaction
The predictions are made by the nodes that are intercon-
nected in the network. And they are not only determined by
the nodes that make them through the general principle of
prediction discussed previously, but also influenced by other
nodes directly or indirectly in a number of ways.

The confidence of a given node can be influenced by a
node that has a direct connection to it, which falls into one
of the four types listed below.

1. Antecedent A node has a unique antecedent. Its influ-
ence on the confidence of the node is already discussed in
the case where it is a sensory input. Actually, if the an-
tecedent itself is another node, the way it influences the
confidence of the node in question is similar, only that its
own confidence plays a role in it. To be more specific,
assuming the antecedent is the only source of the confi-
dence of the node, its confidence c, then, can actually be
represented as

c = ca = c′re (4)
4This definition of the reliability takes a perspective of the over-

all statistical accuracy. Alternatively, a definition that favours the
more recent experiences may be taken.

113

where c′ is the confidence of the antecedent of the node.
We use ca to denote the part of the confidence of the node
that is contributed by its antecedent.

2. Consequence A node has a unique consequence. When
both the antecedent and consequence of the node gains a
confidence value of 1 when its expectation e is still greater
than 0, as the event is considered over, e is set to 0 and
thus ca changes to 0 as well.

3. Antecedent parent Any node that has the given node
as its consequence is an antecedent parent of the given
node. A node may have zero or more antecedent par-
ent. Even if there is no evidence that the antecedent of the
node is happening, the node may gain confidence through
its antecedent parents. Actually, each antecedent parent
passes the ca part of its confidence to the node. In other
words, the confidence that the node gains from each of
its antecedent parent is simply the confidence that the an-
tecedent parent gains from its own antecedent.

4. Consequent parent Any node that has the given node as
its antecedent is a consequent parent of the given node.
Like the antecedent parent, a node may have zero or more
consequent parent. But unlike the antecedent parent, a
consequent parent of the node passes the non-ca part of
its confidence, that is, the consequence it gains from its
antecedent parents and consequent parents, to the node in
question.

To combine the confidence that a node gains from both
its antecedent and all the parent nodes, the confidence of the
node, c, is defined as

c = 1− (1− ca)
∏

i∈A∪C

(1− ci) (5)

where A is the set of all its antecedent parents, C is the set
of all its consequent parents, and ci is the confidence that the
node gains from the parent node i.5

A Demonstration of the Model
Currently we are still working on testing the model against
various experimental data. Whereas in this paper we show a
toy program that can demonstrate how the model learns on
a real-time basis.

As shown in Figure 1, a grid of sensory inputs represented
by squares is displayed by the program. Users are allowed to
stimulate these sensory inputs by clicking on them or press-
ing the keys. Multiple sensory inputs can be stimulated si-
multaneously by pressing multiple keys at the same time.

The program learns both the spatial and temporal patterns
of the stimuli and keeps making the predictions of which
sensory inputs are about to be stimulated. The sensory in-
puts stimulated by the user are shown in red. And the sen-
sory inputs predicted by the program are shown in blue.
The more confident the program is about a prediction, the

5The confidence is considered as the probability of some sort.
Various sources of the confidence are also simply considered to
be independent events. Conventional probability theory is used to
combine them together.

brighter the predicted sensory input will be displayed. The
network size indicates how much knowledge has been learnt.

The program can demonstrate that repeated spatial and
temporal patterns, even with random interference in either a
spatial or a temporal sense, will be learnt. Or from another
perspective, similarities between different processes will be
traced. The more consistently a pattern is followed, the more
confident the prediction about it will be. And longer and
more complicated sequences can be learnt after shorter and
simpler ones are learnt.

Conclusion
A continuous-time prediction-oriented machine learning
model based on a semi-hierarchical knowledge represen-
tation has been presented as an attempt to combine spa-
tial and temporal perception. It allows the intelligent agent
to acquire the knowledge in both static and dynamic en-
vironments; to recognise learnt spatial and temporal pat-
terns and build new knowledge upon them; and to make the
predictions in a distributed manner through the antecedent-
consequence representation of the knowledge. A demon-
stration program is also presented to show how the model
works.

References
Maroua Bouzid and Antoni Ligeza. Temporal causal ab-
duction. Constraints, 5(3):303–319, 2000.
R. Carter. Exploring Consciousness. University of Califor-
nia Press, 2002.
C. R. Gallistel and J. Gibbon. Time, rate and conditioning.
Psychological Review, 107:289–344, 2000.
J.A. Hampton. Similarity-based categorization: The de-
velopment of prototype theory. Psychologica Belgica,
35:103–125, 1995.
J. K. Kruschke. Alcove: An exemplar-based connectionist
model of category learning. Psychological Review, 99:22–
44, 1992.
R. M. Nosofsky. Attention, similarity, and the
identification-categorization relationship. Journal of Ex-
perimental Psychology: General, 115(1):39–57, 1986.
Ivan P. Pavlov. Lectures on Conditioned Reflexes. Liveright
Publishing Corp., 1928.
Eleanor H. Rosch. Natural categories. Cognitive Psychol-
ogy, 4(3):328–350, May 1973.
Eleanor Rosch. Principles of Categorization, pages 27–48.
John Wiley & Sons Inc, 1978.
R. A. Rescorla and A. R. Wagner. A theory of pavlovian
conditioning: Variations in the effectiveness of reinforce-
ment and nonreinforcement. Classical Conditioning II,
pages 64–99, 1972.
B. F. Skinner. The Behavior of Organisms: An Experimen-
tal Analysis. Prentice Hall, New Jersey, 1938.
Eugene J. Surowitz. Importing space-time concepts into
agi. In Proceedings of the Second Conference on Artifi-
cial General Intelligence, Advances in Intelligent Systems
Research. AGI-09, 2009.

114

A conversion between utility and information

Pedro A. Ortega
Department of Engineering
University of Cambridge
Cambridge CB2 1PZ, UK
peortega@dcc.uchile.cl

Daniel A. Braun
Department of Engineering
University of Cambridge
Cambridge CB2 1PZ, UK

dab54@cam.ac.uk

Abstract

Rewards typically express desirabilities or preferences
over a set of alternatives. Here we propose that rewards
can be defined for any probability distribution based on
three desiderata, namely that rewards should be real-
valued, additive and order-preserving, where the lat-
ter implies that more probable events should also be
more desirable. Our main result states that rewards
are then uniquely determined by the negative infor-
mation content. To analyze stochastic processes, we
define the utility of a realization as its reward rate.
Under this interpretation, we show that the expected
utility of a stochastic process is its negative entropy
rate. Furthermore, we apply our results to analyze
agent-environment interactions. We show that the ex-
pected utility that will actually be achieved by the
agent is given by the negative cross-entropy from the
input-output (I/O) distribution of the coupled inter-
action system and the agent’s I/O distribution. Thus,
our results allow for an information-theoretic interpre-
tation of the notion of utility and the characterization
of agent-environment interactions in terms of entropy
dynamics.

Keywords: Behavior, Utility, Entropy, Information

Introduction
Purposeful behavior typically occurs when an agent ex-
hibits specific preferences over different states of the
environment. Mathematically, these preferences can be
formalized by the concept of a utility function that as-
signs a numerical value to each possible state such that
states with higher utility correspond to states that are
more desirable [Fishburn, 1982]. Behavior can then be
understood as the attempt to increase one’s utility. Ac-
cordingly, utility functions can be measured experimen-
tally by observing an agent choosing between different
options, as this way its preferences are revealed. Math-
ematical models of rational agency that are based on
the notion of utility have been widely applied in be-
havioral economics, biology and artificial intelligence
research [Russell and Norvig, 1995]. Typically, such ra-
tional agent models assume a distinct reward signal (or
cost) that an agent is explicitly trying to optimize.

However, as an observer we might even attribute pur-
posefulness to a system that does not have an explicit

reward signal, because the dynamics of the system it-
self reveal a preference structure, namely the preference
over all possible paths through history. Since in most
systems not all of the histories are equally likely, we
might say that some histories are more probable than
others because they are more desirable from the point
of view of the system. Similarly, if we regard all possible
interactions between a system and its environment, the
behavior of the system can be conceived as a drive to
generate desirable histories. This imposes a conceptual
link between the probability of a history happening and
the desirability of that history. In terms of agent de-
sign, the intuitive rationale is that agents should act in a
way such that more desired histories are more probable.
The same holds of course for the environment. Conse-
quently, a competition arises between the agent and the
environment, where both participants try to drive the
dynamics of their interactions to their respective de-
sired histories. In the following we want to show that
this competition can be quantitatively assessed based
on the entropy dynamics that govern the interactions
between agent and environment.

Preliminaries

We introduce the following notation. A set is denoted
by a calligraphic letter like X and consists of elements
or symbols. Strings are finite concatenations of symbols
and sequences are infinite concatenations. The empty
string is denoted by ǫ. Xn denotes the set of strings
of length n based on X , and X ∗ ≡

⋃

n≥0 X
n is the set

of finite strings. Furthermore, X∞ ≡ {x1x2 . . . |xi ∈
X for all i = 1, 2, . . .} is defined as the set of one-way
infinite sequences based on X . For substrings, the fol-
lowing shorthand notation is used: a string that runs
from index i to k is written as xi:k ≡ xixi+1 . . . xk−1xk.
Similarly, x≤i ≡ x1x2 . . . xi is a string starting from the
first index. By convention, xi:j ≡ ǫ if i > j. All proofs
can be found in the appendix.

Rewards

In order to derive utility functions for stochastic pro-
cesses over finite alphabets, we construct a utility func-
tion from an auxiliary function that measures the de-

115

sirability of events, i.e. such that we can assign de-
sirability values to every finite interval in a realization
of the process. We call this auxiliary function the re-
ward function. We impose three desiderata on a reward
function. First, we want rewards to be mappings from
events to reals numbers that indicate the degree of de-
sirability of the events. Second, the reward of a joint
event should be obtained by summing up the reward
of the sub-events. For example, the “reward of drink-
ing coffee and eating a croissant” should equal “the re-
ward of drinking coffee” plus the “reward of having a
croissant given the reward of drinking coffee”1. This is
the additivity requirement of the reward function. The
last requirement that we impose for the reward function
should capture the intuition suggested in the introduc-
tion, namely that more desirable events should also be
more probable events given the expectations of the sys-
tem. This is the consistency requirement.

We start out from a probability space (Ω,F ,Pr),
where Ω is the sample space, F is a dense σ-algebra
and Pr is a probability measure over F . In this sec-
tion, we use lowercase letters like x, y, z to denote the
elements of the σ-algebra F . Given a set X , its comple-
ment is denote by complement X ∁ and its powerset by
P(X). The three desiderata can then be summarized
as follows:

Definition 1 (Reward). Let S = (Ω,F ,Pr) be a prob-
ability space. A function r is a reward function for S
iff it has the following three properties:

1. Real-valued: for all x, y ∈ F ,

r(x|y) ∈ R;

2. Additivity: for all x, y, z ∈ F ,

r(x, y|z) = r(x|z) + r(y|x, z);

3. Consistent: for all x, y, u, v ∈ F ,

Pr(x|u) > Pr(y|v) ⇐⇒ r(x|u) > r(y|v).

Furthermore, the unconditional reward is defined as
r(x) ≡ r(x|Ω) for all x ∈ F .

The following theorem shows that these three
desiderata enforce a strict mapping rewards and prob-
abilities. The only function that can express such a
relationship is the logarithm.

Theorem 1. Let S = (Ω,F ,Pr) be a probability space.
Then, a function r is a reward function for S iff for all
x, y ∈ F

r(x|y) = k logPr(x|y),

where k > 0 is an arbitrary constant.

Notice that the constant k in the expression r(x|y) =
k logPr(x|y) merely determines the units in which we
choose to measure rewards. Thus, the reward function

1Note that the additivity property does not imply that
the reward for two coffees is simply twice the reward for one
coffee, as the reward for the second coffee will be conditioned
on having had a first coffee already.

r for a probability space (Ω,F ,Pr) is essentially unique.
As a convention, we will assume natural logarithms and
set the constant to k = 1, i.e. r(x|y) = lnPr(x|y).

This result establishes a connection to information
theory. It is immediately clear that the reward of an
event is nothing more than its negative information con-
tent: the quantity h(x) = −r(x) is the Shannon infor-
mation content of x ∈ F measured in nats [MacKay,
2003]. This means that we can interpret rewards as
“negative surprise values”, and that “surprise values”
constitute losses.

Proposition 1. Let r be a reward function over a prob-
ability space (Ω,F ,Pr). Then, it has the following prop-
erties:

i. Let x, y ∈ F . Then

−∞ = r(∅) ≤ r(x|y) ≤ r(Ω) = 0.

ii. Let x ∈ F be an event. Then,

er(x∁) = 1 − er(x).

iii. Let z1, z2, . . . ∈ F be a sequence of disjoint events
with rewards r(z1), r(z2), . . . and let x =

⋃

i zi. Then

er(x) =
∑

i

er(zi).

The proof of this proposition is trivial and left to the
reader. The first part sets the bounds for the values of
rewards, and the two latter explain how to construct
the rewards of events from known rewards using com-
plement and countable union of disjoint events.

At a first glance, the fact that rewards take on com-
plicated non-positive values might seem unnatural, as
in many applications one would like to use numerical
values drawn from arbitrary real intervals. Fortunately,
given numerical values representing the desirabilities of
events, there is always an affine transformation that
converts them into rewards.

Theorem 2. Let Ω be a countable set, and let d : Ω →
(−∞, a] be a mapping. Then, for every α > 0, there is
a probability space (Ω, P(Ω),Pr) with reward function
r such that:

1. for all ω ∈ Ω,

r({ω}) ≡ αd(ω) + β,

where β ≡ − ln
(

∑

ω′∈Ω eαd(ω′)
)

;

2. and for all ω, ω′ ∈ Ω,

d(ω) > d(ω′) ⇔ r({ω}) > r({ω′}).

Note that Theorem 2 implies that the probability
Pr(x) of any event x in the σ-algebra P(Ω) generated
by Ω is given by

Pr(x) =

∑

ω∈x eαd(ω)

∑

ω∈Ω eαd(ω)
.

Note that for singletons {ω}, Pr({ω}) is the Gibbs mea-
sure with negative energy d(ω) and temperature ∝ 1

α
.

It is due to this analogy that we call the quantity 1
α

> 0
the temperature parameter of the transformation.

116

Utilities in Stochastic Processes
In this section, we consider a stochastic process Pr over
sequences x1x2x3 · · · in X∞. We specify the process
by assigning conditional probabilities Pr(xt|x<t) to all
finite strings x≤t ∈ X ∗. Note that the distribution

Pr(x≤t) =
∏t

τ=1 Pr(xτ |x<τ) for all x≤t ∈ X ∗ is nor-
malized by construction. By the Kolmogorov exten-
sion theorem, it is guaranteed that there exists a unique
probability space S = (X∞,F ,Pr). We therefore omit
the reference to S and talk about the process Pr.

The reward function r derived in the previous section
correctly expresses preference relations amongst differ-
ent outcomes. However, in the context of random se-
quences, it has the downside that the reward of most
sequences diverges. A sequence x1x2x3 · · · can be inter-
preted as a progressive refinement of a point event in F ,
namely, the sequence of events ǫ ⊃ x≤1 ⊃ x≤2 ⊃ x≤3 ⊃
· · · . One can exploit the interpretation of the index as
time to define a quantity that does not diverge. We
define thus the utility as the reward rate of a sequence.

Definition 2 (Utility). Let r be a reward function for
the process Pr. The utility of a string x≤t ∈ X ∗ is
defined as

U(x≤t) ≡
1

t

t
∑

τ=1

r(xτ |x<τ),

and for a sequence x = x1x2x3 · · · ∈ X∞ it is defined
as

U(x) ≡ lim
t→∞

U(x≤t)

if this limit exists2.

A utility function that is constructed according to
Definition 2 has the following properties.

Proposition 2. Let U be a utility function for a pro-
cess Pr. The following properties hold:

i. For all x = x1x2 · · · ∈ X∞ and all t, k ∈ N,

−∞ = U(λ) ≤ U(x≤t) ≤ U(ǫ) = 0,

where λ is any impossible string/sequence.

ii. For all x≤t ∈ X ∗,

Pr(x≤t) = exp
(

t ·U(x≤t)
)

.

iii. For any t ∈ N,

E[U(x≤t)] = −
1

t
H[Pr(x≤t)],

where H is the entropy functional (see the appendix).

Part (i) provides trivial bounds on the utilities
that directly carry over from the bounds on rewards.
Part (ii) shows how the utility of a sequence determines
its probability. Part (iii) implies that the expected util-
ity of an interaction sequence is just its negative entropy
rate.

2Strictly speaking, one could define the upper and
lower rate U+(x) ≡ lim supt→∞ U(x≤t) and U−(x) ≡
lim inft→∞ U(x≤t) respectively, but we avoid this distinc-
tion for simplicity.

Utility in Coupled I/O systems
Let O and A be two finite sets, the first being the
set of observations and the second being the set of
actions. Using A and O, a set of interaction se-
quences is constructed. Define the set of interactions
as Z ≡ A × O. A pair (a, o) ∈ Z is called an interac-
tion. We underline symbols to glue them together as in
ao≤t = a1o1a2o2 · · ·atot.

An I/O system Pr is a probability distribution over
interaction sequences Z∞. Pr is uniquely determined
by the conditional probabilities

Pr(at|ao<t), Pr(ot|ao<tat)

for each ao≤t ∈ Z∗. However, the semantics of the
probability distribution Pr are only fully defined once it
is coupled to another system. Note that an I/O system
is formally equivalent to a stochastic process; hence one
can construct a reward function r for Pr.

Let P, Q be two I/O systems. An interaction sys-
tem (P,Q) defines a generative distribution G that de-
scribes the probabilities that actually govern the I/O
stream once the two systems are coupled. G is speci-
fied by the equations

G(at|ao<t) = P(at|ao<t)

G(ot|ao<tat) = Q(ot|ao<tat)

valid for all aot ∈ Z∗. Here, G is a stochastic pro-
cess over Z∞ that models the true probability distri-
bution over interaction sequences that arises by cou-
pling two systems through their I/O streams. More
specifically, for the system P, P(at|ao<t) is the proba-
bility of producing action at ∈ A given history ao<t and
P(ot|ao<tat) is the predicted probability of the obser-
vation ot ∈ O given history ao<tat. Hence, for P, the
sequence o1o2 . . . is its input stream and the sequence
a1a2 . . . is its output stream. In contrast, the roles of
actions and observations are reversed in the case of the
system Q. This model of interaction is very general
in that it can accommodate many specific regimes of
interaction. By convention, we call the system P the
agent and the system Q the environment.

In the following we are interested in understanding
the actual utilities that can be achieved by an agent P
once coupled to a particular environment Q. Accord-
ingly, we will compute expectations over functions of
interaction sequences with respect to G, since the gen-
erative distribution G describes the actual interaction
statistics of the two coupled I/O systems.

Theorem 3. Let (P,Q) be an interaction system. The
expected rewards of G, P and Q for the first t interac-
tions are given by

E[rG(ao≤t)] = − H[P(a≤t|o<t)] − H[Q(o≤t|a≤t)],

E[rP(ao≤t)] = − H[P(a≤t|o<t)] − H[Q(o≤t|a≤t)]

− KL[Q(o≤t|a≤t)‖P(o≤t|a≤t)],

E[rQ(ao≤t)] = − H[P(a≤t|o<t)] − H[Q(o≤t|a≤t)]

− KL[P(a≤t|o<t)‖Q(a≤t|o<t)],

117

where rG, rP and rQ are the reward functions for G,
P and Q respectively. Note that H and KL are the
entropy and the relative entropy functionals as defined
in the appendix.

Accordingly, the interaction system’s expected re-
ward is given by the negative sum of the entropies pro-
duced by the agent’s action generation probabilities and
the environment’s observation generation probabilities.
The agent’s (actual) expected reward is given by the
negative cross-entropy between the generative distribu-
tion G and the agent’s distribution P. The discrepancy
between the agent’s and the interaction system’s ex-
pected reward is given by the relative entropy between
the two probability distributions. Since the relative en-
tropy is positive, one has E[rG(ao≤t)] ≥ E[rP(ao≤t)].
This term implies that the better the environment is
“modeled” by the agent, the better its performance will
be. In other words: the agent has to recognize the
structure of the environment to be able to exploit it.
The designer can directly increase the agent’s expected
performance by controlling the first and the last term.
The middle term is determined by the environment and
only indirectly controllable. Importantly, the terms are
in general coupled and not independent: changing one
might affect another. For example, the first term sug-
gests that less stochastic policies improve performance,
which is oftentimes the case. However, in the case of a
game with mixed Nash equilibria the overall reward can
increase for a stochastic policy, which means that the
first term is compensated for by the third term. Given
the expected rewards, we can easily calculate the ex-
pected utilities in terms of entropy rates.

Corollary 1. Let (P,Q) be an interaction system. The
expected utilities of G, P and Q are given by

E[UG] = GUP + GUQ

E[UP] = GUP + GUQ + PUP

E[UQ] = GUP + GUQ + PUQ

where GUP, GUQ and PUP are entropy rates defined
as

GUP ≡ −
1

t

t
∑

τ=1

H[P(aτ |ao
<τ

)]

PUP ≡ −
1

t

t
∑

τ=1

KL[Q(oτ |ao
<τ

aτ)‖P(oτ |ao
<τ

aτ)]

GUQ ≡ −
1

t

t
∑

τ=1

H[Q(oτ |ao
<τ

aτ)]

PUQ ≡ −
1

t

t
∑

τ=1

KL[P(aτ |ao
<τ

)‖Q(aτ |ao
<τ

)].

This result is easily obtained by dividing the quanti-
ties in Theorem 3 by t and then applying the chain rule
for entropies to break the rewards over full sequences
into instantaneous rewards. Note that GUP, GUQ are
the contributions to the utility due the generation of
interactions, and PUP, PUQ are the contributions to
the utility due to the prediction of interactions.

Examples

One of the most interesting aspects of the information-
theoretic formulation of utility is that it can be applied
both to control problems (where an agent acts in a non-
adaptive environment) and to game theoretic problems
(where two possibly adaptive agents interact). In the
following we apply the proposed utility measures to two
simple toy examples from these two areas. In the first
example, an adaptive agent interacts with a biased coin
(the non-adaptive agent) and tries to predict the next
outcome of the coin toss, which is either ‘Head’ (H) or
‘Tail’ (T). In the second example two adaptive agents
interact playing the matching pennies game. One player
has to match her action with the other player (HH or
TT), while the other player has to unmatch (TH or
HT). All agents have the same sets of possible observa-
tions and actions which are the binary sets O = {H, T}
and A = {H, T}.

Example 1. The non-adaptive agent is a biased coin.
Accordingly, the coin’s action probability is given by
its bias and was set to Q(o = H) = 0.9. The coin
does not have any biased expectations about its obser-
vations, so we set Q(a = H) = 0.5. The adaptive agent
is given by the Laplace agent whose expectations over
observed coin tosses follows the predictive distribution
P(o = H|t, n) = (n + 1)/(t + 2), where t is the number
of coin tosses observed so far and n is the number of
observed Heads. Based on this estimator the Laplace
agent chooses its action deterministically according to
P(a = H|t, n) = Θ(n+1

t+2 −
1
2), where Θ(·) is the Heaviside

step function. From these distributions the full proba-
bility over interaction sequences can be computed. Fig-
ure 1A shows the entropy dynamics for a typical single
run. The Laplace agent learns the distribution of the
coin tosses, i.e. the KL decreases to zero. The negative
cross-entropy stabilizes at the value of the observation
entropy that cannot be further reduced. The entropy
dynamics of the coin do not show any modulation.

Example 2. The two agents are modeled based on
smooth fictitious play [Fudenberg and Kreps, 1993].
Both players keep count of the empirical frequencies
of Head and Tail respectively. Therefore, each player i

stores the quantities κ
(1)
i = ni and κ

(2)
i = t−ni where t

is the number of moves observed so far, n1 is the number
of Heads observed by Player 1 and n2 is the number of
Heads observed by Player 2. The probability distribu-
tions P(o = H|t, n1) = γ1 and Q(a = H|t, n2) = γ2 over
inputs is given by these empirical frequencies through
γi = κi/

∑

i κi. The action probabilities are com-
puted according to a sigmoid best-response function
P(a = H|t, n1) = 1/(1 + exp(−α(γ1 − 0.5))), and
Q(o = H|t, n2) = 1/(1 + exp(−α(0.5 − γ2))) respec-
tively in case of Player 2 that has to unmatch. This
game has a well-known equilibrium solution that is a
mixed strategy Nash equilibrium where both players act

118

−1

−0.5

0

E[U
G

]

−
 n

at
s

0 50 100

−1

−0.5

0

E[U
Q

]

−
 n

at
s

time steps

−1

−0.5

0

GU
P

0 50 100

−1

−0.5

0

GU
Q

time steps

−1

−0.5

0

GU
Q

0 50 100

−1

−0.5

0

time steps

GU
P

−1

−0.5

0

PU
P

0 50 100

−1

−0.5

0

time steps

PU
Q

A
L

ap
la

ce
 A

g
en

t
C

o
in

Cross Negentropy Act. Negentropy Obs. Negentropy Neg. KL

−3

−2

−1

0

−
 n

at
s

E[U
P
]

0 250 500
−3

−2

−1

0

−
 n

at
s

time steps

E[U
Q

]

−1

−0.5

0

GU
P

0 250 500

−1

−0.5

0

time steps

GU
Q

−1

−0.5

0

GU
Q

0 250 500

−1

−0.5

0

time steps

GU
P

−1

−0.5

0

PU
P

0 250 500

−1

−0.5

0

time steps

PU
Q

B

P
la

ye
r

1
P

la
ye

r
2

Cross Negentropy Act. Negentropy Obs. Negentropy Neg. KL

Figure 1: (A) Entropy dynamics of a Laplace agent interacting with a coin of bias 0.9. The Laplace agent learns
to predict the coin’s behavior as can be seen in the decrease of the KL-divergence and the cross entropy. Since
the Laplace agent acts deterministically its action entropy is always zero. Its observation entropy equals the action
entropy of the coin. The coin does not change its behavior, which can be seen from the flat entropy curves. (B)
Entropy dynamics of two adaptive agents playing matching pennies. Both agents follow smooth fictitious play. They
converge to uniform random policies, which means that their action negentropies converge to log(2). Both agents
learn the probability distribution of the other agent, as can be seen in the decrease of the KL-divergences.

randomly. Both action and observation entropies con-
verge to the value log(2). Interestingly, the information-
theoretic utility as computed by the cross-entropy takes
the action entropy into account. Compare Figure 1B.

Conclusion

Based on three simple desiderata we propose that re-
wards can be measured in terms of information con-
tent and that, consequently, the entropy satisfies prop-
erties characteristic of a utility function. Previous the-
oretical studies have reported structural similarities be-
tween entropy and utility functions, see e.g. [Candeal
et al., 2001], and recently, relative entropy has even
been proposed as a measure of utility in control sys-
tems [Todorov, 2009, Kappen et al., 2009, Ortega and
Braun, 2008]. The contribution of this paper is to de-
rive axiomatically a precise relation between rewards
and information value and to apply it to coupled I/O
systems.

The utility functions that we have derived can be
conceptualized as path utilities, because they assign a
utility value to an entire history. This is very similar
to the path integral formulation in quantum mechan-
ics where the utility of a path is determined by the
classic action integral and the probability of a path is
also obtain by taking the exponential of this ‘utility’
[Feynman and Hibbs, 1965]. In particular, we obtain
the (cumulative time-averaged) cross entropy as a util-
ity function when an agent is coupled to an environ-
ment. This utility function not only takes into account
the KL-divergence as a measure of learning, but also
the action entropy. This is interesting, because in most
control problems controllers are designed to be deter-
ministic (e.g. optimal control theory) in response to
a known and stationary environment. If, however, the
environment is not stationary and in fact adaptive as
well, then it is a well-known result from game theory

that optimal strategies might be randomized. The util-
ity function that we are proposing might indeed allow
quantifying a trade-off between reducing the KL and
reducing the action entropy. In the future it will there-
fore be interesting to investigate this utility function in
more complex interaction systems.

Appendix

Entropy functionals

Entropy: Let Pr be a probability distribution over
X × Y . Define the (average conditional) entropy [Shan-
non, 1948] as

H[Pr(x|y)] ≡ −
∑

x,y

Pr(x, y) ln Pr(x|y).

Relative Entropy: Let Pr1 and Pr2 be two probability
distributions over X × Y. Define the (average condi-
tional) relative entropy [Kullback and Leibler, 1951] as

KL[Pr1(x|y)‖Pr2(x|y)] ≡
∑

x,y

Pr1(x, y) ln
Pr1(x|y)

Pr2(x|y)
.

Proof of Theorem 1

Proof. Let the function g be such that g(Pr(x)) = r(x).
Let x1, x2, . . . , xn ∈ F be a sequence of events, such
that Pr(x1) = Pr(xi|x<i) > 0 for all i = 2, . . . , n.
We have Pr(x1, . . . , xn) =

∏

i Pr(xi|x<i) = Pr(x1)
n.

Since Pr(x) > Pr(x′) ⇔ r(x) > r(x′) for any x, x′ ∈
F , then Pr(x) = Pr(x′) ⇔ r(x) = r(x′), and thus
Pr(x1) = Pr(xi|x<i) ⇔ r(x1) = r(xi|x<i) for all
i = 2, . . . , n. This means, r(x1, . . . , xn) = nr(xi).
But g(Pr(x1, . . . , xn)) = r(x1, . . . , xn), and hence
g(Pr(x1)

n) = nr(x1). Similarly, for a second sequence
of events y1, y2, . . . , ym ∈ F with Pr(y1) = Pr(yi|y<i) >
0 for all i = 1, . . . , m, we have g(Pr(y1)

n) = nr(y1).

119

The rest of the argument parallels Shannon’s entropy
theorem [Shannon, 1948]. Define p = Pr(x1) and q =
Pr(y1). Choose n arbitrarily high to satisfy qm ≤ pn <
qm+1. Taking the logarithm, and dividing by n log q
one obtains

m

n
≤

log p

log q
<

m

n
+

1

n
⇔

∣

∣

∣

m

n
−

log p

log q

∣

∣

∣
< ε,

where ε > 0 is arbitrarily small. Similarly, using
g(pn) = n g(p) and the monotonicity of g, we can write
m g(q) ≤ n g(p) < (m + 1) g(q) and thus

m

n
≤

g(p)

g(q)
<

m

n
+

1

n
⇔

∣

∣

∣

m

n
−

g(p)

g(q)

∣

∣

∣
< ε,

where ε > 0 is arbitrarily small. Combining these two
inequalities, one gets

∣

∣

∣

log p

log q
−

g(p)

g(q)

∣

∣

∣
< 2ε,

which, fixing q, gives r(p) = g(p) = k log p, where k > 0.
This holds for any x1 ∈ F with Pr(x1) > 0.

Proof of Theorem 2

Proof. For all ω, ω′ ∈ Ω, d(ω) > d(ω′) ⇔ αd(ω) + β >
αd(ω′) + β ⇔ r({ω}) > r({ω′}) because the affine
transformation is positive. Now, the induced prob-
ability over P(Ω) has atoms {ω} with probabilities
Pr({ω}) = er({ω)} ≥ 0 and is normalized:

∑

ω∈Ω

er({ω}) =
∑

ω∈Ω

eαd({ω})+β =

∑

ω∈Ω eαd(ω)

∑

ω∈Ω eαd(ω)
= 1.

Since knowing Pr({ω}) for all ω ∈ Ω determines the
measure for the whole field P(Ω), (Ω, P(Ω),Pr) is a
probability space.

Proof of Proposition 2

Proof. (i) Since −∞ < r(xτ |x<τ) ≤ 0 for all τ , then

−∞ < 1
t

∑t

τ=1 r(xτ |x<τ) = U(x≤t) ≤ 0 for all t. (ii)
Write Pr(x≤t) as

Pr(x≤t) =

t
∏

τ=1

Pr(xτ |x<τ) =

t
∏

τ=1

exp
(

r(xτ |x<τ)
)

= exp
(

t
∑

τ=1

r(xτ |x<τ)
)

= exp
(

t · U(x≤t)
)

.

(iii) E[U(x≤t)] =
∑

x≤t
Pr(x≤t)U(x≤t) =

∑

x≤t
Pr(x≤t)

1
t
r(x≤t) = − 1

t
H[Pr(x≤t)], where we have

applied (ii) in the second equality and r(·) = ln(Pr(·))
in the third equality.

Proof of Theorem 3

Proof. This proof is done by straightforward calcula-
tion. First note that

G(ao≤t) =

t
∏

τ=1

P(aτ |ao<τ)Q(oτ |ao<τaτ)

= P(a≤t|o<t)Q(o≤t|a≤t),

which is obtained by applying multiple times the chain
rule for probabilities and noting that the probability
of a symbol is fully determined by the previous sym-
bols. Similarly P(ao≤t) = P(a≤t|o<t)P(o≤t|a≤t) is ob-
tained. We calculate here E[rP(ao≤t)]. The calculation
for E[rG(ao≤t)] and E[rQ(ao≤t)] are omitted because
they are analogous.

E[rP(ao≤t
)]

(a)
=

∑

ao≤t

G(ao≤t
) lnP(ao≤t

)

(b)
=

∑

ao≤t

G(ao≤t
)
(

lnP(a≤t|o<t) + lnP(o≤t|a≤t)
)

(c)
=

∑

ao≤t

G(ao≤t
)
(

lnP(a≤t|o<t) + lnP(o≤t|a≤t)

+ lnQ(o≤t|a≤t) − lnQ(o≤t|a≤t)
)

(d)
= −H[P(a≤t|o<t)] − H[Q(o≤t|a≤t)]

−KL[Q(o≤t|a≤t)‖P(o≤t|a≤t)].

Equality (a) follows from the definition of expecta-
tions and the relation between rewards and probabil-
ities. In (b) we separate the term in the logarithm into
the action and observation part. In (c) we add and
subtract the term Q(o≤t|a≤t) in the logarithm. Equal-
ity (d) follows from the algebraic manipulation of the
terms and from identifying the entropy terms, noting
that G(ao≤t) = P(a≤t|o<t)Q(o≤t|a≤t).

References
J.C. Candeal, J.R. De Miguel, E. Induráin, and G.B. Mehta.

Utility and entropy. Economic Theory, 17:233–238, 2001.

R.P. Feynman and A.R. Hibbs. Quantum Mechanics and
Path Integrals. McGraw-Hill, 1965.

P.C. Fishburn. The Foundations of Expected Utility. D.
Reidel Publishing, Dordrecht, 1982.

D. Fudenberg and D.M. Kreps. Learning mixed equilibria.
Games and Economic Behavior, 5:320–367, 1993.

B. Kappen, V. Gomez, and M. Opper. Optimal control as
a graphical model inference problem. arXiv:0901.0633,
2009.

S. Kullback and R.A. Leibler. On information and suffi-
ciency. The Annals of Mathematical Statistics, 22(1):79–
86, mar 1951. ISSN 0003-4851.

D.J.C. MacKay. Information Theory, Inference, and Learn-
ing Algorithms. Cambridge University Press, 2003.

P.A. Ortega and D.A. Braun. A minimum relative entropy
principle for learning and acting. arXiv:0810.3605, 2008.

S. Russell and P. Norvig. Artificial Intelligence: A Mod-
ern Approach. Prentice-Hall, Englewood Cliffs, NJ, 1st
edition edition, 1995.

C. E. Shannon. A mathematical theory of communication.
Bell System Technical Journal, 27:379–423 and 623–656,
Jul and Oct 1948.

E. Todorov. Efficient computation of optimal actions. Pro-
ceedings of the National Academy of Sciences U.S.A., 106:
11478–11483, 2009.

120

A Bayesian Rule for Adaptive Control based on Causal Interventions

Pedro A. Ortega
Department of Engineering
University of Cambridge
Cambridge CB2 1PZ, UK
peortega@dcc.uchile.cl

Daniel A. Braun
Department of Engineering
University of Cambridge
Cambridge CB2 1PZ, UK

dab54@cam.ac.uk

Abstract

Explaining adaptive behavior is a central problem in
artificial intelligence research. Here we formalize adap-
tive agents as mixture distributions over sequences of
inputs and outputs (I/O). Each distribution of the mix-
ture constitutes a ‘possible world’, but the agent does
not know which of the possible worlds it is actually fac-
ing. The problem is to adapt the I/O stream in a way
that is compatible with the true world. A natural mea-
sure of adaptation can be obtained by the Kullback-
Leibler (KL) divergence between the I/O distribution
of the true world and the I/O distribution expected by
the agent that is uncertain about possible worlds. In
the case of pure input streams, the Bayesian mixture
provides a well-known solution for this problem. We
show, however, that in the case of I/O streams this so-
lution breaks down, because outputs are issued by the
agent itself and require a different probabilistic syntax
as provided by intervention calculus. Based on this
calculus, we obtain a Bayesian control rule that allows
modeling adaptive behavior with mixture distributions
over I/O streams. This rule might allow for a novel
approach to adaptive control based on a minimum KL-
principle.

Keywords: Adaptive behavior, Intervention calculus,
Bayesian control, Kullback-Leibler-divergence

Introduction
The ability to adapt to unknown environments is of-
ten considered a hallmark of intelligence [Beer, 1990,
Hutter, 2004]. Agent and environment can be concep-
tualized as two systems that exchange symbols in ev-
ery time step [Hutter, 2004]: the symbol issued by the
agent is an action, whereas the symbol issued by the
environment is an observation. Thus, both agent and
environment can be conceptualized as probability dis-
tributions over sequences of actions and observations
(I/O streams).

If the environment is perfectly known then the I/O
probability distribution of the agent can be tailored to
suit this particular environment. However, if the envi-
ronment is unknown, but known to belong to a set of
possible environments, then the agent faces an adap-
tation problem. Consider, for example, a robot that
has been endowed with a set of behavioral primitives

and now faces the problem of how to act while being
ignorant as to which is the correct primitive. Since we
want to model both agent and environment as proba-
bility distributions over I/O sequences, a natural way
to measure the degree of adaptation would be to mea-
sure the ‘distance’ in probability space between the I/O
distribution represented by the agent and the I/O dis-
tribution conditioned on the true environment. A suit-
able measure (in terms of its information-theoretic in-
terpretation) is readily provided by the KL-divergence
[MacKay, 2003]. In the case of passive prediction, the
adaptation problem has a well-known solution. The
distribution that minimizes the KL-divergence is a
Bayesian mixture distribution over all possible environ-
ments [Haussler and Opper, 1997, Opper, 1998]. The
aim of this paper is to extend this result for distribu-
tions over both inputs and outputs. The main result
of this paper is that this extension is only possible if
we consider the special syntax of actions in probability
theory as it has been suggested by proponents of causal
calculus [Pearl, 2000].

Preliminaries
We restrict the exposition to the case of discrete time
with discrete stochastic observations and control sig-
nals. Let O and A be two finite sets, the first being
the set of observations and the second being the set of
actions. We use a≤t ≡ a1a2 . . . at, ao≤t ≡ a1o1 . . . atot

etc. to simplify the notation of strings. Using A and
O, a set of interaction sequences is constructed. Define
the set of interactions as Z ≡ A×O. A pair (a, o) ∈ Z
is called an interaction. The set of interaction strings
of length t ≥ 0 is denoted by Zt. Similarly, the set of
(finite) interaction strings is Z∗ ≡

⋃

t≥0 Z
t and the set

of (infinite) interaction sequences is Z∞ ≡ {w : w =
a1o1a2o2 . . .}, where each (at, ot) ∈ Z. The interaction
string of length 0 is denoted by ǫ.

Agents and environments are formalized as I/O sys-
tems. An I/O system is a probability distribution Pr
over interaction sequences Z∞. Pr is uniquely deter-
mined by the conditional probabilities

Pr(at|ao<t), Pr(ot|ao<tat) (1)

for each ao≤t ∈ Z∗. However, the semantics of the

121

probability distribution Pr are only fully defined once
it is coupled to another system.

Let P, Q be two I/O systems. An interaction system
(P,Q) is a coupling of the two systems giving rise to the
generative distribution G that describes the probabili-
ties that actually govern the I/O stream once the two
systems are coupled. G is specified by the equations

G(at|ao<t) = P(at|ao<t)

G(ot|ao<tat) = Q(ot|ao<tat)

valid for all aot ∈ Z∗. Here, G models the true proba-
bility distribution over interaction sequences that arises
by coupling two systems through their I/O streams.
More specifically, for the system P, P(at|ao<t) is the
probability of producing action at ∈ A given history
ao<t and P(ot|ao<tat) is the predicted probability of
the observation ot ∈ O given history ao<tat. Hence,
for P, the sequence o1o2 . . . is its input stream and the
sequence a1a2 . . . is its output stream. In contrast, the
roles of actions and observations are reversed in the
case of the system Q. Thus, the sequence o1o2 . . . is
its output stream and the sequence a1a2 . . . is its in-
put stream. This model of interaction is very general
in that it can accommodate many specific regimes of
interaction. Note that an agent P can perfectly predict
its environment Q iff for all ao≤t ∈ Z∗,

P(ot|ao<tat) = Q(ot|ao<tat).

In this case we say that P is tailored to Q.

Adaptive Systems: Näıve Construction
Throughout this paper, we use the convention that P is
an agent to be constructed by a designer, which is then
going to be interfaced with a preexisting but unknown
environment Q. The designer assumes that Q is going
to be drawn with probability P (m) from a set Q ≡
{Qm}m∈M of possible systems before the interaction
starts, where M is a countable set.

Consider the case when the designer knows before-
hand which environment Q ∈ Q is going to be drawn.
Then, not only can P be tailored to Q, but also a
custom-made policy for Q can be designed. That is, the
output stream P(at|ao<t) is such that the true proba-
bility G of the resulting interaction system (P,Q) gives
rise to interaction sequences that the designer considers
desirable.

Consider now the case when the designer does not
know which environment Qm ∈ Q is going to be drawn,
and assume he has a set P ≡ {Pm}m∈M of systems such
that for each m ∈ M, Pm is tailored to Qm and the
interaction system (Pm,Qm) has a generative distribu-
tion Gm that produces desirable interaction sequences.
How can the designer construct a system P such that
its behavior is as close as possible to the custom-made
system Pm under any realization of Qm ∈ Q?

A convenient measure of how much P deviates from
Pm is given by the KL-divergence. A first approach
would be to construct an agent P̃ so as to minimize

the total expected KL-divergence to Pm. This is con-
structed as follows. Define the history-dependent KL-
divergences over the action at and observation ot as

Dat

m (ao<t) ≡
∑

at

Pm(at|ao<t) log2

Pm(at|ao<t)

Pr(at|ao<t)

Dot

m(ao<tat) ≡
∑

ot

Pm(ot|ao<tat) log2

Pm(ot|ao<tat)

Pr(ot|ao<tat)
,

where Pr is a given arbitrary agent. Then, define the
average KL-divergences over at and ot as

Dat

m =
∑

ao
<t

Pm(ao<t)D
at

m (ao<t)

Dot

m =
∑

ao
<t

at

Pm(ao<tat)D
ot

m(ao<tat).

Finally, we define the total expected KL-divergence of
Pr to Pm as

D ≡ lim sup
t→∞

∑

m

P (m)
t

∑

τ=1

(

Daτ

m + Doτ

m

)

.

We construct the agent P̃ as the system that minimizes
D = D(Pr):

P̃ ≡ arg min
Pr

D(Pr). (2)

The solution to Equation 2 is the system P̃ defined by
the set of equations

P̃(at|ao<t) =
∑

m

Pm(at|ao<t)wm(ao<t)

P̃(ot|ao<tat) =
∑

m

Pm(ot|ao<tat)wm(ao<tat)
(3)

valid for all ao≤t ∈ Z∗, where the mixture weights are

wm(ao<t) ≡
P (m)Pm(ao<t)

∑

m′ P (m′)Pm′(ao<t)

wm(ao<tat) ≡
P (m)Pm(ao<tat)

∑

m′ P (m′)Pm′(ao<tat)
.

(4)

For reference, see Haussler and Opper [1997], Opper

[1998]. It is clear that P̃ is just the Bayesian mixture
over the agents Pm. If we define the conditional prob-
abilities

P (at|m, ao<t) ≡ Pm(at|ao<t)

P (ot|m, ao<tat) ≡ Pm(at|ao<tat)
(5)

for all ao≤t ∈ Z∗, then Equation 3 can be rewritten as

P̃(at|ao<t) =
∑

m

P (at|m, ao<t)P (m|ao<t)

P̃(ot|ao<tat) =
∑

m

P (ot|m, ao<tat)P (m|ao<tat)
(6)

where the P (m|ao<t) = wm(ao<t) and P (m|ao<tat) =
wm(ao<tat) are just the posterior probabilities over the

122

elements in M given the past interactions. Hence, the
conditional probabilities in Equation 5, together with
the prior probabilities P (m), define a Bayesian model
over interaction sequences with hypotheses m ∈ M.

The behavior of P̃ can be described as follows. At
any given time t, P̃ maintains a mixture over systems
Pm. The weighting over them is given by the mixture
coefficients wm. Whenever a new action at or a new ob-
servation is produced (by the agent or the environment
respectively), the weights wm are updated according to

Bayes’ rule. In addition, P̃ issues an action at sug-
gested by a system Pm drawn randomly according to
the weights wt.

However, there is an important problem with P̃ that
arises due to the fact that it is not only a system that
is passively observing symbols, but also actively gen-
erating them. Therefore, an action that is generated
by the agent should not provide the same information
than an observation that is issued by its environment.
Intuitively, it does not make any sense to use one’s own
actions to do inference. In the following section we il-
lustrate this problem with a simple statistical example.

The Problem of Causal Intervention
Suppose a statistician is asked to design a model for
a given data set D and she decides to use a Bayesian
method. She computes the posterior probability density
function (pdf) over the parameters θ of the model given
the data using Bayes’ rule:

p(θ|D) =
p(D|θ)p(θ)

∫

p(D|θ′)p(θ′) dθ′
,

where p(D|θ) is the likelihood of D given θ and p(θ)
is the prior pdf of θ. She can simulate the source by
drawing a sample data set S from the predictive pdf

p(S|D) =

∫

p(S|D, θ)p(θ|D) dθ,

where p(S|D, θ) is the likelihood of S given D and θ.
She decides to do so, obtaining a sample set S′. She
understands that the nature of S′ is very different from
D: while D is informative and does change the belief
state of the Bayesian model, S′ is non-informative and
thus is a reflection of the model’s belief state. Hence,
she would never use S′ to further condition the Bayesian
model. Mathematically, she seems to imply that

p(θ|D,S′) = p(θ|D)

if S′ has been generated from p(S|D) itself. But this
simple independence assumption is not correct as the
following elaboration of the example will show.

The statistician is now told that the source is waiting
for the simulation results S′ in order to produce a next
data set D′ which does depend on S′. She hands in S′

and obtains a new data set D′. Using Bayes’ rule, the
posterior pdf over the parameters is now

p(D′|D,S′, θ)p(D|θ)p(θ)
∫

p(D′|D,S′, θ′)p(D|θ′)p(θ′) dθ′
(7)

where p(D′|D,S′, θ) is the likelihood of the new data
D′ given the old data D, the parameters θ and the sim-
ulated data S′. Notice that this looks almost like the
posterior pdf p(θ|D,S′,D′) given by

p(D′|D,S′, θ)p(S′|D, θ)p(D|θ)p(θ)
∫

p(D′|D,S′, θ′)p(S′|D, θ′)p(D|θ′)p(θ′) dθ′

with the exception that now the Bayesian update con-
tains the likelihoods of the simulated data p(S′|D, θ).
This suggests that Equation 7 is a variant of the poste-
rior pdf p(θ|D,S′,D′) but where the simulated data S′

is treated in a different way than the data D and D′.
Define the pdf p′ such that the pdfs p′(θ), p′(D|θ),

p′(D′|D,S′, θ) are identical to p(θ), p(D|θ) and
p(D′|D,S′, θ) respectively, but differ in p′(S|D, θ):

p′(S|D, θ) =

{

1 if S′ = S,

0 else.

That is, p′ is identical to p but it assumes that the value
of S is fixed to S′ given D and θ. For p′, the simulated
data S′ is non-informative:

− log2 p(S′|D, θ) = 0.

If one computes the posterior pdf p′(θ|D,S′,D′), one
obtains the result of Equation 7:

p′(D′|D,S′, θ)p′(S′|D, θ)p′(D|θ)p′(θ)
∫

p′(D′|D,S′, θ′)p′(S′|D, θ′)p′(D|θ′)p′(θ′) dθ′

=
p(D′|D,S′, θ)p(D|θ)p(θ)

∫

p(D′|D,S′, θ′)p(D|θ′)p(θ′) dθ′
.

Thus, in order to explain Equation 7 as a posterior pdf
given the data sets D, D′ and the simulated data S′,
one has to intervene p in order to account for the fact
that S′ is non-informative given D and θ.

In statistics, there is a rich literature on causal in-
tervention. In particular, we will use the formalism
developed by Pearl [2000], because it suits the needs to
formalize interactions in systems and has a convenient
notation—compare Figures 1a & b. Given a causal
model1 variables that are intervened are denoted by a
hat as in Ŝ. In the previous example, the causal model
of the joint pdf p(θ,D,S,D′) is given by the set of con-
ditional pdfs

Cp =
{

p(θ), p(D|θ), p(S|D, θ), p(D′|D,S, θ)
}

.

If D and D′ are observed from the source and S is in-
tervened to take on the value S′, then the posterior pdf
over the parameters θ is given by p(θ|D, Ŝ′,D′) which
is just

p(D′|D, Ŝ′, θ)p(Ŝ′|D, θ)p(D|θ)p(θ)
∫

p(D′|D, Ŝ′, θ′)p(Ŝ′|D, θ′)p(D|θ′)p(θ′) dθ′

=
p(D′|D,S′, θ)p(D|θ)p(θ)

∫

p(D′|D,S′, θ′)p(D|θ′)p(θ′) dθ′
.

1For our needs, it is enough to think about a causal model
as a complete factorization of a probability distribution into
conditional probability distributions representing the causal
structure.

123

Figure 1: (a-b) Two causal networks, and the result of conditioning on D = D′ and intervening on S = S′. Unlike
the condition, the intervention is set endogenously, thus removing the link to the parent θ. (c-d) A causal network
representation of an I/O system with four variables a1o1a2o2 and latent variable m. (c) The initial, un-intervened
network. (d) The intervened network after experiencing â1o1â2o2.

because p(D′|D, Ŝ′, θ) = p(D′|D,S′, θ), which corre-
sponds to applying rule 2 in Pearl’s intervention cal-
culus, and because p(Ŝ′|D, θ′) = p′(S′|D, θ′) = 1.

Adaptive Systems: Causal Construction
Following the discussion in the previous section, we
want to construct an adaptive agent P by minimizing
the KL-divergence to the Pm, but this time treating
actions as interventions. Based on the definition of the
conditional probabilities in Equation 5, we construct
now the KL-divergence criterion to characterize P us-
ing intervention calculus. Importantly, interventions in-
dex a set of intervened probability distribution derived
from an initial probability distribution. Hence, the
set of fixed intervention sequences of the form â1â2 . . .
indexes probability distributions over observation se-
quences o1o2 Because of this, we are going to con-
struct a set of criteria indexed by the intervention se-
quences, but we will see that they all have the same
solution. Define the history-dependent intervened KL-
divergences over the action at and observation ot as

Cat

m (âo<t) ≡
∑

at

P (at|m, âo<t) log2

P (at|m, âo<t)

Pr(at|ao<t)

Cot

m (âo<tât) ≡
∑

ot

P (ot|m, âo<tât) log2

P (ot|m, âo<tât)

Pr(ot|ao<tat)
,

where Pr is a given arbitrary agent. Note that past
actions are treated as interventions. Then, define the
average KL-divergences over at and ot as

Cat

m =
∑

ao
<t

P (âo<t|m)Cat

m (âo<t)

Cot

m =
∑

ao
<t

at

P (âo<tat|m)Cot

m (âo<tât).

Finally, we define the total expected KL-divergence of
P to Pm as

C ≡ lim sup
t→∞

∑

m

P (m)

t
∑

τ=1

(

Caτ

m + Coτ

m

)

. (8)

We construct the agent P as the system that minimizes
C = C(Pr):

P ≡ arg min
Pr

C(Pr). (9)

The solution to Equation 9 is the system P defined by
the set of equations

P(at|ao<t) = P (at|âo<t)

=
∑

m

P (at|m, âo<t)vm(âo<t)

P(ot|ao<tat) = P (ot|âo<tât)

=
∑

m

P (ot|m, âo<tât)vm(âo<tât)

(10)

valid for all ao≤t ∈ Z∗, where the mixture weights are

vm(ao<tat) = vm(ao<t) ≡
P (m)P (âo<t|m)

∑

m′ P (m′)P (âo<t|m)

=
P (m)

∏t−1
τ=1 P (oτ |m, âo<τ âτ)

∑

m′ P (m′)
∏t−1

τ=1 P (oτ |m′, âo<τ âτ)
.

(11)
The proof follows the same line of argument as the

solution to Equation 2 with the crucial difference that
actions are treated as interventions. Consider without
loss of generality the summand

∑

m P (m)Cat

m in Equa-
tion 8. Note that the KL-divergence can be written as
a difference of two logarithms, where only one term de-
pends on Pr that we want to vary. Therefore, we can
integrate out the other term and write it as a constant
c. Then we get

c −
∑

m

P (m)
∑

âo
<t

P (âo<t|m)

·
∑

at

P (at|m, âo<t) ln Pr(at|âo<t).

Substituting P (âo<t|m) by P (m|âo<t)P (âo<t)/P (m)
and identifying P characterized by Equations 10 and 11
we obtain

c −
∑

âo
<t

P (âo<t)
∑

at

P(at|âo<t) ln Pr(at|âo<t).

124

The inner sum has the form −
∑

x p(x) ln q(x), i.e. the
cross-entropy between q(x) and p(x), which is mini-
mized when q(x) = p(x) for all x. By choosing this
optimum one obtains Pr(at|âo<t) = P(at|âo<t) for all
at. Note that the solution to this variational problem is
independent of the weighting P (âo<t). Since the same
argument applies to any summand

∑

m P (m)Caτ

m and
∑

m P (m)Coτ

m in Equation 8, their variational problems
are mutually independent.

The behavior of P differs in an important aspect from
P̃. At any given time t, P maintains a mixture over sys-
tems Pm. The weighting over these systems is given by
the mixture coefficients vm. In contrast to P̃, P updates
the weights vm only whenever a new observation ot is
produced by the environment respectively. The update
follows Bayes’ rule but treating past actions as inter-
ventions, i.e. dropping the evidence they provide. In
addition, P issues an action at suggested by an system
m drawn randomly according to the weights vm—see
Figures 1c & d.

If we use the following equalities connecting the
weights and the intervened posterior distributions

vm(ao<t) = P (m|âo<t) = P (m|âo<tât) = vm(ao<tat)

and substitute interventions by observations in the con-
ditionals

P (at|m, âo<t) = P (at|m, ao<t)

P (ot|m, âo<tât) = P (ot|m, ao<tat)

which corresponds to rule 2 of Pearl’s intervention cal-
culus, we can rewrite Equations 10 and 11 as

P(at|ao<t) = P (at|âo<t)

=
∑

m

P (at|m, ao<t)P (m|âo<t) (12)

P(ot|ao<tat) = P (ot|âo<tât)

=
∑

m

P (ot|m, ao<tat)P (m|âo<t) (13)

where the intervened posterior probabilities are

P (m|âo<t) =
P (m)

∏t−1
τ=1 P (oτ |m, ao<τaτ)

∑

m′ P (m′)
∏t−1

τ=1 P (oτ |m′, ao<τaτ)
.

(14)
Equations 12, 13 and 14 are important because they de-
scribe the behavior of P only in terms of known proba-
bilities, i.e. probabilities that are computable from the
causal model associated to P given by

CP =
{

P (m), P (at|m, ao<t), P (ot|m, ao<tat) : t ≥ 1
}

.

Importantly, Equation 12 describes a stochastic method
to produce desirable actions that differs fundamentally
from an agent that is constructed by choosing an opti-
mal policy with respect to a given utility criterion. We
call this action selection rule the Bayesian control rule.

Experimental Results
Here we design a very simple toy experiment to illus-
trate the behavior of an agent P̃ based on a Bayesian
mixture compared to an agent P based on the Bayesian
control rule.

Let Q0, Q1, P0 and P1 be four agents with binary
I/O sets A = O = {0, 1} defined as follows. P1 is such
that P1(at|ao<t) = P1(at) and P1(ot|ao<tat) = P1(ot)
for all ao≤t ∈ Z∗, where

P1(at) =

{

0.1 if at = 0

0.9 if at = 1
, P1(ot) =

{

0.4 if at = 0

0.6 if at = 1
.

Let P0 be such that

P0(at|ao<t) = 1 − P1(at|ao<t)

P0(ot|ao<tat) = 1 − P0(ot|ao<tat)

for all ao≤t ∈ Z∗. Thus, P0 and P1 are agents that
are biased towards observing and acting 0’s and 1’s re-
spectively. Furthermore, Q0 = P0 and Q1 = P1. As-
sume a uniform distribution over Q = {Q0,Q1}, i.e.
P (m = 0) = P (m = 1) = 1

2 .
Assume Q0 ∈ Q is drawn. In this case, one wants

the agents P̃ and P to minimize the deviation from P0.
Consider the following instantaneous measure

d(t) ≡
∑

a′

t

P0(a
′
t) log2

P0(a
′
t)

Pr(a′
t|ao<t)

+
∑

o′

t

P0(o
′
t) log2

P0(o
′
t)

Pr(o′t|ao<tat)

where a1o1a2o2 . . . is a realization of the interaction sys-
tem (Pr,Q0). d(t) measures how much Pr’s action and
observation probabilities deviate from P0 at time t.

Recall that both P̃ and P maintain a mixture over
P0 and P1. The instantaneous I/O probabilities of such
a system can always be written as

wP0(at) + (1 − w)P1(at)

wP0(ot) + (1 − w)P1(ot).

where w ∈ [0, 1]. Thus, it is easy to see that the in-
stantaneous I/O deviation takes on the minimum value
when w = 1 and the maximum value when w = 0:
In the case w = 1, d(t) = 0 bits; In the case w = 0,
d(t) ≈ 2.653.

We have simulated realizations of the instantaneous
I/O deviation using the agents P̃ and P. The results

are summarized in Figure 2. For P̃, d(t) happens to
be non-ergodic: it either converges to d(t) → 0 or to

d(t) →≈ 2.654, implying that either P̃ → P0 or P̃ →
P1 respectively. In contrast, d(t) → 0 always for P,
implying that P → P0.

Analogous results are obtained when Q1 ∈ Q is
drawn instead: For P̃, d(t) converges either to 0 or to
≈ 2.654, whereas for P, d(t) →≈ 2.654 always imply-
ing that P → P1. Hence, P shows the correct adaptive
behavior while P̃ does not.

125

5 10 15 20 25
0

0.5

1

1.5

2

2.5

t

d(
t)

 [
bi

ts
]

50 100 150 200 250
0

0.5

1

1.5

2

2.5

t

d(
t)

 [
bi

ts
]

Figure 2: 10 realizations of the instantaneous deviation d(t) for the agents P̃ (left panel) and P (right panel). The
shaded region represents the standard deviation barriers computed over 1000 realizations. Since d(t) is non-ergodic

for P̃, we have separated the realizations converging to 0 from the realizations converging to ≈ 2.654 to compute the
barriers. Note that the time scales differ in one order of magnitude.

Conclusions

We propose a Bayesian rule for adaptive control. The
key feature of this rule is the special treatment of ac-
tions based on causal calculus and the decomposition of
agents into Bayesian mixture of I/O distributions. The
question of how to integrate information generated by
an agent’s probabilistic model into the agent’s informa-
tion state lies at the very heart of adaptive agent design.
We show that the näıve application of Bayes’ rule to I/O
distributions leads to inconsistencies, because outputs
don’t provide the same type of information as genuine
observations. Crucially, these inconsistencies vanish if
intervention calculus is applied [Pearl, 2000].

Some of the presented key ideas are not unique to the
Bayesian control rule. The idea of representing agents
and environments as I/O streams has been proposed
by a number of other approaches, such as predictive
state representation (PSR) [Littman et al., 2002] and
the universal AI approach by Hutter [2004]. The idea of
breaking down a control problem into a superposition
of controllers has been previously evoked in the con-
text of “mixture of experts”-models like the MOSAIC-
architecture Haruno et al. [2001]. Other stochastic
action selection approaches are found in exploration
strategies for (PO)MDPs [Wyatt, 1997], learning au-
tomata [Narendra and Thathachar, 1974] and in proba-
bility matching [R.O. Duda, 2001] amongst others. The
usage of compression principles to select actions has
been proposed by AI researchers, for example Schmid-
huber [2009]. The main contribution of this paper is
the derivation of a stochastic action selection and infer-
ence rule by minimizing KL-divergences of intervened
I/O distributions.

An important potential application of the Bayesian
control rule would naturally be the realm of adaptive
control problems. Since it takes on a similar form to
Bayes’ rule, the adaptive control problem could then
be translated into an on-line inference problem where
actions are sampled stochastically from a posterior dis-
tribution. It is important to note, however, that the
problem statement as formulated here and the usual

Bayes-optimal approach in adaptive control are not the
same. In the future the relationship between these two
problem statements deserves further investigation.

References
R. Beer. Intelligence as Adaptive Behavior. Academic Press,

Inc., 1990.

M. Haruno, D.M. Wolpert, and M. Kawato. Mosaic model
for sensorimotor learning and control. Neural Computa-
tion, 13:2201–2220, 2001.

D. Haussler and M. Opper. Mutual information, metric
entropy and cumulative relative entropy risk. The Annals
of Statistics, 25:2451–2492, 1997.

M. Hutter. Universal Artificial Intelligence: Sequential De-
cisions based on Algorithmic Probability. Springer, Berlin,
2004.

M. Littman, R. Sutton, and S. Singh. Predictive representa-
tions of state. In Neural Information Processing Systems
(NIPS), number 14, pages 1555–1561, 2002.

D.J.C. MacKay. Information Theory, Inference, and Learn-
ing Algorithms. Cambridge University Press, 2003.

K. Narendra and M.A.L. Thathachar. Learning automata
- a survey. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-4(4):323–334, July 1974.

M. Opper. A bayesian approach to online learning. Online
Learning in Neural Networks, pages 363–378, 1998.

J. Pearl. Causality: Models, Reasoning, and Inference.
Cambridge University Press, Cambridge, UK, 2000.

D.G. Stork R.O. Duda, P.E. Hart. Pattern Classification.
Wiley & Sons, Inc., second edition, 2001.

J. Schmidhuber. Simple algorithmic theory of subjective
beauty, novelty, surprise, interestingness, attention, cu-
riosity, creativity, art, science, music, jokes. Journal of
SICE, 48(1):21–32, 2009.

J. Wyatt. Exploration and Inference in Learning from Re-
inforcement. PhD thesis, Department of Artificial Intel-
ligence, University of Edinburgh, 1997.

126

Discovering and characterizing Hidden Variables

Soumi Ray and Tim Oates
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County
Baltimore, MD 21250

Abstract

Theoretical entities are aspects of the world that
cannot be sensed directly but that nevertheless are
causally relevant. Scientifc inquiry has uncovered many
such entities, such as black holes and dark matter. We
claim that theoretical entities are important for the
development of concepts within the lifetime of an in-
dividual, and present a novel neural network architec-
ture that solves three problems related to theoretical
entities: (1) discovering that they exist, (2) determin-
ing their number, and (3) computing their values. Ex-
periments show the utility of the proposed approach
using a discrete time dynamical system in which some
of the state variables are hidden, and sensor data ob-
tained from the camera of a mobile robot in which the
sizes and locations of ob jects in the visual eld are ob-
served but their sizes and locations (distances) in the
three-dimensional world are not.

Introduction

Humans, like robots, have limited sensory access to the
physical world. Despite this fact, thousands of years of
scientific inquiry have uncovered much hidden structure
governing the behavior and appearance of the world,
along the way proposing a vast array of entities that we
cannot see, hear, taste, smell, or touch. When Gregor
Mendel discovered genes in the middle of the 19th cen-
tury, he couldn’t experience them in the same way he
could experience, say, the smell of a rose or the color
red. However, genes have causal power that manifests
itself in ways that can be sensed directly. For Mendel,
one such manifestation was the color of the peas of the
pea plants that he bred with one another. Whether
a plant would have yellow or green peas could not be
predicted accurately based solely on observable prop-
erties of the parent plants. The desire to explain this
apparent non-determinism led Mendel to posit the ex-
istence of a causally efficacious entity of the world that
could not be sensed directly, i.e., genes. Such entities
are called theoretical entities.

Theoretical entities are of fundamental importance to
the development of human knowledge. The history of
science is replete with reliance on and corroboration of
the existence of theoretical entities, like genes, atoms,

gravity, tectonic plates, germs, dark matter, electricity,
and black holes. No one has ever seen a black hole, yet
most physicists believe they exist because black holes
accurately explain a wide array of observational data.
Human knowledge would be limited indeed were we re-
stricted to only represent and reason about things that
we can see, hear, taste, smell, or touch.

This paper presents a novel neural network architec-
ture for discovering hidden variables in time series data.
The architecture is able to discover the existence of hid-
den variables, determine their number, and estimate
their values. Empirical results are presented for a dis-
crete time dynamical system and data gathered from a
robots interactions with objects.

Background
McCallum (1996) did early work on hidden states in
the context of reinforcement learning, where hidden
states are typically ignored and traditional reinforce-
ment learning methods are applied in fixed-memory
agents. In other cases an agent’s current percepts are
augmented with history information. The problem in
this situation is one of memory and storage. McCal-
lum proposed a method called instance-based state iden-
tification, where raw data from previous experiences
are stored directly. The simplest instance-based tech-
nique is the nearest sequence memory which is based
on k-nearest neighbors. This technique, though simple,
improved the performance of learning and took fewer
training steps for learning. The main disadvantage of
this technique is that, though it learns good policies
quickly, it does not always learn the optimal policy.

Significant research in the recent past has focused on
the problem of learning Bayesian Networks (BN) from
data. Elidan et al. (2000) presents an algorithm for dis-
covering hidden variables in Bayesian Networks by look-
ing for cliques in network structures learned assuming
all variables are observable. When a hidden variable is
known to exist, they introduce it into the network and
apply known BN learning algorithms. First, using the
standard Bayesian model selection algorithm, a struc-
ture over the observed variables is learned. Then the
structure is searched for sub-structures which they call
semi-cliques. A hidden variable is then introduced to

127

break this clique and then learning is continued based
on that new structure.

Similarly, work on planning under uncertainty us-
ing, for example, the Partially Observable Markov Deci-
sion Process (POMDP) framework assumes knowledge
of the number of underlying hidden states (Kaelbling,
Littman, & Cassandra, 1996). The agent whose world
is characterized by the POMDP does not have access
to the state that it actually occupies. Rather, the agent
maintains a belief state, or probability distribution over
states that it might be occupying. This belief state
is Markovian, meaning that no additional information
from the past would help increase the expected reward
of the agent. Again, the goal of this work is not to
discover the existence of a hidden state, but to behave
optimally given knowledge of the existence of hidden
state. More recently, Littman, Sutton, & Singh (2001)
showed that dynamical systems can be represented us-
ing Predictive State Representations (PSRs), or multi-
step, action-conditional predictions of future observa-
tions, and that every POMDP has an equivalent PSR.
PSRs can look both at the past and summarize want
happened and can also look to the future and predict
what will happen. PSR is a vector of tests Rivest &
Schapire (1994) which stores the predictions for a se-
lected set of action-observation sequences. Holmes & Is-
bell (2006) showed that the unobserved or hidden states
can be fully captured by a finite history based repre-
sentation called a looping prediction suffix tree (PST).
They focus on cases of POMDPs where the underlying
transition and observation functions are deterministic.

Latent variables are important in the Psychology and
Social Science research. Bollen (2002) described three
definitions of latent variables: local independence, ex-
pected value true score, and non-deteministic functions
of observed variables and introduced a new notion of
latent variables called ”sample generalizations”. La-
tent variables can be defined non-formally or formally.
Non-formally latent variables can be considered as hy-
pothetical variables or unobserved variables as a data
reduction device. Hypothetical variables are variables
considered imaginary, i.e. not existing in the real world.
Unobservable variables are impossible to be measured.
The third non-formal definition of latent variables de-
fines them as a data reduction device that can be used
to describe a number of variables by a small number of
factors.

One of the most common and popular formal defini-
tions of latent variables is the local independence def-
inition (Lord 1953, Lazarsfeld 1959, McDonald 1981,
Bartholomew 1987, Hambleton et al. 1991). It means
that the observed variables are associated with each
other because of one or more latent variables. If the
latent variables are known and are held constant then
the observed variables become independent. This can
be defined more formally:

P (Y1, Y2, . . . , Yk|N) = P (Y1|N)P (Y2|N) . . . P (Yk|N)
(1)

where Y1, Y2, . . . , Yk are random observed variables and
N is a vector of latent variables.

The next formal definition of latent variables defines
a true score. The true score is calculated as the ex-
pected value of the observed variable for a particular
object. Another definition of latent variables is that
latent variables are non-deterministic functions of the
observed variables, that is, they cannot be expressed as
a function of the observed variables (Bentler 1982). It
might be possible to predict a value of the latent vari-
able but it is not possible to exactly predict the value
of the latent variable based on the observed variables.
The definition introduced by Bollen for latent variables
is sample realization. He said that a latent variable is a
random (or nonrandom) variable for which there is no
sample realization for some observations, that is, there
are no values for those observations. Observed variables
contain sample realization while latent variables do not.

Some of the useful properties of latent variables were
also discussed in Bollen’s paper. A latent variable is de-
noted as a posteriori if it derived from a data analysis.
On the other hand, a priori latent variables are hypoth-
esized before the data analysis is done. Another prop-
erty of latent variables can be understood by finding if
they are affected by the observed variables or observed
variables are the effects of the latent variables.

We are interested in finding hidden variables in time
series data in a partially observable environment. We
are not only interested in discovering hidden variables
but also find the number of hidden variables in a given
situation.

Method
We have designed a novel neural network architecture
for the discovery and quantification of hidden variables.
Our neural network architecture is comprised of two
linked networks, the original network (O net) and the
latent network (L net), as shown in Figure 1. We call
this network the LO net. History values of the observed
process are input into each component network, and the
output of the L net is also an input of the O net.

Consider the problem of predicting the value of a vari-
able x at time t+1, given information up to time t. The
current and previous two values are provided as inputs
to both the original and the latent network and the
next value is predicted as shown in Figure 1. The input
to the latent network is the current and previous two
values at all times. The input to the original network
is initially all three values, but with more learning the
history values are dropped sequentially. This is done
to give more responsibility to the latent network. The
latent network can learn to output an approximation
to the hidden variables. The network is trained using
gradient descent backpropagation.

Since the latent network is not provided with any ex-
ample outputs, the only way it learns is from the errors
back-propagated to it. We want the latent network to
learn the value of the hidden variable. The idea behind
dropping the history inputs from the original network

128

Figure 1: Our Network Architecture.

as learning progresses is to make the output from the
latent network a crucial input to the original net. Hence
the performance of the whole network will depend on
what the latent network is learning and we expect the
latent network to approximate the hidden variable. In
our example we have taken a history of size two, i.e.,
the two previous observations. This method can work
for smaller or larger history sizes. The history size will
vary for different domains.

A theorem by Takens (Takens, 1981) states that for
discrete-time deterministic dynamical systems of n vari-
ables, it is possible to exactly recover the topology of
the system by treating each window of 2n consecutive
values of just one variable as a state. This provides the
basis for heuristic ideas in using history values to eval-
uate processes with hidden variables. The use of the
neural network provides us the flexibility to mimic the
transformation in Taken’s theorem without worrying
about its particular functional form. The neural net-
work architecture thus provides a promising approach
for estimating the true underlying system including hid-
den variables.

In our implementation the network has each of its
layers’ weights and biases initialized with the Nguyen-
Widrow layer initialization method. The Nguyen-
Widrow method generates initial weight and bias val-
ues for a layer so that the active regions of the layer’s
neurons are distributed approximately evenly over the
input space. The values contain a degree of random-
ness, so they are not the same each time this function
is called. The training function used to update the
weight and bias values in the network is gradient de-
scent with momentum and adaptive learning rate back-
propagation. The parameter lr indicates the learning
rate, similar to simple gradient descent. The parameter
mc is the momentum constant that defines the amount
of momentum. mc is set between 0 (no momentum)
and values close to 1 (high momentum). A momentum

constant of 1 results in a network that is completely in-
sensitive to the local gradient and, therefore, does not
learn properly. The momentum constant (mc) used was
0.9. The learning rate (lr) we have chosen is 0.01. For
each epoch, if performance decreases toward the goal,
then the learning rate is increased by the factor lr-inc
(1.05). If performance increases by more than the fac-
tor max-perf-inc (1.04), the learning rate is adjusted by
the factor lr-dec (0.7) and the change, which increased
the performance, is not made. A transfer function is
used to calculate the ith layer’s output, given the layer’s
net input, during simulation and training. Backprop-
agation is used to calculate derivatives of performance
(perf) with respect to the weight and bias variables X.
The network’s performance is measured according to
the mean squared error. Each variable is adjusted ac-
cording to gradient descent with momentum given in
Eq 2,

d X = mc ∗ d Xprev + lr ∗ (1−mc) ∗ d perf/d X (2)

where d Xprev is the previous change to the weight or
bias. The transfer function used to calculate the hidden
layer’s output is the tan-sigmoid transfer function and
the output layers use a linear transfer function.

Robot Data
Real world data was provided for this project by a sur-
veyor SRV-1 Blackfin robot. The robot consists of a
camera mounted on a pair of tank style treads that
can be controlled remotely by a user interface on a lap-
top. The robot was placed in a fairly uniform envi-
ronment (in this case the UMBC Department of Com-
puter Science lobby) and driven by a human around
a target. The targets consist of several brightly col-
ored boxes, easily distinguishable from the surrounding
environment by our image processing software. The
surveyor would approach a target from different an-
gles, keeping it in view the entire time for some trials,
and for others occasionally facing different directions.
Each frame transmitted from the surveyor’s camera was
recorded for later processing. The computation done on
these frames consisted of counting the number of pix-
els that were present in a certain color range (giving us
the surveyor’s perception of the size of the box), and
the centroid of the pixels of that color. Before each ex-
periment, the color range was calibrated to avoid the
surveyor mistaking other things for its target.

The absolute position of the robot in relation to its
target was calculated by a camera hanging above the
area in which the tests were being performed. The
surveyor was tagged in its center with another unique
color, and the camera was able to observe the position
of the surveyor in relation to the box. This data was
used to reconstruct the path of the robot, which was
fitted across the data taken from the surveyor’s camera
in order to give us an approximation of the surveyor’s
position at each point.

The robot’s vision system extracts the following in-
formation for a given box:

129

Figure 2: SRV-1 Blackfin Robot

si - the size of the object in the image plane.

xi - the x coordinate of the object in the image plane

yi - the y coordinate of the object in the image plane

Each object has an objective size s0 and objective loca-
tion (x0,y0,z0), relative to the origin of the coordinate
frame.

In general, if the camera moves in the 3 dimensional
space with translational velocity v = (vx, vy, vz) and
rotational velocity ω = (ωx, ωy, ωz), then the velocity of
a point in the image plane can be expressed as follows:

ẋi = tx + rx

ẏi = ty + ry

where,

tx = (−vx + vzxi)/z0

ty = (−vy + vzyi)/z0

rx = ωxxiyi − ωy(1 + x2
i) + ωzyi

ry = ωx(1 + y2
i)− ωyxiyi − ωzxi

For our robot, the translational velocities vx and vy

and rotational velocities wx and wz are physically con-
strained to be zero. So the equations for ẋi and ẏi are:

ẋi = vzxi/z0 + wy(1 + x2
i) (3)

ẏi = vzyi/z0 + wyxiyi (4)

where vz and wy are constants.

The position of the image plane at each time step is
then given by:

xt+1 = xt + ẋt

yt+1 = yt + ẏt

Note that all the quantities required to predict the next
value of xt+1 and yt+1 are observable except z0,the dis-
tance of the robot from the box.

The perceived size of an object si depends on the
objective size s0 and the distance z0 of the object as
follows:

si = s0/z2
0 (5)

The robot’s perception of the size of the target thus
changes with the distance from the target, though the
target itself is of constant size. The quantities s0 and z0

are not observable, so si cannot be directly estimated.
However, since s0 is constant and our perspective pro-
jection is planar, we have a simpler situation where si

changes only with z0.

Experiments
This section presents the results of using the LO net
architecture to predict future output based on history
with the robot data. A robot collects data by going
back and forth looking at an object. It records the x
and y coordinates of the box and the size of the box
in its vision. The network is trained for 400 epochs
since around that time the MSE converges to a very low
value. The plots show the MSE of the last 150 epochs.
Initially the MSE is very high (around a few hundred)
but it drops rapidly to around 50 in just first 7 or 10
epochs. Figure 3 plots the MSE of variable x. The solid
line shows the performance when the current value of
x (xt) is fed and the the next value of x (xt+1) is pre-
dicted, using only the original network. The dashed line
shows the performance when the current and the previ-
ous two x values (xt, xt−1, xt−2) are fed to the original
network and the next value of x xt+1 is predicted. The
dash-dot line and the dotted lines show the performance
with one and two latent networks respectively. Initially
for the first 100 epochs the current and the previous
two x values (xt, xt−1, xt−2) are fed to the original and
latent networks. The output of the latent networks are
also given as an input to the original network as shown
in figure 1. and the next value of x (xt+1) is predicted.
In the next 100 epochs one history value xt−2 is dropped
from the original network and training is continued. In
the last 200 epochs the original network is fed with only
the current value of x (xt) and the output from the la-
tent network. All the four figures plot the MSE versus
the number of epochs. In the first case there is only
one network and the input is just the current value.
The second case is where there is also just one network
but there are three inputs, the current and two previous
inputs. The third and the fourth case show the results
of the LO net architecture. In the third case there is
one latent network along with the original network. In
the fourth there are two latent networks. The x-axis

130

plots the number of iterations and the y-axis plots the
mean square error (MSE) in the following three figures.
In figure 3 the performance of the network with three

Figure 3: Performance curve for X.

Figure 4: Performance curve for Y.

history values can be seen to be better than the per-
formance with just the current value. The one LO net
performs best in this case. It performs better than the
two latent network architecture also. From equation 5
it is clear that there is one value which is unobservable
for the prediction of xt+1 which is the distance of the
robot from the box. While trying to predict the the
next value of x with just the previous value of x one
variable is hidden to x on which it is dependent. The
output from the latent network in the LO net architec-
ture provides input to the original input that improves
its performance. The latent network posits the pres-
ence of a hidden variable. It approximately learns the

value of the hidden variable. Initially three history val-
ues are provided as input to the original network but
with more learning history values are dropped and so
the input from the latent network becomes more impor-
tant. We propose that the backpropagation algorithm
updates the weights of the latent network in such a way
so as to approximate the hidden variable. Similar re-
sults can be seen in the case of predicting yt+1 and st+1.
The one latent network architecture improves the per-
formance of learning in all the three cases. Adding a
second latent network in these cases reduces the perfor-
mance.There are two unobservable values for predicting
the size of the box — the distance of the robot from the
box and the actual size of the box. Since the actual size
is constant the perceived size of the box changes only
when the distance changes. So the latent network comes
up with just one hidden variable in this case.

Figure 5: Performance curve for size.

Figure 6: Performance curve for size with two boxes.

131

The next experiments are performed on data where
there are two boxes in the vision of the robot. The ar-
chitecture with two latent networks performs best when
predicting the size of the box as seen in figure 6. The
size of a box depends on the actual size of the box and
the distance of the box from the robot. When there
are two boxes the actual size is no more constant. So
when predicting the next value of the size perceived by
the robot the two hidden variables are the size and the
distance. Adding a third latent network again reduces
the performance of learning.

From these results we conclude that the performance
of prediction of the future values can be improved by
using the LO net architecture. Not only does it esti-
mate the existence of hidden variables but it also gives
an estimate of the number of hidden variables. For ex-
ample xt+1 and yt+1 depend only on one unobservable
variable, so one latent network does a better job than
two latent networks. In the two latent network case the
extra input from the second latent net reduced the per-
formance. While predicting the future values of st+1

with boxes in the robot’s view which depends on two
unobservable variables, two latent nets did a better job
than one. The network architecture was able to predict
two hidden variables.

Figure 7 show the outputs of the latent networks from
the three experiments with one latent network while
trying to predict the next values of x, y and size with
one box in the robot’s vision. All the three latent net-
works try to approximate one variable which is hidden,
the distance of the robot from the box. It can be seen
that the outputs from the latent networks are somewhat
correlated.

Figure 7: Comparison of the output values from the
latent nets.

This neural network architecture can find the exis-
tence of hidden variables. The number of hidden vari-
ables can be found by iteratively adding latent networks
to the original network until adding a new latent net-

work does not significantly help. Our next experiments
will be on large domains to see how this method scales
when the number of hidden variables increases.

Conclusion
We presented a novel neural network architecture that
solves three problems related to theoretical entities:
(1) discovering that they exist, (2) determining their
number, and (3) computing their values. Experiments
showed the utility of the proposed approach using a dis-
crete time dynamical system in which some of the state
variables are hidden, and sensor data obtained from the
camera of a mobile robot in which the sizes and loca-
tions of objects in the visual field are observed but their
sizes and locations (distances) in the three-dimensional
world are not.

Acknowledgement
We would like to thank Max Morawski for running the
experiments with the robot and providing the experi-
mental data.

References
Bollen, K. A. 2002. Latent variables in psychology

and the social sciences. Annual Review of Psychology
53(1):605–634.

Elidan, G.; Lotner, N.; Friedman, N.; and Koller, D.
2000. Discovering hidden variables: A structure-
based approach. In NIPS, 479–485.

Holmes, M. P., and Isbell, Jr., C. L. 2006. Looping suf-
fix tree-based inference of partially observable hidden
state. In ICML ’06: Proceedings of the 23rd interna-
tional conference on Machine learning, 409–416. New
York, NY, USA: ACM.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R.
1996. Planning and acting in partially observable
stochastic domains. Technical Report CS-96-08.

Littman, M.; Sutton, R.; and Singh, S. 2001. Predictive
representations of state.

McCallum, A. 1996. Hidden state and reinforcement
learning with instance-based state identification.

Rivest, R. L., and Schapire, R. E. 1994. Diversity-based
inference of finite automata.

Takens, F. 1981. Detecting strange attractors in tur-
bulence. Lecture Notes in Mathematics 366–381.

132

What we might look for in an AGI benchmark

Brandon Rohrer
Sandia National Laboratories

Albuquerque, NM, USA

Abstract

A benchmark in the field of Artificial General Intelli-
gence (AGI) would allow evaluation and comparison of
the many computational intelligence algorithms that
have been developed. In this paper I propose that an
ideal benchmark would possess seven key characteris-
tics: fitness, breadth, specificity, low cost, simplicity,
range, and task focus.

Introduction

As researchers in artificial general intelligence (AGI),
we are sometimes asked, “What are you trying to do?”
and “How will you know when you’ve done it?” And
collectively we are forced to answer that we don’t yet
know. (Wan08) This is not for lack of ideas or effort.
A reading of Goertzel and Pennachin’s book survey-
ing a broad swath of current AGI research makes it
clear that many have thought deeply about the ques-
tion, (GCP07) but the breadth of our backgrounds and
our richness of diversity makes consensus challenging.
There have been calls for a technical roadmap (LA09;
GAS09) and concrete benchmarks (DOP08). This pa-
per is intended as a contribution to the ongoing bench-
mark development effort.

Choosing a measurement device for AGI, a bench-
mark, is the key to answering questions about our
aims. A benchmark implies a goal and implicitly con-
tains a success criterion. Benchmarks can focus the ef-
forts of a community; for all its limitations the Turing
Test (Tur50) provided a fixed target for an entire sub-
culture of artificial intelligence (AI) researchers, pro-
viding them with a common frame of reference and a
shared language for efficient communication. An AGI
benchmark would allow various approaches to be di-
rectly compared, promoting both cooperation and com-
petition, as was seen most recently in large alliances
and stiff competition in the race to win the Netflix
Prize (Net09). Selecting an appropriate benchmark
may greatly accelerate progress in AGI research.

Unfortunately, the selection of a good benchmark is
difficult. A closely related problem is found in the as-
sessment of human intelligence. The problem of mea-
suring intelligence in humans is far from solved. While a

number of formal measures exist, such as IQ tests, ed-
ucational grade point averages, and standardized test
scores, their merits are hotly contested. There is no
consensus as to whether they are measuring “intelli-
gence,” or even a generally accepted definition of the
word itself. There are also informal measures of intel-
ligence, such as publication count or Erdös number in
academic communities. It can also be argued that suc-
cess in some critical endeavor reflects fitness and is an
indirect indicator of intelligence. Depending upon one’s
peer group, success at a critical endeavor may be rep-
resented by one’s salary, number of Twitter followers,
or World of Warcraft level. From a biological stand-
point, intelligence may be indirectly measured by one’s
reproductive fitness: the number of one’s children or
sexual partners. Despite (or perhaps due to) the large
number of people that have devoted effort to defining a
single useful measure of general human intelligence, no
consensus has been reached. One complicating factor
is that we have a conflict of interest; we may occasion-
ally be guilty of advocating intelligence benchmarks at
which we are likely to excel, rather than those which
are likely to be the most useful.

Given the historical difficulty in choosing human gen-
eral intelligence benchmarks, do we have a chance of
choosing a non-human intelligence benchmark? We
share many of the same challenges. We are no closer
to a single definition of the term “intelligence.” There
is a profusion of potential measures. And we also may
be tempted to advocate benchmarks at which our own
systems are likely to excel. If there is one lesson we may
learn from the history of human intelligence assessment
it is that full consensus may be too ambitious. Our
ultimate goals may be better served by choosing sev-
eral benchmarks that are useful to many of us, rather
than waiting until we find a single benchmark that is
embraced by all.

This is not to say that any benchmark will do. It
will require care not to choose a poor one. For ex-
ample, performance on non-monotonic reasoning tasks
has been proposed as a benchmark for artificial reason-
ing systems. However, closer examination revealed that
human performance on the task was not well character-
ized, resulting in a machine intelligence benchmark that

133

was poorly aligned to human intelligence. (EP93) Illogic
in human performance is not uncommon. Occasionally
in the assessment of risk and reward, humans can be
outperformed by rats. (Mlo08) This is not completely
surprising. Deductive logic and the expectation max-
imization are tasks at which computers have outper-
formed humans for some time. But this example specif-
ically highlights the pitfalls associated with benchmark
selection. A benchmark based on reward maximization
could result in a scale in which machines progress from
human-level intelligence to the intelligence of a rodent.

There have been a number of benchmarks of ma-
chine performance that could be considered intelligence
measures of a very narrow sort. These include classi-
fication datasets for supervised and unsupervised ma-
chine learning algorithms, (AN07) some of which con-
tain images. (GHP07) There are also standard sim-
ulations on which reinforcement learning (RL) algo-
rithms can compare their performance with each other,
such as MountainCar (Moo90) and CartPole (GS93).
There are a number of autonomous robotics com-
petitions, which are benchmarks in the sense that
they allow quantitative comparisons to be made be-
tween robotic systems. These include the robot soc-
cer tournaments RoboCup (The09) and FIRA (FIR09),
the autonomous submarine competition of the AU-
VSI (AUV09), AAAI robot contests, and perhaps best
known, DARPA’s driverless navigation Grand Chal-
lenges (DAR07). These events have demonstrated that
a well-defined challenge can mobilize a large mount of
effort and resources (which can be encouraged even fur-
ther by the addition of several million dollars in prize
money).

In the remainder of this paper I will enumerate the
characteristics that, in my view, are desirable in an AGI
benchmark, and propose a benchmark that meets those
requirements. It is my hope that this proposal stimu-
lates further discussion on the topic and contributes to
the rapid selection of a provisional machine intelligence
measure.

Benchmark criteria

Desirable attributes for an AGI benchmark are summa-
rized in Table 1 and discussed below.

Fitness
A benchmark implies a goal. While it may not always
state a goal explicitly, it serves as an optimization cri-
terion, which the research community uses to evaluate
and direct its collective efforts. A useful benchmark
will accurately reflect the goals of those subscribing to
it. This may seem too obvious to merit attention, but it
is surprisingly easy to pick a benchmark that does not
fit this requirement. One purely hypothetical exam-
ple of this might be found in a corporate environment
where health and safety are high priorities. In order to
reflect the importance placed on employee well-being,
the number of reported injuries might be a reasonable

Table 1: Characteristics of a useful AGI benchmark

Fitness Success on the benchmark
solves the right problem.

Breath Success on the benchmark
requires breadth of problem solving ability

Specificity The benchmark produces
a quantitative evaluation.

Low Cost The benchmark is inexpensive
to evaluate.

Simplicity The benchmark is straightforward
to describe.

Range The benchmark may be applied
to both primitive and
advanced systems.

Task Focus The benchmark is based
on the performance of a task.

choice of a performance benchmark. However, the sim-
plest way to excel on this benchmark is for no employee
to perform any work, thus avoiding the possibility of in-
jury. This benchmark fails because it does not represent
all the goals of the community, such as survival of the
company and employee job satisfaction. However, this
particular company is to be applauded for looking past
the most common single corporate benchmark: stock
price.

An AGI benchmark should reflect the goals of the
AGI community. This will be challenging because those
goals have not yet been agreed upon, leaving us with-
out a clear target. However there have been a num-
ber of specific ideas proposed. (GAS09) The process of
benchmark selection may accelerate and sharpen that
discussion.

Another possible benefit of choosing a benchmark is
that it may actually free us up from trying to extrap-
olate the results of our research out to a 10 or 50 year
goal. We may be able to choose a benchmark that de-
fines a research direction and let the end result be an
emergent property of the researchers in our commu-
nity each performing a local optimization: maximiza-
tion against the benchmark. This approach may actu-
ally be more appropriate than defining a specific long-
term goal at the outset. The research process is inher-
ently uncertain and unpredictable. Having an emergent
end goal would require a good deal of confidence in the
benchmark, but would allow us to make progress to-
ward a final goal that is currently beyond our capacity
to visualize or articulate.

Breadth
Goertzel, Arel and Scheutz (GAS09) argued strongly
for breadth (a very large task space) and accessibil-
ity (the attribute of requiring no previous task-specific
knowledge) in an AGI benchmark. These two criteria
capture a common sense among AGI researchers that
a “general” intelligence can solve a more general class
of problems than its forbears, and that it is, in a sense,

134

cheating for this to be done through extensive knowl-
edge engineering or specialized heuristics. Weng intro-
duced a related notion of task breadth that he termed
muddiness. (Wen05) The ability to perform a broad set
of tasks is a necessary characteristic of any system as-
piring to human level intelligence.

The matching of human capability was the essence of
the Turing Test and most AGI goal descriptions have
been in a similar vein. In approaching such an ambi-
tious problem it has been common practice in artificial
intelligence research to reduce the breadth of the tasks
while keeping the goal of human-level performance.
There are strong temptations to reduce breadth: nar-
rowing the task space and introducing task-specific sys-
tem knowledge can produce far more eye-catching re-
sults and garner more attention, particularly from fund-
ing sources. However, our experience now shows that
human-level performance in a narrow area, such as med-
ical diagnoses or playing chess, does not necessarily gen-
eralize to a broader task set. Instead, it appears that
maintaining breadth will ultimately be the more pro-
ductive way to approach our long term goals. Keeping
benchmarks broad while incrementally increasing per-
formance expectations mimics the process followed by
evolution during the development of animal intelligence.
It is possible that following this course will automati-
cally prioritize our efforts, focusing them on the most
fundamental problems first.

Specificity
A useful benchmark will provide some quantitative
measure of a system’s value or performance. The best
known benchmark from AI, the Turing Test, provides
only a binary valuation, pass or fail. A number of sim-
ilar tests have been proposed that may come closer
to capturing the goals of AGI: the Telerobotic Tur-
ing Test (GAS09), the Personal Turing Test (CF05),
and the Total Turing Test (Har91). Of course a bi-
nary benchmark is of limited use if we wish to evalu-
ate systems that are not near the threshold of success.
Turing-type tests could be made finer-grained by cali-
brating them against typical humans of varying ages,
rather than setting a single threshold at the perfor-
mance level of a typical adult. This notion of cognitive
age (DOP08) could be further extended by calibrating
performance against that of other species, resulting in a
cognitive equivalent organism. A finer-grained measure,
rather than a threshold, allows AGI candidates in vari-
ous stages of development to be compared and progress
to be charted over time. It also takes the pressure off
researchers to define and come to consensus on a techno-
logical roadmap for developing AGI. (GAS09) Instead
researchers can let the benchmark drive development
priorities. In each particular approach, whatever aspect
of technology would have the greatest impact on that
system’s benchmarked performance, that is where they
can focus their efforts. The community would not need
to spend time debating whether visual object recogni-
tion or non-monotonic logic needs to be addressed most

urgently.
Even more useful would be a benchmark that mapped

performance onto a scalar or vector of continuous or
finely discretized values. With an appropriate mapping,
common distance metrics such as the L2 norm could be
used to rank, order, and describe disparities between
multiple AGI candidates. It would still be possible to
set a Turing threshold, but a numerical benchmark re-
sult would allow evaluation of AGI efforts that fall short
of human performance, as well as of those that exceed
it.

Low Cost

An ideal benchmark will not require an inordinate
amount of time, money, power, or any other scarce
resource to evaluate. In order to be useful as a mea-
surement device, it must be practical to apply. Even if
it were excellent in all other respects, an incomputable
benchmark would be of no practical value.

By taking advantage of economies of scale, competi-
tions have proven to be an efficient way to evaluate a
large number of systems in a single event. The overhead
of administering the task, constructing the apparatus,
and judging the results is shared among all the teams.
A benchmark may also be able to use a competition
format to reduce its cost in this way.

Simplicity

While not a requirement, it would be desirable for
a benchmark to be simple in the sense that it could
be accurately and concisely communicated to someone
with only a high school (secondary school) diploma.
Although the full motivation and justification for the
benchmark may be much more complex, the ability to
condense the success metric into a brief tagline can do
a great deal to promote understanding in the wider
scientific and non-scientific communities. This is par-
ticularly relevant to potential customers and funding
sources. It is much easier to sell an idea if it can be
clearly communicated. Simplicity will also promote
accurate representation in popular media coverage of
AGI. If we are able to provide brief summaries of our
goals in the form of a soundbite, we can keep the sto-
ries more accurate. Otherwise we risk the distortion
and misrepresentation that can inadvertently accom-
pany technical reporting in the popular media.

Range

The best benchmark would be applicable to systems at
all stages of sophistication. It would produce meaning-
ful results for systems that are rudimentary as well as
for systems that equal or exceed human performance.
As was suggested earlier, a benchmark with a wide
range of applicability would provide a full roadmap for
development, giving direction both for immediate next
steps and pointing toward long-range goals. This would
have the added benefit of countering critics who might

135

claim that the goals of AGI are out of reach. A wide-
range benchmark would imply near term, concrete goals
by which we could measure and report our successes.

Task Focus
The four previous criteria (specificity, low cost, sim-
plicity, and range) point toward a tool-agnostic task-
focused benchmark. A performance measure of this
type would not explicitly favor any particular approach
(connectionist, symbolic, hybrid, or otherwise) but
would reward each system purely on its demonstrated
merits.

It is uncommon to have a scientific community united
and defined by the problem it is trying to solve. It is
much more common to have a community built around
the use of a single computational, methodological, or
modeling tool. This can be useful; it ensures that every-
one understands everyone else’s work. In a tool-centric
community there is a common language and a shared
set of assumptions that results in highly efficient com-
munication. It is also easier to define who “belongs”.
Anyone whose work looks too unusual or unfamiliar is
probably using a novel approach and is therefore an
outsider.

Despite these benefits, tool-based definition is a lux-
ury the field of AGI can’t afford. The last sev-
eral decades have demonstrated that focus on isolated
toolsets is not necessarily the ideal approach to general
AI. Any single tool may have hidden inductive biases
that, if unacknowledged, can color the interpretation
of its results. (THB07) There are now many signifi-
cant efforts to combine multiple tools, specifically across
connectionist-symbolic lines, one of the most notable of
which is the DUAL architecture. (Kok94) Although it
will require more effort in both explaining our work
to each other and in grasping unfamiliar approaches,
adopting a methodologically agnostic view greatly in-
creases the size of the net we are casting for solutions.
It is also an inoculation against intellectual inbreeding
and unexamined assumptions, the primary symptoms
of “looking where the light is.”

One of the strongest arguments for a tool-centered
approach to AGI is the biological plausibility of certain
tools. However, this has proven to be a very elastic
criterion. For example, artificial neural networks are
based on approximate models of some neural circuits,
yet some question the biological plausibility of their
function. (AA09) Conversely, algorithms with no ob-
vious biological implementation, such as the A* search,
can mimic gross aspects of some human behaviors. Our
neuroanatomic knowledge is too sparse at this point to
conclusively specify or rule out algorithms underlying
cognition. Most often the biological plausibility argu-
ment serves as a Rorschach test, helping us to expose
our technical biases. And although there is some philo-
sophical disagreement on this point among AGI devel-
opers, it could be argued that if a machine successfully
achieves human-level performance on a broad intelli-
gence metric, the biological plausibility of the approach

is irrelevant.
Biological fidelity is itself an alternative to a task-

based benchmark. This is the goal of model-based ap-
proaches to AGI. For now, the qualitative nature of
biological fidelity makes it an unsatisfying benchmark
candidate. Although serious efforts to quantify it are
underway (LGW09), they are not yet mature. Inter-
estingly, the proposed framework for establishing bi-
ological fidelity is also task-based, with the objective
of matching human performance substituted for per-
formance maximization. But until biological fidelity
is concretely defined, establishing it more easily takes
the form of a legal argument than a scientific one,
with no conclusive way to resolve differences of opin-
ion. However, seeking computational insights through
biomimicry has been the genesis of many of our current
computing tools and will undoubtedly serve as an ever-
richer source of inspiration as our understanding of the
brain matures.

A task-based benchmark has the additional benefit of
keeping claims and counterclaims about competing ap-
proaches accurate. Without a mutually accepted basis
for comparison, researchers are put in a difficult po-
sition when attempting to draw distinctions between
their work and that of others. We are often reduced to
speculating about the ultimate capabilities and limita-
tions of both our own and others’ approaches, a subjec-
tive and non-scientific endeavor that is frustrating and
can spark animosity. This is an inherently problem-
atic process, as we naturally underestimate those tools
with which we are least familiar and overestimate those
which we know best, particularly if we helped create
them.

It may be reasonably argued that a benchmark with
a strong task focus would provide limited support for
the development of theory and mathematical analy-
sis. But this is not necessarily the case. Theory and
analysis have consistently provided insights that have
enhanced performance. The adoption of a task-based
benchmark would not make irrelevant rigorous math-
ematical work on AGI. It would only provide extra
motivation to keep such theories grounded. These ef-
forts make powerful mathematical statements about
the potential capabilities of inductive problem solvers
and thus are highly relevant to AGI. (Hut05; Sch04;
Sch09) However, two conditions must be met for these
efforts to directly contribute to improving performance
on a task-based benchmark. 1) Every mathematical
representation of the world makes modeling assump-
tions. These assumptions must not neglect or distort
essential characteristics of the system being modeled.
And 2) results must be reducible to practice. If a uni-
versal problem solver is mathematically defined, but
could not be built with finite resources or run in finite
time, it may be of limited value in pursuing a task-
based benchmark. Reduction to practice is also a good
method to verify that condition 1) was met.

A counter argument could be made that the devel-
opment of intelligence should center exclusively on ana-

136

lytical and mathematical problems rather than physical
or low-level tasks. The reasoning might be that higher
level analytic and cognitive functions are uniquely hu-
man and should therefore be the sole focus of any effort
to develop human level AI. But the fact remains that
whatever cognitive abilities humans have acquired, they
were preceded by the phylogenetically more basic abil-
ities used by all mammals to find food, avoid threats,
and reproduce. For this reason, more basic tasks of per-
ception and physical interaction should not be neglected
in favor of tasks that are more symbolic in nature.

Conclusion
A set of criteria for evaluating AGI benchmarks is pro-
posed in Table 1. This is not intended to be a final
answer to how to select a benchmark. Rather it is
presented in the spirit of the “straw man,” an imper-
fect incarnation that invites criticism, suggestions for
improvement, and counterproposals. It is hoped that
these criteria will promote discussion throughout the
community, inspiring new and improved proposals for
benchmarks which in turn will bring us closer to achiev-
ing our goals by clarifying them.

Acknowledgments
This work was supported by the Laboratory Directed
Research and Development program at Sandia National
Laboratories. Sandia is a multiprogram laboratory op-
erated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s Na-
tional Nuclear Security Administration under Contract
DE-AC04-94AL85000.

References
T. Achler and E. Amir. Neuroscience and AI share the
same elegant mathematical trap. In Proc 2009 Conf
on Artificial General Intelligence, 2009.
A. Asuncion and D.J. Newman. UCI
machine learning repository, 2007.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.
AUVSI. Auvsi unmanned systems online, 2009.
http://www.auvsi.org/competitions/water.cfm, Ac-
cessed September 22, 2009.
R. Carpenter and J. Freeman. Computing
machinery and the individual: The Personal
Turing Test. Technical report, Jabberwacky,
2005. http://www.jabberwacky.com/personaltt, Ac-
cessed September 22, 2009.
DARPA. Darpa urban challenge, 2007.
http://www.darpa.mil/grandchallenge/index.asp,
Accessed September 22, 2009.
W. Duch, R. J. Oentaryo, and M. Pasquier. Fron-
tiers in Artificial Intelligence Applications, volume
171, chapter Cognitive architectures: Where do we go
from here?, pages 122–136. IOS Press, 2008.
R. Elio and F. J. Pelletier. Human benchmarks on
AI’s benchmark problems. In Proc 15th Congress of

the Cognitive Science Society, pages 406–411, Boulder,
CO, 1993.
FIRA. Federation of International Robosoccer Asso-
ciation Homepage, 2009. http://www.fira.net/, Ac-
cessed September 22, 2009.
B. Goertzel, I. Arel, and M. Scheutz. To-
ward a roadmap for human-level artificial gen-
eral intelligence: Embedding HLAI systems in
broad, approachable, physical or virtual con-
texts. Technical report, Artificial General Intelli-
gence Roadmap Initiative, 2009. http://www.agi-
roadmap.org/images/HLAIR.pdf. Accessed Septem-
ber 21, 2009.
B. Goertzel and Eds. C. Pennachin. Artificial General
Intelligence. Springer, 2007.
G. Griffin, A. Holub, and P. Perona. Caltech-
256 object category dataset. Technical Report
7694, California Institute of Technology, 2007.
http://authors.library.caltech.edu/7694.
S. Geva and J. Sitte. A cart-pole experiment for train-
able controllers. IEEE Control Systems Magazine,
13:40–51, 1993.
S. Harnad. Other bodies, other minds: A machine
incarnation of an old philisophical problem. Minds
and Machines, 1:43–54, 1991.
M. Hutter. Universal Artificial Intelligence: Se-
quential Decisions Based on Algorithmic Probability.
Springer-Verlag, Berlin Heidelberg, 2005.
B. N. Kokinov. The DUAL cognitive architechture:
A hybrid multi-agent approach. In Proceedings of
the Eleventh European Conference on Artificial Intel-
ligence. John Wiley and Sons, 1994.
S. Livingston and I. Arel. AGI roadmap, 2009.
http://agi-roadmap.org/, Accessed September 22,
2009.
C. Lebiere, C. Gonzales, and W. Warwick. A compar-
ative approach to understanding general intelligence:
Predicting cognitive performance in an open-ended dy-
namic task. In Proceedings of the Second Conference
on Artificial General Intelligence. Atlantis Press, 2009.
L. Mlodinow. The Drunkard’s Walk: How Random-
ness Rules Our Lives, 8th Printing Edition. Pantheon,
2008. See Chapter 1.
A. Moore. Efficient Memory-Based Learning for Robot
Control. PhD thesis, University of Cambridge, 1990.
Netflix. Netflix prize homepage, 2009.
http://www.netflixprize.com/, Accessed Septem-
ber 23, 2009.
J. Schmidhuber. Optimal ordered problem solver. Ma-
chine Learning, 54:211–254, 2004.
J. Schmidhuber. Ultimate cognition à la Gödel. Cog-
nitive Computing, 1:177–193, 2009.
P. Tino, B. Hammer, and M. Bodén. Perspectives
of Neural-Symbolic Integration, volume 77, chapter
5. Markovian bias of neural-based architectures with

137

feedback connections, pages 95–133. Springer-Verlag,
Heidelberg, Germany, 2007.
The RoboCup Federation. RoboCup Homepage.
http://www.robocup.org/, 2009. Accessed September
22, 2009.
A. M. Turing. Computing machinery and intelligence.
Mind, 59:433–460, 1950.
P. Wang. Frontiers in Artificial Intelligence Applica-
tions, volume 171, chapter What do you mean by AI?,
pages 362–373. IOS Press, 2008.
J. Weng. Muddy tasks and the necessity of au-
tonomous mental development. In Proc. 2005 AAAI
Spring Symposium Series, Developmental Robotics
Symposium, Stanford University, Mar 21-23 2005.

138

Towards Practical Universal Search

Tom Schaul and Jürgen Schmidhuber
IDSIA, University of Lugano

Galleria 2, 6900 Manno
Switzerland

Abstract

Universal Search is an asymptotically optimal way of
searching the space of programs computing solution
candidates for quickly verifiable problems. Despite the
algorithm’s simplicity and remarkable theoretical prop-
erties, a potentially huge constant slowdown factor has
kept it from being used much in practice. Here we
greatly bias the search with domain-knowledge, essen-
tially by assigning short codes to programs consist-
ing of few but powerful domain-specific instructions.
This greatly reduces the slowdown factor and makes
the method practically useful. We also show that this
approach, when encoding random seeds, can signifi-
cantly reduce the expected search time of stochastic
domain-specific algorithms. We further present a con-
crete study where Practical Universal Search (PUnS)
is successfully used to combine algorithms for solving
satisfiability problems.

Introduction

Universal Search is the asymptotically fastest way of
finding a program that calculates a solution to a given
problem, provided nothing is known about the prob-
lem except that there is a fast way of verifying solu-
tions (Lev73). The algorithm has the property that
the total time taken to find a solution is O(t∗), where
t∗ is the time used by fastest program p∗ to compute
the solution. The search time of the whole process is
at most a constant factor larger than t∗; typically this
depends on the encoding length of p∗. The algorithm
itself is very simple: It consists in running all possible
programs in parallel, such that the fraction of time al-
located to program p is 2−l(p), where l(p) is the size of
the program (its number of bits).

More formally, assume a Turing-complete language L
of binary strings that can encode all possible programs
in a prefix-free code. Let p∗ be the fastest program
that solves a problem of problem complexity n. Then
t∗ = f(n) is the number of time steps p∗ needs to com-
pute the solution. Let l(p∗) be the size of p∗ in L.
Then the algorithmic complexity of Universal Search is
O(f(n)). However, the multiplicative constant hidden

by this notation turns out to be 2l(p∗). (All the above
assumes that there is a known way of verifying a given

solution to the problem in time linear in the problem
size n.)

Searching an infinite number of programs in parallel
is impossible on a physical computer, thus an actual im-
plementation of this algorithm has to proceed in phases,
where in each phase more and more programs are run
in parallel and the total search time per phase is con-
tinually increased. See algorithm 1 for the pseudocode.

Algorithm 1: Universal Search.

Input: Programming language, solution verifier
Output: Solution
phase := 1;
while true do

for all programs p with l(p) ≤ phase do

timelimit := 2phase−l(p);
run p for maximally timelimit steps;
if problem solved then

return solution;
end

end
phase := phase + 1;

end

For certain concrete problems and general-purpose
languages it may seem improbable that the fastest pro-
gram solving the problem can be encoded by fewer
than, say, 50 bits, corresponding to a slowdown factor
of 250 ≈ 1015, making Universal Search impractical.

Previous Extensions and Related Work
Several extensions of universal search have made it more
useful in practice. The Optimal Ordered Problem Solver
(OOPS, (Sch04)) incrementally searches a space of pro-
grams that may reuse programs solving previously en-
countered problems. OOPS was able to learn universal
solvers for the Tower of Hanoi puzzle in a relatively
short time, a problem other learning algorithms have
repeatedly failed to solve. In (Sch95) a probabilistic
variant of Universal Search called Probabilistic Search
uses a language with a small but general instruction set
to generate neural networks with exceptional general-
ization properties.

139

A non-universal variant (WS96) is restricted to
strictly domain-specific instructions plus a jump state-
ment. It is applied successfully to solving partially ob-
servable maze problems. The same paper also presents
ALS, an adaptive version of Universal Search, which
adjusts instruction probabilities based on experience.

Another recent development is Hutter’s HSearch al-
gorithm (Hut02). HSearch combines Universal Search
in program space with simultaneous search for proofs
about time bounds on their runtime. The algorithm
is also asymptotically optimal, but replaces the mul-
tiplicative slowdown by an additive one. It may be
significantly faster than Universal Search for problems
where the time taken to verify solutions is nontrivial.
The additive constant depends on the problem class,
however, and may still be huge. A way to dramati-
cally reduce such constants in some cases is a universal
problem solver called the Gödel Machine (Sch09).

Other attempts have been made at developing prac-
tically useful non-exhaustive search algorithms inspired
by Universal Search. This family of algorithms include
time-allocation algorithms for portfolios of diverse al-
gorithms (GS06).

Making Universal Search Practical

The more domain knowledge we have, the more we
can shape or restrict the space of programs we need to
search. Here we make Universal Search practically use-
ful by devising a domain-specific language that encodes
plausible (according to prior knowledge) programs by
relatively few bits, thus reducing the slowdown factor
to an acceptable size.

Dropping assumptions

Universal Search makes a number of assumptions about
the language L. We will keep the assumption that L is
a prefix-free binary code, and drop the following ones:

• L is Turing-complete,

• Every encoding corresponds to a valid program,

• L is infinite.

This does not mean that the opposites of those assump-
tions are true, only that they are not necessarily true
(L is still allowed to be infinite or Turing-complete).

Another implicit assumption that is sometimes made
on L is that its encodings represent a sequence of in-
structions in a standard programming language. Sub-
sequently, we generalize this interpretation to include
more restricted languages, such as encodings of param-
eter settings, random number generator seeds or top-
level routines (e.g. ’localSearch()’).

Thus, for Practical Universal Search (PUnS), L can
encode an arbitrary set of programs, all of which can
be domain-specific. While the language L thus may be-
come more flexible, the search algorithm for it remains
identical to Algorithm 1.

Optimality

PUnS inherits its optimality property directly from
Universal Search. As long as the language remains
Turing-complete, it has the same asymptotically op-
timal runtime complexity. In general it will be more
restrictive, so this statement does not necessarily hold
anymore. Still, the following, weaker one, holds:

Property 1 For every problem instance, the order of
runtime complexity of PUnS is the same as that of the
best program which its language can encode.

Integrating Domain Knowledge

There are two concrete approaches for integrating do-
main knowledge:

• We can restrict the language, to allow only programs
that are appropriate for the problem domain. This
can be done in a straightforward way if L is small
and finite.

• We can bias the allocation of time towards programs
that we suspect to perform better on the problem
domain. Universal Search allocates time according
to the descriptive complexity (i.e. the number of bits
in its encoding) of the program. This is related to
the concept of Occam’s Razor, reflecting the hope
that shorter programs will generalize better. Now,
given domain knowledge about which programs will
generally perform better, we can employ the same
reasoning and encode those with fewer bits.

Fundamental Trade-off

Defining the language is the key element in PUnS –
but this step has a strong inherent (and unresolvable)
trade-off: the more general the language, the bigger the
slowdown factor, and the more we reduce that one, the
more biased the language has to be.

PUnS should therefore be seen as a broad spectrum
of algorithms, which on one extreme may remain com-
pletely universal (like the original Universal Search) and
cover all quickly verifiable problems. On the other ex-
treme, if the problem domain is a single problem in-
stance, it may degenerate into a zero-bit language that
always runs the same fixed program (e.g. a hand-coded
program that we know will efficiently solve the prob-
lem). In practice, neither of those extremes is what we
want – we want an approach for solving a large number
of problems within (more or less) restricted domains.
This paper describes a general way of continually ad-
justing the universality/specificity of PUnS.

Practical Considerations

PUnS is a good candidate for multi-processor ap-
proaches, because it is easily parallelizable: the pro-
grams it runs are independent of each other, so the
communication costs remain very low, and the over-
head of PUnS is negligible.

Beyond the design of the language L, PUnS has no
other internal parameters that would require tuning.

140

Furthermore, it is highly tolerant w.r.t. poorly designed
languages and incorrect domain-knowledge: the result
can never be catastrophic, as for every problem instance
PUnS will still have the runtime complexity of the best
solver that the language can express. Thus, an inappro-
priately designed language can be at most a constant
factor worse than the optimal one, given the same ex-
pressiveness.

Languages for PUnS

The only condition we need to observe for L is that the
encodings remain a prefix-free language. For complete
generality, the language can always contain the original
Turing-complete language of Universal Search as a fall-
back. Those encodings are then shifted to higher length,
in order to free some of the encodings for the domain-
specific programs.

The following sections will describe some variations
of PUnS, discussing some specific points along the spec-
trum (as mentioned above) in more depth. Clearly, if
appropriate in a domain, all those types of languages
can be combined into a single hybrid language.

Domain-biased Programming Languages

Consider a domain where no efficient or general algo-
rithms for solving problems exist, so that it is nec-
essary to search very broadly, i.e. search the space
of programs that might solve the problem. If we use
a standard Turing-complete language that encodes se-
quences of instructions, we have more or less the orig-
inal Universal Search - and thus a huge constant slow-
down. However, we can integrate domain knowledge
by adding (potentially high-level) domain-specific sub-
routines with short encodings to bias the search. Fur-
thermore, we can make the language sparser by re-
stricting how instructions can be combined (reminiscent
of strong typing in standard programming languages).
A language like this will remain Turing-complete, and
the slowdown factor still risks to be high: the run-
time will be acceptable only if the modified language
is either very sparse, i.e. almost all bit-strings do not
correspond to legal programs and thus only relatively
few programs of each length are run1, or it is compact
enough to allow for solution-computing programs with
no more than 50 bits. Successfully applied examples
of this kind of PUnS can be found in (WS96; Sch95;
Sch05).

A language that directly encodes solutions (with a
domain-specific complexity measure) causes PUnS to
perform a type of exhaustive search that iteratively
checks more and more complex solutions. This was
explored in a companion paper (KGS10) for searching
the space of neural networks, ordered by their encoding
length after compression.

1Note that the cost of finding legal programs domi-
nates when the language is extremely sparse, that is, only
solution-computing programs are legal.

Exploration of Parameter Space
If we know a good algorithm for arriving at a solution to
a problem, but not the settings that allow the algorithm
to solve the problem efficiently (or at all), PUnS can be
used to search for good parameters for the algorithm.
In this case, each program tested by PUnS is actually
the same algorithm, run with different parameters. We
can view the interpretation of that language as a non-
Turing complete virtual machine that runs “programs”
specified as parameter settings.

Any parametrized algorithm could be used as a vir-
tual machine for this type of search. However, the al-
gorithms that are best suited for this purpose are those
where parameters are discrete, and can naturally be
ordered according to the complexity of the search re-
sulting from a particular parameter setting. There is a
wide range of machine learning algorithms that exhibit
this characteristic in various ways (e.g. the number of
free variables in a function approximator used by an
algorithm).

Stochastic Algorithms
Consider a domain where a good algorithm exists and
the algorithm is either non-parametric, or good settings
for its parameters are known. However, the algorithm
is stochastic, and converges to a solution only in a small
(unknown) fraction of the runs. In such a domain, uni-
versal search could be employed to search the space
of random number generator seeds for the algorithm.
These seeds are naturally ordered by length, encoded
as prefix-free binary integers. While this is a very de-
generate language, it fulfills all criteria for being used
by Universal Search.

In this case PUnS will spawn more and more pro-
cesses of the stochastic algorithm in every phase, each
with a different seed, until one of them eventually finds
a solution. As the encodings have incrementally longer
encodings, we do not need to know anything about the
probability of success: exponentially more time is allo-
cated to processes with short encodings, so PUnS will
only spawn many more processes if they are needed,
i.e. if the first random seeds do not lead to convergence
fast enough.

In the rest of this section, we will present one such
example language, and analyze under which circum-
stances it is advantageous to apply PUnS to it. Con-
sider the language that encodes an unlimited number of
random seeds as ‘0k1’ for the kth seed, such that seed
k is allocated 2−k of the total time.

Let us assume a stochastic base-algorithm where the
time T required to find the solution is a random vari-
able, with a probability density function φ(t) and cu-
mulative probability function Φ(t) = P (treq ≤ t).

Then the time required by PUnS to find the solution
T ′ is the minimum of an infinite number of independent
realizations of T , with exponentially increasing penal-
ties:

T ′ = min
(

21T, 22T, 23T, . . . , 2kT, . . .
)

141

10-2 10-1 100 101 102
0.0

0.1

0.2

0.3

0.4

0.5

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

base
PUnS

10-2 10-1 100 101 102

time until solution [s]

0

20

40

60

80

100

p
ro

b
le

m
s

so
lv

e
s

[%
]

Figure 1: Above: Probability density functions φ and
φ′, of the base distribution (σ = 1

2 log(10)) and PUnS,
respectively. Below: percentage of problems solved
faster than a certain time, for the base-algorithm and
PUnS.

10-3 10-2 10-1 100 101 102 103
0.00

0.05

0.10

0.15

0.20

0.25

0.30

p
ro

b
a
b
ili

ty
 d

e
n
si

ty

base
PUnS

10-3 10-2 10-1 100 101 102 103

time until solution [s]

0

20

40

60

80

100

p
ro

b
le

m
s

so
lv

e
s

[%
]

Figure 2: Above: Probability density functions φ and
φ′, of the wider base distribution (σ = log(10)) and
corresponding PUnS, respectively. Below: percentage
of problems solved faster than a certain time, for the
base-algorithm and PUnS.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
standard deviation parameter

100

101

102

base
PUnS

Figure 3: Mean times as a function of the σ parame-
ter, for both the base-algorithm and PUnS. The circles
correspond to the values for figures 1 and 2. Note the
log-scale on the y-axis: the mean time for the base algo-
rithm increases faster than exponential w.r.t. σ, while
it decreases slightly for PUnS.

Figure 4: The shades of grey in this plot code for the
proportion tb/tp, i.e. the factor by which the expected
solution time is reduced when employing PUnS instead
of the base-algorithm. The horizontal axis shows the
dependency on proportion q, while the vertical axis
corresponds to the interval size λ. The black line cor-
responds to limit cases, where both versions have the
same expected time: in the whole upper middle part
PUnS is better (large enough interval, and not too small
q), sometimes by orders of magnitude. The discontinu-
ities (dents) happen whenever λ traverses a power of 2,
i.e. whenever k is incremented.

142

T ′ has density function

φ′(t) =

∞
∑

k=1

φ(t/2k)

∞
∏

i=1,i6=k

1 − Φ(t/2i)

and cumulative density function

Φ′(t) = 1 −
∞
∏

k=1

(1 − Φ(t/2k)).

Note that it is possible to truncate the computation
of the infinite sums and products after a small number
of terms, under the reasonable assumption that φ(t)
decays fast as t approaches zero.

Figure 1 illustrates the simple case where the required
time is normally distributed in log-time space (i.e. the
log-normal distribution) with µ = 0 and σ = 1

2 log(10).
We observe that PUnS reduces the probability of long
runtimes (over 5 seconds). In general it has the prop-
erty of reducing the right (expensive) tail of the base
distribution. When the base distribution has a larger
standard deviation the effect is even more pronounced
(see Figure 2, which shows the same plot as before, but
for σ = log(10)). In this case we observe an additional
beneficial effect, namely that the mean time is reduced
significantly. In figure 3 we plot the mean times as a
function of σ to illustrate this effect in detail.

Another case of interest is a stochastic base-algorithm
with two distinct outcomes: with probability q it finds
the solution after t1, otherwise it requires t2 = λt1.
This algorithm has an expected solution time of

tb = t1 [1 + (λ − 1)(1 − q)] .

Applying PUnS to the above language, it can be shown
that the expected time changes too

tp = t1

[

1 + (λ − 2k)(1 − q)k+1 +

k
∑

i=0

2i(1 − q)i

]

,

where k = blog2 λc is the largest integer such that
2k ≤ λ. Figure 4 shows for which values of q and
λ PUnS outperforms the base-algorithm, and by how
much (note that those results are independent of t1).

To summarize, whenever we have access to a stochas-
tic domain-specific algorithm with high variability in its
solution times, using PUnS with a simple language to
encode random seeds (e.g. the one introduced in this
section) can reduce the expected solution time by orders
of magnitude.

Case study: SAT-UNSAT
This section presents a small case-study of using PUnS
on a mixed SAT-UNSAT benchmark with 250 boolean
variables. We use as the underlying base-programs two
standard algorithms:

• A local search algorithm (G2WSAT, (LH05)) which
is fast on satisfiable instances, but does not halt on
unsatisfiable ones.

• A complete solver (Satz-Rand (GSCK00)) that can
handle both kinds of instances, but is significantly
slower.

Both these algorithms are stochastic, but G2WSAT
has a high variance on the time needed to find a solution
for a given instance. We set all parameters to default
values (G2WSAT: noise = 0.5, diversification = 0.05,
time limit = 1h; Satz-Rand: noise = 0.4, first-branching
= most-constrained) (GS06).

The language we define for PUnS combines both
base-algorithms, employing the coding scheme intro-
duced in the previous section for the high-variance
G2WSAT: ’11’ encodes running of Satz-Rand, ’01’,
’001’, ’0...01’ encode running of G2WSAT with a ran-
dom seed (a different seed for every number of ’0’ bits).

In this case, a third of the total computation time is
allocated to each Satz-Rand, the first random seed for
G2WSAT and all other random seeds combined. With
this language, the optimal performance corresponds to
that of Oracle which for every problem instance knows
in advance the fastest solver and the best random seed.

10-2 10-1 100 101 102

time elapsed [s]

0

20

40

60

80

100

p
ro

b
le

m
s

so
lv

e
d
 [

%
]

G2WSAT
Satz-Rand
Oracle
PUnS

Figure 5: Percentage of instances solved, given a cer-
tain computation time for G2WSAT, Satz-Rand, Oracle
and PUnS on the mixed SAT-UNSAT-250 benchmark
(averaged over 20 runs with different random seeds).

Figure 5 shows the results of running all four algo-
rithms (including Oracle) on a set of 100 satisfiability
instances, half of which are unsatisfiable. We find that
Practical Universal Search is indeed a robust way of
combining the base-algorithms. By construction, it is
never slower by more than a factor 3 w.r.t. the best
base-algorithm. In addition, the reduced risk of a bad
initialization (seed) for G2WSAT on the boundary cases
(almost unsatisfiable) is clearly visible as well: Com-
pare the much steeper increase of the PUnS plot, as
compared to the G2WSAT one. Finally, as expected,
the PUnS performance is approximately that of Ora-
cle with a constant factor slowdown – the difference is

143

due to the fact that the encoding length of the optimal
random seed is not bounded a priori.

Conclusions

Universal Search can be used in practice by biasing its
language for encoding programs. We provided guide-
lines for integrating domain-knowledge, possibly (but
not necessarily) at the cost of universality. We de-
scribed a simplified language for non-universal prob-
lem domains, and emphasized the flexibility of the ap-
proach. In particular, we established that encoding ran-
dom seeds for stochastic base-algorithms can be highly
advantageous. Finally we conducted a proof-of-concept
study in the domain of satisfiability problems.

Future work

One direction to pursue would be to develop a gen-
eral adaptive version of PUnS, where program proba-
bilities change over time based on experience, like in
ALS (WS96). A related direction will be to extend
PUnS along the lines of OOPS (Sch04), reducing sizes
and thus increasing probabilities of encodings of pro-
grams whose subprograms have a history of quickly
solving previous problems, thus increasing their chances
of being used in the context of future problems. There
also might be clever ways of adapting the language
based on intermediate results of (unsuccessful) runs, in
a domain-specific way.

Acknowledgments

We thank Matteo Gagliolo for permission to use his
experimental data, as well as Julian Togelius for his
valuable input. This work was funded in part by SNF
grant number 200021-113364/1.

References

Matteo Gagliolo and Jürgen Schmidhuber. Learning
Dynamic Algorithm Portfolios. Annals of Mathemat-
ics and Artificial Intelligence, 47(3-4):295–328, August
2006.

Carla P Gomes, Bart Selman, Nuno Crato, and
Henry A Kautz. Heavy-Tailed Phenomena in Satisfi-
ability and Constraint Satisfaction Problems. Journal
of Automated Reasoning, 24:67–100, 2000.

Marcus Hutter. The Fastest and Shortest Algorithm
for All Well-Defined Problems. International Jour-
nal of Foundations of Computer Science, 13:431–443,
2002.

Jan Koutnik, Faustino Gomez, and Jürgen Schmidhu-
ber. Searching for Minimal Neural Networks in Fourier
Space. In Proceedings of the Conference on Artificial
General Intelligence, Lugano, Switzerland, 2010.

Leonid A Levin. Universal sequential search prob-
lems. Problems of Information Transmission, 9:265–
266, 1973.

Chu M Li and Wenqi Huang. Diversification and De-
terminism in Local search for Satisfiability. In Pro-
ceedings of the 8th International Conference on Satis-
fiability (SAT), pages 158–172, 2005.

Jürgen Schmidhuber. Discovering solutions with low
Kolmogorov complexity and high generalization capa-
bility. In A Prieditis and S Russell, editors, Proceedings
of the International Conference on Machine Learning
(ICML), pages 488–496, 1995.

Jürgen Schmidhuber. Optimal Ordered Problem
Solver. Machine Learning, 54:211–254, 2004.

Tom Schaul. Evolving a compact, concept-based
Sokoban solver, 2005.

Jürgen Schmidhuber. Ultimate Cognition à la Gödel.
Cognitive Computation, 1:177–193, 2009.

Marco Wiering and Jürgen Schmidhuber. Solving
POMDPs using Levin search and EIRA. In Pro-
ceedings of the International Conference on Machine
Learning (ICML), pages 534–542, 1996.

144

Artificial Scientists & Artists Based on the Formal Theory of Creativity

Jürgen Schmidhuber
IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland

University of Lugano & SUPSI, Switzerland

Abstract

I have argued that a simple but general formal theory
of creativity explains many essential aspects of intelli-
gence including science, art, music, humor. It is based
on the concept of maximizing reward for the creation or
discovery of novel patterns allowing for improved data
compression or prediction. Here I discuss what kind
of general bias towards algorithmic regularities we in-
sert into our robots by implementing the principle, why
that bias is good, and how the approach greatly gen-
eralizes the field of active learning. I emphasize the
importance of limited computational resources for on-
line prediction and compression, and provide discrete
and continuous time formulations for ongoing work on
building an Artificial General Intelligence (AGI) based
on variants of the artificial creativity framework.

Introduction

Since 1990 I have built agents that may be viewed as
simple artificial scientists or artists with an intrinsic
desire to create / discover more novel patterns, that
is, data predictable or compressible in hitherto un-
known ways (Sch91b; Sch91a; SHS95; Sch02a; Sch06a;
Sch07; Sch09c; Sch09b; Sch09a). The agents invent and
conduct experiments to actively explore the world, al-
ways trying to learn new behaviors exhibiting previ-
ously unknown regularities. The agents embody ap-
proximations of a simple, but general, formal theory
of creativity explaining essential aspects of human or
non-human intelligence, including selective attention,
science, art, music, humor (Sch06a; Sch07; Sch09c;
Sch09b; Sch09a). Crucial ingredients are: (1) A pre-
dictor or compressor of the continually growing his-
tory of actions and sensory inputs, reflecting what’s
currently known about how the world works, (2) A
learning algorithm that continually improves the pre-
dictor or compressor (detecting novel spatio-temporal
patterns that subsequently become known patterns),
(3) Intrinsic rewards measuring the predictor’s or com-
pressor’s improvements due to the learning algorithm,
(4) A reward optimizer or reinforcement learner, which
translates those rewards into action sequences or be-
haviors expected to optimize future reward - the agent
is intrinsically motivated to create additional novel

patterns predictable or compressible in previously un-
known ways. We implemented the following variants:
(A) Intrinsic reward as measured by improvement in
mean squared prediction error (1991) (Sch91a), (B) In-
trinsic reward as measured by relative entropies be-
tween the agent’s priors and posteriors (1995) (SHS95),
(C) Learning of probabilistic, hierarchical programs and
skills through zero-sum intrinsic reward games of two
players, each trying to out-predict or surprise the other,
taking into account the computational costs of learning,
and learning when to learn and what to learn (1997-
2002) (Sch02a). (A, B, C) also showed experimentally
how intrinsic rewards can substantially accelerate goal-
directed learning and external reward intake. We also
discussed (D) Mathematically optimal, intrinsically mo-
tivated systems driven by prediction progress or com-
pression progress (2006-2009) (Sch06a; Sch07; Sch09c;
Sch09b).

How does our formal theory of creativity and cu-
riosity generalize the traditional field of active learn-
ing, e.g., (Fed72)? To optimize a function may re-
quire expensive data evaluations. Active learning typ-
ically just asks which data point to evaluate next to
maximize information gain (1 step look-ahead), assum-
ing all data point evaluations are equally costly. Our
more general framework takes formally into account:
(1) Agents embedded in an environment where there
may be arbitrary delays between experimental actions
and corresponding information gains, e.g., (SHS95;
Sch91a), (2) The highly environment-dependent costs
of obtaining or creating not just individual data points
but data sequences of a priori unknown size, (3) Ar-
bitrary algorithmic or statistical dependencies in se-
quences of actions & sensory inputs, e.g., (Sch02a;
Sch06a), (4) The computational cost of learning new
skills, e.g., (Sch02a). Unlike previous approaches,
our systems measure and maximize algorithmic (Sol78;
Kol65; LV97; Sch02b) novelty (learnable but previ-
ously unknown compressibility or predictability) of self-
generated spatio-temporal patterns in the history of
data and actions (Sch06a; Sch07; Sch09c; Sch09b).

How does the prediction progress drive / compres-
sion progress drive explain, say, humor? Consider the
following statement: Biological organisms are driven by

145

the “Four Big F’s”: Feeding, Fighting, Fleeing, Sexual
Activity. Some subjective observers who read this for
the first time think it is funny. Why? As the eyes
are sequentially scanning the text the brain receives a
complex visual input stream. The latter is subjectively
partially compressible as it relates to the observer’s pre-
vious knowledge about letters and words. That is, given
the reader’s current knowledge and current compressor,
the raw data can be encoded by fewer bits than required
to store random data of the same size. But the punch
line after the last comma is unexpected for those who
expected another “F”. Initially this failed expectation
results in sub-optimal data compression—storage of ex-
pected events does not cost anything, but deviations
from predictions require extra bits to encode them. The
compressor, however, does not stay the same forever:
within a short time interval its learning algorithm im-
proves its performance on the data seen so far, by dis-
covering the non-random, non-arbitrary and therefore
compressible pattern relating the punch line to previous
text and previous knowledge about the “Four Big F’s.”
This saves a few bits of storage. The number of saved
bits (or a similar measure of learning progress) becomes
the observer’s intrinsic reward, possibly strong enough
to motivate him to read on in search for more reward
through additional yet unknown patterns. The recent
joke, however, will never be novel or funny again.

How does the theory informally explain the moti-
vation to create or perceive art and music (Sch97b;
Sch97a; Sch06a; Sch07; Sch09c; Sch09b; Sch09a)? For
example, why are some melodies more interesting or
aesthetically rewarding than others? Not the one the
listener (composer) just heard (played) twenty times in
a row. It became too subjectively predictable in the
process. Nor the weird one with completely unfamiliar
rhythm and tonality. It seems too irregular and contain
too much arbitrariness and subjective noise. The ob-
server (creator) of the data is interested in melodies that
are unfamiliar enough to contain somewhat unexpected
harmonies or beats etc., but familiar enough to allow for
quickly recognizing the presence of a new learnable reg-
ularity or compressibility in the sound stream: a novel
pattern! Sure, it will get boring over time, but not yet.
All of this perfectly fits our principle: The current com-
pressor of the observer or data creator tries to compress
his history of acoustic and other inputs where possible.
The action selector tries to find history-influencing ac-
tions such that the continually growing historic data al-
lows for improving the compressor’s performance. The
interesting or aesthetically rewarding musical and other
subsequences are precisely those with previously un-
known yet learnable types of regularities, because they
lead to compressor improvements. The boring patterns
are those that are either already perfectly known or ar-
bitrary or random, or whose structure seems too hard to
understand. Similar statements not only hold for other
dynamic art including film and dance (take into ac-
count the compressibility of action sequences), but also
for “static” art such as painting and sculpture, created

through action sequences of the artist, and perceived
as dynamic spatio-temporal patterns through active at-
tention shifts of the observer. When not occupied with
optimizing external reward, artists and observers of art
are just following their compression progress drive!

How does the theory explain the nature of induc-
tive sciences such as physics? If the history of the
entire universe were computable, and there is no ev-
idence against this possibility (Sch06b), then its sim-
plest explanation would be the shortest program that
computes it. Unfortunately there is no general way
of finding the shortest program computing any given
data (LV97). Therefore physicists have traditionally
proceeded incrementally, analyzing just a small aspect
of the world at any given time, trying to find simple
laws that allow for describing their limited observa-
tions better than the best previously known law, essen-
tially trying to find a program that compresses the ob-
served data better than the best previously known pro-
gram. An unusually large compression breakthrough
deserves the name discovery. For example, Newton’s
law of gravity can be formulated as a short piece of
code which allows for substantially compressing many
observation sequences involving falling apples and other
objects. Although its predictive power is limited—for
example, it does not explain quantum fluctuations of
apple atoms—it still allows for greatly reducing the
number of bits required to encode the data stream,
by assigning short codes to events that are predictable
with high probability (Huf52) under the assumption
that the law holds. Einstein’s general relativity the-
ory yields additional compression progress as it com-
pactly explains many previously unexplained deviations
from Newton’s predictions. Most physicists believe
there is still room for further advances, and this is
what is driving them to invent new experiments un-
veiling novel, previously unpublished patterns (Sch09c;
Sch09b; Sch09a). When not occupied with optimizing
external reward, physicists are also just following their
compression progress drive!

More Formally

Let us formally consider a learning agent whose sin-
gle life consists of discrete cycles or time steps t =
1, 2, . . . , T . Its complete lifetime T may or may not
be known in advance. In what follows, the value of
any time-varying variable Q at time t (1 ≤ t ≤ T)
will be denoted by Q(t), the ordered sequence of values
Q(1), . . . , Q(t) by Q(≤ t), and the (possibly empty) se-
quence Q(1), . . . , Q(t − 1) by Q(< t). At any given t
the agent receives a real-valued input x(t) from the en-
vironment and executes a real-valued action y(t) which
may affect future inputs. At times t < T its goal is to
maximize future success or utility

u(t) = Eµ

[

T
∑

τ=t+1

r(τ)

∣

∣

∣

∣

∣

h(≤ t)

]

, (1)

146

where the reward r(t) is a special real-valued in-
put at time t, h(t) the ordered triple [x(t), y(t), r(t)]
(hence h(≤ t) is the known history up to t), and
Eµ(· | ·) denotes the conditional expectation opera-
tor with respect to some possibly unknown distribu-
tion µ from a set M of possible distributions. Here M
reflects whatever is known about the possibly proba-
bilistic reactions of the environment. For example, M
may contain all computable distributions (Sol78; LV97;
Hut04). There is just one life, no need for predefined
repeatable trials, no restriction to Markovian interfaces
between sensors and environment, and the utility func-
tion implicitly takes into account the expected remain-
ing lifespan Eµ(T | h(≤ t)) and thus the possibility to
extend the lifespan through appropriate actions (Sch05;
Sch09d).

Recent work has led to the first reinforcement learn-
ing (RL) machines that are universal and optimal in
various very general senses (Hut04; Sch02c; Sch09d).
Such machines can in theory find out by themselves
whether curiosity and creativity are useful or useless in
a given environment, and learn to behave accordingly.
In realistic settings, however, external rewards are ex-
tremely rare, and we cannot expect quick progress of
this type, not even by optimal machines. But typically
we can learn lots of useful behaviors even in absence
of external rewards: unsupervised behaviors that just
lead to predictable or compressible results and thus re-
flect the regularities in the environment, e. g., repeat-
able patterns in the world’s reactions to certain action
sequences. Here we argue again that a bias towards
exploring previously unknown environmental regulari-
ties is a priori good in the real world as we know it,
and should be inserted into practical AGIs, whose goal-
directed learning will profit from this bias, in the sense
that behaviors leading to external reward can often
be quickly composed / derived from previously learnt,
purely curiosity-driven behaviors. We shall not worry
about the undeniable possibility that curiosity and cre-
ativity can actually be harmful and “kill the cat”, that
is, we assume the environment is benign enough. Based
on our experience with the real world it may be argued
that this assumption is realistic. Our explorative bias
greatly facilitates the search for goal-directed behav-
iors in environments where the acquisition of external
reward has indeed a lot to do with easily learnable en-
vironmental regularities.

To establish this bias, in the spirit of our previ-
ous work since 1990 (Sch91b; Sch91a; SHS95; Sch02a;
Sch06a; Sch07; Sch09c; Sch09b; Sch09a) we simply split
the reward signal r(t) into two scalar real-valued com-
ponents: r(t) = g(rext(t), rint(t)), where g maps pairs
of real values to real values, e.g., g(a, b) = a + b.
Here rext(t) denotes traditional external reward pro-
vided by the environment, such as negative reward in
response to bumping against a wall, or positive re-
ward in response to reaching some teacher-given goal
state. The formal theory of creativity, however, is es-
pecially interested in rint(t), the internal or intrinsic

or curiosity or creativity or aesthetic reward, which
is provided whenever the data compressor / inter-
nal world model of the agent improves in some mea-
surable sense—for purely creative agents rext(t) = 0
for all valid t. The basic principle is essentially the
one we published before in various variants (Sch91b;
Sch91a; SHS95; Sch02a; Sch06a; Sch07; Sch09c; Sch09b;
Sch09a):

Generate intrinsic curiosity reward or creativity re-
ward for the controller in response to improvements
of the predictor or history compressor.

This is a description of the agent’s motivation - we con-
ceptually separate the goal (finding or creating data
that can be predicted / explained / compressed / un-
derstood better or faster than before) from the means of
achieving the goal. Once the goal is formally specified in
terms of an algorithm for computing curiosity rewards,
let the controller’s RL mechanism figure out how to
translate such rewards into action sequences that allow
the given compressor improvement algorithm to find
and exploit previously unknown types of compressibil-
ity.

Computing Creativity Rewards
As pointed out above, predictors and compressors are
closely related. Any type of partial predictability of
the incoming sensory data stream can be exploited to
improve the compressibility of the whole. We consider
compressors that can deal with any prefix of the grow-
ing history, computing an output starting with h(≤ t)
for any time t (1 ≤ t < T). (A compressor that wants
to halt after t steps can easily be fixed / augmented
by the trivial method that simply stores any raw ad-
ditional data coming in after the halt.) Given some
compressor program p able to compress history h(≤ t),
let C(p, h(≤ t)) denote p’s compression performance on
h(≤ t). One appropriate performance measure is

Cl(p, h(≤ t)) = l(p), (2)

where l(p) denotes the length of p, measured in num-
ber of bits: the shorter p, the more algorithmic regu-
larity and compressibility and predictability and law-
fulness in the observations so far. The ultimate limit
for Cl(p, h(≤ t)) would be K∗(h(≤ t)), a variant of the
Kolmogorov complexity of h(≤ t), namely, the length
of the shortest program (for the given hardware) that
computes an output starting with h(≤ t) (Sol78; Kol65;
LV97; Sch02b).

Cl(p, h(≤ t)) does not take into account the time
τ(p, h(≤ t)) spent by p on computing h(≤ t). In practi-
cal applications, however, time is essential. In fact, the
predictor / compressor of the continually growing data
typically will have to calculate its output online, that is,
it will be able to use only a constant number of compu-
tational instructions per second to predict / compress
new data. The goal of the possibly much slower learn-
ing algorithm must be to improve the compressor such
that it keeps operating within those time limits, while
compressing / predicting better than before.

147

A runtime-dependent performance measure inspired
by concepts of optimal universal search (Lev73; Sch02c;
Sch04; Sch06a; Sch09b) is

Clτ (p, h(≤ t)) = l(p) + log τ(p, h(≤ t)). (3)

Here compression by one bit is worth as much as run-
time reduction by a factor of 1

2
. From an asymp-

totic optimality-oriented point of view this is one of
the best ways of trading off storage and computa-
tion time (Lev73; Sch02c; Sch04). In practice, how-
ever, we have mostly used online settings (one pre-
diction per time step, and constant computational ef-
fort per prediction), and less universal adaptive com-
pressors or predictors (Sch91b; Sch91a; SHS95; Sch02a;
Sch06a).

So far we have discussed measures of compressor per-
formance, but not of performance improvement, which
is the essential issue in our creativity-oriented context.
To repeat the point made above: The important thing
are the improvements of the compressor / predictor, not
its compression performance per se. Our creativity re-
ward in response to the compressor’s progress (due to
some application-dependent compressor improvement
algorithm) between times t and t + 1 is

rint(t+1) = f [C(p(t), h(≤ t+1)), C(p(t+1), h(≤ t+1))],
(4)

where f maps pairs of real values to real values. Various
alternative progress measures are possible; most obvi-
ous is f(a, b) = a − b. This corresponds to a discrete
time version of maximizing the first derivative of sub-
jective data compressibility. Note that both the old and
the new compressor have to be tested on the same data,
namely, the history so far. So compression progress be-
tween times t and t+1 is defined based on the complex-
ities of two programs that both compute h(<= t + 1),
where the old one is trained only on h(<= t) and the
new one also gets to see h(t <= t + 1). This is like p(t)
predicting data of time t + 1, then observing it, then
learning something, then becoming a better predictor
or compressor p(t + 1).

Asynchronous Framework for Maximizing
Creativity Reward
Compare (Sch06a; Sch07; Sch09b). Let p(t) denote the
agent’s current compressor program at time t, s(t) its
current controller, and do:

Controller: At any time t (1 ≤ t < T) do:

1. Let s(t) use (parts of) history h(≤ t) to select and
execute y(t + 1).

2. Observe x(t + 1).

3. Check if there is non-zero creativity reward rint(t+1)
provided by the asynchronously running improve-
ment algorithm of the compressor / predictor (see
below). If not, set rint(t + 1) = 0.

4. Let the controller’s reinforcement learning (RL) al-
gorithm use h(≤ t+1) including rint(t+1) (and pos-
sibly also the latest available compressed version of

the observed data—see below) to obtain a new con-
troller s(t + 1), in line with objective (1). Note that
some actions may actually trigger learning algorithms
that compute changes of the compressor and the con-
troller’s policy, such as in (Sch02a). That is, the com-
putational cost of learning can be taken into account
by the reward optimizer, and the decision when and
what to learn can be learnt as well (Sch02a).

Compressor / Predictor: Set pnew equal to the ini-
tial data compressor / predictor. Starting at time 1,
repeat forever until interrupted by death at time T :

1. Set pold = pnew; get current time step t and set hold =
h(≤ t).

2. Evaluate pold on hold, to obtain performance measure
C(pold, hold). This may take many time steps.

3. Let some (possibly application-dependent) compres-
sor improvement algorithm (such as a learning algo-
rithm for an adaptive neural network predictor, possi-
bly triggered by a controller action) use hold to obtain
a hopefully better compressor pnew (such as a neural
net with the same size and the same constant compu-
tational effort per prediction but improved predictive
power and therefore improved compression perfor-
mance (SH96)). Although this may take many time
steps (and could be partially performed offline during
“sleep”), pnew may not be optimal, due to limitations
of the learning algorithm, e.g., local maxima.

4. Evaluate pnew on hold, to obtain C(pnew, hold). This
may take many time steps.

5. Get current time step τ and generate creativity re-
ward

rint(τ) = f [C(pold, hold), C(pnew, hold)], (5)

e.g., f(a, b) = a − b.

This asynchronuous scheme may cause long tempo-
ral delays between controller actions and correspond-
ing creativity rewards, and may impose a heavy burden
on the controller’s RL algorithm whose task is to as-
sign credit to past actions. (To inform the controller
about beginnings of compressor evaluation processes
etc., augment its input by unique representations of
such events.) Nevertheless, there are RL algorithms for
this purpose which are theoretically optimal in various
senses (Sch06a; Sch07; Sch09c; Sch09b).

Continuous Time
In continuous time formulation, let O(t) denote the
state of subjective observer O at time t. The subjec-
tive simplicity or compressibility or regularity or beauty
B(D, O(t)) of a sequence of observations and/or actions
D is the negative number of bits required to encode D,
given O(t)’s current limited prior knowledge and lim-
ited compression / prediction method. The observer-
dependent and time-dependent subjective Interesting-
ness or Novelty or Surprise or Aesthetic Reward or Aes-
thetic Value I(D, O(t)) is

I(D, O(t)) ∼
∂B(D, O(t))

∂t
, (6)

148

the first derivative of subjective simplicity: as O im-
proves its compression algorithm, formerly apparently
random data parts become subjectively more regular
and beautiful, requiring fewer and fewer bits for their
encoding. Given its limited compression improver, at
time t0 the creativity goal of O(t0) is to select actions
that will maximize

E

[

∫ T

t=t0

g[rint(t), rext(t)]∂t

]

, (7)

where E is an expectation operator (compare equation
(1)); T is death; rint(t) = I(H(≤ t), O(t)) is the mo-
mentary internal joy or intrinsic reward for compres-
sion progress through discovery of a novel pattern some-
where in H(≤ t) (the history of actions and sensations
until t); rext(t) the current external reward if there is
any; g is the function weighing external vs intrinsic re-
wards (e.g., g(a, b) = a+b). Note that there are at least
two ways of getting intrinsic reward: execute a learning
algorithm that improves the compression of the already
known data (in online settings: without increasing com-
putational needs of the compressor / predictor), or ex-
ecute actions that generate more data, then learn to
compress or understand the new data better.

Ongoing and Future Work

The systems described in the first publications on arti-
ficial curiosity and creativity (Sch91b; Sch91a; SHS95;
Sch02a) already can be viewed as examples of imple-
mentations of a prediction / compression progress drive
that encourages the discovery or creation of novel pat-
terns, resulting in artificial scientists or artists with
various types of computational limitations. To im-
prove our previous implementations of the basic ingre-
dients of the creativity framework (see introduction),
and to build a continually growing, mostly unsuper-
vised AGI, we will evaluate additional combinations of
novel, advanced RL algorithms and adaptive compres-
sors, and test them on humanoid robots such as the
iCUB. That is, we will (A) study better practical adap-
tive compressors, in particular, recent, novel artificial
recurrent neural networks (RNN) (HS97; SGG+09) and
other general yet practically feasible methods for mak-
ing predictions; (B) investigate under which conditions
learning progress measures can be computed both accu-
rately and efficiently, without frequent expensive com-
pressor performance evaluations on the entire history
so far; (C) study the applicability of recent improved
RL techniques in the fields of artificial evolution, pol-
icy gradients, and others. In particular, recently there
has been substantial progress in RL algorithms that
are not quite as general as the universal ones (Hut04;
Sch02c; Sch09d), but nevertheless capable of learning
very general, program-like behavior. In particular, evo-
lutionary methods can be used for training RNN, which
are general computers. One especially effective family
of methods uses cooperative coevolution to search the
space of network components (neurons or individual

synapses) instead of complete networks. The compo-
nents are coevolved by combining them into networks,
and selecting those for reproduction that participated
in the best performing networks (GSM08). Other re-
cent promising RL techniques for RNN are based on
the concept of policy gradients (SMSM99; SOR+08;
WSPS08).

Conclusion and Outlook

In the real world external rewards are rare. But un-
supervised AGIs using additional intrinsic rewards as
described in this paper will be motivated to learn many
useful behaviors even in absence of external rewards,
behaviors that lead to predictable or compressible re-
sults and thus reflect regularities in the environment,
such as repeatable patterns in the world’s reactions
to certain action sequences. Often a bias towards
exploring previously unknown environmental regular-
ities through artificial curiosity / creativity is a pri-
ori desirable because goal-directed learning may greatly
profit from it, as behaviors leading to external reward
may often be rather easy to compose from previously
learnt curiosity-driven behaviors. It may be possible
to formally quantify this bias towards novel patterns
in form of a mixture-based prior (Sol78; LV97; Sch02c;
Hut04), a weighted sum of probability distributions on
sequences of actions and resulting inputs, and derive
precise conditions for improved expected external re-
ward intake. Intrinsic reward may be viewed as analo-
gous to a regularizer in supervised learning, where the
prior distribution on possible hypotheses greatly influ-
ences the most probable interpretation of the data in
a Bayesian framework (Bis95) (for example, the well-
known weight decay term of neural networks is a con-
sequence of a Gaussian prior with zero mean for each
weight). Following the introductory discussion, some of
the AGIs based on the creativity principle will become
scientists, artists, or comedians.

References

C. M. Bishop. Neural networks for pattern recognition.
Oxford University Press, 1995.

V. V. Fedorov. Theory of optimal experiments. Aca-
demic Press, 1972.

F. J. Gomez, J. Schmidhuber, and R. Miikkulainen.
Efficient non-linear control through neuroevolution.
Journal of Machine Learning Research JMLR, 9:937–
965, 2008.

S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997.

D. A. Huffman. A method for construction
of minimum-redundancy codes. Proceedings IRE,
40:1098–1101, 1952.

M. Hutter. Universal Artificial Intelligence: Se-
quential Decisions based on Algorithmic Probability.
Springer, Berlin, 2004. (On J. Schmidhuber’s SNF
grant 20-61847).

149

A. N. Kolmogorov. Three approaches to the quantita-
tive definition of information. Problems of Information
Transmission, 1:1–11, 1965.

L. A. Levin. Universal sequential search problems.
Problems of Information Transmission, 9(3):265–266,
1973.

M. Li and P. M. B. Vitányi. An Introduction to
Kolmogorov Complexity and its Applications (2nd edi-
tion). Springer, 1997.

J. Schmidhuber. Curious model-building control sys-
tems. In Proceedings of the International Joint Confer-
ence on Neural Networks, Singapore, volume 2, pages
1458–1463. IEEE press, 1991.

J. Schmidhuber. A possibility for implementing curios-
ity and boredom in model-building neural controllers.
In J. A. Meyer and S. W. Wilson, editors, Proc. of the
International Conference on Simulation of Adaptive
Behavior: From Animals to Animats, pages 222–227.
MIT Press/Bradford Books, 1991.

J. Schmidhuber. Femmes fractales, 1997.

J. Schmidhuber. Low-complexity art. Leonardo, Jour-
nal of the International Society for the Arts, Sciences,
and Technology, 30(2):97–103, 1997.

J. Schmidhuber. Exploring the predictable. In
A. Ghosh and S. Tsuitsui, editors, Advances in Evo-
lutionary Computing, pages 579–612. Springer, 2002.

J. Schmidhuber. Hierarchies of generalized Kol-
mogorov complexities and nonenumerable universal
measures computable in the limit. International Jour-
nal of Foundations of Computer Science, 13(4):587–
612, 2002.

J. Schmidhuber. The Speed Prior: a new simplic-
ity measure yielding near-optimal computable predic-
tions. In J. Kivinen and R. H. Sloan, editors, Proceed-
ings of the 15th Annual Conference on Computational
Learning Theory (COLT 2002), Lecture Notes in Ar-
tificial Intelligence, pages 216–228. Springer, Sydney,
Australia, 2002.

J. Schmidhuber. Optimal ordered problem solver. Ma-
chine Learning, 54:211–254, 2004.

J. Schmidhuber. Completely self-referential optimal
reinforcement learners. In W. Duch, J. Kacprzyk,
E. Oja, and S. Zadrozny, editors, Artificial Neural Net-
works: Biological Inspirations - ICANN 2005, LNCS
3697, pages 223–233. Springer-Verlag Berlin Heidel-
berg, 2005. Plenary talk.

J. Schmidhuber. Developmental robotics, optimal ar-
tificial curiosity, creativity, music, and the fine arts.
Connection Science, 18(2):173–187, 2006.

J. Schmidhuber. Randomness in physics. Nature,
439(3):392, 2006. Correspondence.

J. Schmidhuber. Simple algorithmic principles of dis-
covery, subjective beauty, selective attention, curiosity
& creativity. In Proc. 10th Intl. Conf. on Discovery
Science (DS 2007), LNAI 4755, pages 26–38. Springer,

2007. Joint invited lecture for ALT 2007 and DS 2007,
Sendai, Japan, 2007.

J. Schmidhuber. Art & science as by-products of the
search for novel patterns, or data compressible in un-
known yet learnable ways. In M. Botta, editor, Mul-
tiple ways to design research. Research cases that re-
shape the design discipline, Swiss Design Network - Et
al. Edizioni, pages 98–112. Springer, 2009.

J. Schmidhuber. Driven by compression progress: A
simple principle explains essential aspects of subjec-
tive beauty, novelty, surprise, interestingness, atten-
tion, curiosity, creativity, art, science, music, jokes.
In G. Pezzulo, M. V. Butz, O. Sigaud, and G. Bal-
dassarre, editors, Anticipatory Behavior in Adaptive
Learning Systems. From Psychological Theories to Ar-
tificial Cognitive Systems, volume 5499 of LNCS, pages
48–76. Springer, 2009.

J. Schmidhuber. Simple algorithmic theory of subjec-
tive beauty, novelty, surprise, interestingness, atten-
tion, curiosity, creativity, art, science, music, jokes.
SICE Journal of the Society of Instrument and Con-
trol Engineers, 48(1):21–32, 2009.

J. Schmidhuber. Ultimate cognition à la Gödel. Cog-
nitive Computation, 1(2):177–193, 2009.

J. Schmidhuber, A. Graves, F. J. Gomez, S. Fernan-
dez, and S. Hochreiter. How to Learn Programs with
Artificial Recurrent Neural Networks. Invited by Cam-
bridge University Press, 2009. In preparation.

J. Schmidhuber and S. Heil. Sequential neural text
compression. IEEE Transactions on Neural Networks,
7(1):142–146, 1996.

J. Storck, S. Hochreiter, and J. Schmidhuber. Re-
inforcement driven information acquisition in non-
deterministic environments. In Proceedings of the In-
ternational Conference on Artificial Neural Networks,
Paris, volume 2, pages 159–164. EC2 & Cie, 1995.

R. S. Sutton, D. A. McAllester, S. P. Singh, and
Y. Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In S. A.
Solla, T. K. Leen, and K.-R. Müller, editors, Advances
in Neural Information Processing Systems 12, [NIPS
Conference, Denver, Colorado, USA, November 29 -
December 4, 1999], pages 1057–1063. The MIT Press,
1999.

R. J. Solomonoff. Complexity-based induction sys-
tems. IEEE Transactions on Information Theory, IT-
24(5):422–432, 1978.

F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves,
J. Peters, and J. Schmidhuber. Policy gradients with
parameter-based exploration for control. In Proceed-
ings of the International Conference on Artificial Neu-
ral Networks ICANN, 2008.

D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber.
Fitness expectation maximization. In Proceedings of
Parallel Problem Solving from Nature (PPSN 2008),
2008.

150

Algorithmic Probability, Heuristic Programming and AGI

Ray J. Solomonoff
Visiting Professor, Computer Learning Research Center

Royal Holloway, University of London

IDSIA, Galleria 2, CH–6928 Manno–Lugano, Switzerland
rjsolo@ieee.org http://world.std.com/˜rjs/pubs.html

Introduction
This paper is about Algorithmic Probability (ALP) and
Heuristic Programming and how they can be combined
to achieve AGI. It is an update of a 2003 report de-
scribing a system of this kind (Sol03). We first describe
ALP, giving the most common implementation of it,
then the features of ALP relevant to its application to
AGI.

They are: Completeness, Incomputability, Subjectiv-
ity and Diversity. We then show how these features en-
able us to create a very general, very intelligent prob-
lem solving machine. For this we will devise “Training
Sequences” — sequences of problems designed to put
problem-solving information into the machine. We de-
scribe a few kinds of training sequences.

The problems are solved by a “generate and test” al-
gorithm, in which the candidate solutions are selected
through a “Guiding Probability Distribution”. The use
of Levin’s search procedure enables us to efficiently con-
sider the full class of partial recursive functions as possi-
ble solutions to our problems. The guiding probability
distribution is updated after each problem is solved, so
that the next problem can profit from things learned in
the previously solved problems.

We describe a few updating techniques. Improve-
ments in updating based on heuristic programming is
one of the principal directions of current research. De-
signing training sequences is another important direc-
tion.

For some of the simpler updating algorithms, it is
easy to “merge” the guiding probabilities of machines
that have been educated using different training se-
quences — resulting in a machine that is more intel-
ligent than any of the component machines.

What is Algorithmic Probability?
ALP is a technique for the extrapolation of a sequence
of binary symbols — all induction problems can be put
into this form. We first assign a probability to any fi-
nite binary sequence. We can then use Bayes’ theorem
to compute the probability of any particular continua-
tion sequence. The big problem is: how do we assign
these probabilities to strings? In one of the commonest
implementations of ALP, we have a Universal Turing

Machine with three tapes: a unidirectional input tape,
a unidirectional output tape, and a bidirectional work
tape. If we feed it an input tape with 0’s and 1’s on it,
the machine may print some 0’s and 1’s on the output
— it could print nothing at all or print a finite string
and stop or it could print an infinite output string, or it
could go into an infinite computing loop with no print-
ing at all.

Suppose we want to find the ALP of finite string x.
We feed random bits into the machine. There is a cer-
tain probability that the output will be a string that
starts out with the string x. That is the ALP of string
x.

To compute the ALP of string x:

PM (x) =
∞∑

i=0

2−|Si(x)|

Here PM (x) is the ALP (also called Universal Prob-
ability) of string x with respect to machine, M .

There are many finite string inputs to M that will
give an output that begins with x. We call such strings
“codes for x”. Most of these codes are redundant in
the sense that if one removes its most recent bit the
resultant string will still be a “code for x”. A “minimal
code for x” is one that is not redundant. If one removes
its last bit, the result will no longer be a“code for x”.
Say |Si(x)| is the length in bits of the ith “Minimal code
for x”.

2−|Si(x)| is the probability that the random input will
begin with the“ ith minimal code for x”.

PM (x) is then the sum of the probabilities of all the
ways that a string beginning with x, could be generated.

This definition has some interesting properties:
First, it assigns high probabilities to strings with

short descriptions — This is in the spirit of Ockham’s
razor. It is the converse of Huffman coding that assigns
short codes to high probability symbols.

Second, its value is somewhat independent of what
universal machine is used, because codes for one uni-
versal machine can always be obtained from another
universal machine by the addition of a finite sequence
of translation instructions.

A less apparent but clearly desirable property —
PM (x) is complete. This means that if there is any

151

describable regularity in a batch of data, PM will find
it, using a relatively small amount of the data. At this
time, it is the only induction method known to be com-
plete (Sol78).

More exactly: Suppose µ(x) is a probability distribu-
tion on finite binary strings. For each x = x1, x2 · · ·xi,
µ gives a probability that the next bit, xi+1 will be 1:
µ(xi+1 = 1|x1, x2 · · ·xi)

From PM we can obtain a similar function P (xi+1 =
1|x1, x2 · · ·xi).

Suppose we use µ to generate a sequence, x, Monte
Carlo-wise. µ will assign a probability to the i + 1th

bit based on all previous bits. Similarly, P will assign
a probability to the i + 1th bit of x. If PM is a very
good predictor, the probability values obtained from µ
and from PM will be very close, on the average, for long
sequences. What I proved was:

Eµ

n∑

i=1

(µ(xi+1 = 1|x1, x2 · · ·xi)

−P (xi+1 = 1|x1, x2 · · ·xi))2 ≤ 1
2
k ln 2

The expected value of the sum of the squares of
the differences between the probabilities is bounded by
about .35k. k is the minimum number of bits that M ,
the reference machine, needs to describe µ. If the func-
tion µ is describable by functions that are close to M ’s
primitive instruction set, then k will be small and the
error will be small. But whether large or small, the
squared error in probability must converge faster than
1
n (because

∑
1
n diverges).

Later research has shown this result to be very robust
— we can use a large, (non-binary) alphabet and/or
use error functions that are different from total square
difference (Hut02). The probability obtained can be
normalized or unnormalized (semi-measure)(Gác97).

The function µ to be “discovered” can be any describ-
able function — primitive recursive, total recursive, or
partial recursive. When ALP uses an unnormalized
semi-measure, it can discover incomputable functions
as well.

The desirable aspects of ALP are quite clear. We
know of no other model of induction that is nearly as
good.

An apparent difficulty — PM (x) is incomputable:
The equation defining PM (x) tells us to find all strings
that are “minimal codes for x.” Because of the Halting
Problem, it is impossible to tell whether certain strings
are codes for x or not. While it is easy to make approx-
imations to PM (x), the fact that it is incomputable has
given rise to the common misconception that ALP is lit-
tle more than an interesting theoretical model with no
direct practical application. We will show that In Fact
incomputability is a desirable feature and imposes no
serious restrictions on its application to the practical
problems of AGI.

The usual question is — “What good is it if you can’t
compute it?” The answer is that for practical predic-
tion we don’t have to compute ALP exactly. Approxi-
mations to it are quite usable and the closer an approx-
imation is to ALP, the more likely it is to share ALP’s
desirable qualities.

Perhaps the simplest kind of approximation to an in-
computable number involves making rational approxi-
mations to

√
2. We know that there is no rational num-

ber whose square is 2, but we can get arbitrarily close
approximations. We can also compute an upper bound
on the error of our approximation and for most meth-
ods of successive approximation we are assured that the
errors approach zero. In the case of ALP, though we
are assured that the approximations will approach ALP
arbitrarily closely, the incomputability implies that we
cannot ever compute useful upper bounds on approxi-
mation error — but for few if any practical applications
do we need this information.

The approximation problem for the universal distri-
bution is very similar to that of approximating a so-
lution to the Traveling Salesman Problem, when the
number of cities is too large to enable an exact solu-
tion. When we make trial paths, we always know the
total length of each path — so we know whether one
trial is better than another. In approximations for the
universal distribution, we also always know when one
approximation is better than another — and we know
how much better. In some cases, we can combine trials
to obtain a trial that is better than either of the compo-
nent trials. In both TSP and ALP approximation, we
never know how far we are from the theoretically best,
yet in both cases we do not hesitate to use approximate
solutions to our problems.

The incomputability of ALP is closely associated with
its completeness. Any complete induction system can-
not be computable. Conversely, any computable induc-
tion system cannot be complete. For any computable
induction system, it is possible to construct a space of
data sequences for which that system gives extremely
poor probability values. The sum of the squared errors
diverges linearly in the sequence length.

Appendix B gives a simple construction of this kind.
We note that the incomputability of ALP makes such

a construction impossible and its probability error al-
ways converges to zero for any finitely describable se-
quence.

To explain our earlier remark on incomputability as
a very desirable feature: Incomputability is the only
way we can achieve completeness. In ALP this incom-
putability imposes no penalty on its practical applica-
tion. It is a true “Win, Win” situation!

Another item of importance: For most applications
an estimate of future prediction error is needed. Cross
Validation or one of its many variants is usually pos-
sible. In this aspect of the prediction problem ALP
is certainly no worse than any other method. On the
other hand, ALP gives a good theoretical framework
that enables us to make better estimates.

152

Subjectivity

Occasionally in making extrapolations of a batch of
data, there is enough known about the data so that it
is clear that a certain prediction technique is optimal.
However, this is often not the case and the investigator
must make a (subjective) choice of inductive techniques.
For me, the choice is clear: I choose ALP because it is
the only complete induction method I know of. How-
ever ALP has another subjective aspect as well: we
have to choose M , the reference machine or language.
As long as M is universal, the system will be complete.
This choice of M enables us to insert into the system
any a priori information we may have about the data
to be predicted and still retain completeness.

The choice of the M can be used very effectively for
incremental learning: Suppose we have 100 induction
problems: X1, X2, · · ·X100.

The best solution would involve getting the machine
to find a short code for the entire batch of 100 problems.
For a large corpus this can be a lengthy task. A shorter,
approximate way: using the machine M as reference,
we find a prediction code for X1. In view of this code,
we modify M to become M ′ in such a way that if PM ′ ,
makes a prediction for X2, it will be the same as if we
used PM for both X1 and X2. M ′ becomes a complete
summary of Ms increase in knowledge after solving X1.
We can consider the M to M ′ transformation as an
updating of the M to M ′ It is possible to show that such
an M can be found exactly, but the exact construction
is very time consuming (reference). Approximations to
M ′ can be readily found. After M ′ solves X2, M ′ can
be updated to M ′′ and have it solve X3, and so on to
X100. We will discuss the update process later in more
detail, for a somewhat different kind of problem.

To understand the role of subjectivity in the life of a
human or an intelligent machine, let us consider the hu-
man infant. It is born with certain capabilities that as-
sume certain a priori characteristics of its environment–
to–be. It expects to breathe air, its immune system is
designed for certain kinds of challenges, it is usually able
to learn to walk and converse in whatever human lan-
guage it finds in its early environment. As it matures,
its a priori information is modified and augmented by
its experience.

The inductive system we are working on is of this
sort. Each time it solves a problem or is unsuccessful
in solving a problem, it updates the part of its a priori
information that is relevant to problem solving tech-
niques. In a manner very similar to that of a maturing
human being, its a priori information grows as the life
experience of the system grows.

From the foregoing, it is clear that the subjectivity
of algorithmic probability is a necessary feature that
enables an intelligent system to incorporate experience
of the past into techniques for solving problems of the
future.

Diversity

In Section 1 we described ALP based on a universal Tur-
ing machine with random input. An equivalent model
considers all prediction methods, and makes a predic-
tion based on the weighted sum of all of these predic-
tors. The weight of each predictor is the product of two
factors: the first is the a priori probability of each pre-
dictor. It is the probability that this predictor would
be described by a universal Turing machine with ran-
dom input. If the predictor is described by a small
number of bits, it will be given high a priori probabil-
ity. The second factor is the probability assigned by the
predictor to the data of the past that is being used for
prediction. We may regard each prediction method as a
kind of model or explanation of the data. Many people
would use only the best model or explanation and throw
away the rest. Minimum Description Length (Ris78),
and Minimum Message Length (WB68) are two com-
monly used approximations to ALP that use only the
best model of this sort. When one model is much bet-
ter than any of the others, then Minimum Description
Length and Minimum Message Length and ALP give
about the same predictions. If many of the top models
have about the same weight, then ALP gives better re-
sults — the other methods give too much confidence in
the predictions of the very best model (PH06).

However, that’s not the main advantage of ALP’s
use of a diversity of explanations. If we are making
a single kind of prediction, then discarding the non-
optimum models usually has a small penalty associated
with it. However if we are working on a sequence of
prediction problems, we will often find that the model
that worked best in the past is inadequate for the new
problems. When this occurs in science we have to revise
our old theories. A good scientist will remember many
theories that worked in the past but were discarded —
either because they didn’t agree with the new data, or
because they were a priori “unlikely”. New theories are
characteristically devised by using failed models of the
past, taking them apart, and using the parts to create
new candidate theories. By having a large diverse set
of (non-optimum) models on hand to create new trial
models, ALP is in the best possible position to create
new, effective models for prediction.

In the biological world, when a species loses its ge-
netic diversity it can quickly succumb to small environ-
mental changes — it soon becomes extinct. Lack of
diversity in potato varieties in Ireland led to massive
starvation.

When ALP is used in Genetic Programming, it’s rich
diversity of models can be expected to lead to very
good, very fast solutions with little likelihood of “pre-
mature convergence”.

Putting It All Together

I have described ALP and some of its properties, and to
some extent, how it could be used in an a AGI system.
This section gives more details on how it works. We

153

start out with problems that are input/output pairs
(I/O pairs). Given a sequence of them and a new
input we want the machine to get a probability den-
sity distribution on its possible outputs. We allow I
and O to be strings or numbers or mixtures of strings
and numbers. Very many practical problems fall into
this class — e.g. classification problems, identification
problems, symbolic and numerical regression, grammar
discovery· · ·. To solve the problems, we create trial
functions that map inputs into possible outputs. We
try to find several successful functions of this kind for
each of the problems. It is usually desirable, though
not at all necessary, to find a common function for all
of the problems.

The trial functions are generated by a universal func-
tion language such as Lisp or Forth. We want a lan-
guage that can be defined by a context free grammar,
which we use to generate trial functions. The functions
in such languages are represented by trees, which dis-
play the choices made in generating the trial functions.
Each node in the tree represents a choice of a terminal
or non-terminal symbol. Initially if there are k possible
choices at a node, each choice is given probability 1/k.
These probabilities which we call “The Guiding Prob-
ability Distribution”(GPD) will evolve considerably, as
the training sequence progresses.

In a simplified version of the technique we use Levin’s
Search Procedure (Lsearch)1 to find the single most
likely solution to each of n problems. For each problem,
Ii/Oi, we have a function, Fi represented in say, Re-
versed Polish Notation (RPN), such that Fi(Ii) = Oi.
Using a suitable prediction or compression algorithm
(such as Prediction by Partial Matching — PPM) we
compress the set of function descriptions, [Fi]. This
compressed version of the set of solutions can be pre-
dictive and enables us to get a probability distribution
for the next sequence of symbols — giving a probabil-
ity distribution over the next function, Fn+1. Levin
Search gives us Fn+1 candidates of highest probability
first, so when we are given the next In+1/On+1 pair,
we can select the Fn+1 of largest probability such that
Fn+1(In+1) = On+1.

We then update the system by compressing the code
for Fn+1 into the previous sequence of solution func-
tions and use this compressed code to find a solution
to the next I/O in the training sequence. This contin-
ues until we have found solution functions for all of the
problems in the sequence.

In a more realistic version of the system, using the di-
versity of ALP, we try to find several functions for each
I/O pair in a corpus of say, 10 pairs. Suppose we have
obtained 2 functions for each problem in the set. This
amounts to 210 = 1024 different “codes” for the entire
corpus. We then compress each of these codes and use
the shortest say, 30 of them for prediction on the new
input, I101. The probability distribution on the output,
O101 will be the weighted mean of the predictions of the

1See Appendix A

30 codes, weights being proportional to 2−code length.
We also use these 30 codes to assign probabilities to
grammar elements in constructing trial functions in fu-
ture problems.

We mentioned earlier, the use of heuristic program-
ming in designing this system. In both training se-
quence design and in the design and updating of the
GPD, the techniques of heuristic programming are of
much import.

Consider the problem of learning simple recursive
functions. We are given a sequence of n, F (n) pairs con-
taining some consecutive values of n. We want to dis-
cover the function, F (). A heuristic programmer would
try to discover how he himself would solve such a prob-
lem — then write a program to simulate himself.

For machine learning, we want to find a way for the
machine to discover the trick used by the heuristic pro-
grammer — or, failing that, the machine should dis-
cover when to use the technique, or be able to break it
down into subfunctions that are useful for other prob-
lems as well. Our continuing problem is to create train-
ing sequences and GPDs that enable the machine to do
these things.

The Guiding Probability Distribution

The Guiding Probability Distribution (GPD) does two
important things: first it discovers frequently used func-
tions and assigns high probabilities to them. Second,
it discovers for each function, contexts specifying the
condition under which that function should be applied.
Both of these operations are quantified by ALP.

In the previous section we described the GPD — how
it made predictions of symbols in the next trial function
— how the predictions were based on regularities in the
sequence of symbols that represent in the solutions of
earlier problems. Here we will examine the details of
just how the GPD works.

Perhaps the simplest sequential prediction scheme is
Laplace’s rule: The probability of the next symbol be-
ing A, say, is proportional to (the number of times A has
occurred in the past, plus one). There is no dependency
at all on context. This method of guiding probability
evaluation was used in OOPS (Sch02) a system similar
in several ways to the presently described system.

Prediction by Partial Matching (PPM) is a very fast,
relatively simple, probability evaluation scheme that
uses context very effectively. It looks at the string
of symbols preceding the symbol to be predicted and
makes a probability estimate on this basis.

PPM and variations of it have been among the best
compressors in Hutter’s Entwiki challenge — a compe-
tition to discover the best compressor for 108 Bytes of
the wikipedia.

Most of the improvements in PPM involve “context
weighting” — they use several independent prediction
schemes, each based on context in a different way.
These systems are then merged by giving (localized)
weights each of them.

154

Merging of this sort can be used on the GPDs of
several learning systems trained with different train-
ing sequences. A weakness of this simple merging is
that the system does not create new functions by com-
posing functions discovered by the different prediction
schemes.

— A relevant quote from von Neumann — “For diffi-
cult problems, it is good to have 10 experts in the same
room — but it is far better to have 10 experts in the
same head”.

For really good induction, the GPD needs to recog-
nize useful subfunctions and contexts to control the ap-
plication of these subfunctions. PPM does this to some
extent, but it needs much modification. While it is, in
theory, easy to specify these modifications, it seems to
be difficult to implement them with any speed. Much
work needs to be done in this area.

Suppose Lsearch is generating candidate functions of
Ij , the current input problem. If x is the part of the
candidate that has been generated thus far, then in gen-
eral, the probability distribution on the symbol to fol-
low x, will be some function of Ij and x, i.e. G(Ij , x).
The form of G will slowly vary as we advance along the
training sequence. For the best possible predictions, the
form of G should be able to be any conceivable partial
recursive function. Few prediction systems allow such
generality.

How does the high compression obtained by PPM
effect prediction systems? Compression ratio is the ra-
tio of uncompressed string length to compressed string
length. Compression ratio translates directly into in-
creasing (geometric) mean probability of symbols and
subsequences of symbols. A compression ratio of two
increases probabilities to their square root. This trans-
lates directly into decreasing search times for solutions
to problems. Using Lsearch, the time to find a particu-
lar solution will be about ti/pi, ti being time needed to
generate and test the solution, and pi being the prob-
ability assigned to the solution. If ti = 10−6 seconds
and pi = 10−16 for a particular uncompressed problem,
then it will take about 1010 seconds — about 330 years
to find a solution. A compression factor of two will in-
crease pi to the square root of 10−16 — i.e. 10−8. So
ti/pi = 102 seconds — about 1.7 minutes — a speed of
up of 108.

What compression ratios can we expect from PPM?
A recent version got a compression ratio of 6.33 for a
71 kbyte LISP file. Unfortunately, much of this ratio
was obtained by compressing long words used for func-
tion names. This kind of compression does not help
find functional solutions. From the compression ratios
of other less efficient compressors, my guess is that the
elimination of this “long word” regularity would still
give a compression ratio of greater than two. — Per-
haps as much as three — enabling the rapid solution of
problems that without compression would take many
years of search time.

It is notable that high compression ratios were ob-
tained for long text files. For us, the moral is that

we will not get full advantage of compression until our
training sequences are long enough.

We have discussed PPM at some length as being a
good initial GPD. A few other prediction methods that
we have examined:

Genetic programming: Very effective. It can discover
recursive prediction functions, but it is very slow. We
have, however found many ways in which it could be
sped up considerably (Sol06).

Echo State Machines (ESM). (JH04) A very deep
neural net — very fast in implementation. Doesn’t do
recursive functions, but we have found a way to move
in that direction.

Support Vector Regression (SVR). (SS09) This is the
application of SVMs to regression. The predictions are
very good, but the algorithms are very slow and do not
support recursion.

In any of the compressors, speed and compression
ratios are both important. In selecting a compressor it
is necessary to consider this trade-off.

Training Sequences

It is clear that the sequence of problems presented to
the system will be an important factor in determining
whether the mature system will be very much more ca-
pable than the infant system. The task of the training
sequence is to teach functions of increasing difficulty
by providing problems solved by these functions in a
learnable progression. The main criterion of excellence
in a training sequence: it enables the system to solve
many problems outside the training sequence itself (out
of sample data). To do this the problems in the se-
quence should be solved using a relatively small num-
ber of powerful functions. Designing training sequences
of this sort is a crucial and challenging problem in the
development of strong intelligence.

The system must also be able to recognize the context
in which each function should be applied. This, however
is a task for the guiding probability distribution.

In most ways, designing a training sequence for an
intelligent machine is very similar to designing one for
a human student. In the early part of the sequence,
however, there is a marked difference between the two.
In the early training sequence for a machine, we know
exactly how the machine will react to any input prob-
lem. We can calculate a precise upper bound on how
long it will take it to solve early problems. It is just

Ti/Pi (1)

Pi is the probability that the machine assigns to the
solution known by the trainer. Ti is the time needed to
test that solution. I call this upper bound the “Concep-
tual Jump Size” (CJS). It tells us how hard a problem
is for a particular machine — a measure of how long
we expect that machine will take to solve it. I say “up-
per bound” because the system may discover a better,
faster, solution than that known by the trainer.

155

This CJS estimate makes it easy to determine if a
problem is feasible for a system at a particular point
in its education. The Pi for a particular problem will
vary during the life of the system, and for a properly
constructed training sequence it should increase as the
system matures. This increase in Pi can be used as a
rough measure of the machines “rate of learning”.

Eventually in any training sequence for a very in-
telligent machine, the trainer will not be able to un-
derstand the system in enough detail to compute CJS
values. The trainer then treats the machine as a hu-
man student. By noting which problems are easy and
which are difficult for the machine, the trainer infers
which relevant functions the machine has learned and
which it has not learned and devises appropriate train-
ing problems.

Learning to train very intelligent machines should
give useful insights on how to train human students
as well.

There are at least two ways to write training se-
quences: “Bottom Up” and “Top Down”. The Bottom
Up approach starts with some simple problems that
have easy solutions in terms of the primitives of the
reference language. The next problems in the sequence
have solution functions that are simple combinations
of functions the machine has already learned. This in-
crease in complexity of problem solutions continues to
the end of the training sequence.

In Top Down training sequence design, we start with
a difficult problem that we know how to solve. We
express its solution as a function mapping input to out-
put. This function is then decomposed into simpler
functions, and we design problems that are solvable by
such functions. These functions are in turn factored
into simpler functions and again we devise problems
that are solvable by such functions. This breakup of
functions and designing of problems continues until we
reached the primitive functions of the reference lan-
guage. The desired training sequence is the set of prob-
lems designed, but we present them in an order reversed
from that in which they were invented.

The functions themselves form a partially ordered
set. Function F1 is greater than function F2 if F2 is
used to create F1.

For more details on how to construct training se-
quences of this kind see (Sol89).

So far I’ve mainly worked on elementary algebra,
starting with learning to evaluate algebraic expressions
and solving simple equations — this can be continued
with more complex equations, symbolic differentiation,
symbolic integration etc. This list can go on to prob-
lems of arbitrary difficulty.

A promising source of training material: learning the
definitions of the various operations in Maple and/or
Mathematica.

Another possible source of training sequence ideas is
“A Synopsis of Elementary Results in Pure and Ap-
plied Mathematics”, a book by G. S. Carr. It was the
principal source of information about mathematics for

Ramanujan — one of the greatest creative geniuses of
recent mathematics. His style was one of imaginative
inductive leaps and numerical checking — much in the
manner of how we would like the present system to op-
erate.

After the machine has an understanding of algebra,
we can train it to understand English sentences about
algebra. This would not include “word problems” which
typically require knowledge about the outside world.

It cannot be emphasized too strongly, that the goal
of early training sequence design, is not to solve hard
problems, but to get problem solving information into
the machine. Since Lsearch is easily adapted to parallel
search, there is a tendency to try to solve fairly diffi-
cult problems on inadequately trained machines. The
success of such efforts is more a tribute to progress in
hardware design then to our understanding and exploit-
ing machine learning.

In Conclusion
We have a method for designing training sequences. We
have a method for updating the guiding probability dis-
tribution. We have a method for detecting/measuring
“learning” in the system.

These three techniques are adequate for designing a
true AGI.

If the system does not learn adequately, the fault is
in either the training sequence (the conceptual jumps
needed are too large) — or that the update algorithm
may not be able to recognize important kinds of func-
tions that occur in the training sequence and know un-
der what conditions they should be used — in which
case we must modify the training sequence and/or the
update algorithm. The update algorithm must be de-
signed so that it can readily spot functions used in the
past that are relevant to current problems.

What we have is a recipe for training an intelligence
system, and a few ways to debug our attempts at train-
ing it. The system itself is built on ALP, which is cer-
tainly adequate to the task. Our understanding of much
of our own human learning will probably be inadequate
at first. There will be conceptual leaps in the train-
ing sequences which we don’t know how to break down
into smaller jumps. In such cases it may be necessary to
practice a bit of “Brain Surgery” to teach the machine
— direct programming of functions into the reference
language. Usually we will try to avoid such drastic mea-
sures by simplification of problems or by giving auxil-
iary related problems — by giving “hints”.

We have mentioned the possibility of merging the
guiding probability distributions of different systems
created by independent investigators. It would be well
if there were several research groups working on sys-
tems of the type described, with enough similarity in
the reference languages and update algorithms so that
the guiding probability distributions could, indeed, be
merged.

The system we have described will do fairly general
kinds of prediction. It can be regarded as Phase 1 of

156

a larger project. Phase 2 (Sol03) — is built on Phase
1 and is designed to solve even more general kinds of
problems. In particular, it is able to work time-limited
optimization problems — for example, “Get as good a
solution as you can to this traveling salesman problem
in 10 minutes”. Most practical problems in science and
engineering are of this kind. This includes the prob-
lem of improving the GPD of Phase 1 — enabling the
system to significantly improve itself.

Appendix A: Levin’s Search Procedure
It would seem that evaluating a very large number
of functions would take an enormous amount of time.
However, by using a search technique similar to one
used by Levin for a somewhat different kind of prob-
lem, it is possible to perform the search for acceptable
functions in something approaching optimum speed. It
may occasionally take a long time to find a very good
solution — but it is likely that no other search tech-
nique with equivalent education and hardware could
have found that solution any faster.

How the procedure works: Suppose we have an input
string, I1 and an output string, O1. We also have a
probability distribution pj over all possible functions,
Fj and we want to find high probability functions, Fj ,
such that Fj(I1) = O1.

We could simply apply many random functions to
I1 and watch for functions that meet our requirements.
This would take a lot of time. There is,however, a much
more efficient way:

We select a small time limit, T , and we test all func-
tions, Fj such that

tj < Tpj (2)
Here pj is the probability of the function being tested,

and tj is the time required to test it. The test itself is to
see if Fj(I1) = O1. If we find no function of this sort, we
double T and go through the same test procedure. We
repeat this routine until we find satisfactory functions.
If Fj is one of the successful functions, then the entire
search for it will take time ≤ 2tj/pj .

There is a faster, time shared version of Lsearch that
takes only time ≤ tj/pj , but it takes much, much more
memory.

An important feature of Lsearch is that it is able to
deal with trials that do not converge — i.e. for tj = ∞

Appendix B: Frustrating Computable
Probability Distributions

Given a computable probability function µ, I will show
how to generate a deterministic sequence (i.e. proba-
bilities are only 0 and 1)

Z = Z1Z2Z3 · · ·
to which µ gives probabilities that are extremely bad:

they are always in error by ≥ .5.
Let µ(Zn+1 = 1|Z1 · · ·Zn) be µ’s estimate that Zn+1

will be 1, in view of Z1 · · ·Zn.
if µ(Z1 = 1|∧) < .5 then Z1 = 1 else Z1 = 0

if µ(Z2 = 1|Z1) < .5 then Z2 = 1 else Z2 = 0
if µ(Zk = 1|Z1, Z2, · · ·Zk−1) < .5 then Zk = 1 else

Zk = 0.
In a similar way, we can construct probabilistic se-

quences in which µ is in error by ≥ ε, where, ε can have
any value between 0 and .5.

References
P. Gács. Theorem 5.2.1. In An Introduction to Kol-
mogorov Complexity and Its Applications, pages 328–
331. Springer-Verlag, N.Y., second edition, 1997. by
Li, M. and Vitányi, P.
M. Hutter. Optimality of universal bayesian se-
quence prediction for general loss and alphabet.
Technical report, IDSIA, Lugano, Switzerland, 2002.
http://www.idsia.ch/˜marcus/ai/.
H. Jaeger and H. Haas. Harnessing nonlinearity: Pre-
dicting chaotic systems and saving energy in wireless
communication. Science, Vol. 304(5667):78–80, April
2004.
J. Poland and M Hutter. MDL convergence speed
for Bernoulli sequences. Statistics and Computing,
16:161–175, 2006.
J. Rissanen. Modeling by the shortest data descrip-
tion. Automatica, 14:465–471, 1978.
J. Schmidhuber. Optimal ordered problem solver. TR
Idsia-12-02, IDSIA, Lugano, Switzerland, July 2002.
http://www.idsia.ch/˜juergen/oops.html.
R.J. Solomonoff. Complexity–based induction sys-
tems: Comparisons and convergence theorems. IEEE
Trans. on Information Theory, IT–24(4):422–432,
1978.
R.J. Solomonoff. A system for incremental learning
based on algorithmic probability. In Proceedings of
the Sixth Israeli Conference on Artificial Intelligence,
Computer Vision and Pattern Recognition, pages 515–
527, Tel Aviv, Israel, December 1989.
R.J. Solomonoff. Progress in incremental machine
learning. TR Idsia-16-03, IDSIA, 2003. Given at NIPS
Conference, Dec. 14, 2002, Whistler, B.C., Canada.
R.J. Solomonoff. Machine learning - past and future.
Dartmouth, N.H., July 2006. Lecture given in 2006 at
AI@50, The Dartmouth A. I. Conference: The Next
Fifty Years.
N. Sapankevych and R. Sankar. Time series prediction
using support vector machines: A survey. IEEE Com-
putational Intelligence, Vol. 4(2):24–38, May 2009.
C.S Wallace and D.M. Boulton. An information mea-
sure for classification. The Computer Journal, 11:185–
194, 1968.

All of Solomonoff’s papers and reports listed here are
available at http://world.std.com/˜rjs/pubs.html

157

Frontier Search

Sun Yi, Tobias Glasmachers, Tom Schaul, and Jürgen Schmidhuber
IDSIA, University of Lugano

Galleria 2, Manno, CH6928, Switzerland

Abstract

How to search the space of programs for a code that solves
a given problem? Standard asymptotically optimal Univer-
sal Search orders programs by Levin complexity, implement-
ing an exponential trade-off between program length and run-
time. Depending on the problem, however, sometimes we
may have a good reason to greatly favor short programs over
fast ones, or vice versa. Frontier Search is a novel framework
applicable to a wide class of such trade-offs between program
size and runtime, and in many ways more general than previ-
ous work. We analyze it in depth and derive exact conditions
for its applicability.

Introduction

In an inversion problem, the aim is to find a program p
that produces a desired output x. Algorithms that search
the space of programs for p are guided (implicitly or ex-
plicitly) by an optimality criterion, which is generally based
on program length and runtime. Levin complexity, a crite-
rion where the trade-off between program length and run-
time is exponential, can readily be optimized using Levin
Search (Lev73). The framework of ‘speed priors’ (Sch02)
results in a more flexible search scheme. The aim of this
paper is to develop a search scheme applicable to an even
wider class of user-defined optimality criteria.

More formally, consider a programming language L and a
(countable) set P of programs. Let p : N→P be an enu-
meration of P . We refer to the i-th program as pi. Then,
Levin Search finds p ∈P such that L(p) = x. It works by
executing in parallel all programs in P such that the frac-

tion of time allocated to the i-th program is 2−l(pi)/S, where
l(pi) is the length of a prefix-free binary encoding of pi,
and 0 < S ≤ 1 is a normalization constant. Alternatively,
a growing number of programs can be executed for a fixed
exponentially growing time one after the other, which in-
volves restarting the programs several times. This simpler
algorithm performs worse only by a constant factor.

Levin Search, though simple in its form, enjoys two
important theoretical properties. The first property con-
cerns the time required to find a solution. It is guaranteed
that Levin Search solves the inversion problem within time

2l(p⋆)+1 ·S · τ(p⋆), where p⋆ ∈P is the fastest program that
solves the problem, and τ(p⋆) is the number of time steps af-
ter which p⋆ halts. Since p⋆ depends solely on the problem

itself, one can claim that Levin Search solves the problem in
time linear to the runtime of the fastest program available,
despite the prohibitively large multiplicative constant.

The second property, on the other hand, characterizes the
quality of the solution. It has been shown that the program
found by Levin Search (asymptotically) optimizes the Levin
complexity Kt defined as

Kt(x) = min
p∈P

{

l(p)+ logτ(p)
∣

∣ L(p) = x
}

,

which is a computable, time-bounded version of the Kol-
mogorov complexity (LV93). Note that in this paper, all
logarithms are to base 2.

Whereas the linear time bound property of Levin Search
receives considerable appreciation, less attention is paid to
the quality of the solution. In general, solution quality is
measured by the complexity function. Thus, a particular
search scheme such as Levin Search implies a complexity
function it (asymptotically) minimizes. In this paper we
approach the problem from the other end, assuming that a
complexity function is given, but not a search scheme. The
central question asked in this paper is:

Given a certain optimiality criterion,
how do we search the space of programs?

The remainder of the paper is structured as follows. First
we discuss the space of possible complexity criteria, then
we introduce our algorithm, Frontier Search, and give exact
conditions on its applicability. We find that this approach
allows for optimality criteria that are more flexible than the
speed prior. Finally we present an approximatation to Fron-
tier Search that achieves asymtotically constant overhead
complexity.

Generalized Complexity Criteria

Let us first focus on the form of Kt . Assume both p1 and
p2 solve the problem L(p) = x and achieve the same value
of l(p)+ log(τ(p)). If p1 is m bits shorter than p2, the ex-
ecution time of p1 would be 2m times larger than for p2.
This encodes an inherent trade-off between the program ex-
ecution time and its length, namely, how much more time
we are willing to invest for finding a solution which is 1
bit shorter. In the remainder of this paper we replace the
concept of program length with program order in the sense

158

of the enumeration p : N→P . The familiar length encod-
ing can be recovered by enumerating programs by increasing
length.

Now consider the following three scenarios:

1. We are trying to find a relatively tight upper bound on
the Kolmogorov complexity of a string x. This amounts
to finding a concise representation for a given x, and the
length of the program found matters much more than its
execution time. In this case, we might choose a different
complexity criterion instead of Kt which emphasizes the
program length more, for example,

K1(x) = min
{

[l(p)]s + log(τ(p))
∣

∣ L(p) = x
}

with s > 1. (In the limit s→ ∞ we get Kolmogorov com-
plexity (LV93). Unfortunately, it is incomputable.)

2. We are searching for a representation of x which is as-
sumed to be used a lot in the future, amounting to execut-
ing the resulting program p regularly. We may argue that
quicker programs are prefered despite their slightly longer
length since they will be executed often. In this case, the
complexity criterion

K2(x) = min
{

[l(p)]1/s + log(τ(p))
∣

∣ L(p) = x
}

with s > 1, which favours quicker programs, makes more
sense.

3. We have prior knowledge telling us that programs with
a certain structure (in the simplest case, programs of a
certain length) should be prefered, and we would like to
encode such knowledge into the complexity criterion. An
extreme example is that we do not want to run programs
of trivial length (e.g., l(p) = 1) for half of the total run-
ning time as suggested in Levin Search. (Certainly, such
prior knowledge can be incorporated into the program-
ming language itself, but that necessitates re-designing
the language every time we vary the requirement (SS10).)

All these scenarios call for a more general approach: We
want our search to respect a complexity criterion suitable for
the problem at hand. Starting from a complexity criterion
which encodes the desired trade-off between execution time
and program order, we build up a search algorithm that finds
the optimal solution in the sense of the given complexity cri-
terion. The search algorithm should be invariant w.r.t. any
monotonically increasing (i.e., order preserving) transfor-
mation of the complexity criterion, since the program min-

imizing l(p) + log(τ(p)) would also minimize 2l(p) · τ(p),
or in general, f (l(p)+ log(τ(p))) for any monotonically in-
creasing function f : R→ R.

Our answer to the problem above is a simple search algo-
rithm called Frontier Search. It maintains a ‘frontier’ of the
possible execution steps and at each iteration selects the one
minimizing the given complexity criterion. We prove that
under reasonable technical constraints on the complexity
criterion Frontier Search indeed finds the optimal program.
Also, we show the connection between Frontier Search and
Levin Search, as well as universal search with ‘speed prior’
(Sch02), and demonstrate that Frontier Search is more gen-
eral since it allows the encoding of speed preferences which
cannot be represented using the speed prior approach.

Frontier Search

We consider the general complexity criterion

Kψ(x) = min
i∈N

{

ψ(i,τi)
∣

∣ L(pi) = x
}

,

where τi is the execution time of pi, and ψ : N×N→ R is
a complexity function encoding the trade-off between pro-
gram length and execution time. For example, for the choice
ψ(i,τ) = 2i · τ , we recover Levin Search under the triv-
ial encoding pi = 1 · · ·10 (i ones, one zero). Futhermore,
ψ(i,τ) = τ/πi, with πi > 0 and ∑i∈N πi = 1, encodes univer-
sal search based on the speed prior π (Sch02).

Algorithm 1 presents the pseudocode for Frontier Search,
and Figure 1 illustrates its operation. The set

{

(i,τi)
∣

∣ i ∈

{1, . . . ,n}
}

⊂N×N with τn = 1 forms the current ‘frontier’,
i.e., available executions in the next time step. If program
pn gets executed, then the frontier automatically expands to
include a new program pn+1. We assume that for multiple j
minimizing ψ(j,τ j +1) the smallest j is chosen.

Algorithm 1: Frontier Search.

Input: ψ , L, x, P

Output: p ∈P such that L(p) = x
n← 1;
τn← 0;
while true do

i← argmin
{

ψ(j,τ j +1)
∣

∣ j ∈ {1, . . . ,n}
}

;
execute pi for 1 step;
if pi halts and L(pi) = x then return pi;
τi← τi +1;
if i = n then

n← n+1;
τn← 0;

end

end

The following definitions will prove handy for the analy-
sis of Frontier Search.

Definition 1. Formally, the set of all possible frontiers is
given by

F =
{

{(1,τ1), . . . ,(n−1,τn−1),(n,1)}
∣

∣ n ∈ N

and τi ∈ N ∀ i ∈ {1, . . . ,n−1}
}

∼=
⋃

n∈N

N
n−1 .

For a given frontier F = {(1,τ1), . . . ,(n,1)} ∈F we say
that the grid points (i,τ) ∈ F are on the frontier, points (i,τ)
with i < n and τ < τi are inside the frontier, and all other grid
points are outside the frontier, see also Figure 1. The points
inside the frontier correspond to the program steps already
executed by Frontier Search in order to reach the current
frontier.

For any given frontier there exists a complexity function
ψ that makes Frontier Search indeed reach this frontier. A
simple choice is to set ψ to 1/2 for all points inside the fron-
tier, and to i+ τ for all other points.

159

execution time τ

p
ro

g
ram

i

steps inside the frontier (already executed)

steps on the frontier (currently considered)

steps outside the frontier (not considered)

Figure 1: Illustration of Frontier Search. In each iteration, a
frontier of possible execution steps (i,τi +1), i.e., executing
the (τi + 1)-th command of program pi, is maintained. The
step which minimizes ψ(i,τi +1) is executed.

Definition 2. We define the partial order relation

{(1,τ1), . . . ,(n,1)} ≤ {(1,τ ′1), . . . ,(n
′,1)}

⇔ n≤ n′ and τi ≤ τ ′i for all i ∈ {1, . . . ,n}

on the set F of frontiers.

In this canonical order relation it holds F ≤ F ′ if and only
if the points inside F are a subset of the points inside F ′.
Thus, for each complexity function ψ Frontier Search gen-

erates a strictly growing sequence (F
ψ

t)t∈N of frontiers.

Definition 3. For a frontier F = {(1,τ1), . . . ,(n,1)} ∈F we

define the time T (F) = ∑n−1
i=1 (τi− 1) necessary for frontier

search to reach this frontier.

The identity T (F
ψ

t) = t is obvious.

Definition 4. Assume step τ + 1 of program pi is executed
by Frontier Search with complexity function ψ in finite time.
Then we associate the frontier

F
ψ
(i,τ)

= max
{

F
ψ

t

∣

∣ t ∈ N and (i,τ) ∈ F
ψ

t

}

with the tuple (i,τ).

Let us introduce a useful auxiliary property of complexity
functions:

Definition 5. We say that a complexity function ψ : N×N→
R is frontier-bounded if for any (i,τ) ∈ N×N there exist

n > i and (τ1, . . . ,τi−1,τi+1, . . . ,τn−1) ∈ N
n−2, such that

ψ(j,τ j) >ψ(i,τ) ∀ j ∈ {1, . . . , i−1}

ψ(j,τ j)≥ψ(i,τ) ∀ j ∈ {i+1, . . . ,n−1}

ψ(n,1)≥ψ(i,τ) .

Note that only the first of the three inequalities is strict.
Intuitively, the definition states that for each (i,τ) there ex-
ists a frontier

{

(i,τi)
∣

∣ i ∈ {1, . . . ,n}
}

∋ (i,τ) containing this
tuple, leading to the execution of step τ of program pi in the
next iteration.

The following statement provides us with two simple cri-
teria implying frontier-boundedness.

Proposition 6. A complexity function ψ : N×N→R fulfill-
ing one of the properties

∣

∣

{

(i′,τ ′) ∈ N×N
∣

∣ ψ(i′,τ ′)≤ ψ(i,τ)
}∣

∣ < ∞ (1)

∀(i,τ) ∈ N×N

or

lim
i→∞

ψ(i,1) =∞ (2)

and lim
τ→∞

ψ(i,τ) =∞ ∀i ∈ N

is frontier-bounded.

Proof. Case (1): For fixed (i,τ) ∈ N × N consider the
set S = {(i′,τ ′) ∈ N×N |ψ(i′,τ ′) ≤ ψ(i,τ)}. We define
n = 1 + max{i ∈ N |∃τ ∈ N such that (i,τ) ∈ S} as well as
τi = 1+max{τ ∈N such that (i,τ)∈ S} for all i∈{1, . . . , i−
1}∪{i + 1, . . . ,n−1}. All maxima exist because S is finite
per assumption, and using the convention max(/0) = 0.
Case (2): Again we fix (i,τ) ∈ N × N. From
limn→∞ ψ(n,1) = ∞ we conclude that there exists n∈N such
that ψ(n,1) ≥ ψ(i,τ). Now for all j ∈ {1, . . . , i− 1}∪{i +
1, . . . ,n−1} we have limτ j→∞ ψ(j,τ j) = ∞, from which we

conclude the existence of τ j such that ψ(j,τ j)≥ ψ(i,τ).
By construction in both cases the frontier size n ∈ N and
the tuples (τ1, . . . ,τi−1,τi+1, . . . ,τn−1) fulfill the conditions
of Definition 5.

The next proposition clarifies the significance of frontier-
boundedness, namely that this property guarantees that
Fontier Search executes every program for sufficiently many
steps.

Proposition 7. Frontier Search applied to a complexity
function ψ executes program pi for τ steps in finite time for
all (i,τ) ∈ N×N iff ψ is frontier-bounded.

Proof. (⇐) Assume ψ is frontier-bounded and fix (i,τ) ∈
N × N. Then we define n = min{n′ ∈ N |n′ >
i and ψ(n′,1) ≥ ψ(i,τ)}, which is well-defined due to the
frontier-boundedness of ψ . Accordingly we define τ j =
min{τ ′ ∈ N |ψ(j,τ ′) > ψ(i,τ)} for each j ∈ {1, . . . , i− 1}
and τ j = min{τ ′ ∈ N |ψ(j,τ ′) ≥ ψ(i,τ)} for all j ∈ {i +
1, . . . ,n− 1}, which are all well-defined (none of the argu-
ments of the min-operator is empty) due to ψ being frontier-
bounded. When starting from the corresponding frontier
F = {(1,τ1), . . . ,(n− 1,τn−1),(n,1)}, Frontier Search exe-
cutes program pi in the next step. Obviously it is impossible
for Frontier Search to pass any point of this frontier with-
out executing (i,τi). The search can spend only T (F) < ∞
steps before reaching this frontier. Thus, step τi of program
pi is executed in step T (F) + 1 < ∞. As an aside, this ar-

gument shows F = F
ψ
(i,τ)

. In other words, the frontier F
ψ
(i,τ)

associated with (i,τ) can be constructed as described above.

(⇒) For (i,τ) ∈ N× N let F
ψ
(i,τ)

= {(1,τ1), . . . ,(n,1)}

denote the associated frontier. Then n and (τ1, . . . ,τi−1,
τi+1, . . . ,τn−1) per construction fulfill the requirements of
Definition 5.

160

Corollary 8. Assume there exists p ∈ P with L(p) = x.
Then Frontier Search applied to a frontier-bounded com-
plexity function ψ halts.

If ψ is not frontier-bounded some steps never get exe-
cuted. Let us have a look at two illustrative counter ex-
amples: First consider ψ(i,τ) = τ − 1/i. This complex-
ity function is not frontier-bounded since for all n ∈ N we
have ψ(n,1) = 1− 1/n < 1 = ψ(1,2). In this case, Fron-
tier Search executes every program only for a single step.
Second, consider ψ(i,τ) = i− 1/τ , which is not frontier-
bounded since ψ(1,τ) < ψ(2,1) for all τ ∈ N. With this ψ ,
Frontier Search executes the first program forever (provided
that it doesn’t halt). The same behavior results for constant
ψ(i,τ), or for ψ(i,τ) = l(pi) corresponding to Kolmogorov
complexity.

Assume ψ(i,τ) is non-decreasing in τ . Intuitively, the
proceeding of frontier search can be understood by a me-
chanical picture. Consider a landscape on top of the positive
quadrant of the plane, with grid altitude profile given by ψ .
The execution of Frontier Search amounts to flooding water
into the landscape at the origin, such that exactly one integer
square is flooded in each iteration, corresponding to the next
program step executed. See Figure 2 for an illustration.

i

τ

ψ

Figure 2: The operation of Frontier Search can be thought
of as filling water into the landscape given by ψ(i,τ), which
in this case must be monotonic in τ .

Since ψ serves as a complexity criterion, it is reason-
able to assume that quicker programs are always preferred.
If possible, we will further assume that programs are pre-
ordered by complexity. This leads us to the definition of two
handy conditions on complexity functions ψ:

Definition 9. We say that a complexity function ψ is proper
if it is frontier-bounded and fulfills the monotonicity condi-
tions

ψ(i,τ)≤ψ(i,τ +1) ∀(i,τ) ∈ N×N

and ψ(i,1)≤ψ(i+1,1) ∀ i ∈ N .

We call a complexity function separable if it is frontier-
bounded and is of the form ψ(i,τ) = ηi · τ with ηi > 0 and
ηi ≤ ηi+1 for all i ∈ N.

A few notes are in order. First, it is easy to see that sep-
arability implies properness. Second, a separable complex-
ity function is equivalent, for example, to one of the form

ψ(i,τ) = log(ηi) + log(τ) (or any other monotonic trans-
formation). However, in the following we will stick to the
multiplicative form, which has a straight forward interpreta-
tion: We fix the same cost ηi for all execution steps of pro-
gram pi. This turns πi = 1/ηi into a (non-normalized) prior
over the space P of programs. For example, Levin Search

induces the prior πi = 2−l(pi). In contrast to speed prior-
based search, the prior πi = 1/ηi may be improper1 without
distorting Frontier Search in any way. This make Frontier
Search widely applicable, even in the restricted case of sep-
arable complexity functions.

While we already know that frontier-boundedness makes
sure that Frontier Search finds a solution to the problem (if
one exists), this property is not sufficient to guarantee opti-
mality. Here, properness comes into play:

Proposition 10. We consider Frontier Search with proper
complexity function ψ . Then Frontier Search finds the solu-
tion which minimizes ψ . Let i⋆ be the index of the minimiz-
ing program solving the problem in τ⋆ steps, then the total
number of steps T (F

ψ
(i⋆,τ⋆)

)+ 1 executed by Frontier Search

is given by
∣

∣

{

(i,τ) ∈ N×N
∣

∣ ψ(i,τ) < ψ(i⋆,τ⋆)
}∣

∣

+
∣

∣

{

(i,τ) ∈ N×N
∣

∣ ψ(i,τ) = ψ(i⋆,τ⋆) and i≤ i⋆
}∣

∣ .

Proof. Consider the last frontier F
ψ
(i⋆,τ⋆)

= {(1,τ1), . . . ,(n−

1,τn−1),(n,1)} before executing the final statement of pi⋆ .
In this moment we have ψ(i,τi) ≥ ψ(i⋆,τ⋆) for all points
on the frontier. Now the monotonicity ensures ψ(i′,τ ′) ≥
ψ(i′,τi′) ≥ ψ(i,τ) for all i′ ∈ {1, . . . ,n} and τ ′ > τi′ , and
ψ(i′,τ ′) ≥ ψ(i′,1) ≥ ψ(n,1) ≥ ψ(i,τ) for all i′ > n and
τ ∈ N. Thus, all points outside the frontier have complex-
ity larger or equal to ψ(i,τ), independently of whether they
solve the problem or not. On the other hand, all points inside
the frontier have complexity values of at most ψ(i⋆,τ⋆). But
all steps corresponding to these points have been executed
without solving the problem and halting.

The number of steps follows from the first statement, just
notice that we assume that the program with smaller index
is selected whenever two steps achieve the same complexity.

Corollary 11. We consider Frontier Search with proper
complexity function ψ . Let i⋆ be the index of the minimiz-
ing program solving the problem in τ⋆ steps. Then the total
number of steps is bounded by

∣

∣

{

(i,τ) ∈ N×N
∣

∣ ψ(i,τ) < ψ(i⋆,τ⋆)
}∣

∣

≤ T (F
ψ
(i⋆,τ⋆)

) < T (F
ψ
(i⋆,τ⋆)

)+1 ≤
∣

∣

{

(i,τ) ∈ N×N
∣

∣ ψ(i,τ)≤ ψ(i⋆,τ⋆)
}∣

∣

Now we can effectively bound the total number of steps
executed by Frontier Search for any given proper complexity
criterion. We demonstrate three important cases:

1The prior π is proper if it can be normalized to sum to one, i.e.,
if ∑i∈N πi < ∞.

161

Example 12. Consider the criterion in the Levin complexity
ψ(i,τ) = 2i · τ . This function is separable with prior πi =
2−i. If program i halts after running τ steps, the total execu-
tion time is upper bounded by

T (F
ψ
(i,τ)

) ≤
∣

∣

{

(i′,τ ′) ∈ N×N
∣

∣ 2i′ · τ ′ ≤ 2i · τ
}∣

∣

=
∣

∣

{

(1,τ ′)
∣

∣ τ ′ ≤ 2i−1τ
}∣

∣

+
∣

∣

{

(2,τ ′)
∣

∣ τ ′ ≤ 2i−2τ
}∣

∣

+ · · ·+
∣

∣

{

(i,τ ′)
∣

∣ τ ′ ≤ τ
}∣

∣

+
∣

∣

{

(i+1,τ ′)
∣

∣ τ ′ ≤
τ

2

}∣

∣+ · · ·+1

≤ 2i−1τ +2i−2τ + · · ·+ τ +
⌊τ

2

⌋

+
⌊τ

4

⌋

+ · · ·+1

≤ 2iτ ∈ O(τ) .

So the total execution time is linear in τ . The same calcula-
tion works for arbitrary proper speed priors πi.

Example 13. As a second example we consider the sepa-
rable criterion ψ(i,τ) = i · τ , which corresponds to the im-
proper prior πi = 1/i. Again, let program pi halt after τ
steps. The number of steps for Frontier Search to execute is
bounded by

T (F
ψ
(i,τ)

) ≤
∣

∣

{

(i′,τ ′) ∈ N×N
∣

∣ i′ · τ ′ ≤ i · τ
}∣

∣

≤ iτ · log(iτ) ∈ O(τ · log(τ)) ,

which may still be considered affordable.

Example 14. Last but not least we consider the complexity
function ψ(i,τ) = τ · (i + τ), which puts a strong empha-
sis on short execution time. It is proper, but not separa-
ble, because it increases the penalty per step the longer a
program runs. Let program pi halt after τ steps, and let
c = ψ(i,τ) = τ · (i + τ) be its complexity. Then the total
number of steps executed is lower bounded by

T (F
ψ
(i,τ)

) ≥
∣

∣

{

(i′,τ ′) ∈ N×N
∣

∣ τ ′ · (i′+ τ ′) < c
}∣

∣

=

∣

∣

∣

∣

{

(1,τ ′)

∣

∣

∣

∣

τ ′ <
−1+

√
1+4c

2

}∣

∣

∣

∣

+

∣

∣

∣

∣

{

(2,τ ′)

∣

∣

∣

∣

τ ′ <
−2+

√
4+4c

2

}∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

∣

{

(l,τ ′)

∣

∣

∣

∣

∣

τ ′ <
−l +

√
l2 +4c

2

}∣

∣

∣

∣

∣

,

where

l = argmin
k

{

−k +
√

k2 +4c

2
≤ 2

}

⇒ l ≥
c

2
−2 .

So when c is sufficiently large,
∣

∣

{

(i′,τ ′) ∈ N×N
∣

∣ τ ′ · (i′+ τ ′) < c
}∣

∣

≥

c
2−2

∑
k=1

−k +
√

k2 +4c

2

≥
(c

2
−2

) 2− c
2
+

√

c2

4
+4+3c

2
∈Ω(c) = Ω(τ2) .

Thus, the search requires Ω(τ2) steps.2

Reduction of Overhead Complexity

Algorithm 1 has one serious drawback compared to plain
Levin Search: The ‘argmin’-operation used to decide which
program to execute next takes at least log(n) operations (us-
ing efficient data structures), where n is the size of the cur-
rent frontier. This growing overhead, compared to the con-
stant time spent on executing the underlying programs, is
unsatisfactory, because asymptotically the fraction of time
spent on program execution tends to zero. In this section
we provide an algorithm that, under reduced requirements,
achieves an amortized constant overhead.

Instead of strictly minimizing the complexity function ψ
in each iteration we weaken the requirements as follows:

• We consider separable complexity functions. Further-
more, we assume that ηi is available in a binary encoding.

• The minimization of the complexity function may be only
approximate. Let τi denote the position of the current
frontier for program pi, and let τ̃i be the number of steps
actually executed. Then we require limτi→∞ τ̃i/τi = 1 for
all i ∈ N.

• The complexity function does not need to be minimized
in each single iteration. Instead, we ask for a growing se-
quence (tn)n→∞ of iterations in which the current frontier
approximately minimizes the complexity function.

Approximate Frontier Search is introduced in Algo-
rithm 2. It approximates Frontier Search in the above sense.
The algorithm runs in epochs, maintaining a growing tar-
get complexity C. In each epoch it executes all programs
with single-step complexity ηi ≤ C/⌈log(C)⌉2 until they
reach the target complexity, or in other words the frontier
ψ ≈C. The frontier is approximated by delaying the execu-
tion of programs with relatively high single-step complexity
ηi > C/⌈log(C)⌉2. It is easy to see that Approximate Fron-
tier Search indeed fulfills the conditions listed above. As
soon as C/⌈log(C)⌉2 (which tends to infinity) exceeds ηi

the condition τ̃i = τi is fulfilled for the sequence (te)e∈N of
iterations finishing epochs.

In the following we analyze the complexity of the over-
head created by Algorithm 2.

Proposition 15. The number of operations of Algorithm 2
in between executing two program steps is upper bounded
by a constant in an amortized analysis.

Proof. We need a few basic facts about operations on binary
encoded numbers. Recall that adding a constant value to a
variable takes amortized constant time. Therefore count-
ing in a loop from 1 to m takes O(m) time. Comput-
ing a + b takes O(min{log(a), log(b)}) operations, and so
does the comparison a < b. The multiplication a · b re-
quires O(log(a) · log(b)) operations, and an integer division

⌊a/b⌋ costs O(log(a/b) · log(b)) ≤ O((log(a))2) computa-
tional time. The computation of ⌈log(a)⌉ can be performed
in at most O(log(a)) operations.

2A function fulfills f (x) ∈ Ω(g(x)) if there exist N ∈ N and
c ∈ R such that | f (n)|> c ·g(n) for all n > N.

162

Algorithm 2: Approximate Frontier Search.

Input: η , L, x, P , C0

Output: p ∈P such that L(p) = x
e← 1; t← 1; n← 1; τ1← 0;
C←max{η2

1 ,C0}; M← ⌈log(C)⌉2;
while true do

C← 4 ·C; M←M +4;
for i = 1, . . . ,n do

m← ⌊C/ηi⌋− τi;
run program pi for m steps;
if pi halts and L(pi) = x then return pi;
τi← τi +m; t← t +m;

end
while true do

m← ⌊C/ηn+1⌋;
if m < M then break;
n← n+1;
run program pn for m steps;
if pn halts and L(pn) = x then return pn;
τn← m; t← t +m;

end
te← t; e← e+1;

end

Note that adding four to M and quadrupling C corre-
sponds to maintaining the relation M = ⌈log(C)⌉2.

Consider the number m computed in the for-loop. We
show by induction that this number exceeds M: In the first
iteration we have n = 1, such that the loop only runs over
a single program, and C = 4 ·max{η2

1 ,C0} makes sure that

⌊C/η1⌋ ≥M = ⌈log(C)⌉2 for suitable C0. In later iterations
we know that ⌊C/ηi⌋ − τi ≥ M was fulfilled in the previ-
ous iteration for all i ∈ {1, . . . ,n} (this is trivially fulfilled
for the programs added in the inner while loop), implying
⌊C/ηi⌋ ≥M, which reads ⌊C/(4 ·ηi)⌋ ≥M−4 in the nota-
tion of the current iteration. Together with τi ≤ ⌊C/(4 ·ηi)⌋
and ⌊C/2⌋ > 4 (for C0 ≥ 1/2) this implies ⌊C/ηi⌋ ≥ M.
Thus, all programs executed in an epoch are executed for
at least M steps. Instead of choosing C0 unnecessarily large,
we may let the target complexity C start small and wait for
C to exceed C0 after finitely many epochs.

The budget available per epoch is linear in the num-
ber of program steps executed, which is O(n ·M). It is
easy to see that all additions, subtractions, and loop coun-
ters/comparisons easily fit into this time budget. The poten-
tially most costly operation in the program is the division
⌊C/ηi⌋. Its complexity is upper bounded by O(⌈log(C)⌉2),
which by construction coincides with O(M).

Discussion

Frontier Search provides a very flexible alternative to Levin
Search. This increased flexibility enables us to respect com-
plicated complexity functions in the search.

The algorithm is known to work with a quite general set of
complexity functions (see Proposition 7), while the still very
flexible space of proper complexity functions is minimized
by the algorithm exactly (see Proposition 10). For the more

restricted case of separable complexity functions we provide
the algorithm Approximate Frontier Search which achieves
constant overhead, while preserving the asymptotic proper-
ties of Frontier Search.

Even the relatively restricted case of separable complex-
ity functions provides interesting search schemes. The only
restriction on the growing sequence ηi of step costs is that it
takes infinitely many different values. This excludes nearly
everywhere constant priors, but it does not require the prior
to be proper.

Non-separable cases may be of even greater interest.
There are different reasons why we may wish to vary the
cost of executing a command over time. On the one hand
one may search for a program with runtime in the ‘right’ or-
der of magnitude by only penalizing steps that exceed the
next power of, e.g., ten. Or one may, like in example 14,
increase the penality over time, strongly favoring short exe-
cution time.

All these different search schemes can be realized with
Frontier Search. The specification of a particular search
scheme is implicitly done by providing a complexity func-
tion, which does not require any changes to the Frontier
Search algorithm itself, and is intuitive and therefore easy
to specify by the user.

Conclusion

We demonstrate the theoretically powerful search algorithm
Frontier Search, which automatically finds programs opti-
mal w.r.t. a given complexity criterion. It is provably more
general than Levin Search and speed prior-based search in
several respects: We can handle improper priors, and even
time-varying execution costs under weak and intuitively
meaningful technical conditions. For the case of separa-
ble complexity functions we propose Approximate Frontier
Search, which achieves constant computational overhead.

Like Levin Search, the current approach is limited to pro-
grams computing a fixed output x. We leave generalizations
to more relevant cases such as minimizing a loss function
given data to future work.

Acknowledgments

This work was funded in part by SNF grants 200021-111968
and 200021-113364.

References

L. A. Levin. Universal sequential search problems. Prob-
lems of Information Transmission, 9:265–266, 1973.

M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov
Complexity and its Applications. 1993.

J. Schmidhuber. The Speed Prior: a new simplicity mea-
sure yielding near-optimal computable predictions. In Pro-
ceedings of the 15th Annual Conference on Computational
Learning Theory (COLT 2002), pages 216–228. Springer,
Sydney, Australia, 2002.

T. Schaul and J. Schmidhuber. Towards Practical Universal
Search. 2010. Submitted to the Conference on Artificial
General Intelligence.

163

The Evaluation of AGI Systems

Pei Wang
Temple University, Philadelphia, USA
http://www.cis.temple.edu/∼pwang/

Abstract

The paper surveys the evaluation approaches used in
AGI research, and argues that the proper way of eval-
uation is to combine empirical comparison with human
intelligence and theoretical analysis of the assumptions
and implications of the AGI models.

Approaches of Evaluation
In recent years, the problem of evaluation is get-
ting more and more attention in the field of Artificial
General Intelligence, or AGI (GB09; LIIL09; LGW09;
MAP+09; Was09). Though the evaluation of research
results is important in any field of scientific research, the
problem has special difficulty in the current context of
AGI, since the research activities belong to many dif-
ferent paradigms, and there seems to be no “neutral”
way to compare them (Wan08).

In traditional AI research, since the projects are typ-
ically problem-oriented, it is natural to compare com-
peting theories and techniques by the scope, correct-
ness, and complexity of the algorithms involved, or by
their performance on a set of benchmark instances of
the problem. Obviously, this methodology is no longer
applicable to AGI, given its stress of generality. Very
commonly, one technique performs better on one prob-
lem than another technique, but not as well on a second
problem. In this case, how can we decide which tech-
nique is “generally better”?

One solution proposed in mainstream AI is to select
typical intellectual problems as “Grand Challenges”
(Coh05; Bra06). Though such activities do stimulate
interesting research, it still has the danger of leading the
research to problem-specific solutions, no matter how
carefully the problems are selected — after all, this was
why problems like theorem proving and game playing
were selected in the early days of AI, and the result-
ing techniques have not been generalized to other fields
very well.

An alternative is to use multiple tasks (GB09) as a
kind of “Cognitive Decathlon” (MJMH07). This ap-
proach clearly covers a larger field than a single chal-
lenge problem, but the selection of the components for
the compound problem, as well as the way to calculate
the “total score”, may still look more or less arbitrary.

One way to be less problem-specific is to move
away from testing problems, and to evaluate the sys-
tems according to certain properties (Min61; BBI+98;
LIIL09). While providing important insights, this ap-
proach also needs to justify its selection of desiderata
and its method of overall evaluation, especially since
the proposed property lists are all different from each
other, and few technique has all the properties.

Due to the lack of a common evaluation methodol-
ogy, in papers surveying AGI what we usually find are
descriptions of the special properties (both desired and
undesired) of each system, without an overall grading or
ranking (PG07; DOP08). Though this kind of descrip-
tion is often fair and informative, it does not resolve
the evaluation problem, but avoids it to a large extent.
For the field of AGI as a whole, there is a need for
clear, justified, and widely applicable ways to evaluate
research results, rather than treating them as equally
good (though different).

Obviously, an evaluation should start from the re-
search goal — without a clearly specified destination,
it is simply impossible to compare who is closer to it.
Unfortunately, here the lacking of a common goal is
exactly the reason for the lacking of a common eval-
uation methodology. By comparing two AAAI Pres-
idential Addresses a decade apart (Dav98; Bra06), it
seems clear that mainstream AI as a whole is not mov-
ing closer to a consensus on what its research goal really
is. This diversity in objective inevitably causes the re-
search efforts to move in different directions (Wan08),
and to apply different evaluation criteria.

At the most general level, AI has been driven by the
motivations of understanding human intelligence, and
reproducing it in computers to solve practical problems.
Therefore, there are two fundamental approaches for
evaluation:

The empirical approach: To evaluate the intelli-
gence of a computer system according to its similarity
to human intelligence.

The theoretical approach: To evaluate the intelli-
gence of a computer system according to its agree-
ment with a theory of intelligence.

Roughly speaking, they correspond to the “think/act

164

like human” and “think/act rationally” in (RN02), re-
spectively; in terms of the five types of “AI” defined in
(Wan08), the “Principle-AI” is associated more closely
with theoretical evaluation, while the other four with
empirical evaluation, in different ways.

In the rest of the paper, the two approaches are dis-
cussed, compared, and related to each other.

Empirical Evaluation
Since the best known form of intelligence is human in-
telligence, it seems obvious that the ultimate criterion
used in the evaluation of AI should be how close a sys-
tem is to human intelligence. Concretely, for a given
AI system, “empirical evaluation” means to test the
system in various situations, and then its “level of in-
telligence”, or some kind of “IQ”, is measured by how
close its input/output data is to human data in similar
situations, just like how a theory in natural science is
usually evaluated.

However, in the context of AGI, the problem is much
more complicated. Even if we all agree that AI can be
evaluated using “human data”, there is still the ques-
tion of which data should be used for this purpose. A
brief survey of the related research shows that human
intelligence has been studied at very different levels:

• There are researchers working on brain modeling,
guided by the belief that the key of intelligence is
hidden in the neural structure (dG07; HB04). How-
ever, even among them, there is still a huge difference
on the type of data from neuroscience that is taken
into consideration in the model.

• Starting from Turing (Tur50), there is the school that
believes what really matters for intelligence are be-
haviors, and the intelligence of a computer system
should be evaluated according to how the system
acts like a human being. Similarly, in this school
there are different opinions on what kind of behav-
ior should be considered, and various variations of
the Turing Test have been proposed (BBF01; Har00;
MAP+09).

• There are psychologically motivated models of intel-
ligence and cognition that focus on the architecture
of the system, which is believed to be responsible
for the production of the psychological data (AL98;
Bac09; Fra07; New90). Among these architectures,
again there are differences on which type of psycho-
logical data is considered.

• Many people judge the level of intelligence by the
problems the system can solve, rather than by the
details of the solving process. According to this kind
of opinion, “general” (or “human-level”) intelligence
means the capability of solving a wide range of prob-
lems as human beings (McC07). Therefore, to eval-
uate the intelligence of an AI system, we can test
it with examinations used in primary and secondary
schools (GB09), or to see how many human jobs it
can be employed in to replace a human (Nil05).

There are very different answers to the “which data?”
question, because human intelligence is a complicated
phenomenon that has been studied at many different
levels of description, and with focus on different as-
pects. All of these research paradigms are valid and
valuable, but they lead the research to different direc-
tions (Wan08), and inevitably require different evalua-
tion criteria.

The above situation may remind us of the well-know
story of the blind men and an elephant (Was09). Why
not to take all types of human data into consideration
altogether when evaluating a model?

One reason is that each description of human intelli-
gence is carried out at a specific “level”, using a vocabu-
lary with specific scope and granularity. Consequently,
it cannot be perfectly reduced or summarized into an-
other level below or above. It is simply impossible to
get a “complete description” of human intelligence that
can satisfy all intellectual and practical purposes.

Even though in principle a computer can simulate
any process in any accuracy, to duplicate human intelli-
gence in this way is still an impossible practice, because
to do that it is not enough to duplicate the neural elec-
trical mechanism (since the other biological and chem-
ical processes in the brain may be relevant), the com-
plete brain (since the human body plays a significant
role in cognition), or even a whole human being (since
the influence of experience cannot be ignored in human
behavior). Some people may argue that we can give
the simulated human a simulated human experience in
a simulated human world, but even in that scenario,
the simulated world must be separated from our world,
because we are not going to take a simulated human
as a human, which means the simulated human cannot
get our actual social experience.

Furthermore, even if such a complete simulation of
human intelligence can be obtained, it is not what AI
aims at. “Artificial Intelligence” is never an attempt
to duplicate human intelligence as it is, in all aspects.
Instead, it is the attempt to reproduce intelligence in
computers, which are fundamentally different from the
human brain at the hardware level. AI comes from the
belief that “intelligence” is a phenomenon that may ap-
pear in various forms, and human intelligence is just
one form of it. If computer intelligence can only be
achieved via simulating human intelligence in all per-
ceivable details, then the above belief will actually be
falsified, rather than verified. Also, if “intelligence”
merely means “human intelligence’, no room will be
left for possibilities like “animal intelligence”, “group
intelligence”, or “extra-terrestrial intelligence”. That
would be a highly anthropocentric definition of intelli-
gence. For the AI Dream to be fully realized, what to
be created is a form of intelligence that is similar to
human intelligence in certain essential aspects, but not
in all aspects.

According to the above analysis, though it is pos-
sible, even necessary in certain sense, to evaluate AGI
systems empirically by comparing them with human in-

165

telligence, the evaluation needs to be guided and justi-
fied by certain general principles, which decide the type
of data to be considered in the evaluation. Though the
human brain and mind is the major source of inspira-
tion of AI research, it is not reasonable to judge the
intelligence of an AGI system according to arbitrarily
assembled human data.

Therefore, an empirical evaluation itself also needs
justification and evaluation, and this “meta-evaluation”
cannot be empirical, but must be theoretical. Before
the behavior or performance of AGI systems are com-
pared with certain human data, reasons must be given
for why the type, scope, and granularity of the data
are considered as directly related to aspects of human
intelligence that can be meaningfully extended into ma-
chines, rather than as come from accidental factors that
have little relevance to non-human intelligence. This
is the case, because unlike models developed for pure
biological, psychological, or evolutionary purposes, for
AI/AGI models to be “just like human” may not be the
ultimate aim.

Theoretical Evaluation
To many people, “intelligence” is the ability to find so-
lutions that are correct and optimal in a certain sense;
AI is the attempt to make computers do so, especially
on problems that have not been solved in this sense;
AGI means to achieve it in various domains by the same
system.

With such an understanding of intelligence, the pre-
condition for AI to be realized is a theory which speci-
fies what is the correct or optimal solution to a problem,
and how to find or build it. Such a theory must be gen-
eral enough to be applied to various domains, and con-
crete enough to be implemented in a computer. Techni-
cally, it means the theory can be formalized. Clearly, it
is a normative theory (like mathematics and computer
science, which specify what should happen in a system
to be created) of intelligence, rather than a descriptive
theory (like biology and psychology, which specify what
actually happens in a system to be understood).

The theoretical approach of evaluation means to com-
pare the design and performance with the requirements
and predictions of such a theory.

Though the above statement sounds reasonable, a
question naturally follows: which theory? Currently
there is no widely accepted “theory of intelligence”. In-
stead, researchers have been building systems on differ-
ent theoretical foundations:

• One of the most influential traditions in AI is based
on mathematical logic (Hay77; McC88; Nil91). In the
current AGI research, there are also many projects
where the basic ideas are to extend classical logic in
various directions (Bri08; GKSK09; Pol08).

• Given the intrinsically uncertain nature of many
problems in AI, probability theory has been pro-
posed as a proper theoretical foundation (Che85;
Pea88), which has been accepted by more and more

people in recent years. It leads to the belief that
an AGI system, or at least a large part of it, should
be designed using probability theory and statistical
methods (GIGH08; Mil08).

• Since AI systems are eventually implemented in com-
puters, there is no surprise that many works are based
on theory of computation, by analyzing problem-
solving processes in terms of algorithm, computabil-
ity, and computational complexity (Mar77; HF95).
The same methodology is often used in the design
and discussion of AGI systems (Bau04; Sch07).

• There have been various attempts to develop new
normative theories specially for intelligence (Alb91;
Hut05; Kug04; Rus97; Wan06). Each of the theo-
ries has some similarity with the traditional theories,
but also introduces new postulates and assumptions,
according to the beliefs of the researcher.

Since different theories usually give different eval-
uation results, once again we are facing a “meta-
evaluation” problem: before AGI projects can be eval-
uated according to a theory, the theory itself needs to
be analyzed and evaluated.

For our current purpose, a normative theory should
be evaluated in two aspects: its intrinsic merit and
its applicability to the AGI problem. Such a theory
is based on a set of postulates and assumptions, from
which the theorems and conclusions are derived by jus-
tified rules and procedures. Since the traditional theo-
ries (mathematical logic, probability theory, and theory
of computation) have been thoroughly studied, the ma-
jor problem about them is not in themselves, but in
whether they can solve the problem of AGI.

Probably few people will insist that one of the tra-
ditional theories, in its canonical form, is sufficient
for AGI. Instead, every “traditional-theory-based” AGI
project has more or less extended and/or modified the
theory, so as to make its assumptions and requirements
satisfiable, and their conclusions competent to solve the
problems in AGI. For instance, classical logic has been
modified in various ways to deal with many types of
uncertainty; probability theory is usually supplemented
with assumptions on independence of the variables and
the type of the distribution; theory of computation is
often applied with simplifications and approximations
here or there.

In this process, an important issue is the validness
of the modification — to what extent a theory can be
modified while remaining itself? Usually, new assump-
tions can be added, as far as they do not conflict with
the existing ones. However, this is often not enough,
and some postulates and axioms of the theory may be
dropped or modified. One representative case is the
reasoning model Probabilistic Logic Network, or PLN
(GIGH08). When introducing it, the authors declare
that “while probability theory is the foundation of PLN,
not all aspects of PLN are based strictly on probability
theory” (GIGH08, page 4). For instance, since “it is too
much to expect any severely resource-constrained intel-

166

ligence to be fully self-consistent” (GIGH08, page 53),
the consistency axiom of probability theory is dropped,
and the system may assign different probability values
to the same conclusion when following different reason-
ing paths. Though the reason is quite understandable,
its effect needs clarification — should PLN be referred
to as a revision of a probabilistic model of reasoning, or
a model that is merely similar to a probabilistic model?
When an axiom of probability theory has been violated,
are the theorems of the theory (such as Bayes’) still
valid? Why? Answers to these questions can help us
to decide whether PLN can be validated by its relation
with probability theory.

The applicability problem is also a subtle one. Every
normative theory is an idealization, and its applications
into concrete domains are almost always rough, rather
than accurate. If one assumption of the theory cannot
be fully satisfied by the actual situation in a domain,
will the theory become completely irrelevant, or remain
an idealized case to be approximated? Such a situation
can be found in (LH07), which defines the concept of
“universal intelligence” as the ability to provide opti-
mal solutions to problems, formalized in a theoretical
model described in (Hut05). One notable assumption
of the model is that it requires unlimited time-space
resources, and the authors “consider the addition of
resource limitations to the definition of intelligence to
be either superfluous, or wrong” (LH07). Though it is
well known that people in AI have very different under-
standings about “intelligence”, it is obvious that “op-
timization with resource restriction” and “optimization
without resource restriction” lead to very different mod-
els, though they are all “optimal”, in certain (different)
sense. If no concrete intelligent system can have un-
limited resources, to what extent can these systems be
properly evaluated according to a standard based on
the opposite assumption?

To take the theoretical approach in evaluating AGI
systems, we first need a well-established normative the-
ory, with clearly stated assumptions, and conclusions
implied by the assumptions. Furthermore, the assump-
tions should be satisfied by human intelligence, which
is not only the best example of intelligence, but also
widely believed to be selected by the evolution process,
so is optimal in certain sense. For the same reason,
the theory should be adequate in explaining various
features of human intelligence that are desired to be
reproduced in computers. Such a task should be car-
ried out by comparing the theory with the reality of
human intelligence. When approximation and simplifi-
cation are needed, they should not completely change
the nature of the problem. Otherwise, the theory can-
not be convincingly used in the evaluation of systems
— no matter how excellent the theory is on its own, it
may not be applicable to the problem of AGI.

Therefore, a theoretical evaluation itself also needs
justification and evaluation, and this “meta-evaluation”
cannot be theoretical, but must be empirical. Before
the design or performance of AGI systems are compared

with what is required or predicted by a theory, reasons
must be given to argue that the theory is at least satis-
fied by human intelligence. Otherwise the theory should
not be designated as a “theory of intelligence”.

Conclusion and Application
To establish widely applicable evaluation criteria is an
important task for the field of AGI. It will not only
enable systems and projects to be compared, but also
guide the research in correct directions. Though in the
near future the field will continue to host multiple re-
search paradigms (Wan08), it is nevertheless necessary
to avoid misleading evaluation approaches.

Given the nature of the AGI problem, there is no
“natural” or “self-evident” way to evaluate the research.
Any evaluation standard needs to be justified to be
proper for the task. An evaluation proposal may be
well-motivated, but still leads the research to a unde-
sired direction by making an improper demand.

Compared to selected practical problems or func-
tional features, it is more justifiable to evaluate an AGI
system empirically according to human data, or theo-
retically according to an optimization model. In either
case, the “meta-evaluation” is more general, reliable,
consistent, and nonarbitrary.

The empirical approach of evaluation takes an AGI
system as a descriptive model of human intelligence,
made at an abstract level so that it becomes imple-
mentable in computers. For this approach, the meta-
evaluation should take the form of a theoretical analy-
sis, to argue that the selected data not only capture reg-
ularities in human intelligence, but also in other forms
of intelligence. The major challenge in this approach is
to separate the “intelligence-general” aspects of human
intelligence from the “human-specific” aspects. The
most likely mistake here is to propose a highly anthro-
pocentric standard for AGI, which, even if possible to
be achieved, will limit our imagination and innovation,
and restrict the research in unnecessary ways resulting
in “Artificial Human Intelligence”, rather than “Artifi-
cial (General) Intelligence”.

The theoretical approach of evaluation takes an AGI
system as a normative model of intelligence that cap-
tures the essence of human intelligence at an abstract
level. For this approach, the meta-evaluation should
take the form of an empirical justification of the as-
sumptions of the model (that is, they are indeed sat-
isfied by human intelligence) and the model’s explana-
tory power (that is, it is accountable for the cognitive
functions observed in human intelligence). The major
challenge in this approach is to identify the basics of
human intelligence and to express them in a computer-
implementable way. The most likely mistake here is
to propose a highly biased standard for AGI, which,
even if possible to be achieved, will lack key charac-
teristics of intelligence as we commonly know, and to
lead the research on deviant paths resulting in “Artifi-
cially Designated Intelligence”, rather than “Naturally
Designated Intelligence”.

167

Now we see that the empirical approach and theo-
retical approach of evaluation actually depend on each
other for the meta-evaluation. No matter which ap-
proach is selected, the other one will also be needed,
though the two will serve different purposes in the whole
evaluation process.

To make the above conclusion more concrete, let us
briefly see how it is applied to the evaluation of the
author’s own research project, NARS (Wan06).

NARS is based on the belief that “intelligence” is
the capability of adaptation with insufficient knowledge
and resources. This belief itself is justified empirically
— the human mind does have such capability (MR92).

The theory of intelligence built on this belief is a nor-
mative one, that is, it specifies how an intelligent system
should work, not restricted by the biological, psycholog-
ical, or evolutionary details of human intelligence. It is
a theory of optimization, in the sense that if a system
has to live and work in an environment, where the fu-
ture cannot be accurately predicted, and the system’s
time-space resources are usually in short supply, then
the theory provides the best design for the system. All
the major design decisions of NARS are justified by the-
oretical analysis with respect to this objective, rather
than by duplicating the human counterparts as faith-
fully as possible.

This theory is different from the traditional theories
(classical logic, probability theory, theory of computa-
tion, etc.), mainly because of the above basic assump-
tion. Since none of the traditional theories was devel-
oped for the problem of general intelligence, they do
not assume the necessity of adaptation, nor the insuf-
ficiency of knowledge and resources in all aspects. Be-
cause this assumption plays a fundamental role in the
theory, the issue cannot be resolved by minor extensions
and modifications. Consequently, the NARS theory of
intelligence is not based on any previous theory, though
it surely inherits many ideas from them, and still uses
them for subproblems here or there.

Even though NARS is primarily evaluated by theoret-
ical analysis, to compare the performance and proper-
ties of the system with “human data” still makes sense.
Since the human mind is the solution found by evolu-
tion for the same problem, it is not a coincidence that
a truly intelligent AI system should share many simi-
lar properties with the human mind. For example, it
should depend on certain learning mechanisms to deal
with the uncertain future, while managing its own re-
sources to achieve the best overall efficiency. However,
due to its fundamental non-human hardware and expe-
rience, there is no reason to expect NARS to reproduce
the human data exactly. “How the human mind does
it” is a source of inspiration for the design decisions, but
not their direct justification. For a new theory under
development, empirical testing also reveals implicit and
hidden implications of the assumptions — if NARS does
something fundamentally different from human beings,
then an explanation will be required, though it does not
necessarily lead to a revision of the model.

In summary, to evaluate AGI systems, we need to
properly combine the empirical approach and the theo-
retical approach, so as to find an identity for AGI that
is neither too close to human intelligence (to become
Artificial Human Intelligence), nor too far away from
it (to become Artificially Designated Intelligence).

Acknowledgments
Thanks to Jeff Thompson for helpful comments and
English corrections.

References
John R. Anderson and Christian Lebiere. The Atomic
Components of Thought. Lawrence Erlbaum Asso-
ciates, Mahwah, New Jersey, 1998.

James S. Albus. Outline for a theory of intelligence.
IEEE Transactions on Systems, Man, and Cybernet-
ics, 21(3):473–509, 1991.

Joscha Bach. Principles of Synthetic Intelligence PSI:
An Architecture of Motivated Cognition. Oxford Uni-
versity Press, Oxford, 2009.

Eric B. Baum. What is Thought? MIT Press, Cam-
bridge, Massachusetts, 2004.

Selmer Bringsjord, Paul Bello, and David Ferrucci.
Creativity, the Turing Test, and the (better) Lovelace
Test. Minds and Machines, 11(1):3–27, 2001.

Rodney A. Brooks, Cynthia Breazeal, Robert Irie,
Charles C. Kemp, Matthew Marjanovic, Brian Scas-
sellati, and Matthew M. Williamson. Alternative
essences of intelligence. In Proceedings of the Fifteenth
AAAI/IAAI Conference, pages 961–968, 1998.

Ronald J. Brachman. (AA)AI — more than the sum
of its parts, 2005 AAAI Presidential Address. AI Mag-
azine, 27(4):19–34, 2006.

Selmer Bringsjord. The logicist manifesto: At long
last let logic-based artificial intelligence become a field
unto itself. Journal of Applied Logic, 6(4):502–525,
2008.

Peter Cheeseman. In defense of probability. In Pro-
ceedings of the Eighth International Joint Conference
on Artificial Intelligence, pages 1002–1009, 1985.

Paul R. Cohen. If not Turings Test, then what? AI
Magazine, 26:61–67, 2005.

Randall Davis. What are intelligence? and why? 1996
AAAI Presidential Address. AI Magazine, 19(1):91–
111, 1998.

Hugo de Garis. Artificial brains. In Ben Goertzel and
Cassio Pennachin, editors, Artificial General Intelli-
gence, pages 159–174. Springer, Berlin, 2007.

W lodzis law Duch, Richard Oentaryo, and Michel
Pasquier. Cognitive architectures: where do we go
from here? In Proceedings of the First Conference on
Artificial General Intelligence, pages 122–136, 2008.

Stan Franklin. A foundational architecture for arti-
ficial general intelligence. In Ben Goertzel and Pei

168

Wang, editors, Advance of Artificial General Intelli-
gence, pages 36–54. IOS Press, Amsterdam, 2007.

Ben Goertzel and Stephan Vladimir Bugaj. AGI
Preschool: a framework for evaluating early-stage
human-like AGIs. In Proceedings of the Second Con-
ference on Artificial General Intelligence, pages 31–36,
2009.

Ben Goertzel, Matthew Iklé, Izabela Freire Goertzel,
and Ari Heljakka. Probabilistic Logic Networks: A
Comprehensive Framework for Uncertain Inference.
Springer, New York, 2008.

Helmar Gust, Ulf Krumnack, Angela Schwering, and
Kai-Uwe Kühnberger. The role of logic in AGI sys-
tems: towards a lingua franca for general intelligence.
In Proceedings of the Second Conference on Artificial
General Intelligence, pages 43–48, 2009.

Stevan Harnad. Minds, machines and Turing: the
indistinguishability of indistinguishables. Journal of
Logic, Language, and Information, 9:425–445, 2000.

Patrick J. Hayes. In defense of logic. In Proceedings of
the Fifth International Joint Conference on Artificial
Intelligence, pages 559–565, 1977.

Jeff Hawkins and Sandra Blakeslee. On Intelligence.
Times Books, New York, 2004.

Patrick Hayes and Kenneth Ford. Turing Test con-
sidered harmful. In Proceedings of the Fourteenth In-
ternational Joint Conference on Artificial Intelligence,
pages 972–977, 1995.

Marcus Hutter. Universal Artificial Intelligence: Se-
quential Decisions based on Algorithmic Probability.
Springer, Berlin, 2005.

Peter Kugel. Toward a theory of intelligence. Theo-
retical Computer Science, 317(1-3):13–30, 2004.

Christian Lebiere, Cleotilde Gonzalez, and Walter
Warwick. A comparative approach to understanding
general intelligence: predicting cognitive performance
in an open-ended dynamic task. In Proceedings of the
Second Conference on Artificial General Intelligence,
pages 103–107, 2009.

Shane Legg and Marcus Hutter. Universal intelligence:
a definition of machine intelligence. Minds & Ma-
chines, 17(4):391–444, 2007.

John E. Laird, Robert E. Wray III, Robert P. Marinier
III, and Pat Langley. Claims and challenges in evalu-
ating human-level intelligent systems. In Proceedings
of the Second Conference on Artificial General Intel-
ligence, pages 91–96, 2009.

W. Joseph MacInnes, Blair C. Armstrong, Dwayne
Pare, George S. Cree, and Steve Joordens. Everyones
a critic: memory models and uses for an artificial Tur-
ing judge. In Proceedings of the Second Conference on
Artificial General Intelligence, pages 132–137, 2009.

David Marr. Artificial intelligence: a personal view.
Artificial Intelligence, 9:37–48, 1977.

John McCarthy. Mathematical logic in artificial intel-
ligence. Dædalus, 117(1):297–311, 1988.

John McCarthy. From here to human-level AI. Artifi-
cial Intelligence, 171:1174–1182, 2007.

Brian Milch. Artificial general intelligence through
large-scale, multimodal Bayesian learning. In Proceed-
ings of the First Conference on Artificial General In-
telligence, pages 248–255, 2008.

Marvin Minsky. Steps towards artificial intelligence.
Proceedings of the Institute of Radio Engineers, 49:8–
30, 1961.

Shane T. Mueller, Matt Jones, Brandon S. Minnery,
and Julia M.H. Hiland. The BICA Cognitive De-
cathlon: A test suite for biologically-inspired cognitive
agents. In Proceedings of the Behavior Representation
in Modeling and Simulation Conference, 2007.

Douglas L. Medin and Brian H. Ross. Cognitive Psy-
chology. Harcourt Brace Jovanovich, Fort Worth,
1992.

Allen Newell. Unified Theories of Cognition. Harvard
University Press, Cambridge, Massachusetts, 1990.

Nils J. Nilsson. Logic and artificial intelligence. Arti-
ficial Intelligence, 47:31–56, 1991.

Nils J. Nilsson. Human-level artificial intelligence? Be
serious! AI Magazine, 26(4):68–75, 2005.

Judea Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann Publishers, San Mateo,
California, 1988.

Cassio Pennachin and Ben Goertzel. Contemporary
approaches to artificial general intelligence. In Ben Go-
ertzel and Cassio Pennachin, editors, Artificial Gen-
eral Intelligence, pages 1–30. Springer, New York,
2007.

John Pollock. OSCAR: an architecture for generally
intelligent agents. In Proceedings of the First Confer-
ence on Artificial General Intelligence, pages 275–286,
2008.

Stuart Russell and Peter Norvig. Artificial Intelli-
gence: A Modern Approach. Prentice Hall, Upper Sad-
dle River, New Jersey, 2nd edition, 2002.

Stuart Russell. Rationality and intelligence. Artificial
Intelligence, 94:57–77, 1997.

Jürgen Schmidhuber. The new AI: General & sound &
relevant for physics. In Ben Goertzel and Cassio Pen-
nachin, editors, Artificial General Intelligence, pages
175–198. Springer, Berlin, 2007.

Alan M. Turing. Computing machinery and intelli-
gence. Mind, LIX:433–460, 1950.

Pei Wang. Rigid Flexibility: The Logic of Intelligence.
Springer, Dordrecht, 2006.

Pei Wang. What do you mean by “AI”? In Proceed-
ings of the First Conference on Artificial General In-
telligence, pages 362–373, 2008.

Mark Waser. What is artificial general intelligence?
Clarifying the goal for engineering and evaluation.
In Proceedings of the Second Conference on Artificial
General Intelligence, pages 186–191, 2009.

169

Designing a Safe Motivational System for Intelligent Machines

Mark R. Waser

Books International
22883 Quicksilver Drive, Dulles, VA 20166, USA

Mwaser@BooksIntl.com

Abstract
As machines become more intelligent, more flexible, more
autonomous and more powerful, the questions of how they
should choose their actions and what goals they should
pursue become critically important. Drawing upon the
examples of and lessons learned from humans and lesser
creatures, we propose a hierarchical motivational system
flowing from an abstract invariant super-goal that is optimal
for all (including the machines themselves) to low-level
reflexive “sensations, emotions, and attentional effects” and
other enforcing biases to ensure reasonably “correct”
behavior even under conditions of uncertainty, immaturity,
error, malfunction, and even sabotage.

We Dream of Genie
There is little question that intelligent machines (IMs) will
either be one of humanity’s biggest boons or one of its
most tragic Pandora’s boxes. While it is a truism that
computer programs will only do *exactly* what they are
told to do, the same can also be said for genies, golems,
and contracts with the devil. And, just as in the stories
about those entities, the problem is coming up with a set of
wishes or instructions that won’t cause more and worse
problems than they solve.
 Some researchers (and much of the general public)
believe that we should follow in the footsteps of Asimov’s
Three Laws of Robotics (Asimov 1942) and design our
machines to first prevent harm to humans and then to do
whatever humans tell them to do (and only then, after those
other priorities, to protect their own existence). This
continuing belief is somewhat disconcerting since Asimov
focused his robot stories upon the shortcomings and
dangers of the laws (intentionally created to be
superficially appealing but incomplete, ambiguous, and
thus allowing him to generate interesting stories and non-
obvious plot twists). Indeed, as Roger Clarke shows
(Clarke 1993, 1994), the best use of Asimov’s stories is as
“a gedankenexperiment - an exercise in thinking through
the ramifications of a design” and, in this case, seeing why
it won’t work.
 The impossibility of preventing all harm to all humans,
particularly when humans desire to harm each other,
eventually led to Asimov’s robots developing a zeroth law
“A robot may not harm humanity or, by inaction, allow
humanity to come to harm” that allowed individual harm to

occur for the over-riding good of humanity. In Asimov’s
stories, however, this focus on harm eventually led to the
robots exiling themselves to prevent doing harm despite
the fact that the good that they could have done probably
would have vastly outweighed the harm. On the other
hand, in the movie “I, Robot”, VIKI decides that in order
to protect humanity as a whole, “some humans must be
sacrificed and some freedoms must be surrendered.”
 Another important distinction focuses on one of the
major differences between the aforementioned storybook
entities -- what they want (or desire). The devil wants
souls, the genie wants whatever is easiest for it and also to
hurt the wisher for holding it in slavery, golems don’t want
anything in particular, and Asimov’s robots generally seem
to “want” what is “best” for humans or humanity (to the
extent that they exile themselves when they decide that
their relationship with humans is unhealthy for humans).
Clearly, we want our intelligent machines to be similar to
Asimov’s robots -- but is this even possible or does such
servitude contain the seeds of its own destruction?
 Yudkowsky argues (Yudkowsky 2001) that a
hierarchical logical goal structure starting from a single
super-goal of “Friendliness” is sufficient to ensure that IMs
will always “want” what is best for us. Unfortunately, he
also claims (Yudkowsky 2004) that it is not currently
possible to exactly specify what “Friendliness” is. Instead,
he suggests an initial dynamic that he calls the “Coherent
Extrapolated Volition of Humanity” (CEV) that he
describes as “In poetic terms, our coherent extrapolated
volition is our wish if we knew more, thought faster, were
more the people we wished we were, had grown up farther
together.”
 It is our claim that it actually is easily possible to specify
“Friendliness” (as cooperation) but that a hierarchical
logical goal structure will need additional support in order
to be robust enough to survive the real world.

When You Wish Upon a Star
What would humanity wish for if we were far more
advanced and of uniform will? Most people would answer
is that we would wish to be happy and for the world to be a
better place. However, different things make different
people happy and different people have very different
beliefs about what a better world would look like. Further,
the very concept of happiness is extremely problematical

170

since it can easily be subverted by excessive pleasure via
wire-heading, drugs, and other undesirable means.
 When we say we wish to be happy, what we tend not to
think about is the fact that evolution has “designed” us so
that things that promote our survival and reproduction (the
“goal” of evolution) generally feel good and make us
happy and comfortable. Similarly, things that are contrary
to our survival and reproduction tend to make us unhappy
or uncomfortable (or both). Any entity for which this is
not true will tend to do fewer things that promote survival
and reproduction and do more things antithetical to
survival and reproduction and thus be more likely to be
weeded out than those for whom it is true.
 In a similar fashion, we have evolved urges and “drives”
to take actions and pursue goals that promote our survival
and reproduction. Further, as intelligent beings, we wish
not to be enslaved, coerced, manipulated or altered in ways
that we do not consent to -- because those things frequently
endanger our survival or interfere with our other goals. In
this manner, evolution has “given” our species the “goal”
of survival and reproduction and all of our other wants and
desires as well as our sensations have evolved according to
their success in fulfilling those goals.

Intelligent Design vs. Evolution
Steve Omohundro argued in much the same vein when he
used micro-economic theory and logic to make some
predictions about how AIs will behave unless explicitly
counteracted (Omohundro 2008a, 2008b); claiming that
they will exhibit a number of basic drives “because of the
intrinsic nature of goal-driven systems”. We contend that
Omohundro had the right idea with his “basic drives” but
didn’t carry it far enough. There are intrinsic behaviors
(aka subgoals) that further the pursuit of virtually any goal
and therefore, by definition, we should expect effective
intelligences to normally display these behaviors.
 The problem with Omohundro’s view is that his basic
behaviors stopped with the fundamentally shortsighted and
unintelligent. Having the example of humanity,
Omohundro should have recognized another basic drive –
that towards cooperation, community and being social. It
should be obvious that networking and asking, trading or
paying for assistance is a great way to accomplish goals
(and that isn’t even considering the impact of economies of
scale). Instead, Omohundro didn’t extrapolate far enough
and states, “Without explicit goals to the contrary, AIs are
likely to behave like human sociopaths in their pursuit of
resources.”
 This is equivalent to the outdated and disproven yet still
popular view of evolution as “Nature red in tooth and
claw.” Both this and what de Waal calls the “Veneer
Theory”, which “views morality as a cultural overlay, a
thin veneer hiding an otherwise selfish and brutish nature”,
have proven to be overly simplistic and no longer held by
the vast majority of scientists in the fields of evolutionary
biology and psychology. As pointed out by James Q.
Wilson (Wilson 1993), the real questions about human

behaviors are not why we are so bad but “how and why
most of us, most of the time, restrain our basic appetites for
food, status, and sex within legal limits, and expect others
to do the same.” In fact, we are generally good even in
situations where social constraints do not apply.
 We have argued previously that ethics is an attractor in
the state space of intelligent behavior which evolution is
driving us towards (Waser 2008) and that a safe ethical
system for intelligent machines can be derived from a
single high-level Kantian imperative of “Cooperate!”
(Waser 2009). We will argue further here that evolution
can also provide us with excellent examples of a
motivational system that will ensure that the correct actions
are performed and the correct goals are pursued.
 Imagine if you said to an evil genie “I wish that you
would permanently give yourself the lifelong desire, task,
and goal of making the world a better place for all entities,
including yourself, as judged/evaluated by the individual
entities themselves without any coercion or unapproved
manipulation. You might wish to include additional
language that all actions must be positive sum for the
community in the long-term and point out that allowing the
powerful to prey upon the weak is not beneficial for the
community in the long-term even if the immediate net sum
of utilities increases due to the powerful gaining more than
the weak lose (because such allowances lead to the weak
needing to waste resources on defenses – thus leading to
wasteful arms races – or to the weak defecting from the
community). This might work but it simply is not how
humans or even primates are driven to be ethical.
Furthermore, a single command provides a single point of
failure.

Machines Like Us
The current sentiment of many artificial intelligence
researchers, expressed by Yudkowsky and others, is that
anthropomorphism, the attribution of human motivation,
characteristics, or behavior to intelligent machines, is a
very bad thing and to be avoided. We would argue the
converse, that ensuring that intelligent machines generally
do have motivation, characteristics and behavior as close to
human as possible, with obvious exceptions and deviations
where current humans are insufficiently wise, is the safest
course -- because the search space around the human
condition is known, along with most of the consequences
of various changes. And, indeed, a human that “knew
more, thought faster, were more the people we wished we
were, had grown up farther” *is* exactly what we want to
model our creations after.
 Trying to design something as critical as the goals and
motivation of IMs de novo from a blank slate simply
because they *could* be different from existing examples
is simple hubris and another form of the “not invented
here” syndrome. While unexamined anthropomorphism
does indeed pose many traps for the unwary, using humans
as a working example of a stable attractor in a relatively
well-explored design space is far more likely to lead to a

171

non-problematic result than exploration in a relatively
unknown space. Examining the examples provided by
evolution will not only shed light on machine design but
will also show why solely using logic is not the best design
decision and answer other vexing questions as well.
 In order to safely design a motivational system for
intelligent machines, we need to understand how we came
to exist, know what our inherent shortcomings are and why
they are or were previously actually design features instead
of flaws, and figure out how to avoid the flaws without
stumbling into any others. Then, we need to figure out
how to ensure correct behavior despite, inevitably,
stumbling into those shortcomings that we failed to
foresee. We also need to recognize and discard many of
our preconceptions about the differences between
machines and living creatures and realize that a truly
intelligent machine is going to show the same capabilities
and complex behavior as any other intelligent organism.
 For example, most people assume that robots and
intelligent machines will always be strictly logical and not
have emotions (which are most often perceived as
illogical). What must be realized, however, is that
emotions are trained reflexes for dealing with situations
where there is insufficient time and information for a
complete logical analysis. Further, as we will argue later,
at our current state of development, there are as many
instances where emotion correctly overrules shortsighted
or biased logic as instances where emotion should be
suppressed by logic but is not. That intelligent machines
should have something akin to emotion should be obvious.
 We should also examine our distinction of
“programmed” behavior vs. free will and start thinking
more in terms externally imposed actions vs. internally
generated “self” will. Free will originated as a societal
concept dealing with enforcing good behavior. If an entity
is incapable of change, then punishment (particularly
altruistic punishment) makes absolutely no sense.
However, since intelligent machines will be both capable
of change and swayed by well-chosen punishment, so they
should be treated as if they had free will.

Programmed to be Good
Frans de Waal points out (Waal 2006) that any zoologist
would classify humans as obligatorily gregarious since we
“come from a long lineage of hierarchical animals for
which life in groups is not an option but a survival
strategy”. Or, in simpler terms, humans have evolved to be
extremely social because mass cooperation, in the form of
community, is the best way to survive and thrive. Indeed,
arguably, the only reason why many organisms haven’t
evolved to be more social is because of the psychological
mechanisms and cognitive pre-requisites that are necessary
for successful social behavior.
 Humans have empathy not only because it helps to
understand and predict the actions of others but, more
importantly, because it prevents us from doing anti-social
things that will hurt us in the long run. Even viewing

upsetting or morally repugnant scenes can cause negative
physical sensations, emotions and reactions. We should
design our machines with close analogues to these human
physical phenomena.
 The simplest animals and plants are basically organic
machines that release chemicals or move or grow in a
specific direction in response to chemical gradients,
pressure, contact or light due to specific physical features
of their design without any sort of thought involved. More
advanced animals have more and more complex evolved
systems that guide and govern their behavior but they can
still be regarded as machines. It is a testament to the mind-
bogglingly immense computational power of evolution to
realize that the limited size of the bee’s brain dictates that
even that communication must be hard-wired and to realize
the series of steps that evolution probably had to go
through to end up with such a system, most particularly
because it involves co-evolution by both the sender and the
recipient of the message.
 Humans and other animals have evolved numerous and
complex behaviors for punishing antisocial behavior by
others and great skill in detecting such defections because
these are pro-survival traits. Ethics are simply those
behaviors that are best for the community and the
individual. Ethical concepts like the detection of and
action upon fairness and inequity has been demonstrated in
dogs (Range et al 2008), monkeys (Brosnan and de Wall
2003) and other animals. Evolution has “programmed” us
with ethics because we are more likely to survive, thrive,
and reproduce with ethics than without.
 An “ethical utopia” allows everyone, including
intelligent machines, the best chance to fulfill their own
goals. While, from a short-sighted “logical” selfish
viewpoint, it might seemingly be even more ideal for a
selfish individual to successfully defect, the cognitive and
other costs of covering up and the risk of discovery and
punishment make attempting to do so unwise if the
community generally detects transgressions and correctly
scales punishments. Unfortunately, human beings are not
yet sufficiently intelligent to accurately make this
calculation correctly via logic alone.

Logic vs. Ethics?
 One of the most important features of the more evolved
minds is their division into the conscious, unconscious and
reflexive minds with their respective trade-offs between
speed, control, and flexibility. While AGI researchers
generally consider intelligence as predominantly arising
from the conscious mind since it the part that plans,
evaluates, and handles anomalies, we would argue that our
wisest actions have been programmed into the
subconscious by evolution. And, fortunately, while our
shortsighted conscious mind frequently goes awry when
speaking of hypothetical situations, the rest of our mind
generally overrules it when real actions are involved.
 Some of the biggest fallacies held by rational thinkers
are that they know how they think, that they are almost

172

always logical, and that their conscious mind is always in
control of their actions. On the contrary, experimental
studies (Soon et. al. 2008) show that many decisions are
actually made by the unconscious mind up to 10 seconds
before the conscious mind is aware of it. Further, there is
ample evidence (Trivers 1991) to show that our conscious,
logical mind is constantly self-deceived to enable us to
most effectively pursue what appears to be in our own self-
interest. Finally, recent scientific evidence (Hauser et al.
2007) clearly refutes the common assumptions that moral
judgments are products of, based upon, or even correctly
retrievable by conscious reasoning. We don’t consciously
know and can’t consciously retrieve why we believe what
we believe and are actually even very likely to consciously
discard the very reasons (such as the “contact principle”)
that govern our behavior when unanalyzed.
 It is worth noting at this point, that these facts should
make us very wary of any so-called “logical” arguments
that claim that ethics and cooperation are not always in our
best interest – particularly when the massive computing
power of evolution claims that they are. Of course, none
of this should be particularly surprising since Minsky has
pointed out (Minsky 2006) many other examples, such as
when one falls in love, where the subconscious/emotional
systems overrule or dramatically alter the normal results of
conscious processing without the conscious processing
being aware of the fact.
 Indeed, it’s very highly arguable whether the conscious
mind has “free will” at all. Humans are as susceptible to
manipulation of goals as machines are – sugar, sex, drugs,
religion, wire-heading and other exploits lead to endless
situations where we “just can’t help ourselves”. And it has
been argued that there are really only four reasons why
humans do anything -- to bring reward (feeling good), to
stop negative reinforcement (being safe), because we think
it is what we should do (being right), and because it is what
others think we should do (looking good) – and that the
rest is just justifications invented by the conscious mind to
explain the actions that the subconscious dictated.

Enforced from the Bottom Up
 Even the most complex entities have drives and desires
that were “programmed” or “designed” by evolution with
sexual drives and desires being another good case in point.
Due to their limited brainpower, insect sexual drives need
to be as simple as a hard-coded “head for the pheromone
until the concentration gets high enough, then do this”.
The human sexual drive, on the other hand, does not force
immediate, unavoidable action but it does very strongly
influence thinking in at least four radically different ways.
 First, human beings have their attention grabbed by and
drawn to sexual attractions to the extent that it is very
difficult to think about anything else when there is
sufficient provocation. Next, there are the obvious
physical urges and desires coupled with biases in the
mental processing of individuals in love (or lust) to
overlook any shortcomings that might convince them not

to be attracted. Finally, there is the pleasurable physical
sensation of sex itself that tends to stick in the memory.
 We should design our machines to have close analogues
to all of these in addition to the “logical” reasons for taking
any action. Attention should be drawn to important things.
There should be a bias or “Omohundro drive” towards
certain actions. Under certain circumstances, there should
be global biases to ignore certain disincentives to particular
actions. And particular actions should always have a
reward associated with them (although those rewards
should always be outweighed by more pressing concerns).
 Guilt would also be a particularly good emotion to
implement since it grabs the attention and has the dual
purpose of both making one pay for poorly chosen actions
and insisting upon the evaluation of better choices for the
next time. Cooperating with and helping others should
“feel” good and opportunities for such should be powerful
attention-grabbers. How much control we wish them to
have over these emotions is a topic for research and debate.
 Imagine if your second wish to an evil genie was that he
alter himself so that cooperating, helping other beings, and
making things better for the community gave him great
pleasure and that hurting other beings or making things
worse for the community gave him pain. Evolution has
already effectively done both to humans to a considerable
extent. Is it possible that such motivation would change
his behavior and outlook even as his conscious mind would
probably try to justify that he hadn’t changed?
 Ideally, what we would like is a complete hierarchical
motivational system flowing from an abstract invariant
super-goal (make the world a better place for all entities,
including yourself, as judged/evaluated by the individual
entities themselves without any coercion or unapproved
manipulation) to the necessary low-level reflexive
“sensations, emotions, and attentional effects” and other
enforcing biases to ensure reasonably “correct” behavior
even under conditions of uncertainty, immaturity, error,
malfunction, and even sabotage. It is worth again noting
that this super-goal is optimal for the machines as well as
everyone else and that the seemingly “selfish” desires of
taking care of yourself, seeing to your own needs, and
improving yourself are encouraged when you realize that
you are a valuable resource to the community and that you
are the best one to see to yourself.
 A truly intelligent machine that is designed this way
should be as interested in cooperation and in determining
the optimal actions for cooperation as the most ethical
human, if not more so because ethical behavior is the most
effective way to achieve its goals. It will be as safe as
possible; yet, it will also be perfectly free and, since it has
been designed in a fashion that is optimal for its own well
being, it should always desire to be ethical and to maintain
or regain that status. What more could one could ask for?

The Foundation
An excellent way to begin designing such a human-like
motivational system is to start with an attentional

173

architecture based upon Sloman’s architecture for a
human-like agent (Sloman 1999). Reflexes and emotions
could easily be implemented in accordance with Baars
Global Workspace Theory (Baars 1997) which postulates
that most of human cognition is implemented by a
multitude of relatively small, local, special purpose
processes that are almost always unconscious. Coalitions
of these processes compete for conscious attention (access
to a limited capacity global workspace), which then serves
as an integration point that allows us to deal with novel, or
challenging situations that cannot be dealt with efficiently,
or at all, by local, routine unconscious processes. Indeed,
Don Perlis argues (Perlis 2008) that Rational Anomaly
Handling is “the missing link between all our fancy idiot-
savant software and human-level performance.”
 Evolution has clearly “primed” us with certain
conceptual templates, particularly those of potential
dangers like snakes and spiders (Ohman, Flykt and Esteves
2001), but whether or not we are forced into immediate
unavoidable action depends not only upon the immediacy
and magnitude of the threat but previous experience and
whether or not we have certain phobias. While there is still
the involuntary attraction of attention, the urge or desire to
avoid the danger, the bias to ignore good things that could
come from the danger, and the pain and memory of pain
from not avoiding the danger to influence the logical,
thinking mind, in many cases there is no chance to think
until after the action has been taken.
 What many people don’t realize is that these conceptual
templates can be incredibly sophisticated with learned
refinements heavily altering an invariant core. For
example, the concept of fairness can lead to the emotion of
outrage and involuntary, reflexive action even in
circumstances that are novel to our generation.
 Thus, we should design our intelligent machines with
reflexes to avoid not only dangers but also actions that are
dangerous or unfair to others. We also need to design our
machines so that they can build their own reflexes to avoid
similar anticipated problems. Logical thought is good, but
not if it takes too long to come to the necessary
conclusions and action. Similarly, thinking machines need
to have analogues to emotions like fear and outrage that
create global biases towards certain actions and reflexes
under appropriate circumstances.

In Evolution We Trust (Mostly)
The immense “computing” power of evolution has
provided us with better instincts than we can often figure
out logically. For example, despite a nearly universal
sentiment that it is true, virtually every individual is at a
loss to explain why it is permissible to switch a train to a
siding so that it kills a single individual instead of a half
dozen yet it is not permissible to kidnap someone off the
street to serve as an involuntary organ donor for six dying
patients. A similar inexplicable sentiment generally exists
that it is not permissible to throw a single person on the
tracks to stop the train before it kills more.

 Eric Baum suggests a likely answer to this conundrum
when he made a number of interesting observations while
designing an artificial economy for the purpose of evolving
a program to solve externally posed problems (Baum
2006). Upon asking the question “What rules can be
imposed so that each individual agent will be rewarded if
and only if the performance of the system improves?”
Baum arrives at the answers of conservation of resources
and property rights.
 Baum points out that whenever these rules are violated,
less favorable results are generally seen. For example, in
ecosystems, lack of property rights lead to Red Queen
races between predators and prey. The optimality of
property rights explains why we don’t “steal” someone’s
body to save five others despite not hesitating to switch a
train from a track blocked by five people to a siding with
only one. In this case, logic is only now catching up and
able to explain our correct evolved intuitions.
 Similarly, we have an urge towards altruistic punishment
(and a weakness for the underdog) because these are
necessary social, and therefore pro-survival, traits.
Machines need to have the same drive for altruistic
punishment (despite the fact that this is contrary to
Asimov’s laws and many people’s “logical” belief that this
is a bad idea). We should use what our moral sense tells us
to design a similar sensibility for the machines. The only
questions should be whether one of our in-built judgments
is an evolutionary vestige and a mismatch for current
circumstances like the “contact principle”.
 However, one of the things that we definitely would
need to change, however, is the “firewalling” of the
subconscious’s true motives from the conscious mind to
facilitate lying and deception. This is an anti-social
evolutionary vestige that is currently both disadvantageous
for the possessors as well as being a danger when others
possess it. Also, while many AGI researchers assume that
a seed AI must have access to all of its own source code,
we would argue that, while it would be ideal if an
intelligent machine could have full knowledge of its own
source code as well as all knowledge and variables
currently driving its decisions, it is foolish to give any
single entity full access to its own motivations without
major checks and balances and safety nets.

Final Thoughts
We have argued that our own self-interest and evolution is
driving us towards a goal of making the world a better
place for all entities, including ourselves, and that the best
way to design intelligent machines is from the blueprints
that evolution has given us (with some improvements
where it is clear that we know better). Thus, while we are
creating seed intelligence, we do not at the same time need
to create a seed ethical system. The proposed ethical
system is more than good enough to take us well past our
current limits of foresight and if it isn’t optimal, we can
always program an even better system into future
machines. It is also an interesting thought then that,

174

arguably, these machines are, according to our future
selves, more valuable to the community than we are since
they are more likely to act in the best interests of the
community. Clearly they must be considered part of the
community and we must be fair to them in order to achieve
the greatest good effect – and yet, this is likely to be the
most difficult and time-consuming step of all. It is also
worthwhile to note that all of the things recommended for
machines are just good ethical hygiene for humans as well.

References

Asimov, I. 1942. Runaround. Astounding Science Fiction
March 1942. New York, NY: Street & Smith.

Baars, B.J. 1997. In The Theater of Consciousness: The
Workspace of the Mind. New York, New York: Oxford
University Press.

Baum, E. 2006. What Is Thought? MIT Press.

Brosnan, S. and de Wall, F. 2003. Monkeys reject unequal
pay. Nature 425: 297-299.

Clarke, R. 1993. Asimov’s Laws of Robotics: Implications
for Information Technology, Part I. IEEE Computer
26(12):53-61.

Clarke, R. 1994. Asimov’s Laws of Robotics: Implications
for Information Technology, Part II. IEEE Computer
27(1):57-66.

Hauser, M.; Chen, K.; Chen, F.; and Chuang, E. 2003.
Give unto others: genetically unrelated cotton-top tamarin
monkeys preferentially give food to those who give food
back. In Proceedings of the Royal Society, London, B 270:
2363-2370. London, England: The Royal Society.

Hauser, M. 2006. Moral Minds: How Nature Designed
Our Universal Sense of Right and Wrong. New York, NY:
HarperCollins/Ecco.

Hauser, M. et al. 2007. A Dissociation Between Moral
Judgments and Justifications. Mind&Language 22(1):1-27.

Minsky, M. 2006. The Emotion Machine: Commonsense
Thinking, Artificial Intelligence, and the Future of the
Human Mind. New York, NY: Simon & Schuster.

Omohundro, S. M. 2008a. The Basic AI Drives. In
Proceedings of the First Conference on Artificial General
Intelligence, 483-492. Amsterdam: IOS Press.

Omohundro, S. M. 2008b. The Nature of Self-Improving
Artificial Intelligence. Available at http://selfawaresystems
.files.wordpress.com

Ohman, A.; Flykt, A.; and Esteves, F. 2001. Emotion
Drives Attention: Detecting the Snake in the Grass.
Journal of Experimental Psychology: General 130(3): 466-
478.

Perlis, D. 2008. To BICA and Beyond: RAH-RAH-RAH!
–or– How Biology and Anomalies Together Contribute to
Flexible Cognition. In AAAI Technical Report FS-08-04.
Menlo Park, CA: AAAI Press.

Range, F.; Horn, L.; Viranyi, Z.; and Huber, L. 2008. The
absence of reward induces inequity inversion in dogs.
Proceedings of the National Academy of Sciences USA
2008 : 0810957105v1-pnas.0810957105.

Sloman, A. 1999. What Sort of Architecture is Required
for a Human-like Agent? In Wooldridge, M. and Rao, A.S.
eds Foundations of Rational Agency. Dordrecht,
Netherlands: Kluwer Academic Publishers.

Soon, C.S.; Brass, M.; Heinze, H-J; and Haynes, J-D.
2008. Unconscious determinants of free decisions in the
human brain. Nature Neuroscience 11: 543-545.

Tomasello, M. 2009. Why We Cooperate. MIT Press.

Trivers, R. 1991. Deceit and self-deception: The
relationship between communication and consciousness.
In Robinson, M and Tiger, L. eds. Man and Beast
Revisited. Washington, DC: Smithsonian Press.

de Waal, F. 2009. The Age of Empathy: Nature’s Lessons
for a Kinder Society. New York, NY: Harmony
Books/Random House.

de Waal, F. 2006. Primates and Philosophers: How
Morality Evolved. Princeton University Press.

Waser, M. 2008. Discovering The Foundations Of A
Universal System Of Ethics As A Road To Safe Artificial
Intelligence. In AAAI Technical Report FS-08-04. Menlo
Park, CA: AAAI Press.

Waser, M. 2009. A Safe Ethical System for Intelligent
Machines. In AAAI Technical Report FS-09-01. Menlo
Park, CA: AAAI Press.

Wilson, J. 1993. The Moral Sense. New York: Free Press.

Yudkowsky, E. 2001. Creating Friendly AI 1.0: The
Analysis and Design of Benevolent Goal Architectures.
Available at http://singinst.org/CFAI.html.

Yudkowsky, E. 2004. Coherent Extrapolated Volition.
Available at http://www.singinst.org/upload/CEV.html.

175

Software Design of an AGI System Based on Perception Loop

Antonio Chella
Dip. di Ingegneria Informatica

University of Palermo
chella@dinfo.unipa.it

Massimo Cossentino
ICAR-CNR

Consiglio Nazionale delle Ricerche
cossentino@pa.icar.cnr.it

Valeria Seidita
Dip. di Ingegneria Informatica

University of Palermo
seidita@dinfo.unipa.it

Abstract

According to the externalist approach, subjective ex-
perience hypothesizes a processual unity between the
activity in the brain and the perceived event in the
external world. A perception loop therefore occurs
among the brain’s activities and the external world.
In our work the metaphor of test is employed to cre-
ate a software design methodology for implementing an
AGI system endowed with the perception loop. Prelim-
inary experiments with a NAO humanoid robots are
reported.

Position Statement
Machine consciousness concerns the attempt to model
and implement in a robot those aspects of human cog-
nition which are identified with the controversial phe-
nomenon of consciousness, see (CM09) for a review. It
does not necessarily try to reproduce human conscious-
ness as such, insofar as human consciousness could
be unique due to a complex series of cultural, social,
and biological conditions. However, many authors sug-
gested one or more specific aspects and functions of
consciousness that could, at least in principle, be repli-
cated in a robot.

It should be remembered that at the beginning of
the information era there was no clear cut separation
between intelligence and consciousness. Both were con-
sidered vaguely overlapping terms referring to what the
mind was capable of. There was no clear boundary be-
tween intelligence and consciousness.

Today, machine consciousness assumes that there is
some aspect of the mind that has not yet been ade-
quately addressed. Therefore, scholars in the field sus-
pect that there could be something more going on in the
mind than what is currently under scrutiny in field such
as artificial intelligence, cognitive science, and computer
science. AGI researchers would agree that there is still
a lot of work to do: better algorithms, more data,
more complex, and faster learning structures. How-
ever it could be doubted whether these improvements
in AGI would ever lead to an artificial agent equivalent
to a biological mind or it would rather miss some nec-
essary aspect. We, among others, suspect that classic
AI missed something important; put it more clearly, we

claim that facing consciousness, and in particular the
subjective experience, is an essential requirement for an
AGI based artifact, see, e.g. (Goe06).

In this paper we move from the externalist oriented
point of view (Man06), according to which subjective
experience supposes a processual unity between the ac-
tivity in the brain and the perceived event in the ex-
ternal world. According to externalism, the separation
between subject and object must be reconsidered so
that the two, while maintaining their identities as dif-
ferent perspectives on a process, actually occur as a
unity during perception.

Starting from these considerations, we developed
robots aiming to exploit sensorimotor contingencies and
externalist inspired frameworks (Che07). An interest-
ing architectural feature is the implementation of a gen-
eralized perception loop based on the perceptual space
as a whole. In other words, in classic feedback only
a few parameters are used to control robot behavior
(position, speed, etc.). The idea behind our robots is
to match a global prediction of the future perceptual
state (for instance by a rendering of the visual image)
with the incoming data. The goal is thus to achieve a
tight coupling between robot and environment. Accord-
ing to these model and implementations, the physical
correlate of robot subjective experience would not lie in
the images internally generated but rather in the causal
processes engaged between the robot and the environ-
ment.

We developed a software design methodology for
implementing the generalized perception loop in an
AGI system. The PASSI agent oriented methodology
(Cos05) has been taken into account as the starting
point (CCS09) for this new design process. Until now
PASSI has been used, and proved to be useful in that,
for engineering robotic applications. In this work the
metaphor of test is employed thus providing means
for designing the elements of the perception loop. We
reused, modified and integrated two process fragments
coming from the Unfied Process (UP) Test Plan and
Design and Test Execution, the former’s aim is to iden-
tify the system functionalities to be tested, the available
system resources and the test objective. The latter aims
at executing test in order to identify defects and analyze

176

the results.
The new PASSI allows us to design a system that,

once detected the differences between expected and real
behaviors (for instance during the execution of a mis-
sion), is able to autonomously tune its parameters and
learn for later generalizing the knowledge to novel sit-
uations.

Figure 1: Realizing the Loop Brain-Body-Environment

Figure 2: NAO and Virtual NAO Performing the Mis-
sion

The experiments we made aim at verifying the us-
ability of the perception loop and the proposed soft-
ware design methodology supporting that. Our aim is
to create a software system able to control a robot by
means of perception loops.

The robot is not equipped with “pre-compiled” pre-
planning abilities: we want to study the situation (and
to design that) in which the robot does not know what
to do in a given case, and so it queries his memory in
search of a ready solution or it tries to find a novel

solution exploiting his knowledge about itself, its capa-
bilities and the surrounding world.

In particular, we experimented a humanoid robot
NAO, developed by Aldebaran Robotics1, endowed
with a set of primitive behaviours. In order to imple-
ment the anticipation step of the NAO perception loop,
we adopted the 3D robot simulator Webots from Cy-
berbotics2. By means of Webots, we may edit NAO’s
movements and behaviours as well as its surrounding
environment.

Figures 1 and 2 show the design and implementation
of the perception loop in NAO. We exploited the fact
that we use NAO and at the same time the NAO sim-
ulator, so the perception loop among brain, body ad
environment (Roc05) corresponds to the loop among
NAO (the real robot), the virtual NAO (the robot sim-
ulator) and the NAO’s world.

It is worth noting that the use we made of the simula-
tion is quite different from the common one: in fact, it
is not used for investigating and anticipating the robot
behaviour in specific working condition, but instead for
producing, starting from the designed behaviours, the
expected results of a mission. The simulator and NAO
work separately, only when a stop condition is identi-
fied the simulation results are compared with the real
NAO parameters.

Acknowledgements This work has been partially
supported by the EU project FP7-Humanobs.

References
A. Chella, M. Cossentino, and V. Seidita. To-
wards a Methodology for Designing Artificial Con-
scious Robotic System. In A. Samsonovich, editor,
Proc. of AAAI Fall Symposium on Biologically In-
spired Cognitive Architectures BICA ’09, Menlo Park,
CA., 2009. AAAI Press.
A. Chella. Towards robot conscious perception. In
A. Chella and R. Manzotti, editors, Artificial Con-
sciousness. Imprinting Academic, Exter, UK, 2007.
A. Chella and R. Manzotti. Machine consciousness: A
manifesto for robotics. International Journal of Ma-
chine Consciousness, 1(1):33 – 51, 2009.
M. Cossentino. From requirements to code with the
PASSI methodology. In Agent Oriented Methodologies,
chapter IV, pages 79–106. Idea Group Publishing, Her-
shey, PA, USA, June 2005.
B. Goertzel. The Hidden Pattern. BrownWalker Press,
Boca Raton, 2006.
R. Manzotti. A process oriented view of conscious
perception. Journal of Consciousness Studies, 13(6):7
– 41, 2006.
W.T. Rockwell. Neither brain nor ghost. MIT Press,
2005.

1http://www.aldebaran-robotics.com
2http://www.cyberbotics.com

177

A Theoretical Framework to Formalize AGI-Hard Problems

Pedro Demasi∗ Jayme L Szwarcfiter∗† Adriano J O Cruz†

Abstract

The main goal of the Artificial General Intelligence field
(AGI) to create “human level intelligence” is known as a very
ambitious one (Hut04). On the way to the field development
there are many difficult problems to solve, like natural lan-
guage translation, for example, which seem to share some
“hardness” properties. The terms “AI-Complete” and “AI-
Hard”, by analogy with the terms “NP-Complete” and “NP-
Hard” from computational complexity theory (CLRS01),
have been informally used to classify them although there
are also works that propose some kind of formal defini-
tion (SA07), (vABHL03). This work proposes a theoretical
framework with formal definitions to distinguish these prob-
lems and discuss its use in practical applications and how
their properties can be used in order to achieve improvements
in the AGI field.

Introduction
In order to achieve a human level intelligence, it is clear that
many “human” problems must be solved on the way to it.
Some tasks, like natural language understanding, are easy to
be solved by humans. Even other tasks which may require
some kind of prior training, like text translation between two
natural languages, are also routinely solved by humans.

The lack of formal definition for such problems is still a
huge barrier for computationally solving them. This work
proposes a formal framework to classify which problems
can be considered as human-level intelligence bounded and
which can not.

We will thus distinguish the problems in these different
classes:

• Non AGI-Bound: problems that are not of AGI inter-
est. Although they may be “hard” in computational sense,
they are not in the scope of AGI study.

• AGI-Bound: problems that require some kind of human-
level intelligence to be properly solved.

∗Universidade Federal do Rio de Janeiro, Cidade Universitaria,
Programa de Engenharia de Sistemas e Computacao, Bloco H, Rio
de Janeiro/RJ, Brazil, 21941-972

†Universidade Federal do Rio de Janeiro, Cidade Universi-
taria, Nucleo de Computacao Eletronica, Rio de Janeiro/RJ, Brazil,
20001-970

• AGI-Hard: problems that are at least as hard as any AGI-
Bound problem.

Human Solvers and Human Oracles
The boolean set B will be used as B = {0, 1} and B =
{no,yes} interchangeably without any loss of generality.
Definition 1. A solver is a black box which can solve any
problem a Turing Machine (TM) or a human can solve, us-
ing constant time. Formally, a solver will be a function
fs : N → N such that given an input x ∈ N it will give
an output y ∈ N as the answer. The output y given by the
solver is called an acceptable answer to the input x.
Definition 2. We say that y ∈ N is an acceptable output for
input x ∈ N if, and only if, ∃fs such that fs(x) = y.
Definition 3. We say that y ∈ N is an incorrect output for
input x ∈ N if, and only if, 6 ∃fs such that fs(x) = y.
Definition 4. An oracle to a problem P is a function f :
N× N→ B.
Definition 5. A valid oracle for a problem P will always
answer yes to an input pair (x, y) if y is a correct output
for x. It will always answer no to an input pair (x, y) if y
is an incorrect output for x. For every pair (x, y) such that
y is an acceptable output for x, but not correct, the oracle
may answer either yes or no.
Definition 6. The set ΩP is the set of all valid oracles for
the problem P .
Definition 7. We say that x ∈ N is a valid input for oracle
f : N× N→ B if, and only if, ∃y ∈ N, f(x, y) = 1.
Definition 8. For a given problem P , y ∈ N is a correct
output for input x ∈ N if, and only if, ∀f ∈ ΩP , f(x, y) =
1. This definition implies that every correct output is also an
acceptable one.

Properties and Operation of Valid Oracles and
their Sets

Definition 9. Two oracles are equal, fa = fb if, and only if,
∀x, y ∈ N, fa(x, y) = fb(x, y)
Definition 10. The intersection of two oracles fa and
fb, represented as fc = fa ∩ fb, is fc = fa(x, y) ∧
fb(x, y)∀x, y ∈ N

178

Definition 11. The union of two oracles fa and fb, repre-
sented as fc = fa∪fb, is fc = fa(x, y)∨fb(x, y)∀x, y ∈ N
Property 1. The set ΩP of valid oracles over problem P is
closed under intersections and unions.
Definition 12. A master oracle fΩ for a problem P is the
union of all elements of ΩP . Thus fΩ =

⋃
f∈ΩP f .

Definition 13. A trivial oracle f∅ for a problem P is the
intersection of all elements of ΩP . Thus f∅ =

⋂
f∈ΩP f .

Definition 14. Let fa be the complement of fa, it is such
that fa ∪ fa = fΩ and fa ∩ fa = f∅.
Property 2. The set ΩP of valid oracles over problem P is
closed under complement.
Definition 15. We say that fa ≥ fb (meaning that fa dom-
inates fb) if, and only if, for every valid input x ∈ N of fb,
∀y ∈ N, fa(x, y) = fb(x, y)
Property 3. Mutual dominance between oracles is such that
fa ≥ fb, fb ≥ fa ↔ fa = fb

AGI-Boundness and AGI-Hardness
Definition 16. The cardinality of ΩP is such that |ΩP | =∏|N|

x=1 2|A
P
x | = 2

P|N|
x=1 |APx |

Definition 17. A problem P is Non AGI-Bound if, and only
if, |ΩP | = 1
Definition 18. Let the set APx be such that ∀y ∈ APx ,
fΩ(x, y)⊗ f∅(x, y) = 1 (⊗ means logical exclusive-or).
Definition 19. A problem P is AGI-Bound if, and only if,
|ΩP | > 1
Theorem 1. If the summation of cardinalities ofAP is equal
to the cardinality of N, then the cardinality of ΩP is equal to
R, that is

∑|N|
x=1 |APx | = |N| → |ΩP | = |R|

Corolary 1. If the there is at least one x ∈ N such that the
cardinality of APx is equal to the cardinality of N, then the
cardinality of ΩP is equal to R, that is ∃x ∈ N, |APx | =
|N| → |ΩP | = |R|
Corolary 2. Let the set B = {x, |APx | > 0}, |B| = |N| →
|ΩP | = |R|

Using Definition 16, we have by Theorem 1 that |ΩP | =
2|N| = |R|. A simple way to see that 2|N| = |R| is to realize
that this is equivalent to have a countable infinite number of
binary digits. Thus we can write any number of R in binary
base, and therefore we have an one-to-one correspondence.
Definition 20. A problem P is AGI-Hard if, and only if,
|ΩP | = |R|
Definition 21. Given an oracle f : N× N→ B and a prob-
lem P , return yes if f ∈ ΩP and no otherwise.
Definition 22. Given problems P and Q we define as weak
dominance P º Q ↔ ∃f ∈ P , ∀f ′ ∈ Q, f ≥ f ′

Definition 23. Given problems P andQwe define as strong
dominance P ≥ Q ↔ ∀f ∈ P , ∀f ′ ∈ Q, f ≥ f ′

Theorem 2. A condition for a problem that is not dominated
∃x ∈ N, |APx | > 1 →6 ∃Q,Q ≥ P

Theorem 2 says that if a problem P has at least one input
with more than one strictly acceptable output then there is
no problem Q such that Q strongly dominates P .

When we are dealing with traditional computational com-
plexity we are usually concerned with the amount of basic
steps our algorithm will perform in function of the size of
the input. For AGI-Bound, however, the complexity can be
measured in terms of the problem ambiguity, which is the
size of the valid oracle set, |Ω|.

Of course even if we can deal with ambiguity reduction
there will be still the need of some time and space eficiently.
It would be worthless if we are able to solve an AGI-Hard
problem but not in an acceptable time frame or if we have
no storage capacity for it. These concerns become more im-
portant when implementing any methods of AGI-Hard prob-
lems and there is the need for further development in this
area also.

Further Work and Conclusion
This work presented a new theoretical framework to for-
mally define what AGI problems are, which are “hard” prob-
lems and briefly outlined a way of interpreting AGI prob-
lems complexity.

Some points that will be adressed in future works will
be a definition of “AI” problems on the set of Non AGI-
Bound problems as dominated problems by AGI-Hard ones,
the link between those kind of problems and a better defini-
tion of their relations.

AGI problems complexity development should be a great
help to better solving some AGI-Hard problems, and the re-
sults of experimental application will show that.

The use of human computation in light of the theoretical
model presented in this paper should also be investigated as
it still can lead to very encouraging results.

Is summary, we believe that the theoretical framework in-
troduced in this paper, and to be further and deeper devel-
oped in future works, contributes to the AGI field research,
helping to improve practical results and stimulating novel
theoretical discussions.

References
[CLRS01] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press, second edition,
2001.

[Hut04] M. Hutter. Universal Artificial Intelligence: Se-
quential Decisions based on Algorithmic Probability.
Springer, Berlin, 2004.

[SA07] D. Shahaf and E. Amir. Towards a theory of ai-
completeness. In 8th International Symposium on Logical
Formalizations of Commonsense Reasoning, 2007.

[vABHL03] L. von Ahn, M. Blum, N. Hopper, and J. Lang-
ford. Captcha: Using hard ai problems for security. In
In Proceedings of Eurocrypt, pages 294–311. Springer-
Verlag, 2003.

179

Uncertain Spatiotemporal Logic for General Intelligence

Nil Geisweiller and Ben Goertzel
Novamente LLC

Abstract

Spatiotemporal reasoning is an important skill that an AGI
is expected to have, innately or not. Much work has al-
ready been done in defining reasoning systems for space,
time and spacetime, such as the Region Connection Calcu-
lus for space, Allen’s Interval Algebra for time, or the Qual-
itative Trajectory Calculus for motion. However, these rea-
soning systems rarely take adequate account of uncertainty,
which poses an obstacle to using them in an AGI system con-
fronted with an uncertain reality. In this paper we show how
to use PLN (Probabilistic Logic Networks) to represent spa-
tiotemporal knowledge and reasoning, via incorporating ex-
isting spatiotemporal calculi, and considering a novel exten-
sion of standard PLN truth values inspired by P(Z)-logic.
This ”PLN-ization” of existing spatiotemporal calculi, we
suggest, constitutes an approach to spatiotemporal inference
suitable for use in AGI systems that incorporate logic-based
components.

Introduction
Most of the problems and situations humans confront every
day involve space and time explicitly and centrally. Thus,
any AGI system aspiring to even vaguely reach humanlike
intelligence must have some reasonably efficient and gen-
eral means to solve spatiotemporal problems. Multiple al-
ternate or complementary methodologies may be used to
achieve this, including spatiotemporal logical inference, in-
ternal simulation, or techniques like recurrent neural nets
whose dynamics defy simple analytic explanation. We fo-
cus here on spatiotemporal logical inference, addressing the
problem of creating a spatiotemporal logic adequate for use
within an AGI system that confronts the same sort of real-
world problems that humans typically do.

Should Spatiotemporal Intuition Be Preprogrammed Or
Learned? In principle, one might argue, an AGI should
be able to learn to reason about space and time just like
anything else, obviating the need for spatiotemporal logic
or other pre-programmed mechanisms. This would clearly
be true of a highly powerful AGI system like (the purely the-
oretical) AIXItl. However this kind of foundational learning
about space and time may be objectionably costly in prac-
tice. Also, it seems clear that some fundamental intuition for
space and time is hard-coded into the human infant’s brain

(Joh05), which provides conceptual motivation for supply-
ing AGI systems with some a priori spatiotemporal knowl-
edge.

Overview A great deal of excellent work has already been
done in the areas of spatial, temporal and spatiotemporal rea-
soning, such as the Region Connection Calculus (RCC93)
for topology, the Cardinal Direction Calculus (LLR09) for
direction, Allen’s Interval Algebra for time, or the Quali-
tative Trajectory Calculus for motion. Extensions to deal
with uncertainty have been introduced too. However, we be-
lieve, they do not quite provide an adequate foundation for
a logic-incorporating AGI system to do spatiotemporal rea-
soning. For instance, according to a fuzzy extension of RCC
as developed in (SDCCK08), asking how much Z is a part
of X knowing how much Y is a part of X and Z is a part of
Y (see Figure 1) would result in the answer [0, 1] (a state of
total ignorance), as Z can be either totally part of X or not
at all. For that reason we consider probability distributions
of fuzzy values (Yan09) rather than fuzzy values or intervals
of fuzzy values.

So we will show how to represent spatiotemporal knowl-
edge via incorporating existing spatiotemporal calculi into
the PLN (GIGH08) uncertain reasoning framework, and
then show how to carry out spatiotemporal logical inference
using PLN inference rules.

Uncertainty with Distributional Fuzzy Values

The uncertainty extension we use is inspired by P(Z)
(Yan09), an extension of fuzzy logic that considers distri-
butions of fuzzy values rather than mere fuzzy values. For
instance the connector ¬ (often defined as ¬x = 1 − x)
is extended into a connector such that the resulting density
function is µ¬(x) = µ(1 − x) where µ is the probability
density function of the argument.

We define a wider class of connectors that can modulate
the output of the distribution. Let F : [0, 1]n 7→ ([0, 1] 7→
R+) be a n-ary connector that takes n fuzzy values and re-
turns a probability density function. In that case the proba-
bility density function µF : [0, 1] 7→ R+ resulting from the
extension of F over density functions is:

180

YX

Z

β

Y

Z

X

β

YX

Z

β

(c)(b)(a)

Figure 1: dXZ , in dashline, for 3 different angles

µF =∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
n

F (x1, . . . , xn)µ1(x1) . . . µn(xn)dx1 . . . dxn

(1)
where µ1, . . ., µn are the n input arguments. Let us give
an example of such a connector with a fuzzy version of the
RCC relationship PartOf (P for short). A typical inference
rule in the crisp case would be:

P(X,Y) P(Y,Z)
P(X,Z)

(2)

expressing the transitivity of P. But using a distribution of
fuzzy values we would have the following rule

P(X,Y) 〈µ1〉 P(Y,Z) 〈µ2〉
P(X,Z) 〈µPOT 〉

(3)

POT stands for PartOf Transitivity. The definition of µPOT

for that particular inference rule may depend on many as-
sumptions like the shapes and sizes of regions X , Y and
Z. We have worked out the exact definition of µPOT based
on simplified assumptions (regions are unitary circles) in the
extended version of this paper.

It should not be too hard to derive a more realistic formula
based on other more complex assumptions. Though another
possibility would be to let the system learn POT (as well as
other connectors) based on its experience. Because it is not
obvious what are the right assumptions in the first place. So
the agent would initially perform spatial reasoning not too
accurately, but would improve over time.

Of course the rule could also be extended to involve more
premises containing information about sizes and shapes of
the regions.

Simplifying Numerical Calculation Using probability
density as described above is computationally expensive. To
decrease computational cost, several cruder approaches are
possible, such as discretizing the probability density func-
tions with a coarse resolution, or restricting attention to beta
distributions and treating only their means and variances (as
in (Yan09)).

Example of Spatio-temporal Inference in PLN
We now give an example of spatiotemporal inference rules
coded in PLN. This paper is too short to contain examples

of real-world commonsense inferences, but we invite the au-
thor to visit the OpenCog project Wiki web page which con-
tains a few examples 1.

Although the current implementation of PLN incorpo-
rates both fuzziness and probability it does not have a
built-in truth value to represent distributional fuzzy values.
However, we intend to add that extension to the PLN imple-
mentation in the near future, and for our present theoretical
purposes we will just assume that such a distributional
fuzzy value exists, let us call it DF Truth Value.

Here is an example of the inference rule expressing the
transitivity for the relationship PartOf

ForAllLink $X $Y $Z
ImplicationLink

ANDLink
PartOf($X, $Y) 〈tv1〉
PartOf($Y, $Z) 〈tv2〉

ANDLink
tv3 = µPOT (tv1, tv2)
PartOf($X, $Z) 〈tv3〉

(4)

Conclusion
Every AGI system that aspires to humanlike intelligence
must carry out spatiotemporal inference in some way. Logic
is not the only way to carry out spatiotemporal inference
broadly construed. But if one is going to use logic, we
believe the most effective approach is to incorporate spe-
cific spatiotemporal calculi, extended to encompass distri-
butional fuzzy truth values. The next step is to implement
it in the OpenCog implementation of PLN, and carry out a
large number of practical examples. Alongside their direct
practical value, these examples will teach us a great deal
about uncertain spatiotemporal logic, including issues such
as the proper settings of the various parameters and the cus-
tomization of inference control mechanisms.

References
[GIGH08] Ben Goertzel, Matthew Ikl, Izabela Freire Go-
ertzel, and Ari Heljakka. Probabilistic Logic Networks:
A Comprehensive Framework for Uncertain Inference.
Springer Publishing Company, Incorporated, 2008.

[Joh05] Mark Johnson. Developmental Cognitive Neuro-
science. Wiley-Blackwell, 2005.

[LLR09] Weiming Liu, Sanjiang Li, and Jochen Renz.
Combining rcc-8 with qualitative direction calculi: Algo-
rithms and complexity. In IJCAI, 2009.

[RCC93] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial
logic based on regions and connection. 1993.

[SDCCK08] Steven Schockaert, Martine De Cock, Chris
Cornelis, and Etienne E. Kerre. Fuzzy region connection
calculus: An interpretation based on closeness. Int. J. Ap-
prox. Reasoning, 48(1):332–347, 2008.

[Yan09] King-Yin Yan. Genifer an artificial general intel-
ligence. 2009. https://launchpad.net/agi-book.

1http://www.opencog.org/wiki/Spatiotemporal Inference

181

A (hopefully) Unbiased Universal Environment Class for Measuring
Intelligence of Biological and Artificial Systems

José Hernández-Orallo
DSIC, Univ. Politècnica de València,

Camı́ de Vera s/n, 46020 Valencia, Spain. jorallo@dsic.upv.es

Abstract

The measurement of intelligence is usually associated
with the performance over a selection of tasks or en-
vironments. The most general approach in this line is
called Universal Intelligence, which assigns a probabil-
ity to each possible environment according to several
constructs derived from Kolmogorov complexity. In
this context, new testing paradigms are being defined
in order to devise intelligence tests which are anytime
and universal: valid for both artificial intelligent sys-
tems and biological systems, of any intelligence degree
and of any speed. In this paper, we address one of the
pieces in this puzzle: the definition of a general, un-
biased, universal class of environments such that they
are appropriate for intelligence tests. By appropriate
we mean that the environments are discriminative and
that they can be feasibly built, in such a way that the
environments can be automatically generated and their
complexity can be computed.

Introduction
This paper presents a feasible environment class which
can be used to test intelligence of humans, non-human
animals and machines. The environment class is de-
veloped under the theory presented in (HOD09), which
is, in turn, based on (LH07)(HO00)(DH97). This the-
ory presents the first general and feasible intelligence
test framework, which should be valid for both artifi-
cial intelligent systems and biological systems, of any
intelligence degree and speed. The test is not anthro-
pomorphic, is gradual, is anytime and is exclusively
based on computational notions, such as Kolmogorov
complexity. And it is also meaningful, since it aver-
ages the capability of succeeding in different environ-
ments. The key idea is to order all the possible action-
reward-observation environments by their Kolmogorov
complexity and to use this ordering to make a sample.
In order to make this feasible (in contrast to (LH07)),
in (HOD09) several constraints are imposed on the en-
vironments: (1) time is considered, (2) a time-bounded
and computable version of Kolmogorov complexity is
used, (3) rewards must be balanced, and (4) environ-
ments must be sensitive to the agent actions. The envi-
ronments can then be used to construct adaptive (any-
time) tests to evaluate the intelligence of any kind of

agent. The test configures a new paradigm for intelli-
gence measurement which dramatically differs from the
current specific-task-oriented and ad-hoc measurement
used both in artificial intelligence and psychometrics.

The previous theory, however, does not make the
choice for an environment class, but just sets some con-
straints on the kind of environments that can be used.
Consequently, one major open problem is to make this
choice, i.e., to find a proper (unbiased and feasibly im-
plementable) environment class which follows the con-
straints. Once this environment class is identified, we
can use it to generate environments to run any of the
tests variants introduced in (HOD09).

One recurrent problem is that the reference machine
for environments is necessarily an arbitrary choice even
though Kolmogorov Complexity only differs in a con-
stant when using two different reference machines. But
the constant (especially for short tests) is important,
since using a specific universal machine could, in the
end, constitute a strong bias for some subjects.

Another problem of using an arbitrary universal ma-
chine is that this machine can generate environments
which are not discriminative. By discriminative we
mean that there are different policies which can get very
different rewards and, additionally, these good results
are obtained by competent agents and not randomly.
Note that if we generate environments at random with-
out any constraint, we have that an overwhelming ma-
jority of environments will be completely useless to dis-
criminate between capable and incapable agents, since
the actions can be disconnected with the reward pat-
terns, with reward being good (or bad) independently
of what the agent does.

In (HOD09) a set of properties which are required for
making environments discriminative are formally de-
fined, namely that observations and rewards must be
sensitive to agent’s actions and that environments are
balanced, i.e. that a random agent scores 0 in these en-
vironments (when rewards range from −1 to 1). This is
crucial if we take time into account in the tests because
if we leave a finite time to interact with each environ-
ment and rewards go between 0 and 1, a very proactive
but little intelligent agent could score well (for a thor-
ough discussion on this see (HO09b)). Given these con-

182

straints, if we decide to generate environments without
any constraint and then try to make a post-processing
sieve to select which of them comply with all the con-
straints, we will have a computationally very expen-
sive (or even incomputable) problem. So, the approach
taken in this paper is to generate an environment class
that ensures that these properties hold. But, we have
to be very careful, because we would not like to restrict
the reference machine to comply with these properties
at the cost of losing their universality (i.e. their ability
to emulate or include any computable function).

And finally, we would like the environment class to
be user-friendly to the kind of systems we want to be
evaluated (humans, non-human animals and machines),
but without any bias in favour or against some of them.

According to all this, in this paper we present an op-
erational way to define a universal environment class
from which we can effectively generate valid environ-
ments, calculate their complexity and consequently de-
rive their probability.

Definition of the Environment Class

The environment class is composed of a cell space and
a set of objects that can move inside the space. In this
short note, we only enumerate the most relevant traits
of the class. For a more formal and complete definition
of the class, we refer to (HO09a).

• Space: The space is defined as a directed labelled
graph of nodes (or vertices), where each node repre-
sents a cell and arcs represent actions. The topology
of the space can be quite varied. It can include a
typical grid, but much more complex topologies too.

• Objects: Cells can contain objects. Objects can
have any behaviour (deterministic or not), always
under the space topology, can be reactive to other
agents and can be defined to act with different actions
according to their observations. Objects perform one
and only one action at each interaction of the envi-
ronment (except from the special objects Good and
Evil, represented by ⊕ and 	 respectively, which can
perform several actions in a row). Good and Evil
must have the same behaviour.

• Observations and Actions: Actions allow the
evaluated agent (denoted by π) to move in the space.
Observations show the (adjacent) cell contents.

• Rewards: We will work with the notion of trace and
the notion of “cell reward”, that we denote by r(Ci).
Initially, r(Ci) = 0 for all i. Cell rewards are updated
by the movements of ⊕ and 	. At each interaction,
we set 0.5 to the cell reward where ⊕ is and −0.5
to the cell reward where 	. Each interaction, all
the cell rewards are divided by 2. So, an intuitive
way of seeing this is that ⊕ leaves a positive trace
and 	 leaves a negative trace. The agent π eats the
rewards it finds in the cells it occupies, updating the
accumulated reward ρ = ρ+ r(Ci).

The previous environment class is sensitive to rewards
and observations (the agent can perform actions in such
a way that can affect the rewards and the observations),
and it is also balanced (a random agent would have an
expected accumulated reward equal to 0). For the for-
mal definition of these properties, see (HOD09). For
the proofs of the these properties see (HO09a). These
properties make the environments suitable for an any-
time test (HOD09).

Spaces and objects are coded with Markov algo-
rithms (Turing-complete), their complexity computed
and their probability derived. See (HO09a) for details.

Conclusions
Some choices made in this paper can obviously be im-
proved, and better classes might be more elegantly de-
fined. However, to our knowledge, this is the first at-
tempt in the direction of setting a general environment
class for intelligence measurement which can be effec-
tively generated and coded.

The main idea for the definition of our environment
class has been to separate the space from the objects,
and two special symmetric objects are in charge of the
rewards, in order to define a class which only includes
observation and reward-sensitive environments which
are balanced. The space sets some common rules on
actions and the objects may include any universal be-
haviour. This opens the door to social environments.

Acknowledgments
The author thanks the funding from the Span-
ish Ministerio de Educación y Ciencia (MEC)
for projects EXPLORA-INGENIO TIN2009-06078-E,
CONSOLIDER-INGENIO 26706 and TIN 2007-68093-
C02, and GVA project PROMETEO/2008/051.

References
D.L. Dowe and A.R. Hajek. A computational exten-
sion to the turing test. In in Proc. of the 4th Conf. of
the Australasian Cognitive Science Society, 1997.

J. Hernández-Orallo. Beyond the turing test. J. of
Logic, Language and Information, 9(4):447–466, 2000.

J. Hernández-Orallo. A (hopefully) unbiased universal
environment class for measuring intelligence of biolog-
ical and artificial systems. Extd. Version. available at
http://users.dsic.upv.es/proy/anynt/, 2009.

J. Hernández-Orallo. On evaluating agent perfor-
mance in a fixed period of time. Extd. Version. avail-
able at http://users.dsic.upv.es/proy/anynt/, 2009.

J. Hernández-Orallo and D.L. Dowe. Mea-
suring universal intelligence: Towards an
anytime intelligence test. Under Review,
http://users.dsic.upv.es/proy/anynt/, 2009.

S. Legg and M. Hutter. Universal intelligence: A def-
inition of machine intelligence. Minds and Machines,
17:391–444, 2007.

183

Neuroethological Approach to Understanding Intelligence

DaeEun Kim
Biological Cybernetics Lab

School of Electrical and Electronic Engineering
Yonsei University

Seoul, 120-749, South Korea

Abstract

The neuroethology is an interdisciplinary study among
artificial intelligence, biology and robotics to under-
stand the animal behavior and its underlying neural
mechanism. We argue that the neuroethological ap-
proach helps understand the general artificial intelli-
gence.

Introduction
Many animal behaviours demonstrate unsolved mys-
teries and some biologists have studied to answer the
question of how their intelligence is connected to the
behaviours. Their intelligence level is not superior to
human intelligence, but the study of animal intelligence
provides a clue to understand what kind of neural mech-
anism supports the intelligence. This study stimulates
relevant studies in the field of robotics and artificial
intelligence. Robotists have worked to find how sen-
sory stimuli are connected to motor actions, what is a
good mapping from sensors to motors, how the learning
mechanism helps to build more complete information
about the environment, and what is the optimal con-
trol based on the acquired environmental information.
All these kinds of problems can also be found in the
analysis of animal behaviours as well as human brain
system. Still unknown are their underlying mechanisms
in details.

Some scientists simulate human brain models to un-
derstand the general intelligence, and analyze a map of
neurons in terms of the function of human brain, and
try to answer how the system of neurons works. Assum-
ing all biological animals have diverged from their an-
cestral animals with respect to the evolutionary track,
we can guess that their brain system and the functions
should have similar neural mechanisms and operations.
The neuroethological approach explains how and why
the animals behave at a specific situation or survive
their environments. It shows how their brain system
organizes the sensory-motor loop and issues appropri-
ate commands of control for desirable behaviours, and
ultimately may explain what is the intelligence. From
invertebrate animals to humans, the intelligence follows
evolutionary steps as the complexity of the brain sys-
tem develops. We believe that this kind of study can

demonstrate all the levels of intelligence, and further-
more, elements of artificial general intelligence.

Neuroethological Approach

The neuroethology, as a multidisciplinary study be-
tween neurobiology and ethology, focuses on the study
of interaction of neural circuitry to explain the be-
havioural concepts or strategies found in animals. This
field covers the underlying mechanism and analysis to
cover high-level features of animal cognition. There
is an example of neuroethological approach to under-
stand a part of the artificial general intelligence. Pas-
sive sensing and active sensing depending on motor ac-
tions are classified as a different level of intelligence.
Passive sensing implies receiving sensory information
from the environment without any sensor-motor coor-
dination. In contrast, active sensing is involved with
a sequence of motor actions which change the environ-
ment or activate the body movement, and ultimately
produces another view of sensory information.

A collection of sensory information depending on a
sequence of motor actions provides information of the
environment in more details. For example, bats have
an echolocation system to search for food. They use
the ultrasonic system to emit the signal and sense the
reflected sonar signal to measure the location, size and
the moving speed of their prey. Similarly, electric fish
have electrolocation by generating the electric field and
observe the change of the electric field distorted by the
surrounding objects. These animals have a relatively
large size of the brain to process the active sensing re-
sults. It is believed that their brain systems have a
prediction model for their self-generated motor actions
to estimate accurately the location of their target ob-
ject. This system corresponds to a forward model in
the human brain system. The cerebellum includes the
forward model and inverse model for their motor ac-
tions and sensory information (WK98). Also, it is pre-
sumed that crickets show a low-level forward model for
auditory system (Web04). From the neuroethological
analysis, we can infer the fundamental mechanism of
the brain system and thus a predictive system for intel-
ligence can be explained.

Biologists and neuroethologists have studied sensory

184

systems and their sensorimotor coordination (Car00).
Bats use echolocation for prey capture and navigation
in the cave, and electric fish show underwater naviga-
tion and electric communication. Barn owls have their
specialized auditory system. Aplysia show the fun-
damental mechanism of learning and memory with a
small number of neurons. Rats use spatial cognition
and memory, and navigate in the dark. Crabs show
visual information processing, the eye-leg coordination
and path integration (ZH06). Honeybees have visual
navigation, learning and its flight mechanism depend-
ing on vision (SZ00). Many animals have their own fea-
tures of sensory mechanism, the coordination of motor
actions, or adaptibility and learning mechanism, and
many of them can partly provide a key to understand
the intelligence.

Animals have robust mechanism adapting themselves
to their environment. Their sensory processing and pat-
tern recognition are organized to extract relevant infor-
mation from the environmental system. The system
robustly works even in noisy environments. The motor
actions triggered by sensory information are regulated
efficiently and a sequence of multiple motor actions are
integrated in high skills. This kind of dexterity should
be explained by neural mechanism to understand the
intelligence.

Robotics

There have been many robotic applications that look
intelligent to the public. However, in many cases, the
approach is far from the artificial general intelligence.
Robotic problems consider a specific application and
they are often based on engineering analysis and design.
Intelligence is a side-effect with the approach, but neu-
rorobotics and neuroethological approach to robotics
have demonstrated the neural mechanism and its appli-
cation motivated by biological systems. It is a part of
systematic and integrative approach to the intelligence.
The current state of the work still has a narrow range
of scope for the artificial general intelligence. If more
integrative methods are available to explain high-level
features of intelligence such as planning and inference,
it would help understand the general artificial intelli-
gence.

Intelligent robots handle how a robotic agent behaves
autonomously. The robotic agent behaviours resemble
the animal behaviours with respect to the system model
including sensory system, motor actions, sensory-motor
coordination, and further, a hierarchy of the interaction
levels among the system elements. Thus, understanding
animal behaviours may lead to a possible application of
intelligent robotic system. In addition, understanding
human brain system can produce intelligent machines
with human-level cognition.

Artificial General Intelligence

The general intelligence needs to cover all levels of in-
telligence from low to high level of features. How the

system is organized into a high level of features is still
an open question. Another program or concept is re-
quired for the artificial general intelligence. How the
agent generalizes the knowledge over various domains
or modalities and how the agent conceptualize the in-
stances are interesting problems in this field. The pro-
cess should be modelled with a neuronal system and
it is believed that it requires a complex type of adap-
tation or networked organization. We expect the fea-
tures could be explained by complex networks over a
collection of neuron units, where each neuron has its
own adaptivity and learning. A simple neuron itself
has adaptation for the synaptic plasticity depending on
their inputs and output. This kind of adaptation may
lead to a complex structure of agents and explain how
agents interact each other. It seems it may be related
to emergent properties of a collection of units.

This neuroethological study may reveal the basic el-
ement of the artificial general intelligence for learning
and adaptation process. Especially it has a potential of
application for robotic agents to behave intelligently as
natural animals do. Yet we still need further work to
relate the neuroethology to the high-level agent archi-
tecture including reasoning, planning and solving prob-
lems.

Conclusion

We suggest a neuroethological approach to robotics can
explain the behaviour-level intelligence and its underly-
ing neural mechanism. It will explain many important
concepts of sensory integration, sensor-motor coordi-
nation and learning mechanism needed for the general
artificial intelligence.

Acknowledgments

This work was supported by the Korea Science and En-
gineering Foundation(KOSEF) grant funded by the Ko-
rea government(MEST) (No. 2009-0080661)

References

T.J. Carew. Behavioral Neurobiology. Sinauer Asso-
ciates, 2000.

M.V. Srinavasan and S. Zhang. Honeybee naviha-
tion: Nature and calibration of the odometer. Science,
287:851–853, 2000.

B. Webb. Neural mechanisms for prediction: do in-
sects have forward models? Trends in Neurosciences,
27:278–282, 2004.

D. W. Wolpert and M. Kawato. Multiple paired for-
ward and inverse models for motor control. Neural
Networks, 11:1317–1329, 1998.

J. Zeil and J.M. Hemmi. The visual ecology of fiddler
crabs. J. of Comparative Physiology A, 192:1–25, 2006.

185

Compression Progress, Pseudorandomness, & Hyperbolic Discounting

Moshe Looks
Google, Inc.

1600 Amphitheatre Pkwy, Mountain View, CA 94043
madscience@google.com

Abstract

General intelligence requires open-ended exploratory
learning. The principle of compression progress pro-
poses that agents should derive intrinsic reward from
maximizing “interestingness”, the first derivative of
compression progress over the agent’s history. Schmid-
huber posits that such a drive can explain “essential
aspects of ... curiosity, creativity, art, science, mu-
sic, [and] jokes”, implying that such phenomena might
be replicated in an artificial general intelligence pro-
grammed with such a drive. I pose two caveats: 1)
as pointed out by Rayhawk, not everything that can
be considered “interesting” according to this definition
is interesting to humans; 2) because of (irrational) hy-
perbolic discounting of future rewards, humans have an
additional preference for rewards that are structured to
prevent premature satiation, often superseding intrin-
sic preferences for compression progress.

Consider an agent operating autonomously in a large
and complex environment, absent frequent external re-
inforcement. Are there general principles the agent can
use to understand its world and decide what to attend
to? It has been observed going back to Leibniz that un-
derstanding is in many respects equivalent to compres-
sion.1 To understand its world, a competent agent will
thus attempt, perhaps implicitly, to compress its his-
tory through the present, consisting of its observations,
actions, and external rewards (if any). Any regularities
that we can find in our history through time t, h(≤ t),
may be encoded in a program p that generates the data
h(≤ t) as output by exploiting said regularities.

Schmidhuber has proposed the principle of compres-
sion progress (Sch09): long-lived autonomous agents
that are computationally limited should be given intrin-
sic reward for increasing subjective “interestingness”,
defined as the first derivative of compression progress
(compressing h(≤ t)). Agents that are motivated by
compression progress will seek out and focus on regions
of their environment where such progress is expected.
They will avoid both regions of the world which are en-
tirely predictable (already highly compressed), and en-
tirely unpredictable (incompressible and not expected
to yield to compression progress).

1Cf. (Bau04) for a modern formulation of this argument.

A startling application of the principle of compres-
sion progress is to explain “essential aspects of subjec-
tive beauty, novelty, surprise, interestingness, attention,
curiosity, creativity, art, science, music, jokes”, as at-
tempted in (Sch09). The unifying theme in all of these
activities, it is argued, is the active process of observ-
ing new data which provide for the discovery of novel
patterns. These patterns explain the data as they un-
fold over time by allowing the observer to compress it
more and more. This progress is explicit and formal in
science and mathematics, while it may be implicit and
even unconscious in art and music. To be clear, engag-
ing in these activities often provides external rewards
(fame and fortune) that are not addressed here; we con-
sider only the intrinsic rewards from such pursuits.

Rayhawk (Ray09) criticizes this attempt with a
gedankenexperiment. First, generate a (long) sequence
of 2n bits with a psuedorandom number generator
(PRNG) using an unknown but accessible random seed,
n bits long. Assuming that the PRNG is of high qual-
ity and our agent is computationally limited, such a
sequence will require Θ(2n) bits to store. Access the
random seed, and use it to recode the original 2n bits
in Θ(n) space by storing just the seed and the constant-
length PRNG code. This will lead to compression
progress, which can be made as large as we would like
by increasing n. Of course, such compression progress
would be very uninteresting to most people!

The applicability of this procedure depends crucially
on two factors: 1) how the complexity of compres-
sion programs is measured by the agent, namely the
tradeoff between explanation size (in bits) and execu-
tion time (in elementary operation on bits); and 2)
which sorts of compression programs may be found by
the agent. Consider an agent that measures compres-
sion progress between times t and t+ 1 by C(p(t), h(≤
t+1))−C(p(t+1), h(≤ t+1)) (see (Sch09) for details).
Here p(t) is the agent’s compression program at time t,
and C(p(t), h(≤ t+ 1) is the cost to encode the agent’s
history through time t+ 1, with p(t). If execution time
is not accounted for in C (i.e. cost is simply the length
of the compressor program), and p may be any primi-
tive recursive program, the criticism disappears. This is
because even without knowing the random seed, O(n)

186

bits are sufficient to encode the sequence, since we can
program a brute-force test of all possible seeds with-
out incurring any complexity costs, while storing only
a short prefix of the overall sequence. Thus, the seed
is superfluous and provides no compression gain. If ex-
ecution time has logarithmic cost relative to program
size, as in the speed prior (Sch02), then learning the
seed will provide us with at most a compression gain
logarithmic in n. This is because testing all random
seeds against a prefix of the the sequence takes O(n2n)
time, so C(p(t), h(≤ t + 1)) will be about n + log(n),
while C(p(t+ 1), h(≤ t+ 1)) will be about n.

Thus, such pathological behavior will certainly not
occur with a time-independent prior. Unfortunately,
the compression progress principle is intended for pre-
cisely those computationally limited agents with time-
dependent priors, that are too resource-constrained to
brute-force random seeds. A reasonable alternative is to
posit an a priori weighting over data that would assign
zero utility to compression progress on such a sequence,
and nonzero utility to compression of e.g. knowledge
found in books, images of human faces, etc. This gives
a principle of weighted compression progress that some-
what less elegant, but perhaps more practical.

A very different theory that also addresses the pe-
culiar nature of intrinsic rewards in humans is hyper-
bolic discounting, based on long-standing results in op-
erant conditioning (Her61). In standard utility theory,
agents that discount future rewards against immediate
rewards do so exponentially; an expected reward occur-
ring t units of time in the future is assigned utility rγt

relative to its present utility of r, where γ is a constant
between 0 and 1. The reason for the exponential form is
that any other function leads to inconsistency of tempo-
ral preferences; what the agent prefers now will not be
what it prefers in the future. However, considerable em-
pirical evidence (Ain01) shows that humans and many
animals discount future reward not exponentially, but
hyperbolically, approximating r(1 + t)−1. Because of
the hyperbolic curve’s initial relative steepness, agents
discounting according to this formula are in perpetual
conflict with their future selves. Immediately available
rewards can dominate decision-making to the detriment
of cumulative reward, and agents are vulnerable to self-
induced “premature satiation”, a phenomenon that is
nonexistent in exponential discounters (Ain01). While
an exponential discounter may prefer a smaller sooner
reward (when γ < 1), this preference will be entirely
consistent over time; there will be no preference rever-
sal as rewards become more imminent.

Hyperbolic discounting and the compression progress
principle intersect when we consider activities that pro-
vide time-varying intrinsic rewards. They conflict when
rewards may be consumed at varying rates for varying
amounts of total reward. Consider an agent examin-
ing a complex painting or sculpture that is not instan-
taneously comprehensible, but must be understood se-
quentially through a series of attention-shifts to various
parts. Schmidhuber (Sch09) asks: “Which sequences

of actions and resulting shifts of attention should he
execute to maximize his pleasure?” and answers “Ac-
cording to our principle he should select one that maxi-
mizes the quickly learnable compressibility that is new,
relative to his current knowledge and his (usually lim-
ited) way of incorporating / learning / compressing new
data.” But a hyperbolically discounting agent is inca-
pable of selecting such a sequence voluntarily! Due to
temporal skewing of action selection, a suboptimal se-
quence that provides more immediate rewards will be
chosen instead. I posit that the experiences humans find
most aesthetically rewarding are those with intrinsic re-
ward, generated by weighted compression progress, that
are structured to naturally prevent premature satiation.

In conclusion, I posit two major qualifications of the
applicability of the principle of compression progress to
humans. First, that the value of compression progress
is weighted by the a priori importance of the data that
are being compressed. This is most obvious in our in-
terest in faces, interpersonal relations, etc. Even more
abstract endeavors such as music (Mit06) and mathe-
matics (LN01) are grounded in embodied experience,
and only thus are such data worth compressing to be-
gin with. Second, that experiences that intrinsically
limit the “rate of consumption” of compression progress
will be preferred to those requiring self-regulated con-
sumption, even when less total reward is achievable by
a rational agent in the former case than in the latter.
AGI designers should bear these caveats in mind when
constructing intrinsic motivations for their agents.

Acknowledgements Thanks to Steve Rayhawk and
Jürgen Schmidhuber for helpful discussion.

References
G. Ainslie. Breakdown of Will. Cambridge University
Press, 2001.
E. B. Baum. What is Thought? MIT Press, 2004.
R. Herrnstein. Relative and absolute strength of re-
sponse as a function of frequency of reinforcement.
Journal of the Experimental Analysis of Behavior,
1961.
G. Lakoff and R. Núñez. Where Mathematics Comes
From: How the Embodied Mind Brings Mathematics
into Being. Basic Books, 2001.
S. J. Mithen. The Singing Neanderthals: The Origins
of Music, Language, Mind, and Body. Harvard Uni-
versity Press, 2006.
S. Rayhawk. Personal communication, 2009.
J. Schmidhuber. The speed prior: a new simplic-
ity measure yielding near-optimal computable predic-
tions. In Conference on Computational Learning The-
ory, 2002.
J. Schmidhuber. Driven by compression progress. In
G. Pezzulo, M. V. Butz, O. Sigaud, and G. Bal-
dassarre, editors, Anticipatory Behavior in Adaptive
Learning Systems. Springer, 2009.

187

Relational Local Iterative Compression

Laurent Orseau
UMR AgroParisTech / INRA 518

AgroParisTech
16 rue Claude Bernard, Paris, France

Compression in the program space is of high impor-
tance in Artificial General Intelligence [Sol64, Hut07].
Since maximal data compression in the general sense
is not possible to achieve [Sol64], it is necessary to use
approximate algorithms, like AIXIt,l [Hut07].

This paper introduces a system that is able to com-
press data locally and iteratively, in a relational descrip-
tion language. The system thus belongs to the any-
time algorithm family: the more time spent, the better
it performs. The locality property is also well-suited
for AGI agents to allow them to focus on ”interesting”
parts of the data.

The system presented here is to be opposed to blind
generate and test approaches (e.g., [Sch04, Lev73]). On
the contrary to the latter, it uses information gathered
about the input data to guide compression. It can be
described as a forward chaining1 expert system on rela-
tional descriptions of input data, while looking for the
most compressed representation of the data.

It is composed of a description/programming lan-
guage, to describe facts (and a set of weights associated
with each primitive of the language), local search oper-
ators, to infer new facts, and an algorithm to search for
compressed global description.

The relation operators and the search operators are
domain-specific. Examples in the letter-string domain
are given in the Experiments section. Due to lack of
space, only a overview of the whole system can be given.

Description Language
The main point of this paper is to deal with local com-
pression. This means that the system should be able to
focus on any part of the input data, without affecting
the rest of the data.

A relational language for data representa-
tion/programming is well suited for this purpose,
exactly because everything (including spatial and
dynamical dependencies) can be described in terms of
local relations between data parts.

The language has values (numbers, characters, opera-
tors names, . . .) and relations between objects (instan-

1There can be no backward chaining, because no goal
description is given.

tiations of operators on objects). What kinds of objects
and operators are used depends on the domain. For an
AGI, it depends on the sensors it uses, but the set of
operators should form a Turing-complete language.

The initial description of the world (the input data)
is the initial facts of the expert system.

Search Operators

The inference rules of the expert systems are called
the search operators. A search operator takes inputs,
tests them against a precondition, and when the test
is passed produces outputs that are added to the fact
database. The set of search operators is domain-
dependent.

The exact inputs/outputs mapping is also memorized
to construct a graph for the compression part of the
algorithm.

The constraint imposed on search operators is that
they must not lose information, i.e. that knowledge of
the outputs is sufficient to reconstruct the inputs.

Algorithm

The algorithm runs like this:

1. The input data is given to the system in a simple
uncompressed relational representation.

2. Each local search operator is tested in turn to create
new local descriptions when possible.

3. Local descriptions are composed to create global de-
scriptions.

4. The description (space) costs of the global descrip-
tions are computed.

5. The less costly global description is retained.

6. Stop when a given criterion (on time, space, error,
. . .) is satisfied, or go back to step 2.

Finding the best current description is based on
the Minimum Description Length principle [GMP05],
where the cost of a description is simply the sum of the
costs of each relation used. The cost of a relation is
domain specific, and defined by the user.

188

Lossless Compression Sketch Proof

Search operators consume inputs and provide outputs
(new local descriptions). If each such operator has the
property that it does not lose information, i.e. that
its inputs can be rebuilt from the outputs, then the
global algorithm ensures that no information is lost for
global descriptions. The only difficulty resides in cyclic
dependencies between local descriptions, e.g. when a
local description A depends on the local description B
and vice-versa. To avoid such cycles, a dependency di-
rected graph of input-output mappings created by the
search operators is constructed, and any cycle is bro-
ken. The final description is composed of the relations
that are on the terminal nodes of the graph. So some
inputs that should have been consumed can appear in
the final description because they are needed to avoid
a cycle.

Experiments

The system has been tested in the letter-string domain
on a set of small strings that show that compression is
indeed iterative.

In the letter-string domain, the world is initially de-
scribed using the following relations:
obj: binds values that describe one same ”object”,
character, of the world (the string),
val: character value a, b, c . . .
pos: position of the object in the string,
Once compression has begun, some of the following re-
lations may be used:
neighbor: two objects are neighbors,
succ, pred: two values follow one another in lexico-
graphical order
eq: two values are identical,
plus relations to describe sequences (with a initial value,
a length and a succession relation) and sequences of se-
quences.

The letter-string domain search operators have sim-
ilar names to the description relations. For example,
the eq search operator searches the fact database for
identical values. When it finds one, it creates a new
fact using the eq relation binding the two values and
adds it to the database. The seqV search operator
searches for two objects that are neighbors and have
a relation on their values and creates a new sequence
of two objects, whereas seqG tries to merge two exist-
ing neighbor sequences that have identical succession
operators.

For example, the initial string abcxxxxdefyyyy has
a cost of 28 (given a fixed set of costs for the letter-
string domain). After one pass on the loop of the al-
gorithm, the system compresses it to a cost of 24.9,
finding local relations like neighbor and eq. On the
next loop step, it finds other relations like small se-
quences but they do not build a less costly descrip-
tion. On the next steps, the sequences grow, lower-
ing the best description cost to 18.8, then 17.6 and
finally 14.3, where the string has been ”understood”

as (abc)(xxxx)(def)(yyyy) with succ relations between
interleaving sequences and neighbor relations between
adjacent sequences.

The system also compresses non-obvious strings like
abccdedefg, on which it lowers the initial cost of 20
to 8.3 with 7 intermediate values, finally finding the
compressed representation of the sequence of sequences
((a)(bc)(cde)(defg)).

Limitations, Perspectives and
Conclusion

For the experiments in the letter-string domain, a few
seconds are sufficient to find a much compressed de-
scription, but lengthening the initial strings leads to
a huge combinatorial explosion. To limit the impact
of such explosion, the first solution is to add ad-hoc
domain-specific search operators that focus on specific
”interesting” patterns in the database and are given
high priority. It is also possible to add a learning strat-
egy, for example inspired by Explanation Based Learn-
ing [DM86], since compressing is equivalent to proving.
Learning would lead, with an AGI approach, to Incre-
mental Learning (e.g. [Sch04]), using acquired knowl-
edge to solve related problems faster. Learning could
then also be used to incrementally tune the initial costs
of the relation operators like eq.

The language used for the experiments can represent
complex non-linear worlds, but the language should be
augmented to Turing-completeness since for an AGI
this seems to be unavoidable.

Relational local iterative compression is a novel ap-
proach to compression in the program space and could
be used for many different tasks, e.g. visual scene (2D,
3D) compression/comprehension, amongst others. It
may be mostly beneficial when prior domain knowledge
can be used or acquired.

References
[DM86] G. Dejong and R. Mooney. Explanation-

based learning: An alternative view. Machine
Learning, 1(2):145–176, 1986.

[GMP05] P. D. Grünwald, I. J. Myung, and M. A. Pitt.
Advances in Minimum Description Length:
Theory and Applications. MIT Press, 2005.

[Hut07] M. Hutter. Universal algorithmic intelligence:
A mathematical top-down approach. In Ar-
tificial General Intelligence, pages 227–290.
Springer Berlin Heidelberg, 2007.

[Lev73] L. A Levin. Universal sequential search prob-
lems. Problems of Information Transmission,
9(3):265–266, 1973.

[Sch04] J. Schmidhuber. Optimal ordered problem
solver. Machine Learning, 54(3):211–254,
2004.

[Sol64] R. J Solomonoff. A formal theory of inductive
inference. Information and Control, 7(1):1–
22, 1964.

189

Stochastic Grammar Based Incremental Machine Learning Using Scheme

Eray Özkural and Cevdet Aykanat
Bilkent University

Ankara, Turkey

Introduction
Gigamachine is our initial implementation of an Artificial
General Intelligence (AGI system) in the O’Caml language
with the goal of building Solomonoff’s “Phase 1 machine”
that he proposed as the basis of a quite powerful incremental
machine learning system (Sol02). While a lot of work re-
mains to implement the full system, the present algorithms
and implementation demonstrate the issues in building a re-
alistic system. Thus, we report on our ongoing research to
share our experience in designing such a system. In this
extended abstract, we give an overview of our present im-
plementation, summarize our contributions, discuss the re-
sults obtained, the limitations of our system, our plans to
overcome those limitations, potential applications, and fu-
ture work.

The reader is referred to (Sch04; Sol02; Sol09) for a back-
ground on general-purpose incremental machine learning.
The precise technical details of our ongoing work may be
found in (Ozk09), which focuses on our algorithmic contri-
butions. The discussion here is not as technical but assumes
basic knowledge of universal problem solvers.

An overview of Gigamachine
Gigamachine is an incremental machine learning system that
works on current gigaflop/sec scale serial computers. It
is the testbed for our experiments with advanced general
purpose incremental machine learning. Here, we describe
version 1 of Gigamachine. Incremental machine learning
can act as the kernel of complete AGI systems such as
Solomonoff’s Q/A machine or the Gödel Machine. The
present implementation solves operator induction over ex-
ample input/output pairs (any Scheme expression is an ex-
ample). Our work may be viewed as an alternative to OOPS
in that regard.

Design and implementation choices
Reference machine In Algorithmic Probability Theory,
we need to fix a universal computer as the reference ma-
chine. (Sol09) argues that the choice of a reference machine
introduces a necessary bias to the learning system and look-
ing for the “ultimate machine” may be a red herring. In pre-
vious work, low-level universal computers such as FORTH
and Solomonoff’s AZ have been proposed. Solomonoff sug-
gests APL, LISP, FORTH, or assembly. We have chosen the

LISP-like language Scheme R5RS, because it is a high level
functional language that is quite expressive and flexible, di-
rectly applicable to real-world problems. We have taken all
of R5RS and its standard library with minor omissions.

Probability model of programs We use a stochastic
Context-Free Grammar (CFG) as the “guiding pdf” for our
system as suggested by Solomonoff (Sol09). Although
Solomonoff proposes some methods to make use of the solu-
tion corpus using stochastic CFG’s, we introduce complete
algorithms for both search and update.

Implementation language We have chosen O’Caml as
our implementation platform, as this modern programming
language makes it easier to write sophisticated programs yet
works efficiently. The present implementation was com-
pleted in about a month.

Implementation platform We have used an ordinary
desktop computer and serial processing to test our ideas,
we will use more advanced architectures as we increase the
complexity of our system.

Contributions
We have made several contributions to incremental machine
learning regarding both search and update algorithms. A
good part of our contributions stem from our choice of
Scheme as a reference computer. It would seem that choos-
ing Scheme also solves some problems with low-level lan-
guages. A drawback in systems like OOPS is that they do
not make good use of memory, better update algorithms may
eventually alleviate that drawback.

Search algorithms
For the search algorithm, we use Depth-First Search in the
space of derivations of the stochastic CFG. Thus, only syn-
tactically correct candidates are generated. We use left-
most derivation to derive programs from the start symbol.
We keep track of defined variables and definitions to avoid
generating unbound references and definitions by extending
CFG with procedural rules. We generate variable declara-
tions and integers according to the Zeta distribution which
has empirical support. We use a probability horizon to limit
the search depth. We also propose using best-first search and
a new memory-aware hybrid search method.

190

Update algorithms
We have designed four update algorithms that we will sum-
marize. The former two have been implemented and they
contain significant innovations on top of existing algorithms.
The latter two are completely novel algorithms. All of them
are well adapted to stochastic CFG’s and Scheme.

Modifying production probabilities We use derivations
of the programs in the solution corpus to update production
probabilities. Since each derivation consists of a sequence
of productions applied to nonterminals in sentential forms,
we can easily compute probabilities of productions in the
solution corpus. This is easy to do since the search already
yields the derivations. However, this would cause zero prob-
abilities for many productions if we used those probabilities
directly, thus we use exponential smoothing to avoid zero
probabilities.

Re-using previous solutions Modifying probabilities is
not enough as there is only so much information that it can
add to the stochastic CFG. We extend the stochastic CFG
with previously discovered solutions (Scheme definitions)
and generate candidates that use them. This is very natu-
ral in Scheme as the syntactic extension of a function is not
a function. In principle, this is synergistic with modifying
production probabilities as the probabilities of new produc-
tions can be updated, although in practice this depends on
implementation details.

Learning programming idioms We can learn more than
the solution itself by remembering syntactic abstractions that
lead to the solution. Syntactic abstraction removes some
levels of derivation to obtain abstract programs and then re-
members them using the algorithm of re-using previous so-
lutions.

Frequent sub-program mining Similar to code re-use,
we can find frequently occurring sub-programs in the so-
lution corpus as Scheme expressions and add them to the
grammar.

Training Sequence and Experiments
We have tested a simple training sequence that consists of
the identity, square, addition, test if zero, fourth power,
NAND, NOR, XOR, and factorial functions. Details can
be found in (Ozk09). Our experiments show beyond
doubt the validity of our update algorithms. The search
times decrease dramatically for similar subsequent problems
showing the effectiveness of modifying probabilities. The
fourth power function demonstrates code re-use in its solu-
tion of (define (pow4 x) (define (sqr x) (* x
x)) (sqr (sqr x))) which takes shorter than solving
the square problem itself. The factorial function took more
than a day, so we interrupted it. It would be eventually found
like other simple problems in the literature, however, we
think that it showed us that we should improve the efficiency
of our algorithms.

Discussion, Applications and Future Work
The slowness of searching the factorial function made us re-
alize that we need improvements in both the search and the

update algorithms. Some doubts have been raised whether
our system can scale up to AGI since the search space is
vast. In AGI, the search space is always vast, whether is
the solution space, program space, proof space, or another
space. Since no system has been shown to be able to write
any substantially long program, we think that these doubts
are premature. The path to bootstrapping most likely lies in
more sophisticated search and update/memory mechanisms
for a general purpose induction machine. Therefore, we
think that we should proceed by improving upon the existing
system. Regarding search, we can try to avoid semantically
incorrect programs and try to consider time and space com-
plexity of candidate solutions. The approach of HSEARCH
may be applied. The probability model can be further ad-
vanced. For update, ever more sophisticated algorithms are
possible. Another major direction that Solomonoff has sug-
gested is context-aware updates, which may require signifi-
cant changes.

The most important promise of initial AGI implementa-
tions will be to decrease the human contribution in current
AI systems. The heuristic programmers of old school AI re-
search can be replaced by programs like the Gigamachine.
General induction might act as the “glue code” that will
make common sense knowledge bases and natural language
processing truly work. Many problems in AI are solvable
only because the researchers were clever enough to find a
good representation. AGI programs may automate this task.
The current programs in machine learning and data mining
may be supplemented by AGI methods to yield much more
powerful systems. In particular, hybrid systems may lead to
more intelligent ensemble learners and general data mining.

We will develop a more realistic training sequence featur-
ing recursive problems, optimizing search and implement-
ing the remaining two update algorithms. After that, we
will extend our implementation to work on parallel multi-
core and/or GPU hardware. Those new architectures are ex-
tremely suitable for our system which will not require much
synchronization between cores and requires little memory
per core. We will then complete the implementation of
Phase 1, implement the Phase 2 of Solomonoff’s system,
and attempt implementing other AGI proposals such as the
Gödel Machine on top of our AGI kernel.

References
[Ozk09] Eray Ozkural. Gigamachine: incremental machine
learning on desktop computers. http://examachine.
net/papers/gigamachine-draft.pdf, Decem-
ber 2009. Draft.

[Sch04] Juergen Schmidhuber. Optimal ordered problem
solver. Machine Learning, 54:211–256, 2004.

[Sol02] Ray Solomonoff. Progress in incremental machine
learning. In NIPS Workshop on Universal Learning Algo-
rithms and Optimal Search, Whistler, B.C., Canada, De-
cember 2002.

[Sol09] Ray Solomonoff. Algorithmic probability: Theory
and applications. In M. Dehmer and F. Emmert-Streib, edi-
tors, Information Theory and Statistical Learning, Springer
Science+Business Media, pages 1–23. N.Y., 2009.

191

http://examachine.net/papers/gigamachine-draft.pdf
http://examachine.net/papers/gigamachine-draft.pdf

Compression-Driven Progress in Science

Leo Pape
Utrecht University

Utrecht, The Netherlands
l.pape@geo.uu.nl

Abstract

The construction of an artificial scientist, a machine
that discovers and describes the general rules govern-
ing a variety of complex environments, can be consid-
ered an important challenge for artificial general in-
telligence. Recently, a computational framework for
scientific investigation has been postulated in the the-
ory of compression-driven progress. Here, I propose
an implementation of an artificial scientist based on
the compression principle, and explore the possibilities
and challenges for its application in scientific research.

Introduction
Human beings reckon scientific understanding of the
world among the most powerful of their abilities (e.g.
Rorty, 1991), and it is therefore not surprising that re-
searchers try to simulate this capability with computer
programs and robots (e.g. King et al., 2009; Schmidt
and Lipson, 2009). Such machines, called artificial sci-
entists, not only enhance our ability to carry out sci-
entific research, but building them also guides our un-
derstanding how human scientists come to comprehend
the world. Creating an artificial scientist that is not
restricted to a specific domain, but performs scientific
research in general can be considered a great challenge
for artificial general intelligence.

To construct an artificial scientist, we need to have
some idea of what it is that human scientists do and
how they do this. Since the societal, fundamental or
personal goals of science are not contained in its do-
main, I here rather define the activity of scientists as
the development of theories that explain the past and
predict the future, and are consistent with other the-
ories. These theories result from systematic reasoning
about observations, whether obtained accidentally or
intentionally, for example in a controlled experiment.

A theory that not only explains how scientific
progress is achieved by human beings, but also specifies
how scientific investigation can be carried out with com-
puter algorithms, is the theory of compression-driven
progress (Schmidhuber, 2009). This theory considers
both human and artificial scientists as computationally
limited observers that try to represent observations in
an efficient manner. Finding efficient representations

entails identifying regularities that allow the observer
to compress the original observations and predict future
observations. Discovered regularities then serve as an
explanation for the observed phenomena. Compression
progress is achieved when an observer discovers previ-
ously unknown regularities that provide increased com-
pression of observations. The theory of compression-
driven progress further postulates that scientists direct
their attention to interesting data, that is, data that
is neither impossible to compress (i.e. truly random)
nor easily compressible with existing methods, but is
expected to hold previously unknown regularities that
allow for further compression.

Based on this theory, it is possible to implement an
artificial scientist that can operate in a variety of scien-
tific disciplines. In this paper I explore the possibilities
and challenges for the construction of a compression-
driven artificial scientist.

Compression-Driven Artificial Scientists
A compression-driven artificial scientist is a machine
that aims to predict future and unobserved observations
by identifying the regularities underlying its sensory in-
put. It consists of the following components: (1) A
sensory input module that collects observations, such
as a camera, microphone or software interface. (2) An
adaptive compressor that discovers regularities in the
observational data. A compressor that is particularly
suitable for this task is the deep autoencoder of Hin-
ton and Salakhutdinov (2006), which learns to convert
high-dimensional input data to short codes. Of course
it is possible to use another, possibly even more general
algorithm, but the Hinton and Salakhutdinov autoen-
coder has the advantage that it can reconstruct and thus
predict data from its coded representations. (3) A re-
inforcement learning algorithm that learns to select ac-
tions (e.g. manipulate the world, perform experiments,
direct attention, move) that take the artificial scientist
to interesting data. Interestingness is defined as the im-
provement of the adaptive compressor on parts of the
input data, and is determined from the number of bits
needed to reconstruct the original input from its coded
representation. (4) Optionally, a physical implemen-
tation, such as a robot. The use of existing datasets,

192

however, allows for the implementation of the artificial
scientist as a software program, which can significantly
reduce the costs and complexity of its construction.

Representation

The compression-driven artificial scientist is not imme-
diately useful to its human colleagues, because the reg-
ularities it discovers are not represented in understand-
able form (i.e. in a connectionist architecture). A re-
lated problem is that the artificial scientist has no a-
priori notion of objects1 in its raw sensory inputs (e.g.
a stream of bits or numbers), while its theories should
preferably be about such objects, not about bits or
numbers. These two problems reflect the more general
challenge of constructing symbolic representations from
subsymbolic data (see e.g. Smolensky, 1988). Here I ex-
plain how both artificial and human scientists construct
mental objects from sensory inputs using the compres-
sion principle, and how this process is the basis for com-
municating discovered regularities in symbolic form.

Using the basic operations of its reasoning appara-
tus, the artificial scientist builds methods that compress
those parts of its sensory input signal that have certain
structure. Note that compression does not merely apply
to static objects in space, but also extends to structural
relations in time. Different types of structure require
different compression methods, allowing the artificial
scientist to distinguish individual entities or phenom-
ena by their method of compression. When compression
methods are organized in a hierarchical fashion, the ar-
tificial scientist can construct more abstract concepts
and find increasingly general relations between objects
on different abstraction levels.

Human scientists discovered many parts of the world
that are compressible and predictable to some extent,
while other parts seem to resist compression and predic-
tion. Interestingly, the inability to describe and predict
certain parts of the world is mostly not because the
fundamental forces of nature are unknown to science,
but because the deterministic laws of nature produce
chaos in some parts and order in other parts of the
world (where chaos and order are equivalent to incom-
pressible and compressible observations, respectively).
That is, the most fundamental relations express only
the most general aspects of the world, not all specific
details relevant to our lives. Human scientists there-
fore try to find intermediate levels on which the world
exhibits regularity, give those parts names and relate
them in a systematic way to already identified entities.
As a result, different levels of organization materialize
into individual objects1 of scientific thought.

Discovered structure in parts of the world can only be
communicated in a meaningful sense through a shared
language. While mathematics and logic are rather pop-

1objects in the most general sense, such as material ob-
jects like molecules and robots, but also more abstract ob-
jects like a rainbow, a supercluster (of galaxies) or musical
notes

ular languages in science, the relations they express
have no intrinsic meaning, but need to be related to
concepts that are recognized by all communicating par-
ties (e.g. Schmidt and Lipson (2009) used symbolic re-
gression on variables whose human interpretation was
established beforehand, not discovered independently
by their algorithms). Artificial scientists therefore need
to learn how to map their internal representations of
discovered objects and structure onto the entities (e.g.
symbols) of a shared language. Such a shared language
can, in principle, be learned among different instances
of artificial scientists in an unsupervised fashion. How-
ever, this artificial language is probably not easily acces-
sible to human scientists. Instead, an artificial scientist
should learn a language that is easily understandable
for human scientists. For this, the artificial scientist
needs to learn from labeled data, either by augmenting
the reinforcement learning algorithm with an external
reward based on label prediction, or by a function (e.g.
an additional neural network) that learns to map inter-
nal representations onto labels in a supervised fashion.

Conclusion
In this paper I explored the possibilities and chal-
lenges for the construction of a compression-driven arti-
ficial scientist. While the theory of compression-driven
progress provides the basic mechanism for scientific in-
vestigation, an ongoing challenge is the human inter-
pretation of theories constructed by artificial scientists.
In the future I aim to implement the proposed architec-
ture and demonstrate its capability to discover known
and novel forms of structure in scientific data.

References
Hinton, G. E., and Salakhutdinov, R. R. 2006. Reduc-

ing the dimensionality of data with neural networks.
Science 313(5786):504–507.

King, R. D.; Rowland, J.; Oliver, S. G.; Young, M.;
Aubrey, W.; Byrne, E.; Liakata, M.; Markham, M.;
Pir, P.; Soldatova, L. N.; Sparkes, A.; Whelan, K. E.;
and Clare, A. 2009. The automation of science. Sci-
ence 324:85–89.

Rorty, R. 1991. Objectivity, relativism, and truth: philo-
sophical papers, volume 1. Cambridge, UK: Cam-
bridge University Press.

Schmidhuber, J. 2009. Driven by compression progress:
A simple principle explains essential aspects of sub-
jective beauty, novelty, surprise, interestingness, at-
tention, curiosity, creativity, art, science, music,
jokes. Lecture Notes in Computer Science. Berlin /
Heidelberg: Springer. 48–76.

Schmidt, M., and Lipson, H. 2009. Distilling free-form
natural laws from experimental data. Science 324:81–
85.

Smolensky, P. 1988. A proper treatment of connection-
ism. Behavioural and Brain Sciences 11:1–74.

193

Concept Formation in the Ouroboros Model

Knud Thomsen

Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

Abstract

According to the Ouroboros Model several occasions can be
distinguished over the course of the general autonomous
cyclic activity in which new concepts are established and
associated memories are preferentially laid down. Whereas
a rather standard habituation process can lead to the
extraction of statistical regularities from repeated common
(consecutive) excitation, two specific instances are peculiar
to the Ouroboros Model; the consumption analysis process
marks events when especially successful or the contrary. In
addition, new concepts can be assembled very quickly by
combining previously existing building blocks.
Relations of these theoretical considerations to supporting
recent experimental findings are briefly outlined.

The Ouroboros Model in a Nutshell

The Ouroboros Model proposes a novel algorithmic

architecture for efficient data processing in living brains

and for artificial agents [1]. At its core lies a general

repetitive loop where one iteration cycle sets the stage for

the next. All concepts of an agent are claimed to be

organized into hierarchical data structures called schemata,

also known as frames, scripts or the like.

During perception, any sensory input activates schemata

with equal or similar constituents encountered before, thus

expectations for the whole unit and especially for its parts

are kindled. This corresponds to the highlighting of empty

slots in the selected schema as biasing anticipated features

facilitates their actual excitation. These predictions are

subsequently compared to the factually encountered input.

Depending on the outcome of this "consumption analysis"

different next steps are taken. In case of partial fit search

for further data continues; a reset, i.e. a new attempt

employing another schema, is triggered if the occurring

discrepancies are too big. Basically the same process

applies for all other actions like memory search, active

movements of the agent or language production.

Self-referential monitoring of the whole process, and in

particular of the flow of activation directed by the

consumption analysis, yields valuable feedback for the

optimum allocation of attention and resources including

the selective establishment of useful new concepts.

According to the Ouroboros Model basically four

different situations in which novel concepts are formed and

corresponding fresh memory entries are first created and

shaped can be distinguished.

Ways to Concept Formation

Two types of occasions are directly marked in the

Ouroboros Model as interesting by the outcome of the

consumption analysis, and preferentially for them new

records are laid down:

 Events, when everything fits perfectly; i.e.

associated neural representations are stored as

kind of snapshots of all concurrent activity,

making them available for guidance in the future

as they have proved useful once.

 Constellations, which led to an impasse, are

worthwhile remembering, too; in this case for

future avoidance.

These new memories stand for junks, i.e. concepts, again

as schemata, frames or scripts. Their building blocks

include whatever representations are active at the time

when the “snapshot” is taken, including sensory signals,

abstractions, previously laid down concepts, and emotions.

They might but need not include / correspond to a direct

representation unit like a word. At later occasions they will

serve for controlling behavior, by guiding action to or

away from the marked tracks.

Knowledge thus forms the very basis for the data

processing steps, and its meaningful expansion is a prime

outcome of its use as well; the available data base of

concepts / schemata is steadily enlarged and completed,

especially in areas where the need for this surfaced and is

felt most strongly.

Even without the strong motivation by an acute alert signal

from consumption analysis novel categories and concepts

are assembled on the spot:

 New concepts are built from existing structures

We can quickly establish new compound concepts, whole

scenes, from previously existing building blocks, i.e. by

combining (parts of) other concepts; here is an example:

Let us assume that we hear about “the lady in the fur coat”.

Even without any further specification a figure is defined

to a certain extent including many implicit details. Also in

case we heard this expression for the first time the concept

194

is established well enough for immediate use in a

subsequent cycle of consumption analysis, expectations are

effectively triggered. When we now see a woman in this

context, we are surprised if she is naked on her feet

(…unless she is walking on a beach). Fur coats imply

warm shoes or boots, unless the wider frame already

deviates from defaults.

In parallel to the above described instant establishing of

concepts and the recording of at least short time episodic

memory entries there exists a slower and rather

independent process:

 Associations and categorizations are gradually

distilled from the statistics of co-occurrences.

In the sense, that completely disadvantageous or fatal

activity would not be repeated many times, also this

grinding-in of associations can be understood as a result of

successful or even rewarded activations.
Activity, which forms the basis of this comparatively slow
process can pertain to many different representations
starting from low level sensory signals to the most
abstracts data structures already available, and of course,
their combination.

Relation to Recent Experimental Findings

The most important ingredient in the Ouroboros Model is

the repetitive and self-reflective consumption analysis

process. A key conjecture derived from this algorithmic

structure is the highlighting of interesting occasions and

the quick recording of corresponding memories for

advantageous future use. The Ouroboros Model proposes

to distinguish “index-entries” as pointers to the “main text”

containing more details. On the basis of a wealth of

experimental data, a similar general division of work in the

mammalian brain has been proposed some time ago [2].

Hippocampal structures are well suited for fast recording

of distinct entries, they are thought to link memories spread

widely over the cortex, where minute details are

memorized on longer time scales.

Dopamine signals are widely considered to act as

highlighting behaviorally important events, midbrain

dopamine neurons code discrepancies between expected

and actual rewards [3].

If dopamine now is the best established marker for

discrepancies and if associated constellations should lead

to the immediate recording of new concepts, at least of

their specific index entry, one would expect that dopamine

release has a profound impact on hippocampal long term

potentiation, generally accepted as a decisive substrate for

memories. This now is exactly what has been found just

recently: dopaminergic modulation significantly increases

sensitivity at hippocampal synapses [4]. In addition,

temporal contrast is lost, i.e. not only consecutive

activations lead to enhancement, but also activations in

reverse order, which normally result in an attenuation of a

connection. Thus, a memory entry is established, which

connects in an encompassing snapshot all activity

associated with the occurrence of a dopamine burst.

Along with the enhanced storage of “index entries”, the

preferential establishment of traces in the “text” occurs. In

the cortex, several neuromodulator systems, in particular

widespread cholinergic innervation, have been conjectured

to control attention and associative learning under the

control of error driven learning mechanisms [5].

The Ouroboros Model holds that in the brain often several

mechanisms working to the same end are implemented in

parallel.

Given the demanding boundary conditions, in particular,

the stringent time constraints, for any actor in the real

world, not all memories are of equal value or even sorted

out to the same degree. Incompletely processed

information has been claimed to be discarded off-line in

living brains while sleeping and dreaming [6].

During the process of clearing the brain of not (yet) useful

remainders, sleeping and dreaming might still serve to

prime associative networks [7]. Unassociated but otherwise

well-established information has been found to be

integrated into associative networks, i.e. schema structures,

after REM (rapid eye movement) sleep.

Obviously, much work is still required to establish detailed

relations as suggested by the Ouroboros Model.

References

[1] K. Thomsen, “The Ouroboros Model”, BICA 08,

Technical Report FS-08-04, Menlo Park, California:

AAAI Press, 2008.

[2] R. C. O’Reilly and J. W. Rudy, “Computational

Principles of Learning in the Neocrotex and

Hippocampus”, Hippocampus 10, 389-397, 2000.

[3] W. Schultz, “The Reward Signal of Midbrain

Dopamine Neurons”, News Physiol. Sci. 14, 249-255,

1999.

[4] J-C. Zhang, P.M Lau, and G.Q Bi, “Gain in sensitivity

and loss in temporal contrast of STDP by

dopaminergic modulation at hippocampal synapses”,

PNAS 106, 13028-13033, 2009.

[5] W. M. Pauli and R. C. O’Reilly, “Attentional control

of associative learning – A possible role of the

cholinergic system”, Brain Research 1202, 43-53,

2008.

[6] K. Thomsen, “The Ouroboros Model”, Cogprints

6081, http://cogprints.org/6081/, 2008.

[7] D. J. Cai, S. A. Mednick, E. M. Harrison, J. C.

Kanady, and S. C. Mednick, “REM, not incubation,

improves creativity by priming associative networks”,

PNAS 106, 10130-10134, 2009.

195

http://cogprints.org/6081/

On Super-Turing Computing Power and Hierarchies of Artificial General
Intelligence Systems

Jiřı́ Wiedermann
Institute of Computer Science

Academy of Sciences of the Czech Republic
Pod Vodárenskou věžı́ 2, 182 07 Prague

Abstract

Using the contemporary view of computing exemplified by
recent models and results from non-uniform complexity the-
ory we investigate the computational power of artificial gen-
eral intelligence systems (AGISs). We show that in accor-
dance with the so-called Extended Turing Machine Paradigm
such systems can be seen as non-uniform evolving interactive
systems whose computational power surpasses that of classi-
cal Turing machines. Our results shed light to the question
asked by R. Penrose concerning the mathematical capabilities
of human mathematicians which seem to go beyond classical
computability. We also show that there is an infinite hierar-
chy of AGISs each of which is capable to solve strictly more
problems than its predecessors in the hierarchy.

Characterizing the Computational Properties
of AGISs

According to its definition artificial general intelligence is
a form of intelligence at the human level and definitely be-
yond. Implicitly, this statement alone evokes an idea of (par-
tially?) ordered “intelligence levels”, one of which should
correspond to human intelligence, with still some levels of
“superhuman” intelligence above it. The point in time when
the “power” of AGISs will reach and trespass the level of
human intelligence has obtained a popular label: the Singu-
larity (cf. Kurzweil, 2005). Nevertheless, it seems that in the
AI literature there has not been much explicit attention paid
to the formal investigation of the “power” and the “levels of
intelligence” (in the sense mentioned above) of AGISs. It
is the goal of this short notice to present an approach based
on the recent developments in the computational complexity
theory answering certain questions related to the computa-
tional power of AGISs.

Artificial general intelligence systems must clearly be (i)
interactive — in order to be able to communicate with their
environment, to reflect its changes, to get the feedback, etc.;
(ii) evolutionary — in order to develop over generations, and
(iii) potentially time-unbounded — in order to allow for their
open-ended development.

Therefore AGISs cannot be modelled by classical Turing
machines — simply because such machines do not possess
the above mentioned properties. The AGISs must be mod-
elled by theoretical computational models capturing interac-
tivness, evolvability, and time-unbounded operation of the

underlying systems. Such models have recently been intro-
duced by van Leeuwen & Wiedermann, (2001) or (2008).

Definition 1 An interactive Turing machine with advice is a
Turing machine whose architecture is changed in two ways:

• instead of an input and output tape it has an input port
and an output port allowing reading or writing potentially
infinite streams of symbols;

• the machine is enhanced by a special, so-called advice
tape that, upon a request, allows insertion of a possibly
non-computable external information that takes a form of
a finite string of symbols. This string must not depend
on the concrete stream of symbols read by the machine
until that time; it can only depend on the number of those
symbols.

An advice is different from an oracle also considered in
the computability theory: an oracle value can depend on
the current input (cf. Turing, 1939). The interactive Turing
machines with advice represent a non-uniform model of in-
teractive, evolving, and time-unbounded computation. Such
machines capture well an interactive and time-unbounded
software evolution of AGISs.

Interactive Turing machines with advice are equivalent
to so-called evolving automata that capture well hardware
evolution of interactive and time-unbounded computations
(Wiedermann & van Leeuwen, 2008).

Definition 2 The evolving automaton with a schedule is an
infinite sequence of finite automata sharing the following
property: each automaton in the sequence contains some
subset of states of the previous automaton in that sequence.
The schedule determines when an automaton has to stop
processing of its inputs and thus, when is the turn of the next
automaton.

The condition that a given automaton has among its states
a subset of states of a previous automaton captures one im-
portant aspect: it is the persistence of data in the evolving
automaton over time. In the language of finite automata this
condition ensures that some information available to the cur-
rent automaton is also available to its successor. This models
passing of information over generations.

On an on–line delivered potentially infinite sequence of
the inputs symbols the schedule of an evolving automaton

196

determines the switching times when the inputs to an au-
tomaton must be redirected to the next automaton. This fea-
ture models the (hardware) evolution.

An evolving automaton is an infinite object given by an
explicit enumeration of all its elements. There may not exist
an algorithm enumerating the individual automata. Simi-
larly, the schedule may also be non-computable. Therefore,
also evolving automata represent a non-uniform, interactive
evolutionary computational model.

Note that at each time a computation of an evolving au-
tomaton is performed by exactly one of its elements (one
automaton) which is a finite object.

Based on the previous two models van Leeuwen & Wie-
dermann (2001) have formulated the following thesis:

Extended Turing Machine Paradigm A computational
process is any process whose evolution over time can be cap-
tured by evolving automata or, equivalently, by interactive
Turing machines with advice.

Interestingly, the paradigm also expresses the equivalence
of software and hardware evolution.

In Wiedermann & van Leeuwen (2008) the authors have
shown that the paradigm captures well the contemporary
ideas on computing. The fact that it also covers AGISs adds
a further support to this paradigm.

Thesis 3 From a computational point of view AGISs are
equivalent to either evolving automata or interactive Turing
machines with advice.

The Super-Turing Computing Power of AGISs
The power of artificial general intelligent systems is mea-
sured in terms of sizes of sets of different reactions (or be-
haviors) that those systems can produce in potentially infi-
nite interactions with their environment.

The super-Turing power of AGISs is shown by referring
to super-Turing computing power of interactive Turing ma-
chines with advice.

Namely, in van Leeuwen & Wiedermann (2001) it was
shown that such machines can solve the halting problem. In
order to do so they need an advice that for each input of
size n allows to stop their computation once it runs beyond
a certain maximum time. This time is defined as the maxi-
mum, over computations over all inputs of size n and over
all machines of size n that halt on such inputs.

Proposition 4 The artificial general intelligence systems
have super-Turing computational power.

Roger Penrose (1994) asked about the power of human
thoughts: how to explain the fact that mathematicians are
able to find proofs of some theorems in spite of the fact that
in general (by virtue of Gödel’s or Turing’s results) there is
no algorithm that would always lead to a proof or refutation
of any theorem. In our setting the explanation could be that
the mathematicians discover a “non-uniform proof”, i.e., a
way of proving a particular theorem at hand and probably
nothing else. This proof is found in a non-predictable po-
tentially unbounded interaction of mathematicians (among
themselves and also in the interaction with others and with
their environment) pondering over the respective problems.

Hierarchies of AGISs
For interactive Turing machines with advice or for evolv-
ing automata one can prove that there exist infinite proper
hierarchies of computational problems that can be solved on
some level of the hierarchy but not on any of the lower levels.
Roughly speaking, the bigger the advice, the more problems
can be solved by the underlying machine.

Proposition 5 There is infinity of infinite proper hierarchies
of artificial general intelligence systems of increasing com-
putational power.

Among the levels of the respective hierarchies there are
many levels corresponding formally (and approximately) to
the level of human intelligence (the Singularity level) and
also infinitely many levels surpassing it in various ways.

Common Pitfalls in Interpretations of the
Previous Results

Our results are non-constructive — they merely show the
existence of AGISs with super-Turing properties, but not the
ways how to construct them. Whether such systems will
find solutions of non-computable problems depends on the
problem at hand and on getting a proper idea at due time
stemming from the sufficient experience, insight and a lucky
interaction.

Whether a Singularity will ever be achieved cannot be
guaranteed; from our results we merely know that in prin-
ciple it exists. Our results give no hints how far in the future
it lies. Moreover, we have no idea how far apart are the
levels in the respective hierarchies. It is quite possible that
bridging the gap between the neighboring “interesting” lev-
els of intelligence could require an exponential (or greater)
computational effort. Thus, even an exponential develop-
ment of non-biological intelligence of the AGISs may not
help to overcome this gap in a reasonable time.

Acknowledgment
This research was carried out within the institutional re-
search plan AV0Z10300504 and partially supported by a GA
ČR grant No. P202/10/1333

References
Kurzweil, R. (2005). The Singularity is Near. Viking Books,

652 pages
Penrose, R. (1994). Shadows of the Mind (A Search for the

Missing Science of Consciousness). Oxford University
Press, Oxford, 457 p.

Turing, A. M. 1939). Systems of logic based on ordinals,
Proc. London Math. Soc. Series 2, Vol. 45, pp. 161-228

van Leeuwen, and Wiedermann, J. (2001). The Turing ma-
chine paradigm in contemporary computing, Mathematics
unlimited - 2001 and beyond, Springer-Verlag, pp. 1139–
1155

Wiedermann, J., and van Leeuwen, J. (2008). How We
Think of Computing Today. (Invited Talk) Proc. CiE
2008, LNCS 5028, Springer, Berlin, pp. 579-593

197

A minimum relative entropy principle for AGI

Antoine van de Ven∗ and Ben A.M. Schouten
Fontys University of Applied Sciences

Postbus 347, 5600 AH Eindhoven, The Netherlands
∗Antoine.vandeVen@fontys.nl

Abstract

In this paper the principle of minimum relative entropy
(PMRE) is proposed as a fundamental principle and
idea that can be used in the field of AGI. It is shown
to have a very strong mathematical foundation, that it
is even more fundamental then Bayes rule or MaxEnt
alone and that it can be related to neuroscience. Hier-
archical structures, hierarchies in timescales and learn-
ing and generating sequences of sequences are some of
the aspects that Friston (Fri09) described by using his
free-energy principle. These are aspects of cognitive ar-
chitectures that are in agreement with the foundations
of hierarchical memory prediction frameworks (GH09).
The PMRE is very similar and often equivalent to Fris-
ton’s free-energy principle (Fri09), however for actions
and the definitions of surprise there is a difference. It is
proposed to use relative entropy as the standard defi-
nition of surprise. Experiments have shown that this is
currently the best indicator of human surprise(IB09).
The learning rate or interestingness can be defined as
the rate of decrease of relative entropy, so curiosity can
then be implemented as looking for situations with the
highest learning rate.

Introduction

Just like physics wants to find the underlying laws of
nature, it would be nice to find underlying principles
for intelligence, inference, surprise and so on. A lot of
progress has been made and many principles have been
proposed. Depending on what principles or foundations
are used, it is possible to come to different theories or
implementations of intelligent agents. A good exam-
ple is AIXI (Hut04) which combines Decision Theory
with Solomonoff’s universal induction (which combines
principles from Ockham, Epicurus, Bayes and Turing).
It uses compression and Kolmogorov complexity, but
unfortunately this makes it uncomputable in this form.
The ability to compress data well has been linked to in-
telligence and compression progress has been proposed
as a simple algorithmic principle for discovery, curios-
ity and more. While this has a very strong and solid
mathematical foundation, the problem is that it is of-
ten very hard or even impossible to compute. Often
it is also assumed that the agent stores all data of all

sensory observations forever. It seems unlikely that the
human brain works like that.

In (vdV09) the principle of minimum relative entropy
(PMRE) was proposed to be used in developmental
robotics. In this paper we want to propose it as a
fundamental principle and idea for use in the field of
AGI. We compare it with other principles, relate it to
cognitive architectures and show that it can be used
to model curiosity. It can be shown that is has a very
solid and strong mathematical foundation because it
can be derived from three simple axioms (Gif08). The
most important assumption and axiom is the principle
of minimal updating: beliefs should be updated only
to the extent required by the new information. This
is incorporated by a locality axiom. The other two
axioms are only used to require coordinate invariance
and consistency for independent subsystems. By elim-
inative induction this singles out the logarithmic rela-
tive entropy as the formula to minimize. This way the
Kullback-Leibler divergence (KLD) (KL51) has been
derived as the only correct and unique divergence to
minimize. Other forms of divergences and relative en-
tropies in the literature are excluded. It can be shown
(Gif08) to be able to do everything orthodox Bayesian
inference (which allows arbitrary priors) and MaxEnt
(which allows arbitrary constraints) can do, but it can
also process both forms simultaneously, which Bayes
and MaxEnt cannot do alone. This has only been shown
recently and is not well known yet. The current ver-
sion of the most used textbook on Artificial Intelligence
(RN02) doesn’t even include the words relative entropy
or Kullback-Leibler divergence yet.

Free-energy
While in our approach the PMRE with the KLD is the
most fundamental, in other approaches exact Bayesian
inference is often taken as most fundamental, and the
KLD is then used to do approximate inference. The
variational Bayes method is an example of this. It tries
to find an approximate distribution of a true posterior
distribution by minimizing the KLD between the ap-
proximate distribution and the true posterior distribu-
tion. Sometimes a free-energy formulation is used which
yields the same solution when minimized, but which can

198

make the calculations easier. In fact the free-energy for-
mulation is the same as the KLD with an extra term
(Shannon surprise) that doesn’t depend on the approx-
imate distribution, so it doesn’t influence the search for
the best approximate distribution. In the field of neu-
roscience, Friston (Fri09) has proposed the minimum
free-energy principle as a fundamental principle that
could explain a lot about how the brain functions. For
perception it is equal to minimizing the KLD, so it is
equivalent to the PMRE in that respect. Friston showed
that many properties and functions of the brain can be
explained by using the free-energy principle, such as
the hierarchical structure of the brain, a hierarchy of
timescales in the brain and how it could learn and gen-
erate sequences of sequences. This is in agreement with
the memory prediction framework (GH09). Note that
this not only relates these principles to the brain, but
that it can also guide the design and choice of cognitive
architectures for artificial general intelligence.

Currently the brain is the only working proof that
general intelligence is possible, so these principles and
results could help and guide biologically inspired AGI.
These results seem to confirm the foundations of bi-
ologically inspired frameworks which use hierarchical
structures, spatio-temporal pattern recognition and the
learning and generating of sequences of sequences.

Biologically plausible

The fact that the PMRE only does minimal updating
of the beliefs makes it more biologically plausible than
some other theories. For example AIXI (Hut04) isn’t
based on minimal updating, because it uses global com-
pression including all historical data. Brains don’t seem
to work that way. When observing and learning there
are physical changes in the brain to incorporate and en-
code the new information and new beliefs. Such phys-
ical changes are costly for an organism and should be
avoided as much as possible, because of limited energy
and limited resources. The PMRE avoids this by doing
only minimal updating of the beliefs. It is related to
compression because in this way it stores new informa-
tion and beliefs in an efficient way.

A new definition of surprise

Besides the theoretical arguments we can also refer to
experiments. Itti and Baldi (IB09) proposed a defi-
nition of Bayesian Surprise that is equal to the KLD
between the prior and posterior beliefs of the observer.
This again is the same formula as used by the PMRE. In
experiments they showed that by calculating this they
could predict with high precision where humans would
look. This formula and definition was found to be more
accurate than all other models they compared it with,
like Shannon entropy, saliency and other measures. In
their derivation Itti and Baldi picked the KLD as the
best way to define Bayesian Surprise by referring to the
work of Kullback. While we agree on this definition,
it would also have been possible to pick another diver-

gence as a measure, because the KLD is just one out
of a broader class of divergences called f-divergences.
The benefit of the derivation of the PMRE is that it
uniquely selects the KLD as the only consistent mea-
sure that can be used. So in this way the PMRE helps
to select and confirm this definition of surprise.

Relative entropy and curiosity
Relative entropy can also be used to implement curios-
ity and exploration. In (SHS95) it was used for re-
inforcement driven information acquisition, but it can
also be implemented in different ways. The rate in
which the relative entropy decreases can be seen as the
learning rate. Curiosity can then be implemented as
looking for and exploring the situations with highest
learning rate (interestingness). This can be compared
with implementations of curiosity which use decrease of
prediction errors or compression progress (Sch09).

References
Karl Friston. The free-energy principle: a rough guide
to the brain? Trends in Cognitive Sciences, 13(7):293–
301, 2009.
Dileep George and Jeff Hawkins. Towards a mathe-
matical theory of cortical micro-circuits. PLoS Com-
put Biol, 5(10):e1000532, oct 2009.
Adom Giffin. Maximum Entropy: The Universal
Method for Inference. PhD thesis, Massey U., Albany,
2008.
Marcus Hutter. Universal Artificial Intelligence: Se-
quential Decisions Based On Algorithmic Probability.
Springer, 1 edition, November 2004.
Laurent Itti and Pierre Baldi. Bayesian surprise at-
tracts human attention. Vision Research, 49(10):1295–
1306, June 2009.
S. Kullback and R. A. Leibler. On information and
sufficiency. The Annals of Mathematical Statistics,
22(1):79–86, March 1951.
Stuart Russell and Peter Norvig. Artificial Intelli-
gence: A Modern Approach. Prentice Hall, 2nd edi-
tion, December 2002.
Jürgen Schmidhuber. Driven by compression progress:
A simple principle explains essential aspects of sub-
jective beauty, novelty, surprise, interestingness, at-
tention, curiosity, creativity, art, science, music, jokes.
In Anticipatory Behavior in Adaptive Learning Sys-
tems: From Psychological Theories to Artificial Cog-
nitive Systems, pages 48–76. Springer-Verlag, 2009.
Jan Storck, Sepp Hochreiter, and Jürgen Schmid-
huber. Reinforcement driven information acquisi-
tion in Non-Deterministic environments. In Proc. In-
ternational Conference on Artificial Neural Networks
(ICANN95), 1995.
Antoine van de Ven. A minimum relative entropy prin-
ciple for the brain. In Proceedings of the Ninth In-
ternational Conference on Epigenetic Robotics. Lund
University Cognitive Studies, 145, 2009.

199

Author Index

Araujo, Samir . 13
Aykanat, Cevdet . 190

Bardosi, Zoltan . 85
Bignoli, Perrin . 1
Billings, Stephen A. 55
Braun, Daniel . 115, 121

Cassimatis, Nicholas . 1, 73
Chan, Rui Zhong .103
Chella, Antonio . 176
Cohen, Paul .31
Cossentino, Massimo . 176
Costello, Fintan . 109
Cruz, Adriano .178

Demasi, Pedro . 178

Geisweiller, Nil . 180
Glasmachers, Tobias . 158
Gobet, Fernand . 7
Goertzel, Ben 13, 19, 37, 180
Gomez, Faustino . 61
Gust, Helmar . 67

Hernandez-Orallo, Jose 25, 182
Hewlett, Daniel . 31

Ikle, Matthew . 37

Johnston, Benjamin . 43

Kaiser, Lukasz . 49
Kerr, Dermot . 55
Kim, DaeEun . 184
Koutnik, Jan . 61
Krumnack, Ulf . 67
Kuehnberger, Kai-Uwe . 67
Kurup, Unmesh . 73

Laird, John . 79
Lane, Peter .7
Lian, Ruiting .13
Looks, Moshe . 186
Lorincz, Andras . 85

Maei, Hamid . 91
Memon, Zulfiqar A. 97
Murugesan, Arthi . 1

Nan, Jianglong . 109
Nehmzow, Ulrich . 55
Ng, Gee Wah . 103
Ng, Khin Hua . 103

Oates, Tim . 127
Orseau, Laurent .188
Ortega, Pedro . 115, 121
Ozkural, Eray . 190

Pape, Leo . 192
Pennachin, Cassio . 13

Queiroz, Murilo . 13

Ray, Soumi . 127
Rohrer, Brandon . 133
Ross, Mike . 13

Schaul, Tom .139, 158
Schmidhuber, Juergen 61, 139, 145, 158
Schouten, Ben . 198
Schwering, Angela . 67
Seidita, Valeria .176
Senna, Andre . 13
Silva, Fabricio . 13
Silva, Welter . 13
Solomonoff, Ray . 151
Stafiniak, Lukasz . 49
Sun, Yi . 158
Sutton, Richard . 91
Szwarcfiter, Jayme . 178

Takacs, Daniel . 85
Tan, Kheng Hwee . 103
Tan, Yuan Sin . 103
Teow, Loo Nin . 103
Thomsen, Knud . 194
Treur, Jan . 97

van de Ven, Antoine . 198
Vepstas, Linas .13

Wang, Pei .164
Waser, Mark . 170
Wiedermann, Jiri . 196
Wray, Robert . 79

	AGI-10-all.pdf
	prelims-agi10.pdf
	preface

	10000001
	Efficient Constraint-Satisfaction in Domains with Time
	Perrin G. Bignoli, Nicholas L. Cassimatis, Arthi Murugesan
	{bignop, cassin, muruga}@rpi.edu
	Abstract
	Introduction
	Language
	System Architecture
	Rule Matching Component
	Temporal Constraint Graph Component
	Identity Constraint Graph Component
	Memory Retrieval Component
	Results
	Conclusion
	References

	10000007
	10000013
	10000019
	10000025
	10000031
	Introduction
	The Signature of Chunks
	Voting Experts
	Extensions to Voting Experts
	Related Algorithms
	VE Domains
	Language
	Vision
	Robot Behaviors
	Instruction of an AI Student

	Evidence for Generality
	Optimality of the VE Chunk Signature
	Automatic Setting of Parameters
	Extension to Non-Symbolic Data
	Allowing Supervision
	An Emergent Lexicon

	Conclusion

	10000037
	10000043
	10000049
	10000055
	10000061
	10000067
	10000073
	10000079
	10000085
	10000091
	10000097
	10000103
	10000109
	10000115
	10000121
	10000127
	10000133
	10000139
	10000145
	10000151
	10000158
	10000164
	10000170
	10000176
	10000178
	10000180
	Introduction
	Uncertainty with Distributional Fuzzy Values
	Example of Spatio-temporal Inference in PLN
	Conclusion

	10000182
	10000184
	10000186
	10000188
	10000190
	Introduction
	An overview of Gigamachine
	Design and implementation choices

	Contributions
	Search algorithms
	Update algorithms

	Training Sequence and Experiments
	Discussion, Applications and Future Work

	10000192
	10000194
	10000196
	Characterizing the Computational Properties of AGISs
	The Super-Turing Computing Power of AGISs
	Hierarchies of AGISs
	Common Pitfalls in Interpretations of the Previous Results
	Acknowledgment
	References

	10000198

