
C

M

J

CM

MJ

CJ

CMJ

N

imp-AGI-ok.pdf 10/02/09 13:08:31

Ben Goertzel, Pascal Hitzler, Marcus Hutter (Editors)

Artificial General Intelligence

Proceedings of the Second Conference on Artificial General
Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

Amsterdam-Paris

ISBN: 978-90-78677-24-6

__

Advances in Intelligent Systems Research

volume 8
__

Artificial General Intelligence

Volume Editors

Ben Goertzel
Novamente & Biomind LLC

1405 Bernerd Place
Rockville MD 20851, USA

Email: ben@goertzel.org
www: http://www.goertzel.org

Pascal Hitzler
AIFB

Universität Karlsruhe (TH)
Kollegiengebäude am Ehrenhof 11.40, Room 224

Englerstraße 11 76131 Karlsruhe, Germany
Email: pascal@pascal-hitzler.de

www: http://www.pascal-hitzler.de

Marcus Hutter
CSL@RSISE and SML@NICTA

Australian National University
Room B259, Building 115

Corner of North and Daley Road
Canberra ACT 0200, Australia

Email: marcus.hutter@gmx.net
www: http://www.hutter1.net

mailto:ben@goertzel.org
mailto:ben@goertzel.org
http://www.goertzel.org
http://www.goertzel.org
mailto:pascal@pascal-hitzler.de
mailto:pascal@pascal-hitzler.de
http://www.pascal-hitzler.de
http://www.pascal-hitzler.de
mailto:marcus.hutter@gmx.net
mailto:marcus.hutter@gmx.net
http://www.hutter1.net
http://www.hutter1.net

This book is part of the series Advances in Intelligent Systems Research (ISSN: 1951-6851) published by
Atlantis Press.

Aims and scope of the series
During the past decade computer science research in understanding and reproducing human intelligence has
expanded from the more traditional approaches like psychology, logics and artificial
intelligence into multiple other areas, including neuroscience research. Moreover, new results in biology,
chemistry, (surface) physics and gene technology, but also in network technology are greatly affecting
current research in computer science, including the development of intelligent systems. At the same time,
computer science’s new results are increasingly being applied in these fields allowing for important cross-
fertilisations. This series aims at publishing proceedings from all disciplines dealing with and affecting the
issue of understanding and reproducing intelligence in artificial systems. Also, the series is open for
publications concerning the application of intelligence in networked or any other environment and the
extraction of meaningful data from large data sets.

Research fields covered by the series include: * Fuzzy sets * Machine learning * Autonomous agents *
Evolutionary systems * Robotics and autonomous systems * Semantic web, incl. web services, ontologies
and grid computing * Biological systems * Artificial Intelligence, incl. knowledge representation, logics *
Neural networks * Constraint satisfaction * Computational biology * Information sciences * Computer
vision, pattern recognition * Computational neuroscience * Datamining, knowledge discovery and modelling
for e.g. life sciences.

© ATLANTIS PRESS, 2009
http://www.atlantis-press.com

ISBN: 978-90-78677-24-6

This book is published by Atlantis Press, scientific publishing, Paris, France.

All rights reserved for this book. No part of this book may be reproduced, translated, stored or transmitted in
any form or by any means, including electronic, mechanical, photocopying, recording or otherwise, without
prior permission from the publisher.

Atlantis Press adheres to the creative commons policy, which means that authors retain the copyright of their
article.

http://www.atlantis-press.com
http://www.atlantis-press.com

Preface

Artificial General Intelligence (AGI) research focuses on the original and ultimate
goal of AI – to create broad human-like and transhuman intelligence, by exploring
all available paths, including theoretical and experimental computer science,
cognitive science, neuroscience, and innovative interdisciplinary methodologies.
Due to the difficulty of this task, for the last few decades the majority of AI
researchers have focused on what has been called narrow AI – the production of
AI systems displaying intelligence regarding specific, highly constrained tasks. In
recent years, however, more and more researchers have recognized the necessity
– and feasibility – of returning to the original goals of the field. Increasingly,
there is a call for a transition back to confronting the more difficult issues of
human level intelligence and more broadly artificial general intelligence.

The Conference on Artificial General Intelligence is the only major conference
series devoted wholly and specifically to the creation of AI systems possessing
general intelligence at the human level and ultimately beyond. Its second in-
stallation, AGI-09, in Arlington, Virginia, March 6-9, 2009, attracted 67 paper
submissions, which is a substantial increase from the previous year. Of these
submissions, 33 (i.e., 49%) were accepted as full papers for presentation at the
conference. Additional 13 papers were included as position papers. The pro-
gram also included a keynote address by Jürgen Schmidhuber on The New AI, a
post-conference workshop on The Future of AI, and a number of pre-conference
tutorials on various topics related to AGI.

Producing such a highly profiled program would not have been possible with-
out the support of the community. We thank the organising committee members
for their advise and their help in all matters of actually preparing and running
the event. We thank the program committee members for a very smooth re-
view process and for the high quality of the reviews – despite the fact that due
to the very high number of submissions the review load per PC member was
considerably higher than originally expected. And we thank all participants for
submitting and presenting interesting and stimulating work, which is the key
ingredient needed for a successful conference. We also gratefully acknowledge
the support of a number of sponsors:

– Artificial General Intelligence Research Institute
– Association for the Advancement of Artificial Intelligence (AAAI)
– The University of Memphis
– Enhanced Education (Platinum Sponsor and Keynote Address)
– KurzweilAI.net (Gold Sponsor and Kurzweil Best AGI Paper 2009)
– Joi Labs (Silver Sponsor)
– Machine Intelligence Lab at the University of Tennessee (Silver Sponsor)
– Novamente LLC (Silver Sponsor)

March 2009 Ben Goertzel (Conference Chair)
Pascal Hitzler, Marcus Hutter (Program Committee Chairs)

iii

Conference Organization

Chairs

Ben Goertzel (Conference Chair) Novamente LLC, USA
Stan Franklin (Honorary Chair) University of Memphis, USA

Pascal Hitzler (Programme Chair) University of Karlsruhe, Germany
Marcus Hutter (Programme Chair) Australian National University, Australia

Programme Committee

Itamar Arel University of Tennessee, Knoxville, USA
Sebastian Bader Rostock University, Germany
Eric Baum Baum Research Enterprises, USA
Mark H. Bickhard Lehigh University, USA
David Dowe Monash University, Australia
Hugo de Garis Xiamen University, China
Wlodek Duch Nicolaus Copernicus University, Poland
Phil Goetz J. Craig Venter Institute, USA
Artur Garcez City University London, UK
Ben Goertzel Novamente LLC, USA
Marco Gori University of Siena, Italy
J. Storrs Hall Institute for Molecular Manufacturing, USA
Hassan Mahmud Australian National University, Australia
Cliff Joslyn Pacific Northwest National Laboratory, USA
Kai-Uwe Kühnberger University of Osnabrck, Germany
Christian Lebiere Carnegie Mellon University, USA
Shane Legg University of Lugano, Switzerland
Moshe Looks Google Research, USA
Jose Hernandez Orallo Politechnical University of Valencia, Spain
Jan Poland ABB Research, Zurich, Switzerland
Sebastian Rudolph University of Karlsruhe, Germany
Scott Sanner NICTA. Australia
Ute Schmid Universiy of Bamberg, Germany
Jürgen Schmidhuber IDSIA, Switzerland
Angela Schwering University of Osnabrck, Germany
Ray Solomonoff Oxbridge Research, Cambridge, USA
Frank van der Velde Leiden University, The Netherlands
Karin Verspoor University of Colorado, Denver, USA
Marco Wiering University of Utrecht, The Netherlands
Mary-Anne Williams University of Technology, Sydney, Australia

Organizing Committee

Tsvi Achler U. of Illinois Urbana-Champaign, USA
Itamar Arel University of Tennessee Knoxville, USA
Sam S. Adams IBM Research, USA
Wlodek Duch Nicolaus Copernicus University, Poland
Sandra S. Hall AT&T Research, USA
Pascal Hitzler University of Karlsruhe, Germany
Marcus Hutter Australian National University, Australia
Bruce Klein Novamente LLC, USA
Stephen Reed Texai.org, USA

External Reviewers

Bobby Coop
Benjamin Johnston
Scott Livingston

v

Table of Contents

Full Articles.

Project to Build Programs that Understand . 1
Eric Baum

CHS-Soar: Introducing Constrained Heuristic Search to the Soar
Cognitive Architecture . 7

Sean Bittle, Mark Fox

In Search of Computational Correlates of Artificial Qualia 13
Antonio Chella, Salvatore Gaglio

Combining Analytical and Evolutionary Inductive Programming 19
Neil Crossley, Emanuel Kitzelmann, Martin Hofmann, Ute Schmid

The China-Brain Project: Report on the First Six Months 25
Hugo de Garis

AGI Preschool: A Framework for Evaluating Early-Stage Human-like AGIs 31
Ben Goertzel, Stephan Bugaj

Pointer Semantics with Forward Propagation . 37
Sujata Ghosh, Benedikt Löwe, Sanchit Saraf

The Role of Logic in AGI Systems: Towards a Lingua Franca for
General Intelligence . 43

Helmar Gust, Ulf Krumnack, Angela Schwering, Kai-Uwe Kuehnberger

The robotics path to AGI using Servo Stacks . 49
John Hall

A Unifying Framework for Analysis and Evaluation of Inductive
Programming Systems . 55

Martin Hofmann, Emanuel Kitzelmann, Ute Schmid

Feature Markov Decision Processes . 61
Marcus Hutter

Feature Dynamic Bayesian Networks . 67
Marcus Hutter

Economic Attention Networks: Associative Memory and Resource
Allocation for General Intelligence . 73

Matthew Ikle, Joel Pitt, Ben Goertzel, George Sellman

A formal framework for the symbol grounding problem 79
Benjamin Johnston, Mary-Anne Williams

A Cognitive Map for an Artificial Agent . 85
Unmesh Kurup, B. Chandrasekaran

Claims and Challenges in Evaluating Human-Level Intelligent Systems . . . 91
John Laird, Robert Wray, Robert Marinier, Pat Langley

Extending Cognitive Architectures with Mental Imagery 97
Scott Lathrop, John Laird

A Comparative Approach to Understanding General Intelligence:
Predicting Cognitive Performance in an Open-ended Dynamic Task 103

Christian Lebiere, Cleotilde Gonzalez, Walter Warwick

Incorporating Planning and Reasoning into a Self-Motivated,
Communicative Agent . 108

Daphne Liu, Lenhart Schubert

Program Representation for General Intelligence . 114
Moshe Looks, Ben Goertzel

Consciousness in Human and Machine: A Theory and Some Falsifiable
Predictions . 120

Richard Loosemore

Hebbian Constraint on the Resolution of the Homunculus Fallacy Leads
to a Network that Searches for Hidden Cause-Effect Relationships 126

Andras Lorincz

Everyone’s a Critic: Memory Models and Uses for an Artificial Turing
Judge . 132

Joseph MacInnes, Blair Armstrong, Dwayne Pare, George Cree, Steve
Joordens

Unsupervised Segmentation of Audio Speech Using the Voting Experts
Algorithm . 138

Matthew Miller, Peter Wong, Alexander Stoytchev

Parsing PCFG within a General Probabilistic Inference Framework 144
Arthi Murugesan, Nicholas Cassimatis

Self-Programming: Operationalizing Autonomy . 150
Eric Nivel, Kristinn R. Thorisson

Bootstrap Dialog: A Conversational English Text Parsing and
Generation System . 156

Stephen Reed

vii

Analytical Inductive Programming as a Cognitive Rule Acquisition Devise 162
Ute Schmid, Martin Hofmann, Emanuel Kitzelmann

Human and Machine Understanding of Natural Language Character
Strings . 168

Peter G. Tripodes

Embodiment: Does a laptop have a body? . 174
Pei Wang

Case-by-Case Problem Solving . 180
Pei Wang

What Is Artificial General Intelligence? Clarifying The Goal For
Engineering And Evaluation . 186

Mark Waser

Integrating Action and Reasoning through Simulation 192
Samuel Wintermute

Position Statements.

Neuroscience and AI Share the Same Elegant Mathematical Trap 198
Tsvi Achler, Eyal Amir

Relevance Based Planning: Why its a Core Process for AGI 200
Eric Baum

General Intelligence and Hypercomputation . 202
Selmer Bringsjord

Stimulus processing in autonomously active cognitive systems 204
Claudius Gros

Distribution of Environments in Formal Measures of Intelligence 206
Bill Hibbard

The Importance of Being Neural-Symbolic – A Wilde Position 208
Pascal Hitzler, Kai-Uwe Kühnberger

Improving the Believability of Non-Player Characters in Simulations 210
Jere Miles, Rahman Tashakkori

Understanding the Brain’s Emergent Properties . 212
Don Miner, Marc Pickett, Marie desJardins

Why BICA is Necessary for AGI . 214
Alexei Samsonovich

viii

Importing Space-time Concepts Into AGI . 216
Eugene Surowitz

HELEN – Using Brain Regions and Mechanisms for Story
Understanding And Modeling Language As Human Behavior 218

Robert Swaine

Holistic Intelligence: Transversal Skills & Current Methodologies 220
Kristinn R. Thorisson, Eric Nivel

Achieving Artificial General Intelligence Through Peewee Granularity . . . 222
Kristinn R. Thorisson, Eric Nivel

Author Index . 224

ix

Project to Build Programs that Understand
Eric B. Baum

Baum Research Enterprises
41 Allison Road

Princeton NJ 08540
ebaum@fastmail.fm

Abstract
This extended abstract outlines a project to build computer
programs that understand. Understanding a domain is
defined as the ability to rapidly produce computer programs
to deal with new problems as they arise. This is achieved by
building a CAD tool that collaborates with human designers
who guide the system to construct code having certain
properties. The code respects Occam's Razor, interacts with
a domain simulation, and is informed by a number of
mechanisms learned from introspection, the coding
employed in biology, and analysis.

Introduction
This extended abstract outlines a project to build computer
programs that understand.
Definition 1: Understanding a domain is defined as the
ability to rapidly produce programs to deal with new
problems as they arise in the domain.

This definition is proposed to model human
understanding (which I hold to be of the domain of the
natural world and extensions we have made into related
domains such as mathematics), and also accurately
describes biological evolution, which thus may be said to
understand what it is doing.

A program that can rapidly produce programs for new
problems is rather unlike the standard kinds of programs
that we usually see. They deal with contingencies that had
been previously planned for. We will describe both a new
programming method, and new style of program, in order
to accomplish our task.
Hypothesis 1: The property of understanding in thought
and evolution arises through Occam's Razor. (Baum, 2004,
2007)

By finding a concise genome that solves a vast number
problems, evolution built a program comprising a
hierarchic collection of modules that generalize­­ that
know how to rapidly produce programs to solve new
problems. That genetic program also encodes inductive

 Copyright © 2008, The Second Conference on Artificial General
Intelligence (agi­09.org). All rights reserved.

biases that construct a similar hierarchic collection of
modules within your mind that rapidly produce programs
to solve new problems.

As a result of conciseness and the structure of the
programs it requires, random mutations in the genome lead
to meaningful programs a sizable fraction of the time. For
example, a point mutation of a fly's genome may create a
fly with an extra pair of wings instead of halteres, or a fly
with an extra pair of legs instead of antennae (Kirschner
and Gerhart 2005). These are recognizably meaningful in
that they are functional in an interesting way. Evolution
thus rapidly searches over meaningful outcomes looking
for one that solves new problems1. That is, according to
our definition, evolution understands.

Another example within evolution is the coding of limbs
(Kirschner and Gerhart 2005). If asked to code up a limb,
human software engineers might attempt to separately
specify the structure of the bones, the muscles, the nerves,
and the blood vessels. If done that way, the program would
be huge, like standard engineering specs for machines such
as a jet aircraft, and it couldn't adapt to new uses, and it
couldn't evolve. A favorable mutation in the bone structure
would have to be matched by one in each of the other
systems to survive. Proponents of Intelligent Design would
have a point.

Instead, biology is much more concisely coded. The
bones grow out in a concisely and hierarchically specified
way. There is no separate detailed specification of exactly
how the muscles, nerves, or blood vessels grow. The
muscle cells perform a search, and attach themselves to the
bones, and grow so as to be functional in context. A
muscle cell that is being useful expands (which is why
rowers have big hearts). The nerves seek out muscles, and
learn how to be functional. The vascular system grows out
in a search toward cells that scream for oxygen. As a result
of this extremely concise encoding, if you take up new
exercises, your muscles adapt and grow in appropriate
ways, and if a mutation changes the genetic coding of the
1Language facilitates thinking in similar fashion. You can
come up with incredibly concise formulations of big new
ideas, just a sentence or several in natural language, that
grow out into detailed executables much like concise
specifications in the genome result in interacting searches
that robustly construct a limb, or like RBP finds a high level
plan and refines it through a series of searches.(Baum,
2008b)

1

bone structure, everything else adapts to make a functional
system, so mutations can easily explore meaningful
possibilities.

The same kind of conciseness is present in the genetic
coding for your mind. Enough initial structure is provided,
also called inductive bias, that a series of search programs
can build a hierarchic series of modules to solve new
problems.

Previous attempts to produce understanding programs
have mostly followed one of two paths. One path has been
purely automatic methods, such as direct attempts to
simulate evolution. This is hopeless because, while we may
already have or may soon have computational resources
comparable to those of the brain, we will never be able to
compete with evolution­­ which ran through some 1044

creatures (Smith, 2006, footnote 95) (furthermore each
creature individually interacted with the world and is thus
expensive to simulate). To evaluate other automatic
attempts, ask yourself what is enforcing Occam nature and
keeping the solution constrained enough to generalize to
new problems. An approach that can too easily add new
knowledge without adequate constraint can (and will)
simply memorize examples that it sees, rather than
generalizing to new problems. In my view, this is a
common flaw in AI/AGI approaches.

A second approach has been to craft such a program by
hand. I believe this is also hopeless for a variety of reasons.
First, a wealth of experience in computational learning
theory indicates that finding Occam representations in any
interesting hypothesis space is NP­hard. If finding Occam
software is NP­hard, it is no more likely to be susceptible
to hand solution than other huge NP­hard problems.
Second, a wealth of experience with solving AGI by hand
indicates it is hard. Winograd's SHRDLU, for example,
seemed like a particularly well crafted project, yet a few
years later he threw up his hands and wrote a book
explaining why crafting an understanding program is
impossible (Winograd and Flores 1987). Third, when its
structure is examined (say by introspection and/or
attempting to program it) the program of mind (and also
the program of biological development) seems to contain a
large number of ingeniously crafted modules. At the very
least, figuring out each of these is a PhD dissertation level
project, and some of them may be much harder. Evolution,
which understands what it is doing, applied massive
computational resources in designing them. And the
Occam codings evolution found may inherently be hard to
understand (Baum, 2004 chap 6). Finally, the problems are
hard both at the inner level (figuring out ingenious,
concise, fast modules to solve subproblems) and at outer
levels of organizing the whole program. Humans are
simply not competent to write computer programs to deal
with hyper­complex domains in a robust way.

Hand crafting has at times sought to benefit from
introspection. A problem with this is that people do not
have introspective access to the internals of the meaningful
modules, which are hidden from introspection by
information hiding. Consider, for example, when you

invoke Microsoft Word. You know why you are invoking
it, and what you expect it to do, but you do not have much
idea of its internal code. The same is true of meaningful
internal modules within your mental program. However,
we appeal (based on observation) to:
Hypothesis 2: People do have introspective access to a
meaning­level (Baum 2007, 2004 chap 14), at which they
call meaningful modules by name or other pointer.

I use the term concept to denote a name (word) or other
mental construction that you might think that has some
meaning, i.e. that corresponds to a recognizable function in
the world, and module to denote the computational
procedure that would be summoned to compute a concept.
Thus we may think of concepts as names that invoke
modules.

You can state in words why you call a given module,
and you can give examples of concepts (for example,
inputs and outputs of the associated module). This is
incredibly powerful and detailed information, that we will
use to get a huge jump on evolution.

Note that the problem of finding an appropriate module
is distinct from that of finding an appropriate concept, so
this dichotomy factors the problem of producing code for
new problems. For example, executing a certain module
might create in a simulation model a corresponding goal
condition (namely, realize a concept). Agents denote
modules that recognize patterns and then may take other
computational actions, as in, for example (Baum and
Durdanovic, 2000, 2002) . In the present work, patterns are
typically recognized in a simulation domain or annotated
simulation domain or model, that is seeing particular
annotations may be critical to the recognition of the
pattern. The recognition will frequently involve taking a
series of simulated actions on the model and then checking
for a pattern or condition (as in (Baum and Durdanovic,
2000). Agents when activated will frequently post
annotations on a model, which is how much of perception
proceeds.

The solution we propose, by which to construct
understanding programs, is thus based on the following
objectives and principles.

(1) Humans can not write the detailed code. As much as
possible it must be automated, but, the system must also
support as much guidance as possible from humans.

(2) The goal is to produce a program that will rapidly
assemble programs to solve new problems. To that end, we
have to ask what kinds of modules can be provided that
can be flexibly assembled. We also have to ask what kinds
of modules can be provided for guiding the assembly
process, for example by finding high level plans that are
then refined. We propose mechanisms for these tasks.
Assembling programs for new tasks from primitive level
instructions without a detailed plan is prohibitively
expensive. But if a program can be divided into half a
dozen tasks, and a program for each them assembled by
combining a handful of meaningful modules, the search
becomes manageable. Thus we need building systems and

2

building blocks and means of adapting to new contexts.
(3) The reason understanding is possible is that the

natural world (and relatedly, mathematics) have a very
concise underlying structure that can be exploited to do
useful computations. We embody this by providing domain
simulations. The domain simulations typically live in 3 (or
2) Euclidean dimensions, plus a time dimension, and
provide direct access to causal structure. All modules and
agents interact with the domain simulation (in fact, with
multiple copies, each agent may explore its own copy).
Thus all thought may be model/image based in a way much
more powerful than other systems of which we are aware.
This grounds all our computations, that is to say, will allow
us to choose modules that perform functions that are
meaningful in the real world.

All agent or instruction calls are with respect to a
particular domain simulation position. Everything is thus
context dependent, and agents can communicate by taking
actions on the internal model and by perceiving the model.
A caching mechanism detects when a module recursively
calls the same module in the identical position, and returns
a default value at the inner call, and thus enables concise
recursive coding without looping.

(4) Economics simulations as in Hayek (Baum and
Durdanovic 2000, 2002; Baum 2004 chap 10) are used at
multiple levels to implement the invisible hand and assign
credit so that components of the program all have to
contribute and survive in a competitive environment2. This
greatly contributes to conciseness. Such economies also
have the property of efficiently caching the execution of
modules at each level of abstraction, greatly speeding
computation.

(5) Other encodings collectively called scaffolds are
modeled on those discovered by evolution or perceived by
introspection in ways to realize point (2) above. Scaffolds
promote conciseness, and provide inductive bias for
constructions. For example, scaffolds make great use of
search programs modeled on those used in the
development of limbs (or in computer chess (Baum 2007)).

We call the system Artificial Genie.

CAD Tool
The first step is to build a CAD tool with which humans
collaborate in the construction of code. A number of
module constructors are provided, which take as inputs
such things as an instruction set out of which to build new
programs, a fitness function and/or a definition of a state to

2The earliest use of which I'm aware of economics
simulation for program evolution was (Holland 1985), who
also invoked pattern perceiving agents. (Lenat 1982) also
used related ideas. The Hayek model is cited as enforcing
certain principles critical to proper functioning of economic
evolutionary systems, and we also propose improved
evolutionary economic systems with other features.
 Copyright © 2008, The Second Conference on Artificial General
Intelligence (agi­09.org). All rights reserved.

be achieved, and examples of a given concept, and return
a module computing the concept. This is in principle
straightforward to achieve by, for example, genetic
programming3 (or, which we prefer, running a Hayek or
other Economic Evolutionary System (EES)).

Once a module is constructed to compute a concept, the
CAD tool also creates an instruction invoking the module,
and makes that available for inclusion in instruction sets.
Note that such instructions can be used in hand­written
code, as well as fed to module constructors. So users are
enabled to write code in terms of concepts, even though
they may be unable to write the modules computing the
concepts.

Note that, while above we said simulated evolution was
too slow, what is generally done is to try to simulate the
whole solution to a problem in one gulp. We are proposing
instead to apply EES's or other module constructors to
carefully chosen subproblems, and then build
hierarchically upward. If the module construction fails, that
is the module constructor is not able rapidly enough to
construct a satisfactory module to compute the concept, the
CAD tool also provides the opportunity to first construct
other concepts which may be sub­concepts useful for
computing the desired concept, the instructions for which
can then be included in instruction sets.

The CAD tool will be used to improve itself until it can
also learn from solved examples and natural language
descriptions of the solution. (Baum, In prep).

Simulation Model

Our code interacts with a domain simulation that is
analogous to mental imagery. This provides numerous
critical functions. First, by encoding the underlying causal
structure of the domain, the image allows modules to
generalize, to encode meaningful function. For example, a
simple physics simulation can describe what will happen in
any kind of complex system or machine built of physical
parts. Such are often easy to construct from ball and spring
models(Johnston and Williams, 2008). All generalization
ultimately derives from exploiting underlying structure,
which is provided by the simulation.

Many AI programs are based on a set of logical axioms
and logical reasoning, rather than incorporating a
“physics” simulation. If you work that way, however, you
can't readilygeneralize. Say I give you a new object, that
you haven't seen before. Since you don't have axioms
pertaining to that object, you have no understanding that
lets you say anything about it. Logic just treats names (say
of objects) as tokens, and if it doesn't recognize a particular
token, it knows nothing about it. By contrast, if you have a
physics simulation, you can work out what will happen
when things are done to the object, when its rotated or
dropped, just from its physical structure. This ability to
3A variety of module constructors may be provided
suitable for certain tasks. For example, neural network-like
module constructors may be useful for early vision.

3

generalize is essential to understanding.
Another problem with the logic approach is the frame

problem. With everything in terms of axioms, you have a
problem: if something is changed, what else is affected?
Logically, there is no way to say, unless you have specific
frame axioms, and then you have to do inference, which
also may be computationally intractable. This classic
problem paralyzed AI for many years. If you are working
with a physical simulation, this problem is bypassed. You
just propagate forward­­ only things affected by causal
chains change.

Interaction with a simulation allows the computational
agents to be grounded, that is to say: to perform functions
that are meaningful in the real world. Second, the domain
simulation provides a medium by which different
computational agents can communicate, since agents can
both perceive (recognize patterns in) and take actions on
the domain simulation. Third, agents can utilize the
domain simulation to search to achieve goals. For example,
they can achieve subgoals in the context of the current
situation and the other agents. Robustness can be achieved
by partitioning problems amongst interacting, concisely
specified, goal­oriented agents. This is a key element of
how biological development achieves robustness.
(Development utilizes an analog medium rather than a
domain simulation.) The domain simulation naturally
biases in the spatial, temporal, causal structure that greatly
facilitates dividing problems into parts that can be
separately analyzed and then combined. Fourth, the
domain simulation provides an intuitive and interactive
mechanism for users (program designers) to input training
examples. Training examples can be entered as
configurations of the domain simulation (for example,
small local regions representing some concept) or as
worked examples (where, for example the program
designer inputs the example as if playing a video game)
(which may be accompanied by natural language
description of what is being done).

Relevance Based Planning

The power of using domain simulations is demonstrated by
our planning system. Our planner finds high level
candidate solutions by examining the mental image, where
each high level candidate solution is a path that would
achieve a goal if a number of sub goals (counter­factuals)
can be achieved. The planning system then orchestrates the
collaboration of those subprograms that are relevant to
achieve the sub goals. Subprograms or agents that are
attempting to achieve sub goals perform look­ahead
searches on the mental image, and these searches may
produce patterns indicating other problems that were not
previously anticipated, the perception of which invokes
other agents. Because the whole process is grounded by
interaction with the mental image, the system explores
those subprogram calls that are relevant to achieving the
goal. An example of the operation of the planning system

is discussed elsewhere in this volume (Baum, 2008a).
Like all the modules in Artificial Genie, the planner is

supplied as an instruction within the CAD tool that can be
incorporated into new modules or agents by automatic
module constructors or by program designers. To our
knowledge, this also is not a feature of any competing
systems. This enables the construction of powerful agents
that can invoke planning as part of their computation to
achieve goals. Powerful programs can be constructed as
compositions of agents by planning on the domain to break
goals up into a series of sub goals, and then building
agents to deal with the sub goals. An example of a Hayek
constructing agents that invoke planning instructions to
solve Sokoban problems was exhibited in (Schaul 2005).

Evolutionary Programming, Search, and
Scaffolds

Consider a search to find a program to solve a problem.
To do this by building the program from primitive
instructions will often be prohibitively expensive. One
needs appropriate macro instructions so that each
discovery step is manageable size: no individual search is
vast. Code discovery is only possible in bite sized portions.
Scaffolds provide big chunks of the code, and break the
full search down into a combination of manageable
searches.

As discussed in section 1, this is largely how biological
development is coded: as a series of tractable searches
(each cell performs a search to produce its cyto­skeleton,
mitosis invokes a search to build microtubules for
organizing the chromosomes, the nerves perform a series
of searches to enervate, the vascular system performs a
separate search, and so on. (Kirschner and Gerhart 2005))

Coding in terms of constrained searches is an incredibly
concise means of coding. As discussed in (Baum,
2004,2007) this is also the method used in computer chess.
A handful of lines of code (encoding alpha­beta +
evaluation function + quiescence) creates a search that
accurately values a huge number of chess positions.
Because the code for this is so concise, Occam's razor
applies and it generalizes to almost all chess positions.

One simple form of scaffold supplies much of the search
machinery, but requires that an evaluation function or goal
condition for the search and/or a set of actions that the
search will be over (which may generally be macro actions
or agents) be supplied to use the scaffold for a particular
problem. For example, the alpha­beta search from chess
can be simply modified in this way into programs for other
problems (like Othello) cf (Baum 2007). Another use of
such search­scaffolds would be to compose them into
larger programs in a way analogous to how development
builds the body out of a collection of interacting searches.
The use of search scaffolds should provide huge inductive
bias, greatly speeding the production of programs for new
problems. In other words, having such scaffolds will
provide understanding of the domain.

Another form of scaffold is used in the evolutionary

4

construction of programs. The scaffold here is basically
equivalent to a procedure, with slots (aka arguments) and
possibly also annotations respective to some or all of the
slots. One can build a program downward by starting with
a scaffold, and then constructing subprograms to fit into
each of the slots. The annotations may supply guidance as
to independent examples to be provided for training the
subprograms, or other guidance such as instruction sets to
be provided to module constructors to build the
subprograms out of.

The point here is, the naive way to be able to rapidly
create a program for a new problem, is to have a set of
macros from which the program for the new problem can
be rapidly discovered because it is a 5 line program in
terms of the macros. Another way, however, is to have a
scaffold that builds all or part of the program by starting
from the top and building down: discovering programs to
fit into slots. The discovery of these subprograms may
involve running an EES, or invoking another scaffold. And
yet another way, is to have a scaffold like RBP that
interacts with the mental image to build a high level plan
and then to flesh it out into concrete code.

Evolutionary Economic Systems

The real economy is a powerful system in which billions of
different economic actors, who don't even know each
other and may not even share a common language, are
organized to collaborate. A complex program is like an
economy, with large numbers of parts that must work
together. The usual process of constructing a complex
program is like a command economy, with some human
programmers sitting like the Politburo and attempting to fit
everything together. As desired programs get more
complex, it becomes harder and harder to integrate
everything, and pieces are added that are
counterproductive, and many opportunities for
rationalization are missed.

Artificial Genie supplies an economic framework that
motivates all the pieces by simple rules that implement the
invisible hand, propagate price signals. Moreover, within
the created environment of a simulated economy, major
flaws that plague the real economy, such as the tragedy of
the commons and theft and the dead­weight loss of
taxation, are removed, leaving a perfect computational
economy. Since it is made available as a module
constructor, the economic framework can readily be
applied at each level of the computational hierarchy, both
as the simplest subprograms are built from instructions,
and as the overall system is integrated, to ensure efficient
and harmonious operation. So, a high level program will
be composed of economically motivated agents, each of
which itself may be a Hayek or other EES, composed of
economically motivated agents, rather like the US
economy is composed of corporations, each of which may
have many subcontractors. This hierarchic construction is
straightforward because each satisfactory module (often an

EES) that is found, is encapsulated by the CAD tool as an
instruction, usable for constructing later agents and
programs.

Many problems can only be solved after performing a
search. For example, deciding on the best move in a chess
position typically requires a search; likewise planning
problems, optimization problems, even problems of
perception such as recognizing some pattern in one's
environment or sensory input, almost all require searches.
These searches will usually be intractably large if not
somehow focused. Extant automatic programming
methods do not produce programs that search and hence
are limited in their application. Artificial Genie
incorporates an economic structure to automatically
construct search­programs, programs that when presented
with a task to solve, perform a search to find the solution.

Artificial Genie supports the building of perceptual
systems consisting of a collection of agents that perceive
patterns and post names of recognized concepts, that may
enable other perception or action. Such patterns will
typically be perceived in the simulation domain, and the
perception may involve taking one or more simulated
actions on the domain position followed by verifying a
condition or checking a pattern. The syntactical analysis of
(Hobbs 2004) is a model for such posting of concept labels
that enable other conclusions, except that we have added
economic structure and interaction with a simulation
model. The whole program, from perception through
decision, is economically evolved to be concise, efficient,
and meaningful, so that such perceptual agents will only
survive when they are later relied upon by agents earning
reward from the world.

The economics naturally incorporates a smart caching
mechanism, by which subprograms that initially require
extensive computation, become fast and automatic in most
circumstances. Concepts are frequently given a definition
in terms of other modules, rather than an explicit algorithm
to compute it. Frequently a concept may be defined in
terms of a condition that is to hold or be achieved (which
may in fact involve achieving multiple sub­conditions). A
module constructor then must construct a program that
achieves that condition (or recognizes when it holds). The
module constructor will typically produce a search­EES.
This search­EES caches into agents, methods that work
rapidly in certain classes of positions. When the module is
called, the search­EES cache will retrieve a solution
rapidly, provided one is available. However, if the search­
EES fails (ie no agent bids, or no solution is found) the
system may return to the definition, and attempt to find a
solution by a more extensive search (creating new agents)
or other methods. If a solution is then found, the search­
EES may be extended with more agents, caching the new
solution. This is analogous to how you may have to resort
to definitions and a slower, conscious thought process
when confronted with a new situation, but as you learn
about the new situation, you cache methods for dealing
with it rapidly and unconsciously.

5

First Application
The above framework is to be built in the context of a
particular domain. Sokoban has been experimented with to
date, but a more practically interesting domain will likely
be next. The tools, once built for a given domain, will be
readily adapted to a next domain. For some applications
(eg robotic applications), a perceptual front end mapping
sensory input to internal simulation model will be
necessary.

Sketch of Path to Cognition
The tools will then be used to build an inheritance structure
corresponding to human cognition. Thought, language,
and understanding are possible because we have a
collection of meaningful modules, organized in a
hierarchical fashion. One thing that is different about our
approach from other hierarchic ontologies, however, is that
in our view what is inherited are methods, procedures, that
interact with a simulation domain, execute on a simulation
domain, compose in a robust way using searches that
determine meaningful combinations grounded with respect
to the simulation domain.

References
Baum, Eric B. 2004. What is Thought? . Cambridge, MA:
MIT Press.

Baum, Eric B. 2007. A Working Hypotheses for Artificial
General Intelligence. In Advances in Artificial General
Intelligence: Concepts, Architectures and Algorithms, eds.
Goertzel, B., and Wang, P., IOS Press, pp 55­74.

Baum, Eric B. 2008a. Relevance Based Planning, a Worked
Example. http://www.whatisthought.com/planning.pdf .

Baum, Eric B. 2008b. A Model of Language as a Cognitive Tool.
In preparation.

Baum, E. B. and I. Durdanovic. 2000. Evolution of
Cooperative Problem­Solving in an Artificial Economy.
Neural Computation 12:2743­2775.

Baum, E. B. and I. Durdanovic. 2002. An artificial
economy of Post production systems. In Advances in
Learning Classifier Systems, P.L. Lanzi, W. Stoltzmann
and S.M. Wilson (eds.). Berlin: Springer­Verlag, 3­21.

Johnson B. and M­A Williams. 2008. Comirit:
Commonsense Reasoning by Integrating Simulation and
Logic. In. Artificial General Intelligence 2008,
Proceedings of the First AGI Conference. Eds P. Wang, B.
Goertzel and S. Franklin. Washington DC: IOS Press.

Hobbs J. R. 2004. Discourse and Inference. Preprint.
http://www.isi.edu/~hobbs/disinf­tc.html

Holland, J. H. 1985. Escaping brittleness: The
possibilities of general purpose machine learning
algorithms applied to parallel rule­based systems. In
Machine Learning II. Michalski, R.S., Carbonell, J. G., and
Mitchell, T. M. (eds.). Morgan Kaufmann (Los Altos).
pp593­623.

Kirschner M. and J. Gerhart. 2005. The Plausibility of
Life. New Haven: Yale University Press.

Lenat, D. B. 1982. EURISKO: A Program That Learns
New Heuristics and Domain Concepts. (2)Artificial
Intelligence 19(2) : 189­249.

Schaul, T. 2005. Evolution of a compact Sokoban solver.
Master Thesis, École Polytechnique Fédérale de Lausanne.
posted on http://whatisthought.com/eric.html.

Smith, W. D. (2006) Mathematical Definition of
`Intelligence' (and Consequences), preprint, reference 93
on http://math.temple.edu/~wds/homepage/works.html

Winograd, T. and F. Flores. 1987. Understanding Computers
and Cognition: A New Foundation for Design. Boston:
Addison­Wesley Professional

6

http://www.whatisthought.com/planning.pdf
http://math.temple.edu/~wds/homepage/works.html

CHS-Soar: Introducing Constrained Heuristic Search
to the Soar Cognitive Architecture

Sean A. Bittle
1
, Mark S. Fox

2

Department of Mechanical and Industrial Engineering, University of Toronto,

King’s College Road, Toronto, Ontario, Canada, M5S 3G9

sean.bittle@utoronto.ca
1
, msf@mie.utoronto.ca

2

Abstract

Cognitive architectures aspire for generality both in terms of
problem solving and learning across a range of problems,
yet to date few examples of domain independent learning
has been demonstrated. In contrast, constraint programming
often utilizes the same domain independent heuristics to
find efficient solutions across a broad range of problems
types. This paper provides a progress report on how a
specific form of constraint-based reasoning, namely
Constrained Heuristic Search (CHS) can be effectively
introduced into an integrated symbolic cognitive
architecture (Soar) to achieve domain independent learning.
The integration of CHS into Soar retains the underlying
problem-solving generality of Soar, yet exploits the
generalized problem representation and solving techniques
associated with constraint programming. Preliminary
experiments are conducted on two problems types: Map
Colouring and Job Shop Scheduling, both of which are used
to demonstrate a domain independent learning using texture
based measures.

Introduction

Cognitive architectures specify the underlying infra-
structure of tightly coupled mechanisms that support the
acquisition and use of knowledge. They aspire to
demonstrate problem-solving capabilities ranging from
solving highly routine to more difficult problems using
large bodies of diverse knowledge [Laird, 2008]. Research
on cognitive architectures is important because it supports
a central goal of artificial intelligence - namely the creation
and understanding of artificial agents that demonstrate
similar problem-solving capabilities to humans [Langley
et. al., 2006]. While AI research over the past two decades
has successfully pursued specialized algorithms for
specific problems, cognitive architectures aim for breadth
of coverage across a diverse set of tasks and domains
[Laird, 2008].

However, to date there appears to be few examples of
effective problem-solving or domain independent learning
on realistic problems by symbolic cognitive architectures

Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

[Diaper, et. al, 2007]. In contrast, Constraint Programming
(CP) has for years established its ability to find efficient
solutions to a broad domain of specific real-world
problems using domain independent heuristics [Wallace,
1996]. CP, however, has not generally promoted itself as
the central problem-solving approach or learning
framework for cognitive architectures.

Symbolic cognitive architectures often employ rule-based
deductive reasoning to encode knowledge and guide
problem solving and learning. Often the division between
problem representation and problem solving is often co-
mingled resulting in agents that can only solve a specific
problem type and often preclude any form of domain
independent learning. In contrast, constraint programming
employs a different, yet complementary form of deductive
reasoning based on a generalized problem representation
which allows it to utilize generic problem solving
techniques such as constraint propagation.

Our work seeks to integrate these two different problem-
solving paradigms

1
 (constraint and rule-based reasoning)

into a unified, declarative architecture; namely to introduce
Constrained Heuristic Search (CHS) [Fox et. al, 1989] to
the Soar cognitive architecture [Laird et. al, 1987]. This
paper reports progress to date demonstrating a specific
form of domain independent learning. Our broader
research effort posits that CHS can provide the requisite
framework for unifying the features of constraint
programming and symbolic cognitive architectures in order
to demonstrate practical problem solving performance and
domain independent learning with cognitive architectures.

Soar Cognitive Architecture

 One of the earliest symbolic cognitive architectures
developed was Soar, created by John Laird, Allen Newell,
and Paul Rosenbloom at Carnegie Mellon University
[Laird et. al. 1987]. Soar is a symbolic architecture for
general intelligence that integrates basic mechanisms for

1
 In unpublished work by Shivers, the idea of introducing a

form of constraint propagation in Soar was suggested

[Shivers, 1986].

7

problem solving, use of knowledge, learning, and
perceptual-motor behaviour [Laird et al., 1987].

Soar consists of a single long-term memory encoded as
production rules and a single transient declarative working
memory. All long-term knowledge in Soar is represented
as if-then rules, called productions or production rules.
Soar’s symbolic working memory holds the agent’s
assessment of the current situation derived from perception
and retrieval of knowledge from its long-term memory
[Laird, et. al. 1987]. Working and long-term memories are
linked through a decision cycle which selects operators to
change states and detects impasses. Problem solving is
driven by the act of selecting problem spaces, states, and
operators in which each selection is accomplished through
a three-phase decision cycle. The phases are repeated until
the goal of the current task has been achieved. Chunking is
Soar’s learning mechanism that converts the results of
problem solving in subgoals into rules.

Constraint Programming

Independently, yet in close chronological parallel to the
problem-solving work of Newell and Simon, an alternative
problem-solving approach evolved called Constraint
Programming (CP). Constraint satisfaction is a sub-
domain of constraint programming dealing with problems
defined over a finite domain and involve no objective
function. More formally, a Constraint Satisfaction
Problem (CSP) is defined as a set of variables; for each
variable, a finite set of possible values (its domain), and a
set of constraints restricting the values that the variables
can simultaneously assume [Kumar, 1992]. Variables are
linked by constraints that can be either logical (i.e. X ≤ Y)
or symbolic (i.e. X Loves Y).

The principal techniques utilized to solve a CSP include a
combination of constraint propagation, variable and value
ordering and search. Constraint propagation is the term for
propagating the implications of a constraint on one variable
onto other variables [Kumar, 1992]. The objective of
propagation is to reduce the size of the variable domains
based on the constraints imposed on them. Variable and
value ordering heuristics can be utilized to dramatically
improve the efficiency of search and suggest which
variable should be assigned next and in what order the
values should be tried [Kumar, 1992]. The role of
constraints in problem solving has been reviewed by Fox,
where he notes constraints can provide structure to search
thereby reducing the size of the search space [Fox, 1986].

Constrained Heuristic Search The idea of augmenting
the definition of the problem space through the
introduction of a constraint graph representation is
encompassed in the Constrained Heuristic Search (CHS)
problem-solving model developed by Fox [Fox et. al.,
1989]. CHS is a combination of constraint satisfaction and
heuristic search. In this model, search is performed in the
problem space where each state is defined by a problem

topology and is represented as a constraint graph. CHS
augments the definition of a problem space by refining a
state to include problem topology (structure), textures
(measures of structure) and objective (rating alternative
solutions) [Fox, 1989].

Related Work

In a prototype system called CRIPS, Liu demonstrated how
constraint and rule-based reasoning can be integrated into a
hybrid problem-solving paradigm to deal with the problem
of representing disjunctions in rule-based systems [Liu,
1994]. Specifically, the disjunctions are represented as
constraint variables and their domains and the relations
among disjunctions are represented as constraints. Our
work extends this effort by integrating a more general form
of constraint based reasoning into an integrated rule-based
cognitive architecture.

A hybrid learning system was developed for automating
the acquisition of problem-solving knowledge using CSP
approaches [Subramanian, Freuder, 1990]. The technique
proposed compiles production rules from the observation
of constraint-based problem solving behaviour. The
compiled rules corresponded to the values deleted by the
constraint-based problem solving. In contrast to the work
of Subramanian and Freuder, our research proposes to
utilize Soar’s learning ability to encode texture-based
problem independent heuristics as learned rules.

The Adaptive Constraint Engine (ACE) is described as
“cognitively oriented” architecture that can learn from
experience solving problems in the CSP domain [Epstein,
et. al., 2002]. ACE is built upon an underlying general
problem solving and learning architecture called FORR
(FOr the Right Reasons) which represents knowledge as a
three-tiered hierarchy of procedures or “advisors.”

Varieties of learning within Soar have been extensively
investigated, including across different tasks, and the types
it has not yet exhibited include: vary large problems;
complex analogies; similarity-based generalization; and,
representational shifts [Steier, et. al, 1987]. Our work
seeks to reason over a much more abstracted problem
space thereby producing more generalized chunks
applicable to a much broader range of problem domains.

Design of CHS-Soar

There are two central, yet inter-related design goals of
CHS-Soar. First is the use of domain independent problem
solving techniques and the second is domain independent
learning. Specifically, CHS introduces a standard CSP
problem representation which encompasses the use of
variables, which have a domain of discrete values, and
constraints between variables. CHS also allows us to
introduce general purpose problem solving techniques such

8

as propagation and the use of domain independent problem
structure textures to guide variable and value selection.
The second design goal is to focus Soar’s internal
reasoning on the selection of textures measures to facilitate
the learning of domain independent problem solving rules
ideally useful across different problem types.
Architecturally (Figure 1) CHS-Soar is composed of three
parts: [1] the Soar kernel; [2] Soar agent (production
rules); and, [3] the external agent. A more detailed
overview of the design of CHS-Soar is provided by Bittle
and Fox [Bittle, Fox, 2008].

Soar Kernel

The Soar kernel is invariant and encompasses a fixed set of
computational mechanisms including: working memory
(state representation); long term memory (repository for
production rules); decision cycle (used to link working and
long term memory); and, learning system.

Soar Agent (Production Rules)

Production rules provide the “programming language” for
developers to create different Soar programs, called agents,
and form the content of Soar’s Long Term Memory.
Soar’s general problem-solving ability results from the fact
that the same architecture (the Soar kernel) can be used to
solve different problems as defined by different sets of
production rules. Rules are used to; propose, select and
apply operators.

Operators perform actions and are consequently the locus
of decision making [Laird et. al, 1987]. CHS-Soar
operators are focused on variable and value texture
measure selection. CHS-Soar operators provide the
framework to introduce the CHS problem solving cycle.

CHS-Soar Problem Solving Cycle Soar’s three-phase
decision cycle (proposal, decision, and apply) provides a
suitable framework to introduce the CHS problem solving
cycle summarized in Table 1.

Table 1: CHS Problem Solving Cycle
Repeat

1 Conduct propagation (or backtrack) within state

• calculate variable texture measures
2 Select variable (based on heuristics as suggested by

textures measures)

• calculate value texture measures
3 Select value (based on heuristics as suggested by

textures measures)
Until (all variables values instantiated & all constraints satisfied)

As depicted in Figure 2, three Soar decision cycles are
performed during one CHS cycle. Instrumental to the
learning of domain independent problem-solving rules is
the requirement to have the Soar agent component of the
CHS cycle only reason about the selection of normalized
variable and value textures measures — not actual problem
variable and values. Consequently the Soar agent is
decoupled from the actual problem constraint graph. The
Soar agent interacts with the external agent via production
action-side function calls.

External Agent

The external agent is an optional user-defined program
where Soar agent production rule functions reside. From
the external agent we can register new functions which can
extend the functionality of Soar agent productions. The
CHS external agent provides five functions including: CSP
problem representation (binary constraint graph);
constraint propagation using the AC-3 algorithm
[Mackworth, 1977]; chronological backtracking; and,
variable and value texture calculations.

Texture Measures Textures are structural measures of the
constraint graph used to guide the order of variable and
value selection [Fox et. al., 1989]. In order to demonstrate
the future introduction of more insightful texture measures
[Fox, 1990], three frequently cited [Kumar, 1992] variable
and value ordering measures (and their associated
heuristics) are utilized as outlined in Table 2.

Table 2: Texture Measures and Associated Heuristics

Name Texture Measures Heuristics

Minimum
Remaining
Value (MRV)

Di, Number of remaining
values in domain.

Select the variable
with the smallest Di,
value

Degree
(DEG)

Ci, number of constraints
linked to variable.

Select the variable
with the largest Ci
value

Least
Constraining
Value (LCV)

Fi, number of available
values in domain of linked
variables not instantiated.

Select the value
with the largest Fi
value

Figure 2: CHS-Soar Problem Solving Cycle

Figure 1: CHS-Soar Architecture

9

Of particular note is the separation of the texture measure
from its associated unary heuristic. In order to facilitate
learning across different problem sizes and more
importantly different problem domains, texture measures
are normalized between 0 (minimum value) and 1
(maximum value). A “pruned” (duplicate values removed)
list of normalized texture measures are returned to the Soar
agent. Pruning has the effect of further decoupling the
texture measures from any specific problem domain.

Soar and External Agent State Representation

The Soar agent initially establishes a binary constraint
graph in Soar’s working memory. Once problem solving
begins, the Soar agent state representation is defined by the
CHS phase (i.e. select variable), state status, desired state,
and the collection of normalized texture measures. In
contrast, the external agent maintains a complete binary
constraint graph problem representation.

Subgoaling and Learning

Planning in Soar arises out of its impasse detection and
substate creation mechanism. Soar automatically creates a
subgoal whenever the preferences are insufficient for the
decision procedure to select an operator [Laird, et. al,
1987]. Soar includes a set of default production rules that
allow subgoaling to be performed using a simple look-
ahead search which CHS-Soar utilizes to evaluate variable
and value texture measure performance. After
propagation, the Soar agent has no prior knowledge of
which variable and/or value texture measure to select
(assuming no previous learning). Soar will detect an
impasse and automatically subgoal to evaluate each texture
measure returned and now cast as operators.

Texture Measure Evaluation CHS-Soar uses three
separate, yet related texture measure evaluations. The first
is a simple numerical evaluation which gives a higher
preference to the texture measure that requires fewer
propagation cycles to achieve a candidate solution.
Second, if a texture measure leads to a substate domain
blow-out it is symbolically evaluated as a failure and
rejected. Third, if we cannot match a texture measure in
the substate (i.e. an updated constraint graph is generated
that does not include the texture measure under evaluation)
the texture measure is symbolically evaluated as a “partial
failure.”

Since CHS requires both variable and value selections to
advance a solution, in order to facilitate the evaluation of
any substate variable texture measure we are required to
make some type of value texture measure commitment
leading to a variable – value texture measure pairing. The
approach utilized is to allow Soar to further subgoal (i.e. a
sub-subgoal) about value texture selection based on the
value texture measures generated for each variable texture
measure under consideration. Within each sub-substate,

the variable — value pairing is held constant and a
“candidate” solution is attempted.

The second design goal of CHS-Soar is the learning of
domain independent problem solving rules — specifically
rules that can be transferred and effectively used on
different problem types. Chunks are created in the CHS-
Soar agent as we resolve impasses. Resulting chunks have
as their conditions either unary or binary conditions
composed of texture measures (cast as operators).

Implementation of CHS-Soar

The CHS-Soar agent was developed using Soar version
8.6.3 (Windows versions). The external agent was
developed in C++ using Windows Visual Studio 2005.

Experiments

The paper reports on two selected computational
experiments performed to-date. The objective of
experiment 1 is to establish the subgoaling, learning and
transfer of learning ability of CHS-Soar. Experiment 2
considered the impact of problem size/complexity on the
performance of externally learned chunks. Problem
instances were run 10 times and averaged. Experiments
were conducted for two sample problems: [1] map
colouring (MC); [2] job-shop scheduling (JSS), both well
known combinatorial problems. The relationship of the
map colouring problem and the more formal four-colour
problem to general intelligence is highlighted by Swart
[Swart, 1980] who notes one of the main attractions of the
problem lies in the fact that it is “so simple to state that a
child can understand it.” The JSS problem instance is
taken from [Pang, et. al, 2000]. Results are presented in
terms of “Decisions (cycles)” — the basic unit of
reasoning effort in Soar (see Figure 2).

Experiment 1: Learning and Transfer of Learning

The first experiment investigated the impact of subgoaling,
internal learning and the transfer of externally learned rules
between problem types. In order to assess the performance
of an external set of learned chunks on the map colouring
problem, the chunks acquired through internal learning
from the JSS problem were introduced for test case 4 (see
Table 3) and vise versa for the JSS.

Table 3: Learning and Transfer of Learning Test Cases

Ref Test Case Description

1 Random Random selection of variable and value

texture measures (indifferent).

2 Hard-

Coded

Explicitly coded MRV, DEG variable selection

heuristics and LCV value selection heuristic.

3 Internal Problem is run using internally acquired

chunks.

4 External Problem is run using externally acquired

chunks from different problem domain.

10

Results and Discussion

Figure 3 presents the number of decisions required to solve
the CHS-Soar model of a map colouring problem (11
variables and 23 constraints) for the test cases outlined in
Table 3. As highlighted the hard-coded variable and value
texture selection heuristics (case 2) result in a lower
number of decisions (41% reduction) then when using a

random selection of texture measures (case 1). When
subgoaling and learning were enabled (case not shown),
CHS-Soar generated on average 60 chunks. Case 3
demonstrates improved problem solving using the 60
internally acquired learned rules as compared to the
explicit use of hard-coded heuristics (case 2) resulting in a
21% reduction in decision cycles. For case 3 it was
observed that CHS-Soar used both a combination and
range of variable and value texture measure types and
values to secure a solution.

Case 4 demonstrates the domain independent problem
solving performance of CHS-Soar chunks using 177
chunks externally learned from the JJS problem. Case 4
resulted in a 16% reduction in decision cycles over case 2
(hard-coded heuristics). Yet for case 4 we observe a 6%
increase in decision cycles as compared case 3 (internal
learned chunks).

Figure 4 presents the number of decision cycles required to
solve the CHS-Soar model of a 3x5 Job-Shop Schedule
(JSS) problem (15 variables and 35 constraints) for the test
cases outlined in Table 3. Similar to the map colouring
problem instance, we can observe a reduction in decision
cycles (29% lower) using hard coded heuristics (case 2)
over the random selection (case 1). Subgoaling and
learning (one training run) resulted in 177 internally
learned chunks. We note a 23% reduction in decision
cycles when the problem is solved using internally learned
rules (case 3) as compared with the explicit use of hard
coded heuristics (case 2). Case 4 illustrates the impact of
using 60 externally learned rules acquired from the map
colouring problem. Case 4 shows a 10% reduction in the
number of decision cycles as compared to case 2 (hard
coded).

Experiment 2: Scalability

The second experiment explored the performance of
externally learned chunks as a function of problem
complexity for the map colouring problem. Specifically,
the 177 learned chunks from the job-shop scheduling
problem (3x5) were introduced into progressively larger
map colouring problems ranging in size from 7 variables (9
constraints) to 44 variables (103 constraints).

Results and Discussion

Figure 5 presents a comparison of decisions cycles for 3
selected test cases (see Table 3 as a function of problem
complexity for the map colouring problem. For case 5, the
177 externally learned chunks from the 3x5 JJS problem
were introduced to solve each MC problem instance.

 As illustrated for this specific problem series, the
externally acquired learned rules demonstrate similar
problem solving performance, to both the hard-coded
heuristics and internally generated chunks as problem
complexity increases.

Map Colouring (11 Variables, 23 Constraints)

173 102 81 86
0

50

100

150

200

Case 1 - Random

Selection

Case 2 - Hard Coded

Hueristics

Case 3 - Internal

learned chunks

Case 4 - External

learned chunks

D
e
c
is

io
n

s

Figure 3: Map Colouring-Decisions as a Function of

Subgoaling/Learning Test Cases.

(3x5) Job-Shop Scheduling Problem (15 Variables, 35 Constraints)

98 70 54 63
0

25

50

75

100

Case 1 - Random

Selection

Case 2 - Hard Coded

Hueristics

Case 3 - Internal

learned chunks

Case 4 - External

learned chunks

D
e

c
is

io
n

s

Figure 4: JSS-Decisions as a Function of

Subgoaling/Learning Test Cases.

Map Colouring Problem

0

100

200

300

400

7 11 22 33 44

Problem Complexity (Number of Variables)

D
e
c
is

io
n

s

Case 2 - Hard Coded Hueristics

Case 3 - Internal learned chunks

Case 4 - External learned chunks

Figure 5: Map Colouring-Comparison of Decisions

versus Problem Complexity for Selected Test Cases.

11

Conclusions and Future Work

While preliminary, work to date has demonstrated how a
specific form of constraint-based reasoning (CHS) can be
effectively introduced into a symbolic cognitive
architecture (Soar) using a generalized set of 34
productions. This results in an integration of two
important types of reasoning techniques, namely constraint
propagation and rule chaining.

We have demonstrated the ability of CHS-Soar to learn
rules while solving one problem type (i.e., graph
colouring) that can be successfully applied in solving
another problem type (i.e., Job Shop Scheduling). CHS
and specifically the use of texture measures allow us to
transform a problem specific search space (based on
variables and values) into a more generalized one based on
abstracted texture measures which provides the
environment to achieve domain independent learning.

Future work will include an expanded portfolio of test case
problems to further validate and better understand CHS-
Soar ability to learn and use domain independent texture
based rules for more practical problems. More insightful
texture measures, support augmentation (i.e. frequency)
and improved texture evaluation functions are also being
investigated as well as a texture based “discovery system.”

References

Bittle, S.A., Fox, M.S., (2008), "Introducing Constrained
Heuristic Search to the Soar Cognitive Architecture",
Technical Report, Enterprise Integration Laboratory
http://www.eil.utoronto.ca/other/papers/index.html.

Diaper, D., Huyck, C., Amavasai, B., Cheng, X. and
Oussalah, M. 2007. Intelligently Engineering Artificial
Intelligence Engineering: The Cognitive Architectures
Competition. Proceedings of the workshop W3 on
Evaluating Architectures for Intelligence, at the
Association for the Advancement of Artificial Intelligence
annual conference (Vancouver).

Epstein, S. L., Freuder, E.C., Wallace, R.J, Morozov, A.,
Samuels, B. 2002. The Adaptive Constraint Engine. In P.
Van Hentenryck, editor, Principles and Practice of
Constraint Programming -- CP 2002: 8th International
Conference, Proceedings, volume LNCS 2470 of Lecture
Notes in Computer Science, pages 525--540.
SpringerVerlag, 2002.

Fox, M.S., Sadeh, N., Bayken, C., 1989. Constrained
Heuristic Search. Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, pg:309– 315.

Fox, M.S., 1986. Observations on the Role of Constraints
in Problem Solving, Proceedings Sixth Canadian
Conference on Artificial Intelligence, Montreal, Quebec.

Kumar, V., 1992. Algorithms for constraint-satisfaction
problems: A survey. AI Magazine, 13(1):32-44, 1992

Laird, J.E., Newell, A., Rosenbloom, P. 1987. Soar: An
Architecture for General Intelligence. Artificial
Intelligence, 33: 1-64.

Laird, J. E. 2008. Extending the Soar Cognitive
Architecture. Artificial General Intelligence Conference,
Memphis, TN.

Langley, P., Laird, J., Rogers, S., 2006. Cognitive
Architectures: Research Issues and Challenges, Technical
Report, Computational Learning Laboratory, CSLI,
Stanford University, CA..

Liu, B., 1994. Integrating Rules and Constraints
Proceedings of the 6th IEEE International Conference on
Tools with Artificial Intelligence (TAI-94), November 6-9,
1994, New Orleans, United States, 1994.

Mackworth, A.K., 1977. Consistency in Networks of
Relations, J. Artificial Intelligence, vol. 8, no. 1, pp. 99-
118, 1977.

Pang, W., Goodwin, S.D., 2004. Application of CSP
Algorithms to Job Shop Scheduling Problems,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5
0.9563.

Shivers, O., 1986. Constraint propagation and macro-
compilation in Soar. In Proceedings of the Soar Fall ‘86
Workshop, November 22, 1986.

Steier, D.M., Newell, A., Flynn, R., Polk, T.A., Unruh, A.,
1987. “Varieties of Learning in Soar.” The Soar Papers:
Research on Integrated Intelligence, Volume 1, Chapter 18,
Pages 536-548, MIT Press, Cambridge, Massachusetts.

Subramanian, S.; Freuder, E.C. 1990. Rule compilation
from constraint-based problem solving. Tools for Artificial
Intelligence, 1990, Proceedings of the 2nd International
IEEE Conference on, Vol., Iss, 6-9 Nov 1990, pp: 38-47.

Swart, E.R., 1980. "The philosophical implications of the
four-color problem". American Mathematical Monthly
(JSTOR) 87 (9): 697--702. http://www.joma.org/images/
upload_library/22 /Ford/Swart697-707.pdf.

Wallace, M., 1996. Practical applications of constraint
programming, Constraints, An International Journal, 1,
139-168.

12

In Search of Computational Correlates of Artificial Qualia

Antonio Chella, Salvatore Gaglio
Dipartimento di Ingegneria Informatica Università di Palermo

Viale delle Scienze, building 6, 90128 Palermo, Italy
{chella, gaglio}@unipa.it

Abstract
In previous papers we presented a robot cognitive
architecture organized in three computational areas. The
subconceptual area is concerned with the processing of data
coming from the sensors. In the linguistic area
representation and processing are based on a logic-oriented
formalism. The conceptual area is intermediate between the
subconceptual and the linguistic areas and it is based on the
notion of conceptual spaces. The robot, starting from the 3D
information stored in the conceptual area and from the data
coming form sensors and processed by the subconceptual
area, is able to build a 2D viewer dependent reconstruction
of the scene it is perceiving. This 2D model corresponds to
what the robot is seeing at any given time. We suggest that
the conceptual and the linguistic areas are at the basis of the
robot artificial qualia.

Introduction
It has been questioned if robots may have qualia, i.e.,
qualitative, phenomenal experiences in the sense discussed,
among others, by Chalmers (1996).
We are not interested in the problem of establishing
whether robots can have real phenomenal experiences or
not. For our present concerns, speak of robot’s “artificial
qualia” in a sense similar to Aleksander (1996). We use
this expression in a somewhat metaphorical sense: we call
“artificial quale” a state that in some sense corresponds to
the “phenomenal” experience of the robot, without making
any hypothesis concerning the fact that the robot truly
experiences it.
In previous papers (Chella et al. 1997, 2000) we presented
a robot cognitive architecture organized in three
computational areas - a term which is reminiscent of the
cortical areas in the brain.
The subconceptual area is concerned with the processing
of data coming from the sensors. Here information is not
yet organized in terms of conceptual structures and
categories. From the point of view of the artificial vision,
this area includes all the processes that extract the 3D
model of the perceived scene. In the linguistic area
representation and processing are based on a logic-oriented
formalism. We adopt the term “linguistic” instead of the
overloaded term “symbolic”, because we want to stress the

Copyright © 2008, The Second Conference on Artificial General
Intelligence (agi-09.org). All rights reserved.

reference to formal languages in the knowledge
representation tradition.
The conceptual area is intermediate between the
subconceptual and the linguistic areas. Here, data is
organized in conceptual “gestaltic” structures, that are still
independent of any linguistic description. The symbolic
formalism of the linguistic area is interpreted on
aggregation of these structures.
We suggest that the conceptual and the linguistic areas are
at the basis of the robot artificial qualia. In our model, the
robot, starting from the 3D information stored in the
conceptual area and from the data coming form sensors
and processed by the subconceptual area, is able to build a
2D, viewer dependent reconstruction of the scene it is
perceiving. This 2D model corresponds to what the robot is
seeing at any given time. Its construction is an active
process, driven by both the external flow of information
and the inner model of the world.

The Cognitive Architecture
The proposed architecture (Fig. 1) is organized in
computational “areas”. In our model, the areas are
concurrent computational components working together on
different commitments. There is no privileged direction in
the flow of information among them: some computations
are strictly bottom-up, with data flowing from the
subconceptual up to the linguistic through the conceptual
area; other computations combine top-down with bottom-
up processing.

Figure 1: The cognitive architecture

13

Conceptual Spaces
The conceptual area, as previously stated, is the area
between the subconceptual and the linguistic area. This
area is based on the theory of conceptual spaces
(Gärdenfors 2000).
Conceptual spaces provide a principled way for relating
high level, linguistic formalisms with low level,
unstructured representation of data. A conceptual space CS
is a metric space whose dimensions are the quantities
generated as outputs of computational processes occurring
in the subconceptual area, e.g., the outputs of the neural
networks in the subconceptual area. Different cognitive
tasks can presuppose different conceptual spaces, and
different conceptual spaces can be characterized by
different dimensions. Examples of possible dimensions,
with reference to object perception tasks, are: color
components, shape parameters, spatial coordinates, motion
parameters, and so on. In general, dimensions are strictly
related to the results of measurements obtained by sensors.
In any case, dimensions do not depend on any specific
linguistic description. In this sense, conceptual spaces
come before any symbolic of propositional characterization
of cognitive phenomena.
We use the term knoxel to denote a point in a conceptual
space. The term knoxel (in analogy with the term pixel)
stresses the fact that a point in CS is the knowledge
primitive element at the considered level of analysis.
The conceptual space CS acts as a workspace in which
low-level and high-level processes access and exchange
information respectively from bottom to top and from top
to bottom. However, the conceptual space is a workspace
with a precise geometric structure of metric space and also
the operations in CS are geometrics: this structure allow us
to describe the functionalities of the robot awareness in
terms of the language of geometry.
It has been debated if visual perception is based on a 3D
representation, as presupposed by Marr (Marr 1982). In the
present architecture, we maintain the Marrian approach,
according to which our knoxel corresponds to a moving 3D
shape.

Figure 2: Superquadric shapes obtained by changing the
form factors.

Object and Scene Representation
In (Chella et al. 1997) we assumed that, in the case of static
scenes, a knoxel k coincides with a 3D primitive shape,
characterized according to Constructive Solid Geometry
(CSG) schema. In particular, we adopted superquadrics
(Jaklič et at. 2000) as the primitive of CSG. Superquadrics
allow us to deal with a compact description of the objects
in the perceived scene. This approach is an acceptable
compromise between the compression of information in
the scene and the necessary computational costs
Moreover, superquadrics provide good expressive power
and representational adequacy.
Superquadrics are geometric shapes derived from the
quadric parametric equation with the trigonometric
functions raised to two real exponents. Fig. 2 shows the
shape of a superquadric obtained by changing its form
factors.
In order to represent composite objects that cannot be
reduced to single knoxels, we assume that they correspond
to groups of knoxels in CS. For example, a chair can be
naturally described as the set of its constituents, i.e., its
legs, its seat and so on.
Fig. 3 (left) shows a hammer composed by two
superquadrics, corresponding to its handle and to its head.
Fig. 3 (right) shows a picture of how hammers are
represented in CS. The concept hammer consists of a set of
pairs, each of them is made up of the two components of a
specific hammer, i.e., its handle and its head.

Figure 3: A hammer made up by two superquadrics and its
representation in the conceptual space.

Dynamic scenes
In order to account for the perception of dynamic scenes,
we choose to adopt an intrinsically dynamic conceptual
space. It has been hypothesized that simple motions are
categorized in their wholeness, and not as sequences of
static frames. In other words, we assume that simple
motions of geometrically primitive shapes are our
perceptual primitives for motion perception.

14

In our dynamic conceptual space, a knoxel now
corresponds to a “generalized” simple motion of a
superquadric. By “generalized” we mean that the motion
can be decomposed in a set of components each of them
associated with a degree of freedom of the moving
superquadric.
A way of doing this, is suggested by the well known
Discrete Fourier Transform (DFT). Given a parameter of
the superquadric, e.g., ax, consider the function of time
ax(t); this function can be seen as the superimposition of a
discrete number of trigonometric functions. This allows the
representation of ax(t) in a discrete functional space, whose
basis functions are trigonometric functions.
By a suitable composition of the time functions of all
superquadric parameters, the overall function of time
describing superquadrics parameters may be represented in
its turn in a discrete functional space. We adopt the
resulting functional space as our dynamic conceptual
space. This new CS can be taught as an “explosion” of the
space in which each main axis is split in a number of new
axes, each one corresponding to a harmonic component. In
this way, a point k in the CS now represents a superquadric
along with its own simple motion. This new CS is also
consistent with the static space: a quiet superquadric will
have its harmonic components equal to zero.
In Fig. 4 (left) a static CS is schematically depicted; Fig. 4
(right) shows the dynamic CS obtained from it. In the CS
on the left, axes represent superquadric parameters; in the
rightmost figure each of them is split in the group of axes,
that represent the harmonics of the corresponding
superquadric parameter.

Figure 4: An evocative, pictorial representation of the
static and dynamic conceptual spaces.

Situations and Actions
Let us consider a scene made up by the robot itself along
with other entities, like objects and persons. Entities may
be approximated by one or more superquadrics. Consider
the robot moving near an object. We call situation this kind
of scene. It may be represented in CS by the set of the

knoxels corresponding to the simple motions of its
components, as in Fig. 5 (left) where ka corresponds to an
obstacle object, and kb corresponds to the moving robot.
A situation is therefore a configuration of knoxels that
describe a state of affairs perceived by the robot. We can
also generalize this concept, by considering that a
configuration in CS may also correspond to a scene
imagined or remembered by the robot.
For example, a suitable imagined situation may correspond
to a goal, or to some dangerous state of affairs, that the
robot must figure out in order to avoid it. We added a
binary valuation that distinguish if the knoxel is effectively
perceived, or it is imagined by the robot. In this way, the
robot represents both its perceptions and its imaginations in
conceptual space.
In a perceived or imagined situation, the motions in the
scene occur simultaneously, i.e., they correspond to a
single configuration of knoxels in the conceptual space.
To consider a composition of several motions arranged
according to a temporal sequence, we introduce the notion
of action: an action corresponds to a “scattering” from one
situation to another situation in the conceptual space, as in
Fig. 5 (right).
We assume that the situations within an action are
separated by instantaneous events. In the transition
between two subsequent configurations, a “scattering” of
some knoxels occur. This corresponds to a discontinuity in
time that is associated to an instantaneous event.
The robot may perceive an action passively when it sees
some changes in the scene, e.g., a person in the robot
environment changing her position. More important, the
robot may be the actor of the action itself, when it moves
or when it interacts with the environment, e.g., when it
pushes an object. In both cases, an action corresponds to a
transition from a situation to another.

Figure 5: An example of situation and action in CS.

Linguistic Area
The representation of situations and actions in the
linguistic area is based on a high level, logic oriented
formalism. The linguistic area acts as a sort of “long term
memory”, in the sense that it is a semantic network of
symbols and their relationships related with the robot

ka

kb

Ax(0) Ax(1)A x(2)
Ax(3)

A y(0)
Ay(1)
Ay(2)

Ay(3)

Az(0)
Az (1)

Az(2)Az(3)

k'b

k''b

15

perceptions and actions. The linguistic area also performs
inferences of symbolic nature.
In the current implementation, the linguistic area is based
on a hybrid KB in the KL-ONE tradition (Brachman and
Schmoltze 1985). A hybrid formalism in this sense is
constituted by two different components: a terminological
component for the description of concepts, and an
assertional component, that stores information concerning
a specific context.
In the domain of robot actions, the terminological
component contains the description of relevant concepts
such as Situation, Action, Time_instant, and so on.
In general, we assume that the description of the concepts
in the symbolic KB is not completely exhaustive. We
symbolically represent only that information that is
necessary for inferences.
The assertional component contains facts expressed as
assertions in a predicative language, in which the concepts
of the terminological components correspond to one
argument predicates, and the roles (e.g. precond, part_of)
correspond to two argument relations.

Figure 6. A fragment of the adopted KB.

Fig. 6 shows a fragment of the terminological knowledge
base; in order to increase the readability, we adopted a
graphical notation of the kind used by (Brachman and
Schmoltze 1985). In the upper part of the figure some
highly general concept is represented. In the lower part, the
Avoid concept is shown, as an example of the description
of an action in the terminological KB.
Every Situation has a starting and an ending instant. So, the
concept Situation is related to Time_instant by the roles
start and end. A Robot is an example of a moving object.
Also actions have a start instant and an end instant. An
Action involves a temporal evolution (a scattering in CS).
Actions have at least two parts, that are Situations not
occurring simultaneously: the precond (i.e., the
precondition) and the effect of the action itself.
An example of Action is Avoid. According to the KB
reported in the figure, the precondition of Avoid is a
Blocked_path situation, to which participate the robot and

a blocking object. The effect of the Avoid action is a
Free_path situation.
In general, we assume that the description of the concepts
in the symbolic KB (e.g. Blocked_path) is not completely
exhaustive. We symbolically represent only that
information that is necessary for inferences.
The assertional component contains facts expressed as
assertions in a predicative language, in which the concepts
of the terminological components correspond to one
argument predicates, and the roles (e.g. precond, part_of)
correspond to two argument relations. For example, the
following predicates describe that the instance of the action
Avoid has as a precondition the instance of the situation
Blocked_path and it has as an effect the situation
Free_path:

Avoid(av1)
precond(av1, bl1)
effect(av1, fr1)
Blocked_path(bl1)
Free_path(fr1)

The linguistic area is the area where the robot interacts
with the user: the user may performs queries by using the
symbolic language in order to orient the actions, for
example, the user may ask the robot to search for an object.
The user may performs queries by using the symbolic
language in order to orient the actions, for example, the
user may ask the robot to search for an object.
Moreover, the system may generate assertions describing
the robot current state, its perceptions, its planned actions,
and so on. However, the terms in our linguistic area are
strictly “anchored” to knoxels in the conceptual area, in the
sense that the meaning of the terms in the linguistic area is
represented by means of the corresponding knoxels in the
conceptual area. Therefore, in our architecture, symbolic
terms are strictly related with the robot visual perceptions.
The role of language is to “summarize” the dynamics of
the knoxels at the conceptual area.

Artificial Qualia
It has been questioned if robot may have “qualia”, i.e.,
qualitative, phenomenal experience. In our opinion it
should be more correct to talk about the robot “artificial
qualia” in the sense of (Aleksander 1996), so the problem
is: during its mission tasks, has the robot some
phenomenal experience?
In the proposed architecture, we have shown that the basis
of the robot perception is the conceptual area, where the
perceived scene is represented in terms of knoxels that
describe the shape and the motion of the perceived entities,
and the linguistic area where the scene is represented in
terms of linguistic entities that summarize the dynamics of
the knoxels in the conceptual space.
Now, we introduce an iconic area where a 2D
reconstruction of the scene is built as a geometric
projection of the knoxels in its conceptual space (where the

16

information about the scene is maintained in 3D) and from
the data coming form sensors and processed by the
subconceptual area.

Figure 7. The revised architecture with the 2D iconic area
and the perception loop.

Fig. 7 shows the robot architecture revisited to take into
account the iconic area: in the revised architecture there is
a perception loop between the conceptual area where the
knoxels are represented, the iconic area and the
subconceptual area. This perception loop has the role to
adjust the match between the 2D iconic representation of
the scene obtained from the knoxels in the conceptual area,
and the external flow of perception data coming out from
the subconceptual area.
We present the operation of the revised architecture with
reference to the CiceRobot robotic project, an operating
autonomous robot performing guided tours at the
Archaeological Museum of Agrigento (Chella & Macaluso
2008).

Figure 8. The initial distribution of expected robot
positions (left), and the cluster of winning expected
positions, highlighted by the arrow.

In order to compare the CS content with the external
environment by the iconic area, the robot is equipped with
a stochastic match algorithm based on particle filter (see,
e.g., Thrun et al. 2005; details are reported in Chella &

Macaluso 2008). In brief, the algorithm generates a cloud
of hypothesized possible positions of the robot (Fig. 8). For
each position, the corresponding expected image scene is
generated in the iconic area by means of geometric
projection operations of the corresponding knoxels in CS.
The generated image is then compared with the acquired
image (Fig. 9).

Figure 9. The 2D image from the robot video camera (left)
and the corresponding 2D image generated in the iconic
area by the knoxels of CS (right).

An error measure ε of the match is computed between the
expected and the effective image scene. The error ε
weights the expected position under consideration by
considering the distribution of the vertical edges in the
generated and the acquired images (mathematical details in
Chella & Macaluso 2008). In subsequent steps, only the
winning expected positions that received the higher weigh
are taken, while the other ones are dropped.

Figure 10. The image acquired by the robot camera along
with the vertical edges and their distribution (left). The
simulated image from CS corresponding to the hypothesis
with the highest weight. (center) A simulated image
corresponding to an hypothesis with a lesser weight (right).

When the image generated in the iconic area matches with
the image acquired from the robot camera, the knoxels in
CS corresponding to the winning image are highlighted:
they give rise to the description of the perceived scene by

Fig. 4. The 2D image output of the robot video camera (left) and the corresponding image
generated by the simulator (right).

Fig. 4 shows the 2D image S as output of the robot video camera (left) and the

corresponding image S’ generated by the simulator (right) by re-projecting in 2D the 3D
information from the current point of view of the robot.

The comparator block c compares the two images of Fig. 4 by using elastic templates
matching [2]. In the current implementation, features are long vertical edges extracted
from the camera image. Spatial relations between edges’ midpoints are used to locate
each edge in the simulated image and compute the relative distortion between the
expected and the effective scene. The relative distortion is a measure of the error ε related
to the differences between the expected image scene and the effective scene. As
previously stated, this error is sent back to the simulator in order to correct the robot
position in the 3D simulator.

Fig. 5. The operation of the particle filter. The initial distribution of expected robot
positions (left), and the cluster of winning expected positions (right).

4 Experimental results

In order to test the proposed architecture we compared the operations of the robot
equipped with the described system with the operations of the robot driven by the
odometric information only.

17

means of the knowledge stored in the CS and the linguistic
area, as described in previous Sects. As an example, in the
situation described in Fig. 9, the assertional component of
the KB generates the predicates stating that the robot is in a
free path, and there is an armchair in front and on the right,
and there is a column on the left:

Free_path(p1)
Armchair(a1)
Armchair(a2)
Column(c1)
Right_of(robot, a2)
Front_of(robot, a1)
Left_of(robot, c1)

We propose that the described reconstruction and match
process constitutes the phenomenal experience of the
robot, i.e., what the robot sees at a given instant. This kind
of seeing is an active process, since it is a reconstruction of
the inner percept in ego coordinates, but it is also driven by
the external flow of information. It is the place in which a
global consistency is checked between the internal model
and the visual data coming from the sensors (Gaglio et al.
1984).
The synthesized pictures of the world so generated projects
back in the external space the geometrical information
contained in the knoxels in the conceptual space and,
matched to incoming sensor data, it accounts for the
understanding of the perceptive conscious experience.
There is no need for a homunculus that observes it, since it
is the ending result of an active reconstruction process,
which is altogether conscious to the robot, which sees
according to its own geometric (not yet linguistic)
interpretation.
The phenomenal experience is therefore the stage in which
the two flows of information, the internal and the external,
compete for a consistent match by the particle filter
algorithm. There a strong analogy with the phenomenology
in human perception: when one perceives the objects of a
scene he actually experiences only the surfaces that are in
front of him, but at the same time he builds a geometric
interpretation of the objects in their whole shape. In
“gestaltian” terms, the robot in the described example
perceives the whole armchairs and columns and not their
visible sides only.

Conclusions
According to the “quantum reality hypothesis” proposed
by (Goertzel 2006), the described conceptual space has
some similarities with the Goertzel internal virtual
multiverse, in the sense that the CS is able to generate
possible worlds and possible sequences and branches of
events. Also the described match operation between the
image acquired by the camera and the 2D reconstructed
image from the iconic area may be seen as a sort of
“collapse” of the several possible situations and actions in
CS to a single perceived situation. Related ideas have been

proposed by Edelman (1989), Humphrey (1992) and Grush
(2004).
The described model of robot perceptual phenomenology
highlights open problems from the point of view of the
computational requirements. The described architecture
requires that the 3D reconstruction of the dynamic scenes
and the match with the scene perceived by the robot during
its tasks should be computed in real time. At the current
state of the art in computer vision and computer graphics
literature, this requirement may be satisfied only in case of
simplified scenes with a few objects where all the motions
are slow.
However, we maintain that our proposed architecture is a
good starting point to investigate robot phenomenology. As
described in the paper it should be remarked that a robot
equipped with artificial phenomenology performs complex
tasks better and more precisely than an “unconscious”
reactive robot.

References
Aleksander, I. 1996. Impossible Minds: My Neurons, My
Consciousness. London: Imperial College Press.
Brachman, R.J. and Schmoltze, J.C. 1985. An overview of
the KL-ONE knowledge representation system, Cognitive
Science, 9, pp. 171-216.
Chalmers, D. J. 1996. The Conscious Mind: In Search of a
Fundamental Theory. Oxford: Oxford University Press.
Chella, A. and Macaluso, I. 2008. The Perception Loop in
CiceRobot, a Museum Guide Robot, Neurocomputing,
doi:10.1016/j.neucom.2008.07.011.
Chella, A., Frixione, M. and Gaglio, S. 1997. A cognitive
architecture for artificial vision, Artificial Intelligence, 89,
pp. 73–111.
Chella, A., Frixione, M. and Gaglio, S. 2000.
Understanding dynamic scenes, Artificial Intelligence, 123,
pp. 89-132.
Edelman, G. 1989. The Remembered Present: A Biological
Theory of Consciousness. New York: Basic Books.
Gaglio, S., Spinelli, G. and Tagliasco, V. 1984. Visual
Perception: an Outline of a Generative Theory of
Information Flow Organization, Theoretical Linguistics,
11, Vol. 1-2, pp. 21-43.
Goertzel, B. 2006. The Hidden Pattern – A Patternist
Philosophy of Mind. Boca Raton: BrownWalker Press.
Grush, R. 2004. The Emulator Theory of Representation:
Motor Control, Imagery and Perception, Behavioral Brain
Sciences, 27, pp. 377–442.
Gärdenfors, P. 2000. Conceptual Spaces. Cambridge, MA:
MIT Press.
Humphrey, N. 1992. A History of Mind. New York:
Springer-Verlag.
Jaklič, A., Leonardis, A., Solina, F. 2000. Segmentation
and Recovery of Superquadrics. Boston, MA: Kluwer
Academic Publishers.
Marr, D. 1982. Vision. New York: W.H. Freeman.
Thrun, S., Burgard, W., Fox, D. Probabilistic Robotics.
Cambridge, MA: MIT Press, 2005.

18

Combining Analytical and Evolutionary Inductive Programming∗

Neil Crossley and Emanuel Kitzelmann and Martin Hofmann and Ute Schmid
Faculty Information Systems and Applied Computer Science, University of Bamberg, Germany

neil.crossley@stud.uni-bamberg.de, {emanuel.kitzelmann, martin.hofmann, ute.schmid}@uni-bamberg.de

Abstract

Analytical inductive programming and evolutionary in-
ductive programming are two opposing strategies for
learning recursive programs from incomplete specifica-
tions such as input/output examples. Analytical induc-
tive programming is data-driven, namely, the minimal
recursive generalization over the positive input/output
examples is generated by recurrence detection. Evolu-
tionary inductive programming, on the other hand, is
based on searching through hypothesis space for a (re-
cursive) program which performs sufficiently well on
the given input/output examples with respect to some
measure of fitness. While analytical approaches are fast
and guarantee some characteristics of the induced pro-
gram by construction (such as minimality and termi-
nation) the class of inducable programs is restricted to
problems which can be specified by few positive exam-
ples. The scope of programs which can be generated by
evolutionary approaches is, in principle, unrestricted,
but generation times are typically high and there is no
guarantee that such a program is found for which the
fitness is optimal. We present a first study exploring
possible benefits from combining analytical and evolu-
tionary inductive programming. We use the analytical
system Igor2 to generate skeleton programs which are
used as initial hypotheses for the evolutionary system
Adate. We can show that providing such constraints
can reduce the induction time of Adate.

Introduction

Automated programming research addresses the old
dream of AI having computer systems which can au-
tomatically generate computer programs (Green et al.
1983; Biermann, Guiho, & Kodratoff 1984). Such sys-
tems would mimic the cognitive ability and expertise
of human programmers. Deductive approaches to au-
tomated programming might reflect the use of gen-
eral and specific knowledge about a programming lan-
guage and the domain of the given problem which
is available to experienced programmers. But nei-
ther proof-based approaches (Manna & Waldinger 1975;
1992) nor transformational approaches (Burstall & Dar-
lington 1977) seem to be plausible cognitive strategies.

∗Research was supported by the German Research Com-
munity (DFG), grant SCHM 1239/6-1.

Furthermore, as programming assistants such systems
can only be used by highly trained experts, since pro-
grams must be completely and correctly specified in
some formal language. Inductive approaches, on the
other hand, might reflect strategies used by human pro-
grammers with limited experience in recursive program-
ming. Common to all approaches to inductive pro-
gramming is that recursive programs are constructed
from incomplete specifications, typically samples of the
desired input/output behavior and possibly additional
constraints such as length or time efficiency. Such kind
of information can be much more easily provided by
programmers without special training and therefore, in-
ductive programming approaches are good candidates
for the development of programming assistants. There
are two distinct approaches to inductive programming:
analytical and evolutionary inductive programming.

Analytical inductive programming is data-driven and
often relies on specifications which consist only of a
small set of positive input/output examples. A recur-
sive program is learned by detecting recurrence rela-
tions in the input/output examples and generalization
over these regularities (Summers 1977; Kitzelmann &
Schmid 2006). Typically, analytical approaches are fast
and they can guarantee certain characteristics for the
constructed program such as minimality of the gener-
alization with respect to the given examples and ter-
mination. However, the class of learnable programs is
necessarily restricted to such problems which can be
specified by small sets of input/output examples. The
scope of learnable programs can be somewhat widened
by allowing the use of background knowledge (Kitzel-
mann 2008). Analytical inductive programming mim-
ics a strategy often used by human programmers with
limited experience in coding recursive programs: Ex-
plicitely write down the behavior of the desired pro-
gram for the first possible inputs, observe the regulari-
ties between succeeding examples which reflect how the
problem of size n can be solved using the solution of the
problem with size n−1 and use this information to con-
struct the recursive solution (Kahney 1989; Kruse 1982;
Pirolli & Anderson 1985).

Evolutionary inductive programming is based on
search through the hypothesis space of possible pro-

19

grams given some (syntactically restricted) program-
ming language. A hypothesis is returned as a solution if
it performs sufficiently well on the input/output exam-
ples with respect to some measure of fitness, typically
involving code length and time efficiency. The scope
of programs learnable with an evolutionary approach
is, in principle, unrestricted. But, generation times are
typically high and there is no guarantee that the re-
turned program is the optimal solution with respect to
the fitness function. Evolutionary inductive program-
ming follows a generate-and-test strategy which – to
some extend – might be used by inexperienced pro-
grammers when they do have a clear idea about the
desired program behavior but no clear idea about the
algorithm. A cognitively more plausible search strat-
egy is hill climbing, that is, searching for a solution by
stepwise transforming the current solution such that it
becomes more similar to the desired goal by covering
more of the positive input/output examples and having
a more desirable fitness. This idea is also incorporated
in the means-end strategy (Newell & Simon 1961) and
was shown as a strategy often exhibited in human prob-
lem solving (Greeno 1974). That is, to make evolution-
ary programming a more plausible strategy and at the
same time to make it more efficient, it would be helpful
to provide a program skeleton as initial seed which is
afterwards stepwise refined with respect to coverage of
examples and fitness.

Therefore, we propose to use analytical inductive pro-
gramming to generate initial seeds for evolutionary pro-
gramming. The combination of both approaches should
be such that if a solution can be generated by analytical
means alone, this fast and reliable approach should be
used exclusively. If the problem is out of scope for ana-
lytical programming, at least a partial solution could be
provided which then can be used as input for program
evolution. In the following, we first describe the evolu-
tionary programming system Adate and the analytical
programming system Igor2. Afterwards we will intro-
duce different strategies for the analytical generation of
program seeds with Igor2 and their incorporation in
Adate. We will report results of our first experiments
and give a short conclusion.

Evolutionary Programming with Adate

Adate (Olsson 1995; Vattekar 2006) was initially pro-
posed in the nineties and has been continually extended
ever since. To our knowledge, it is the most powerful
approach to inductive programming which is currently
available. Adate constructs programs in a subset of
the functional language ML, called ADATE-ML. The
problem specification presented to Adate consists of:
a set of data types and a set of primitive functions;
a set of sample inputs; an evaluation function; an ini-
tial declaration of the goal function f . Sample inputs
typically are input/output pairs. It is enough to give
only positive examples, but it is additionally possible to
provide negative examples. There are a number of pre-
defined evaluation functions, each using different mea-

sures for syntactic complexity and time efficiency of the
goal program. These are completed by a callback evalu-
ation function given in the problem specification which
evaluates the return value of a inferred function for a
given input example. In general, the search heuristic
is to prefer smaller and faster functions. As typical for
evolutionary approaches, there are sets of individuals
which are developed over generations such that fitter
individuals have more chances to reproduce. If no ad-
ditional knowledge is provided, in contrast to usual ap-
proaches, Adate starts with a single individual – the
empty function f .

The function declarations of all constructed program
candidates use the declaration of f , differing only in
the program body. To construct program bodies, only
the programming constructs available in ADATE-ML
can be used together with additionally data types and
primitive functions provided in the problem specifica-
tion.

The search operators are transformations used in re-
production to generate new individuals. These trans-
formations include: replacements of expressions in the
program body, abstraction of expressions by introduc-
ing a call to a newly introduced function, distributing
a function call currently outside a case expression over
all cases, and altering the number and type of func-
tion arguments by various embedding techniques. From
these ADATE constructs compound transformations,
consisting of multiple atomic transformations, depend-
ing of the current stage of the search. Through manage-
ment of an upper bound for the number of compound
transformations used to generate individuals, ADATE
can employ iterative deepening in its exploration of
the problem space. In the current version of Adate

crossover is realized by applying a compound transfor-
mation from one individual to another (Vattekar 2006).

In our experiments we used Adate with the same
set of only positive input/output examples which can
be presented to the analytical system Igor2. No data
types and function primitives beyond ADATE-ML were
used. Performance was evaluated with the predefined
measures. Correctness was evaluated by a user-defined
all-or-nothing function. The to be learned program f
was either presented with an empty body or with one of
four variants of initial seeds constructed by analytical
induction. A simple example is given in figure 1.

With only the minimum necessary background
knowledge, such as necessary data types and atomic
functions, Adate is able to find reasonable solutions
given enough time. Additional background knowledge
can reduce the required transformations to infer correct
solutions, which can also reduce search time. However,
additional background knowledge exacts deeper insights
into the problem on behalf of the problem specifier.
From a programming assistance system perspective, it
would be not convenient to expect that a human pro-
grammer could provide exactly such knowledge which
would increase the speed of generating a solution. This
would presuppose (a) that the user understands the in-

20

Examples (represented in Maude notation):

sorts elem list.

ops a b c d: -> elem list [ctor].

op nil: -> list [ctor].

op _,_ : elem list -> list [ctor].

eq swap(nil) = nil.

eq swap((a,nil)) = (a,nil).

eq swap((a, b, nil)) = (b, a, nil).

swap((a, b, c, nil)) = (c, b, a, nil).

swap((a, b, c, d, nil)) = (d, b, c, a, nil).

Program induced by Igor2:

1. swap(nil) = nil.

2. swap((X, XS)) = (last((X,XS)), sub((X,XS))).

3. last((X, nil)) = X.

4. last((X, XS)) = last(XS).

5. sub ((X, nil)) = nil.

6. sub ((X,Y,XS)) = swap((X , sub((Y,XS)))).

Best program induced by Adate with empty seed:

fun f Xs =

case Xs of

nill => Xs

| cons(V144C, V144D) =>

case V144D of

nill => Xs

| cons(V63EC5, V63EC6) =>

case f(V63EC6) of

nill => cons(V63EC5, cons(V144C, V63EC6))

| cons(V66B8B, V66B8C) =>

cons(V66B8B, cons(V63EC5, f(cons(V144C, V66B8C))))

Figure 1: Swap specified for Adate and Igor2 and
resulting programs

ner workings of Adate and (b) has a deep insight in the
programming problem at hand. From a cognitive per-
spective, such additional knowledge to guide Adate’s
search might be gained by a closer inspection of the
structure of the input/output examples, thereby pro-
viding Adate with a helpful initial hypothesis.

Analytical Inductive Programming with

Igor2

Igor2 (Kitzelmann 2008) – to our knowledge – is cur-
rently the most powerful system for analytical induc-
tive programming. Its scope of inducable programs
and the time efficiency of the induction algorithm com-
pares very well with classical approaches to inductive
logic programming and other approaches to inductive
programming (Hofmann, Kitzelmann, & Schmid 2008).
Igor2 continues the tradition of previous work in learn-
ing Lisp functions from examples (Summers 1977) as
the successor to Igor1 (Kitzelmann & Schmid 2006).

The system is realized in the constructor term rewrit-
ing system Maude. Therefore, all constructors speci-
fied for the data types used in the given examples are
available for program construction. Igor2 specifica-
tions consist of: a small set of positive input/output

examples, presented as equations, which have to be the
first examples with respect to the underlying data type
and a specification of the input data type. Further-
more, background knowledge for additional functions
can (but must not) be provided.

Igor2 can induce several dependent target functions
(i.e., mutual recursion) in one run. Auxiliary functions
are invented if needed. In general, a set of rules is con-
structed by generalization of the input data by intro-
ducing patterns and predicates to partition the given
examples and synthesis of expressions computing the
specified outputs. Partitioning and searching for ex-
pressions is done systematically and completely which is
tractable even for relatively complex examples because
construction of hypotheses is data-driven. An example
of a problem specification and a solution produced by
Igor2 is given in figure 1.

Considering hypotheses as equations and applying
equational logic, the analytical method assures that
only hypotheses entailing the provided example equa-
tions are generated. However, the intermediate hy-
potheses may be unfinished in that the rules contain
unbound variables in the rhs, i.e., do not represent func-
tions. The search stops, if one of the currently best
hypotheses is finished, i.e., all variables in the rhss are
bound.

Igor2’s built-in inductive bias is to prefer fewer case
distinctions, most specific patterns and fewer recursive
calls. Thus, the initial hypothesis is a single rule per
target function which is the least general generalization
of the example equations. If a rule contains unbound
variables, successor hypotheses are computed using the
following operations: (i) Partitioning of the inputs by
replacing one pattern by a set of disjoint more specific
patterns or by introducing a predicate to the righthand
side of the rule; (ii) replacing the righthand side of a
rule by a (recursive) call to a defined function (includ-
ing the target function) where finding the argument of
the function call is treated as a new induction problem,
that is, an auxiliary function is invented; (iii) replacing
subterms in the righthand side of a rule which contain
unbound variables by a call to new subprograms.

Refining a Pattern. Computing a set of more spe-
cific patterns, case (i), in order to introduce a case dis-
tinction, is done as follows: A position in the pattern
p with a variable resulting from generalising the cor-
responding subterms in the subsumed example inputs
is identified. This implies that at least two of the sub-
sumed inputs have different constructor symbols at this
position. Now all subsumed inputs are partitioned such
that all of them with the same constructor at this po-
sition belong to the same subset. Together with the
corresponding example outputs this yields a partition
of the example equations whose inputs are subsumed by
p. Now for each subset a new initial hypothesis is com-
puted, leading to one set of successor rules. Since more
than one position may be selected, different partitions
may be induced, leading to a set of successor rule-sets.

21

For example, let

reverse([]) = []
reverse([X]) = [X]
reverse([X,Y]) = [Y,X]

be some examples for the reverse-function. The pattern
of the initial rule is simply a variable Q, since the exam-
ple input terms have no common root symbol. Hence,
the unique position at which the pattern contains a vari-
able and the example inputs different constructors is the
root position. The first example input consists of only
the constant [] at the root position. All remaining ex-
ample inputs have the list constructor cons as root. Put
differently, two subsets are induced by the root position,
one containing the first example, the other containing
the two remaining examples. The least general gener-
alizations of the example inputs of these two subsets
are [] and [Q|Qs] resp. which are the (more specific)
patterns of the two successor rules.

Introducing (Recursive) Function Calls and
Auxiliary Functions. In cases (ii) and (iii) help func-
tions are invented. This includes the generation of I/O-
examples from which they are induced. For case (ii)
this is done as follows: Function calls are introduced by
matching the currently considered outputs, i.e., those
outputs whose inputs match the pattern of the cur-
rently considered rule, with the outputs of any defined
function. If all current outputs match, then the rhs of
the current unfinished rule can be set to a call of the
matched defined function. The argument of the call
must map the currently considered inputs to the inputs
of the matched defined function. For case (iii), the ex-
ample inputs of the new defined function also equal the
currently considered inputs. The outputs are the corre-
sponding subterms of the currently considered outputs.

For an example of case (iii) consider the last two re-
verse examples as they have been put into one subset
in the previous section. The initial rule for these two
examples is:

reverse([Q|Qs]) = [Q2|Qs2] (1)

This rule is unfinished due two the two unbound vari-
ables in the rhs. Now the two unfinished subterms (con-
sisting of exactly the two variables) are taken as new
subproblems. This leads to two new examples sets for
two new help functions sub1 and sub2:

sub1([X]) = X sub2([X]) = []
sub1([X,Y]) = Y sub2([X,Y]) = [X]

The successor rule-set for the unfinished rule contains
three rules determined as follows: The original unfin-
ished rule (1) is replaced by the finished rule:

reverse([Q|Qs]) = [sub1([Q|Qs] | sub2[Q|Qs]]

And from both new example sets an initial rule is de-
rived.

Finally, as an example for case (ii), consider the ex-
ample equations for the help function sub2 and the gen-
erated unfinished initial rule:

sub2([Q|Qs] = Qs2 (2)

The example outputs, [], [X] of sub2 match the first two
example outputs of the reverse-function. That is, the
unfinished rhs Qs2 can be replaced by a (recursive) call
to the reverse-function. The argument of the call must
map the inputs [X], [X,Y] of sub2 to the corresponding
inputs [], [X] of reverse, i.e., a new help function, sub3
is needed. This leads to the new example set:

sub3([X]) = []
sub3([X,Y] = [X]

The successor rule-set for the unfinished rule contains
two rules determined as follows: The original unfinished
rule (2) is replaced by the finished rule:

sub2([Q|Qs] = reverse(sub3([Q|Qs]))

Additionally it contains the initial rule for sub3.

Analytically Generated Seeds for

Program Evolution

As proposed above, we want to investigate whether us-
ing Igor2 as a preprocessor for Adate can speed-up
Adate’s search for a useful program. Furthermore, it
should be the case that the induced program should
be as least as efficient as a solution found unassisted
by Adate with respect to Adate’s evaluation func-
tion. Obviously, coupling of Igor2 with Adate be-
comes only necessary in such cases where Igor2 fails
to generate a completed program. This occurs if Igor2

was presented with a too small set of examples or if ana-
lytically processing the given set of examples is not fea-
sible within the given resources of memory and time.
In these cases Igor2 terminates with an incomplete
program which still contains unbound variables in the
body of rules, namely, with missing recursive calls or
auxiliary functions.

To have full control over our initial experiments,
we only considered problems which Igor2 can solve
fully automatically. We artificially created partial solu-
tions by replacing function calls by unbound variables.
We investigated the following strategies for providing
Adate with an initial seed:

For a given ADATE-ML program of the form

fun f (...) : myType = raise D1
fun main (...) : myType = f (...)

• the function f is redefined using the partial solution
of Igor2,

• or the problem space becomes restricted from the
top-level by introducing the partial solution in the
function main.

• Any Igor2 induced auxiliary functions can also be
included: as an atomic, predefined function to be
called by f or as an inner function of f also subject
to transformations.

Experiments

We presented examples of the following problems to
Igor2:

22

switch(X) = Y iff the list Y can be obtained from the
list X by swapping every element on an odd index in
X with the element with the next incremental even
index.

sort(X) = Y iff the list Y is a permutation of X with
all elements sorted in increasing order.

swap (X) = Y iff the list Y is identical to the list X,
except that the first and last element are swapped in
around in Y.

lasts(X) = Y iff X is a list of lists and Y is a list
containing the last element of each list in X in the
order those lists appear in X.

shiftR(X) = Y iff the list Y is identical to the list
X, except that the last element in X is on the first
position in Y and all other elements are shifted one
position to the right.

shiftL(X) = Y iff the list Y is identical to the list
X, except that the first element in X is on the last
position in Y and all other elements are shifted one
position to the left.

insert(X, Y) = Z iff X is a list of elements sorted in
an ascending order and Z is a list of elements X + Y
sorted in an ascending order.

To generate an initial seed for Adate, typically the
righthand side of a recursive rule was replaced by an
unbound variable. For example, the solution for switch
provided by Igor2 was

switch ([]) = []
switch ([X]) = [X]
switch ([X,Y|XS]) = [Y, X, switch(XS)]

and the third rule was replaced by

switch ([X,Y|XS]) = Z.

If Igor2 induced solutions with auxiliary functions,
either the function calls on the righthand side of the
rules were made known to Adate (see section Analyt-
ically Generated Seeds for Program Evolution) or this
information was obscured by again replacing the com-
plete righthand side by a variable.

For example, for swap, Igor2 inferred one atomic
function last and inferred that the solution consists of
two functions that recursively call each other as shown
in figure 1. Adate was presented with the rule 1, 2, 5
and 6 from figure 1 where the righthand side of rule 6
was replaced with an unbound variable.

The results were ascertained by analysing the log files
produced to document an Adate run. To effectively
compare the specifications we evaluated each according
to the time taken to generate the most correct func-
tions. Because Adate infers many incorrect programs
in the search process, we restricted our focus to those
programs that:

• were tested by ADATE against the complete set of
given training examples,

• terminated for each training example, and

Table 1: Results for the best strategy (Time in seconds,
Execution see text)
Problem Type Time Execution

switch Unassisted 4.34 302
Restricted 0.47 344
Redefined 3.96 302

sort Unassisted 457.99 2487
Restricted 225.13 2849

swap Unassisted 292.05 1076
Restricted + functions 41.43 685

lasts Unassisted 260.34 987
Restricted 6.25 1116

shiftR Unassisted 8.85 239
Redefined + functions 1.79 239

shiftL Unassisted 4.17 221
Restricted 0.61 281

insert Unassisted 7.81 176
Restricted 18.37 240

• generated a correct output for each training example.

This allowed us to achieve a meaningful overview of
the performance of the specifications. While an anal-
ysis of the inferred programs with poorer performance
provides insights into the learning process, it is out-
side of our scope. Nonetheless, Adate generates a very
complete overview of inferred programs in the log files.
For the analysis of the Adate runs we needed only the
following information:

• the elapsed time since the start of the search until
the creation of the program,

• the breakdown of the results the function produced
for the examples, which in our case is the number
of results evaluated as correct, incorrect or timed-
out. Due to our accepted evaluation restrictions, we
filtered out all inferred functions which did not attain
100% correct results with the test examples.

• an Adate time evaluation of the inferred function.
This is the total execution time taken by the func-
tion for all the test examples as defined by ADATEs

built in time complexity measure. This is compare-
able to a count of all execution operations in runtime,
including method and constructor calls and returns.

Because all the specifications designed to solve the
same problem included exactly the same examples, we
could now compare the respective runs with each other.
Table 1 is a summary comparing the most efficient so-
lutions of the unassisted specifications with those of the
best specification for the same problem. Included is the
problem name, the specification type (either unassisted
or the type of assistance), the creation time of the so-
lution, the execution time necessary for the same set of
examples.1

1To run Adate only the 1995 ML compiler can
be used. The technical details are given in a report

23

Igor2 produced solutions with auxiliary functions
for the problems sort, swap andshiftR. In the case of
sort the best result for Adate was gained by giving no
information about the auxiliary functions.

Attention should be drawn to the uniformly quicker
inference times achieved by the assisted Adate spec-
ifications with the noteable exception of insert. Two
assisted specifications – swap and shiftR resulted in bet-
ter results that were also inferred sooner, whereas the
remaining assisted specifications produced results be-
tween 14% and 27% less efficient than their unassisted
counterparts. All in all, one could summarise, that this
relatively small comparative inefficiency is more than
compensated by the drastically reduced search time,
just over 41 times quicker in the case of lasts. That is,
our initial experiments are promising and support the
idea that search in a generate-and-test approach can be
guided by additional knowledge which can be analyti-
cally obtained from the examples.

Conclusions

In inductive programming, generate-and-test ap-
proaches and analytical, data-driven methods are dia-
metrically opposed. The first class of approaches can in
principal generate each possible program given enough
time. The second class of approaches has a limited
scope of inducable programs but achieves fast induc-
tion times and guarantees certain characteristics of the
induced programs such as minimality and termination.
We proposed to marry these two strategies hoping to
combine their respective strengths and get rid of their
specific weaknesses. First results are promising since we
could show that providing analytically generated pro-
gram skeletons mostly guides search in such a way that
performance times significantly improve.

Since different strategies showed to be most promis-
ing for different problems and since for one problem
(insert) providing an initial solution did result in longer
search time, in a next step we hope to identify problem
characteristics which allow to determine which strategy
of knowledge incorporation into Adate will be the most
successful. Furthermore, we hope either to find a fur-
ther strategy of knowledge incorporation which will re-
sult in speed-up for insert, or – in case of failure – come
up with additional criteria to determine when to re-
frain from providing constraining knowledge to Adate.
Our research will hopefully result in a programming as-
sistant which, given a set of examples, can determine
whether to use Igor2 or Adate stand alone or in com-
bination.

References

Biermann, A. W.; Guiho, G.; and Kodratoff, Y., eds.
1984. Automatic Program Construction Techniques.
New York: Macmillan.

by Neil Crossley available at http://www.cogsys.wiai.uni-
bamberg.de/teaching/ss07/p cogsys/adate-report.pdf.

Burstall, R., and Darlington, J. 1977. A transforma-
tion system for developing recursive programs. JACM
24(1):44–67.

Green, C.; Luckham, D.; Balzer, R.; Cheatham, T.;
and Rich, C. 1983. Report on a knowledge-based soft-
ware assistant. Technical Report KES.U.83.2, Kestrel
Institute, Palo Alto, CA.

Greeno, J. 1974. Hobbits and orcs: Acquisition of a
sequential concept. Cognitive Psychology 6:270–292.

Hofmann, M.; Kitzelmann, E.; and Schmid, U. 2008.
Analysis and evaluation of inductive programming sys-
tems in a higher-order framework. In Dengel, A.;
Berns, K.; Breuel, T. M.; Bomarius, F.; and Roth-
Berghofer, T. R., eds., KI 2008: Advances in Artifi-
cial Intelligence (31th Annual German Conference on
AI (KI 2008) Kaiserslauten September 2008), number
5243 in LNAI, 78–86. Berlin: Springer.

Kahney, H. 1989. What do novice programmers know
about recursion? In Soloway, E., and Spohrer, J. C.,
eds., Studying the Novice Programmer. Lawrence Erl-
baum. 209–228.

Kitzelmann, E., and Schmid, U. 2006. Inductive syn-
thesis of functional programs: An explanation based
generalization approach. Journal of Machine Learning
Research 7(Feb):429–454.

Kitzelmann, E. 2008. Analytical inductive functional
programming. In Hanus, M., ed., Pre-Proceedings
of the 18th International Symposium on Logic-Based
Program Synthesis and Transformation (LOPSTR
2008, Valencia, Spain), 166–180.

Kruse, R. 1982. On teaching recursion. ACM
SIGCCE-Bulletin 14:92–96.

Manna, Z., and Waldinger, R. 1975. Knowledge and
reasoning in program synthesis. Artificial Intelligence
6:175–208.

Manna, Z., and Waldinger, R. 1992. Fundamentals of
deductive program synthesis. IEEE Transactions on
Software Engineering 18(8):674–704.

Newell, A., and Simon, H. 1961. GPS, A program that
simulates human thought. In Billing, H., ed., Lernende
Automaten. München: Oldenbourg. 109–124.

Olsson, R. 1995. Inductive functional programming
using incremental program transformation. Artificial
Intelligence 74(1):55–83.

Pirolli, P., and Anderson, J. 1985. The role of learning
from examples in the acquisition of recursive program-
ming skills. Canadian Journal of Psychology 39:240–
272.

Summers, P. D. 1977. A methodology for LISP
program construction from examples. Journal ACM
24(1):162–175.

Vattekar, G. 2006. Adate User Manual. Technical
report, Ostfold University College.

24

The China-Brain Project

Report on the First Six Months

Prof. Dr. Hugo de GARIS, Dean Prof. Dr. ZHOU Changle, Prof. Dr. SHI Xiaodong,
Dr. Ben GOERTZEL, Prof. PAN Wei, Prof. MIAO Kehua,

Prof. Dr. ZHOU Jianyang, Dr. JIANG Min, Prof. ZHEN Lingxiang,
Prof. Dr. WU Qinfang, Prof. Dr. SHI Minghui, LIAN Ruiting, CHEN Ying

Artificial Brain Lab

Cognitive Science Department
School of Information Science and Technology

Xiamen University, Xiamen, China

profhugodegaris@yahoo.com

Abstract

The “China Brain Project” is a 4 year (2008-2011),
10.5 million RMB research project to build China’s
first artificial brain, which will consist of 10,000-
50,000 neural net modules which are evolved rapidly
in special FPGA hardware, downloaded one by one
into a PC or supercomputer, and then connected
according to the designs of human “BAs” (brain
architects) to build an artificial brain with thousands
of pattern detectors to control the hundreds of
behaviors of a two legged robot.

1. Introduction

The “China Brain Project”, based at Xiamen
University, is a 4 year (2008-2011), 10.5 million
RMB, 20 person, research project to design and
build China’s first artificial brain (AB). An
artificial brain is defined here to be a “network of
(evolved neural) networks”, where each neural
net(work) module performs some simple task
(e.g. recognizes someone’s face, lifts an arm of
a robot, etc), somewhat similar to Minsky’s idea
of a “society of mind” [1], i.e. where large
numbers of unintelligent “agents” link up to
create an intelligent “society of agents”. 10,000s
of these neural net modules are evolved rapidly,
one at a time, in special (FPGA based) hardware
and then downloaded into a PC (or more
probably, a supercomputer PC cluster). Human
“BAs” (brain architects) then connect these
evolved modules according to their human
designs to architect artificial brains. Special

software, called IMSI (see section 5) is used to
specify these connections, and to perform the
neural signaling of the whole brain (in real time).
The main aim of this research project is to show
that using this (evolutionary engineering)
approach to brain building is realistic, by simply
building one and show that it can have thousands
of pattern recognizers, and hundreds of motions
that are switched between, depending on external
and internal stimuli. This project already has
(Fujian) province “key lab” financial support. It
is hoped, in three years, that it will win “key
state (i.e. federal) lab” status. In 5-10 years, it is
hoped that China will establish a “CABA”
(Chinese Artificial Brain Administration),
consisting of thousands of scientists and
engineers, to build national brains to fuel the
home robot industry (which may become the
worlds largest) (See section 11.)

There are about 20 people (8 professors)
involved in this project, divided into specialist
teams, i.e.

a) “Vision team” (who evolve pattern
recognition modules and create vision system
architectures).

b) ”Robot team” (who program the NAO robot
[2] to perform the many (hundreds of) behaviors
that the robot is to perform).

c) “Hardware Acceleration team” (who
program the FPGA electronic boards we use to

25

evolve neural net modules as quickly as
possible).

d) “Supercomputer team” (who port the
Parcone and IMSI code to a supercomputer, to
accelerate the neural evolution and signaling of
the artificial brain).

e) “Language team” (who give the robot
language capabilities, i.e. speech, listening,
understanding)

f) “Consciousness team” (who aim to give the
NAO robot some degree of self awareness).

By the end of this 4 year project, we hope to be
able to show the world an artificial brain,
consisting of 10,000s of evolved neural net
modules that control the 100s of behaviors of a
NAO robot (and probably a more sophisticated
robot) that makes a casual observer feel that the
robot “has a brain behind it”. It also hoped that
this artificial brain project will encourage other
research teams to work in this new area, as well
as help establish an artificial brain industry that
will stimulate the growth of the home robot
industry, probably the world’s largest by 2030.

2. The “Parcone” (Partially

Connected Neural Evolutionary)
Neural Net Model

If one chooses to build an artificial brain based
on the “evolutionary engineering” of neural net
modules, then the choice of the neural net model
that one uses to evolve the modules is critical,
since everything else follows from it. Hence
quite some thought went into its choice. We
eventually decided upon a partially connected
model (that we called the “Parcone” (i.e.
partially connected neural evolutionary) model,
since we wanted to be able to input images from
digital cameras that started off as mega-pixel
images, which were then compressed to 1000s to
10,000s of pixels. In earlier work, the first author
[3], had always used fully connected neural
networks for his neural net evolution work, but
with 10,000s of pixel inputs (with one pixel per
input neuron) a fully connected neuron would
have an unreasonably large number of
connections (i.e. hundreds of millions).

The moment one chooses a partially connected
neural net model, one must then keep a list of all

the neurons that each neuron connects to. This
we did in the form of a hash table. See the data
structures of Fig. 2. Each neuron that is
connected to from a given neuron has a unique
integer ID that is hashed to find its index in the
hash table of the given neuron. This hash table
slot contains a pointer to a struct that contains
the integer ID of the neuron connected to, the
weight bits of the connection, and the decimal
weight value.

These connections and weight values are used to
calculate the neural output signal of the given
neuron. The weight bits are mutated during the
evolution of the neural net, as well as the
connections, by adding and cutting them
randomly. The model contained many
parameters that are chosen by the user, e.g. the
number of input, middle, and output neurons, the
number of weight-sign bits, the number of hash
table slots, the population size, mutation rates,
etc. These parameters were “tuned” empirically
for maximum evolution speed.

3. Pattern Detection Results

Once the Parcone code was written and
debugged, the first pattern recognition task we
undertook was to see how well it could recognize
faces. Fig. 3 shows an example of the face inputs
we used. We took photos of 6 people, with 5
images of each person at different angles, as Fig.
3 shows. 3 of these images of a given person
were used as the positive cases in the training set,
plus 3 each of two other people, as the negative
cases in the training set. The Parcone neural net
was evolved to output a strong positive neural
signal for the positive cases, and a strong
negative signal for the negative cases. When the
other positive images not seen by the evolved
module were input, the outputs were strong
positive, so the module generalized well.

We then automated the pattern detection so that
P positive images could be used in the evolution,
and N negative images. Users could then select
from a large menu of images the P positive and
N negative images they wanted in the evolution.
We evolved shoe detectors, mobile phone
detectors etc. in a similar way. When a shoe
detector was presented with a face, it rejected it
(i.e. it output a negative neural signal) in about
95% of cases, and vice versa. Thus we found that
when a detector for object “X” was evolved, it
rejected objects of type “not X”. This ability of

26

the Parcone model will hopefully prove to be
very useful for constructing the 1000s of pattern
detectors for the artificial brain.

At the time of writing (Oct 2008) tests are
currently underway by the vision group to evolve
motion detectors. A moving image is input as a
set of “movie frames”. Once we have the
Parcone model implemented in FPGA based
electronics (see section 6) we hope to be able to
evolve pattern detectors (whether stationary or
moving) in real time (i.e. in about 1 second).

4. The NAO (Robocup Robot
Standard) Robot

Fig. 1 shows the NAO robot, a product of the
French company Aldebaran [2], in Paris. It is of
waist height, costs about $20,000, can walk on
its two legs, talk, listen, grip with a thumb and
two fingers, and has one eye. It is now the
Robocup robot standard, after Sony stopped
supporting their Aibo robo-pet dog, which was
the previous Robocup robot standard.
Interestingly for our project, the NAO robot
(which means “brain” in Chinese by the way
(coincidence? marketing?)) comes with
accompanying motion control software, called
“Choregraphe” which we have chosen to use,
rather than try to evolve motion control for all
the 25 motors that the NAO robot possesses. We
expect to have hundreds of motions for the NAO
robot so that it can accomplish many tasks that
the artificial brain initiates.

We are acutely conscious that no one will
actually “see” the artificial brain, since it will
consist of 10,000s of neural net modules hidden
inside the PC or supercomputer that performs the
neural signaling of the artificial brain. All that
human observers will see will be the robot, that
the artificial brain controls, so we are hoping that
when observers watch the hundreds of behaviors
of the robot, with its 1000s of pattern detectors,
they will have the impression that the NAO robot
“has a brain behind it” and be suitably impressed
(at least enough for the funding of the research
project to be continued). Later in the project, we
intend building a more sophisticated robot with
two eyes, and hands with better fingers, capable
of real grasping, with touch sensors, etc. The
project has a dedicated “robot group” who work
on generating its motions, and control.

5. IMSI (Inter Module Signaling
Interface)

IMSI stands for “inter module signaling
interface”, i.e. the software “operating system”
that is used for several purposes, namely :-

a) It allows the “BAs” (brain architects, i.e. the
people who decide which neural net modules to
evolve (i.e. their fitness definitions, etc) and the
architectures of artificial brains) to specify the
connections between the modules (e.g. the output
of module M2849 (which performs task “X”)
connects to the 2nd input of module M9361
(which performs task “Y”)). Such information is
stored in special look up tables (LUTs).

b) These LUTs are then used to allow the IMSI
to perform the neural signaling of the whole
artificial brain. When the output signal is being
calculated for a particular module, it needs to
know the values of the neural signals it is getting
from other modules, and to which modules to
send its output signal.

The IMSI calculates the output neural signal
values of each module sequentially, for all
modules in the artificial brain. Placing dummy
weight values for about 1000 connections per
module, allowed us to use a PC to determine
how many such “dummy” modules could have
their neural output signals calculated sequentially
in “real time” (defined to be 25 output signals for
every neuron in the artificial brain). The answer
was 10,000s depending on the speed of the PC.
Since we have a 10-20 PC node supercomputer
cluster at our disposal, we can realistically
envision building an artificial brain with several
10,000s of neural net modules.

At first, we envisioned that the artificial brain
would consist solely of evolved neural net
modules, interconnected appropriately to
generate the functionality we desired. However
the decision mentioned in section 4 (on the NAO
robot) that we would use Aldebaran’s
“Choregraphe” software to control the motions
of the robot’s many behaviors, implies that the
IMSI will be a hybrid of neural net modules and
motion control routines written with
Choregraphe.

The IMSI software will be designed and coded in
November of 2008, allowing the first “micro-

27

brain”, consisting of some dozen or so modules,
to be designed and tested.

6. FPGA Based Parcone Module

Evolution

The accelerator group is using 3 FPGA
electronic boards to evolve neural net modules
(based on the Parcone model) as quickly as
possible, hopefully in real time (i.e. in about a
second). Real time evolution will allow
continuous learning of the artificial brain, so
evolution speed has always been a dominant
factor in our research. If these FPGA boards
prove to be too slow, we may try a hybrid
analog-digital approach, where the neural
signaling is done using analog neurons based on
Prof. Chua’s “CNN” (cellular neural networks)
[4], and the evolution is controlled digitally.
This latter approach will demand a much higher
learning curve, so will not be undertaken if the
FPGA board approach proves to be sufficient.

7. The Language Component

The NAO robot is to be given language
capabilities. Prof. SHI Xiaodong and Dr. Ben
GOERTZEL are in charge of the “Language
team”. The NAO robot (actually, the artificial
brain) is to be made capable of speaking,
listening, and understanding spoken commands
and answering spoken questions. This will
involve speech to text and text to speech
conversion, which will probably use standard
“off the shelf” products. The research effort will
be based more on language understanding,
parsing, etc. The aim is to be able to give the
robot spoken commands, e.g. “Go to the door”.
“Pick up the pencil on the table”, etc. The robot
should also be capable of giving verbal replies to
simple questions, e.g. the question “Where is
Professor X” might get an answer “Near the
window”.

8. The Consciousness (Self

Awareness) Component

Dean Zhou Changle, (dean of the School of
Information Science and Technology) at Xiamen
University, is responsible for the consciousness
(self awareness) component of the project. At the
time of writing (Oct 2008), this component is

still under consideration. The dean is keen on
this component, even referring to this project as
the “Conscious Robot Project”.

9. Near Future Work

At the time of writing (Oct 2008), the China
Brain Project is only about 6 months old, so
there is not a lot to report on in terms of
completed work. Now that the evolvable neural
net model (Parcone) is complete and tested, the
most pressing task is to put a (compressed)
version of it into the FPGA boards and
(hopefully) speed up the evolution of a neural net
(Parcone) module so that it takes less than a
second. This “real time” evolution then opens up
an exciting prospect. It would allow “real time”
continuous learning. For example – imagine the
robot sees an object it has never seen before. All
the pattern recognition circuits it has already
stored in its artificial brain give weak, i.e.
negative output signals. Hence the robot brain
can detect that the object is not recognized,
hence a new pattern detector circuit can then be
learned in real time and stored.

The robot group will use the Choregraphe
software to generate hundreds of different
behaviors of the NAO robot.

The vision group will continue testing the
Parcone model for evolving pattern detectors, e.g.
detecting motion (e.g. distinguishing objects
moving left from those moving right, between
those moving towards the eye of the robot
quickly, from those that are moving slowly, etc).
There may be thousands of pattern detectors in
the artificial brain by the time the project
contract finishes at the end of 2011.

We hope to have integrated a language
component by March of 2009 (before the AGI-
09 conference), so that we can have the robot
obey elementary spoken commands, e.g. “move
to the door”, “ point to the window”, “what is my
name?” etc.

Also by then, the aims of the “consciousness
(self awareness) component” should be better
clarified and whose implementation should have
begun.

28

10. Goals for the Next Few Years

The first year is devoted largely to tool building
(e.g. choosing and coding the evolvable neural
net model, testing its evolvability as a pattern
detector, implementing the Parcone model in the
FPGA boards, programming the motions of the
NAO robot with the Choregraphe software,
writing the IMSI code, etc). In the second year,
the first artificial brain architectures will be
created and implemented, with 10, 20, 50, 100,
etc modules. The language component will be
added to the brain. At regular intervals, demos
will be built, to show off progress. We expect
that each scaling up of the size of the artificial
brain (i.e. each substantial increase in the number
of modules in the brain) will raise new
challenges that will have to be overcome by the
creativity of the team’s BAs (brain architects).
At the end of 4 years, it is hoped that the
artificial brain will have 10,000s of modules.
Observing a robot controlled by such an artificial
brain should make a casual observer feel that the
robot “has a brain behind it”.

11. Artificial Brain Research Policy

in China

The first author thinks that the artificial brain
industry will be the world’s biggest by about
2030, because artificial brains will be needed to
control the home robots that everyone will be
prepared to spend big money on, if they become
genuinely intelligent and hence useful (e.g. baby
sitting the kids, taking the dog for a walk,
cleaning the house, washing the dishes, reading
stories, educating its owners etc). China has been
catching up fast with the western countries for
decades. The first author thinks that China
should now aim to start leading the world (given
its huge population, and its 3 times greater
average economic growth rate compared to the
US) by aiming to dominate the artificial brain
industry. At the time of writing (Oct 2008), plans
are afoot (with the support of the most powerful
people in China in artificial intelligence) to
attempt to persuade the Chinese Ministers of
Education and of Science and Technology to
undertake a long term strategy (over a 20 year
time frame) to dominate the global artificial
brain industry, by initially stimulating the
establishment of artificial brain (and intelligence
science) labs in universities across China
(somewhat similar to our Artificial Brain Lab at

Xiamen), then awarding “key lab” status at both
province and national levels to some of these
labs, the creation of a Chinese National
Artificial Brain Association, and especially,
within a 5 to 10 year time frame, the
establishment of a “CABA” (Chinese Artificial
Brain Administration), which would be a
government administration (similar to America’s
NASA) that would employ thousands of
engineers and scientists to build artificial brains
for the Chinese artificial brain industry. Copying
the human brain with its 100 billion neurons and
quadrillion synapses will be an immense task
requiring large numbers of Chinese “brain
workers”. It is expected that other countries will
quickly copy China’s lead, so that one will soon
see national brain building projects in most of
the leading high tech nations.

References

[1] Marvin MINSKY, “Society of Mind”, Simon
& Schuster, 1988.

[2] http://www.aldebaran-robotics.com/eng
/index.php

[3] Hugo de Garis, in book, Artificial General
Intelligence 2008 : Proceedings of the First AGI
Conference (Frontiers in Artificial Intelligence
and Applications) (Frontiers in Artificial
Intelligence and Applications)

[4] Leon CHUA and Tamas ROSKA, “Cellular
Neural Networks and Visual Computing,
Foundations and Applications”, Cambridge
University Press, 2002.

Fig. 1 The NAO Robot Controlled
by Our Artificial Brain

29

Fig. 2 Data Structures of the “Parcone” Neural Net Model

Fig. 3 Face Images for Face Detection Evolution of Parcone

Chr
m

A chromosome is a
pointer to NList

A Hash is a hash table

of pointers to a NeuronWt
struct

 Neuron ID
 Weight Bits
Weight Value

NeuronWt
 struct

HashPtr

NList Population

Chrm is a
pointer to a

population of
chromosome
s

NListPtr

Hash

 Evolution Set
Faces

Test Set
Faces

60*60 (pixel)*3 (RGB) = 10800 pixel values = 10800 input neurons to Parcone

30

AGI Preschool:
A Framework for Evaluating Early-Stage Human-like AGIs

Ben Goertzel, Stephan Vladimir Bugaj

Novamente LLC & Singularity Institute for AI, AGI Research Institute
1405 Bernerd Place, Rockville MD 20851, USA

ben@goertzel.org, stephan@bugaj.com

Abstract
A class of environments for teaching and evaluating AGI
systems is described, modeled loosely on preschools used
for teaching human children and intended specifically for
early-stage systems aimed at approaching human-level,
human-inspired AGI through a process resembling human
developmental psychology. Some particulars regarding
implementation of environments in this class in online
virtual worlds are presented, along with details on
associated evaluation tasks, and discussion of environments
potentially appropriate for “AGI preschool graduates,”
based on more advanced human schooling.

Introduction
One of the many difficult issues arising in the course of
research on human-level AGI is that of “evaluation and
metrics” – i.e., AGI intelligence testing. The Turing test
(Turing, 1950) approaches the question of how to tell if an
AGI has achieved human-level intelligence, and while
there are debates and subtleties even with this well-known
test (Moor, 200l; French, 1990; Hayes and Ford, 1995), the
question we’ll address here is a significantly trickier one:
assessing the quality of incremental progress toward
human-level AI.
 (Laird, et al, 2009) discusses some of the general
difficulties involved in this type of assessment, and some
requirements that any viable approach must fulfill. Here,
rather than surveying the spectrum of possibilities, we will
focus on describing in detail one promising approach:
emulation, in a multiuser online virtual world, of an
environment similar to preschools used in early human
childhood education. Complete specification of an “AGI
Preschool” would require much more than a brief
conference paper; our goal here is to sketch the idea in
broad outline, and give a few examples of the types of
opportunities such an environment would afford for
instruction, spontaneous learning and formal and informal
evaluation of certain sorts of early-stage AGI systems.

The Need for “Realistic” AGI Testing
One might question the need or importance of a new,
overall framework for AGI intelligence testing, such as the

AGI Preschool appraoch described here. After all, there
has already been a lot of work on evaluating the capability
of various AI systems and techniques. However, we
believe that the approaches typically taken have significant
shortcomings from an AGI perspective.
 Certainly, the AI field has inspired many competitions,
each of which tests some particular type or aspect of
intelligent behavior. Examples include robot competitions,
tournaments of computer chess, poker, backgammon and
so forth at computer olympiads, trading-agent
competition, language and reasoning competitions like the
Pascal Textual Entailment Challenge, and so on. In
addition to these, there are many standard domains and
problems used in the AI literature that are meant to capture
the essential difficulties in a certain class of learning
problems: standard datasets for face recognition, text
parsing, supervised classification, theorem-proving,
question-answering and so forth.
 However, the value of these sorts of tests for AGI is
predicated on the hypothesis that the degree of success of
an AI program at carrying out some domain-specific task,
is correlated the the potential of that program for being
developed into a robust AGI program with broad
intelligence. If AGI and problem-area-specific “narrow
AI” are in fact very different sorts of pursuits requiring
very different principles, as we suspect (Goertzel and
Pennachin, 2006), then these tests are not strongly relevant
to the AGI problem.
 There are also some standard evaluation paradigms
aimed at AI going beyond specific tasks. For instance,
there is a literature on “multitask learning,” where the goal
for an AI is to learn one task quicker given another task
solved previously (Caruna, 1997; Thrun and Mitchell,
1995; Ben-David and Schuller, 2003; Taylor and Stone,
2007). This is one of the capabilities an AI agent will need
to simultaneously learn different types of tasks as proposed
in the Preschool scenario given here. And there is a
literature on “shaping,” where the idea is to build up the
capability of an AI by training it on progressively more
difficult versions of the same tasks (Laud and Dejong, 203;
Walsh and Littman, 2006). Again, this is one sort of
capability an AI will need to possess if it is to move up
some type of curriculum, such as a school curriculum.
 While we applaud the work done on multitask learning

31

and shaping, we feel that exploring these processes using
mathematical abstractions, or in the domain of various
machine-learning or robotics test problems, may not
adequately address the problem of AGI. The problem is
that generalization among tasks, or from simpler to more
difficult versions of the same task, is a process whose
nature may depend strongly on the overall nature of the set
of tasks and task-versions involved. Real-world tasks have
a subtlety of interconnectedness and developmental course
that is not captured in current mathematical learning
frameworks nor standard AI test problems.
 To put it mathematically, we suggest that the universe of
real-world human tasks has a host of “special statistical
properties” that have implications regarding what sorts of
AI programs will be most suitable; and that, while
exploring and formalizing the nature of these statistical
properties is important, an easier and more reliable
approach to AGI testing is to create a testing environment
that embodies these properties implicitly, via its being an
emulation of the cognitively meaningful aspects of the
real-world human learning environment.
 One way to see this point vividly is to contrast the
current proposal with the “General Game Player” AI
competition, in which AIs seek to learn to play games
based on formal descriptions of the rules.1 Clearly doing
GGP well requires powerful AGI; and doing GGP even
mediocrely probably requires robust multitask learning and
shaping. But we suspect GGP is far inferior to AGI
Preschool as an approach to testing early-stage AI
programs aimed at roughly humanlike intelligence. This is
because, unlike the tasks involved in AI Preschool, the
tasks involved in doing simple instances of GGP seem to
have little relationship to humanlike intelligence or real-
world human tasks.

Multiple Intelligences
Intelligence testing is, we suggest, best discussed and
pursued in the context of a theoretical interpretation of
“intelligence.” As there is yet no consensus on the best
such interpretation (Legg and Hutter (2006) present a
summary of over 70 definitions of intelligence presented in
the research literature), this is a somewhat subtle point.
 In our own prior work we have articulated a theory
based on the notion of intelligence as “the ability to
achieve complex goals in complex environments,” a
definition that relates closely to Legg and Hutter’s (2007)
more rigorous definition in terms of statistical decision
theory. However, applying this sort of theory to practical
intelligence testing seems very difficult, in that it requires
an assessment of the comparative complexity of various
real-world tasks and environments. As real-world tasks
and environments are rarely well-formalized, one’s only
pragmatic option is to assess complexity in terms of human
common sense or natural language, which is an approach
fraught with “hidden rocks,” though it might prove fruitful

1 http://games.stanford.edu/

if pursued with sufficient care and effort.
 Here we have chosen an alternate, complementary
approach, choosing as our inspiration Gardner’s (1983)
multiple intelligences (MI) framework -- a psychological
approach to intelligence assessment based on the idea that
different people have mental strengths in different high-
level domains, so that intelligence tests should contain
aspects that focus on each of these domains separately. MI
does not contradict the “complex goals in complex
environments” view of intelligence, but rather may be
interpreted as making specific commitments regarding
which complex tasks and which complex environments are
most important for roughly human-like intelligence.
 MI does not seek an extreme generality, in the sense that
it explicitly focuses on domains in which humans have
strong innate capability as well as general-intelligence
capability; there could easily be non-human intelligences
that would exceed humans according to both the
commonsense human notion of “general intelligence” and
the generic “complex goals in complex environments” or
Hutter/Legg-style definitions, yet would not equal humans
on the MI criteria. This strong anthropocentrism of MI is
not a problem from an AGI perspective so long as one uses
MI in an appropriate way, i.e. only for assessing the extent
to which an AGI system displays specifically human-like
general intelligence. This restrictiveness is the price one
pays for having an easily articulable and relatively easily
implementable evaluation framework.
 Table 1 sumarizes the types of intelligence included in
Gardner’s MI theory. Later on, we will suggest that one
way to assess an AGI Preschool implementation is to ask
how well it covers all the bases outlined in MI theory.

Intelligence
Type

Aspects

Linguistic words and language, written and spoken; retention,
interpretation and explanation of ideas and
information via language, understands relationship
between communication and meaning

Logical-
Mathematical

logical thinking, detecting patterns, scientific
reasoning and deduction; analyse problems, perform
mathematical calculations, understands relationship
between cause and effect towards a tangible outcome

Musical musical ability, awareness, appreciation and use of
sound; recognition of tonal and rhythmic patterns,
understands relationship between sound and feeling

Bodily-
Kinesthetic

body movement control, manual dexterity, physical
agility and balance; eye and body coordination

Spatial-Visual visual and spatial perception; interpretation and
creation of images; pictorial imagination and
expression; understands relationship between images
and meanings, and between space and effect

Interpersonal perception of other people’s feelings; relates to
others; interpretation of behaviour and
communications; understands relationships between
people and their situations

Table 1. Types of Intelligence, Aspects and Testing

32

Elements of Preschool Design
What we mean by an “AGI Preschool” is simply a porting
to the AGI domain of the essential aspects of human
preschools. While there is significant variance among
preschools there are also strong commonalities, grounded
in educational theory and experience. We will briefly
discuss both the physical design and educational
curriculum of the typical human preschool, and which
aspects transfer effectively to the AGI context.
 On the physical side, the key notion in modern preschool
design is the “learning center,” an area designed and
outfitted with appropriate materials for teaching a specific
skill. Learning centers are designed to encourage learning
by doing, which greatly facilitates learning processes based
on reinforcement, imitation and correction (see Goertzel et
al (2008) for a discussion of the importance of this
combination in an AGI context); and also to provide
multiple techniques for teaching the same skills, to
accommodate different learning styles and prevent over-
fitting and overspecialization in the learning of new skills.
 Centers are also designed to cross-develop related skills.
A “manipulatives center,” for example, provides physical
objects such as drawing implements, toys and puzzles, to
facilitate development of motor manipulation, visual
discrimination, and (through sequencing and classification
games) basic logical reasoning. A “dramatics center,” on
the other hand, cross-trains interpersonal and empathetic
skills along with bodily-kinesthetic, linguistic, and musical
skills. Other centers, such as art, reading, writing, science
and math centers are also designed to train not just one
area, but to center around a primary intelligence type while
also cross-developing related areas. For specific examples
of the learning centers associated with particular
contemporary preschools, see (Neilsen, 2006).
 In many progressive, student-centered preschools,
students are left largely to their own devices to move from
one center to another throughout the preschool room.
Generally, each center will be staffed by an instructor at
some points in the day but not others, providing a variety
of learning experiences. At some preschools students will
be strongly encouraged to distribute their time relatively
evenly among the different learning centers, or to focus on
those learning centers corresponding to their particular
strengths and/or weaknesses.

Elements of Preschool Curriculum
While preschool curricula vary considerably based on
educational philosophy and regional and cultural factors,
there is a great deal of common, shared wisdom regarding
the most useful topics and methods for preschool teaching.
Guided experiential learning in diverse environments and
using varied materials is generally agreed upon as being an
optimal methodology to reach a wide variety of learning
types and capabilities. Hands-on learning provides
grounding in specifics, where as a diversity of approaches
allows for generalization.

 Core knowledge domains are also relatively consistent,
even across various philosophies and regions. Language,
movement and coordination, autonomous judgment, social
skills, work habits, temporal orientation, spatial
orientation, mathematics, science, music, visual arts, and
dramatics are universal areas of learning which all early
childhood learning touches upon. The particulars of these
skills may vary, but all human children are taught to
function in these domains. The level of competency
developed may vary, but general domain knowledge is
provided. For example, most kids won’t be the next Maria
Callas, Ravi Shankar or Gene Ween, but nearly all learn to
hear, understand and appreciate music.

Type of Capability Specific Skills

 to be Evaluated
Story
Understanding

• Understanding narrative sequence
• Understanding character development
• Dramatize a story
• Predict what comes next in a story

Linguistic • Give simple descriptions of events
• Describe similarities and differences
• Describe objects and their functions

Linguistic /
Spatial-Visual

• Interpreting pictures

Linguistic / Social • Asking questions appropriately
• Answering questions appropriately
• Talk about own discoveries
• Initiate conversations
• Settle disagreements
• Verbally express empathy
• Ask for help
• Follow directions

Linguistic /
Scientific

• Provide possible explanations for
events or phenomena

• Carefully describe observations
• Draw conclusions from observations

Logical-
Mathematical

• Categorizing
• Sorting
• Arithmetic
• Performing simple “proto-scientific

experiments”
Nonverbal
Communication

• Communicating via gesture
• Dramatizing situations
• Dramatizing needs, wants
• Express empathy

Spatial-Visual • Visual patterning
• Self-expression through drawing
• Navigate

Objective • Assembling objects
• Disassembling objects
• Measurement
• Symmetry
• Similarity between structures (e.g.

block structures and real ones)
Interpersonal • Cooperation

• Display appropriate behavior in
various settings

• Clean up belongings
• Share supplies

Emotional • Delay gratification
• Control emotional reactions
• Complete projects

Table 2. Preschool cognitive tests

33

Table 2 reviews the key capabilities taught in preschools,
and identifies the most important specific skills that need
to be evaluated in the context of each capability. This table
was assembled via surveying the curricula from a number
of currently existing preschools employing different
methodologies both based on formal academic cognitive
theories (Schunk 2007) and more pragmatic approaches,
such as: Montessori (Montessori, 1912), Waldorf (Steiner
2003), Brain Gym (www.braingym.org) and Core
Knowledge (www.coreknowledge.org).

Preschool in the Light of Intelligence Theory
 Comparing Table 2 to the Multiple Intelligences
framework, the high degree of harmony is obvious, and is
borne out by more detailed analysis which is omitted here
for space reasons. Preschool curriculum as standardly
practiced is very well attuned to MI, and naturally covers
all the bases that Gardner identifies as important. And this
is not at all surprising since one of Gardner’s key
motivations in articulating MI theory was the pragmatics of
educating humans with diverse strengths and weaknesses.
 Regarding intelligence as “the ability to achieve
complex goals in complex environments,” it is apparent
that preschools are specifically designed to pack a large
variety of different micro-environments (the learning
centers) into a single room, and to present a variety of
different tasks in each environment. The environments
constituted by preschool learning centers are designed as
microcosms of the most important aspects of the
environments faced by humans in their everyday lives.

Task-Based Assessment in AGI Preschool
 Professional pedagogues such as (Chen & McNamee,
2007) discuss evaluation of early childhood learning as
intended to assess both specific curriculum content
knowledge as well as the child's learning process. It
should be as unobtrusive as possible, so that it just seems
like another engaging activity, and the results used to tailor
the teaching regimen to use different techniques to address
weaknesses and reinforce strengths.
 For example, with group building of a model car,
students are tested on a variety of skills: procedural
understanding, visual acuity, motor acuity, creative
problem solving, interpersonal communications, empathy,
patience, manners, and so on. With this kind of complex,
yet engaging, activity as a metric the teacher can see how
each student approaches the process of understanding each
subtask, and subsequently guide each student's focus
differently depending on strengths and weaknesses.
 Next we describe some particular tasks that AGIs may
be meaningfully assigned in the context of a general AGI
Preschool design and curriculum as described above. Due
to length limitations this is a very partial list, and is
intended as evocative rather than comprehensive.
 Any one of these tasks can be turned into a rigorous

quantitative test, thus allowing the precise comparison of
different AGI systems’ capabilities; but we have chosen
not to emphasize this point here, partly for space reasons
and partly for philosophical ones. In some contexts the
quantitative comparison of different systems may be the
right thing to do, but as discussed in (Laird et al, 2008)
there are also risks associated with this approach, including
the emergence of an overly metrics-focused “bakeoff
mentality” among system developers, and overfitting of AI
abilities to test taking. What is most important is the
isolation of specific tasks on which different systems may
be experientially trained and then qualitatively assessed
and compared, rather than the evaluation of quantitative
metrics.
 Table 3 lists a sampling of different tests for each
intelligence type to be assessed.

Intelligence
Type

Test

Linguistic write a set of instructions; speak on a subject; edit
a written piece or work; write a speech;
commentate on an event; apply positive or negative
'spin' to astory

Logical-
Mathematical

perform arithmetic calculations; create a process to
measure something; analyse how a machine works;
create a process; devise a strategy to achieve an
aim; assess the value of a proposition

Musical perform a musical piece; sing a song; review a
musical work; coach someone to play a musical
instrument

Bodily-
Kinesthetic

juggle; demonstrate a sports technique; flip a beer-
mat; create a mime to explain something; toss a
pancake; fly a kite

Spatial-Visual design a costume; interpret a painting; create a
room layout;
create a corporate logo; design a building; pack a
suitcase or the boot of a car

Interpersonal interpret moods from facial expressions;
demonstrate feelings through body language; affect
the
feelings of others in a planned way; coach or
counsel another

Table 3. Prototypical intelligence assessment tasks.

 Task-oriented testing allows for feedback on
applications of general pedagogical principles to real-
world, embodied activities. This allows for iterative
refinement based learning (shaping), and cross
development of knowledge acquisition and application
(multitask learning). It also helps militate against both
cheating, and over-fitting, as teachers can make ad-hoc
modifications to the tests to determine if this is happening
and correct for it if necessary.
 E.g., consider a linguistic task in which the AGI is
required to formulate a set of instructions encapsulating a
given behavior (which may include components that are
physical, social, linguistic, etc.). Note that although this is
presented as centrally a linguistic task, it actually involves
a diverse set of competencies since the behavior to be
described may encompass multiple real-world aspects.

34

 To turn this task into a more thorough test one might
involve a number of human teachers and a number of
human students. Before the test, an ensemble of copies of
the AGI would be created, with identical knowledge state.
Each copy would interact with a different human teacher,
who would demonstrate to it a certain behavior. After
testing the AGI on its own knowledge of the material, the
teacher would then inform the AGI that it will then be
tested on its ability to verbally describe this behavior to
another. Then, the teacher goes away and the copy
interacts with a series of students, attempting to convey to
the students the instructions given by the teacher.
 The teacher can thereby assess both the AGI's
understanding of the material, and the ability to explain it
to the other students. This separates out assessment of
understanding from assessment of ability to communicate
understanding, attempting to avoid conflation of one with
the other. The design of the training and testing needs to
account for potential
 This testing protocol abstracts away from the
particularities of any one teacher or student, and focuses on
effectiveness of communication in a human context rather
than according to formalized criteria. This is very much in
the spirit of how assessment takes place in human
preschools (with the exception of the copying aspect):
formal exams are rarely given in preschool, but pragmatic,
socially-embedded assessments are regularly made.
 By including the copying aspect, more rigorous
statistical assessments can be made regarding efficacy of
different approaches for a given AGI design, independent
of past teaching experiences. The multiple copies may,
depending on the AGI system design, then be able to be
reintegrated, and further “learning” be done by higher-
order cognitive systems in the AGI that integrate the
disparate experiences of the multiple copies.
 This kind of parallel learning is different from both
sequential learning that humans do, and parallel presences
of a single copy of an AGI (such as in multiple chat rooms
type experiments). All three approaches are worthy of
study, to determine under what circumstances, and with
which AGI designs, one is more successful than another.
 It is also worth observing how this test could be tweaked
to yield a test of generalization ability. After passing the
above, the AGI could then be given a description of a new
task (acquisition), and asked to explain the new one
(variation). And, part of the training behavior might be
carried out unobserved by the AGI, thus requiring the AGI
to infer the omitted parts of the task it needs to describe.
 Another popular form of early childhood testing is
puzzle block games. These kinds of games can be used to
assess a variety of important cognitive skills, and to do so
in a fun way that not only examines but also encourages
creativity and flexible thinking. Types of games include
pattern matching games in which students replicate
patterns described visually or verbally, pattern creation
games in which students create new patterns guided by
visually or verbally described principles, creative
interpretation of patterns in which students find meaning in

the forms, and free-form creation. Such games may be
individual or cooperative.
 Cross training and assessment of a variety of skills
occurs with pattern block games: for example,
interpretation of visual or linguistic instructions, logical
procedure and pattern following, categorizing, sorting,
general problem solving, creative interpretation,
experimentation, and kinematic acuity. By making the
games cooperative, various interpersonal skills involving
communication and cooperation are also added to the mix.
 The puzzle block context bring up some general
observations about the role of kinematic and visuospatial
intelligence in the AGI Preschool. Outside of robotics and
computer vision, AI research has often downplayed these
sorts of intelligence (though, admittedly, this is changing in
recent years, e.g. with increasing research focus on
diagrammatic reasoning). But these abilities are not only
necessary to navigate real (or virtual) spatial environments.
They are also important components of a coherent,
conceptually well-formed understanding of the world in
which the student is embodied. Integrative training and
assessment of both rigorous cognitive abilities generally
most associated with both AI and “proper schooling” (such
as linguistic and logical skills) along with kinematic and
aesthetic/sensory abilities is essential to the development
of an intelligence that can successfully both operate in and
sensibly communicate about the real world in a roughly
humanlike manner. Whether or not an AGI is targeted to
interpret physical-world spatial data and perform tasks via
robotics, in order to communicate ideas about a vast array
of topics of interest to any intelligence in this world, an
AGI must develop aspects of intelligence other than logical
and linguistic cognition.

Issues with Virtual Preschool Engineering
One technical point that has come to our attention in
exploring the AGI Preschool concept pertains to the
available infrastructure for creating such a framework.
Current standard methods of controlling avatar behaviors
and avatar-object interactions in existing virtual
environment engines are not sufficiently flexible to fulfill
the requirements of an AGI Preschool. Such flexibility is
feasible using current technology, but has not been
implemented due to lack of motivation.
 The most glaring deficit in current platforms is the lack
of flexibility in terms of tool use. In most of these systems
today, an avatar can pick up or utilize an object, or two
objects can interact, only in specific, pre-programmed
ways. For instance, an avatar might be able to pick up a
virtual screwdriver only by the handle, rather than by
pinching the blade betwen its fingers. This places severe
limits on creative use of tools, which is absolutely critical
in a preschool context. The solution to this problem is
clear: adapt existing generalized physics engines to
mediate avatar-object and object-object interactions. This
would require more computation than current approaches,
but not more than is feasible in a research context.

35

 One way to achieve this goal would be to integrate a
robot simulator with a virtual world or game engine, for
instance to modify the OpenSim (opensimulator.org)
virtual world to use the Gazebo
(playerstage.sourceforge.net) robot simulator in place of its
current physics engine. While tractable, such a project
would require considerable software engineering effort.

Beyond Preschool
Once an AGI passes preschool, what are the next steps?
There is still a long way to go, from preschool to an AGI
system that is capable of, say, passing the Turing Test or
serving as an effective artificial scientist.
 Our suggestion is to extend the school metaphor further,
and make use of existing curricula for higher levels of
virtual education: grade school, secondary school, and all
levels of post-secondary education. If an AGI can pass
online primary and secondary schools such as e-tutor.com,
and go on to earn an online degree from an accredited
university, then clearly said AGI has successfully achieved
“human level, roughly humanlike AGI.” This sort of
testing is interesting not only because it allows assessment
of stages intermediate between preschool and adult, but
also because it tests humanlike intelligence without
requiring precise imitation of human behavior.
 If an AI can get a BA degree at an accredited university,
via online coursework (assuming for simplicity courses
where no voice interaction is needed), then we should
consider that AI to have human-level intelligence.
University coursework spans multiple disciplines, and the
details of the homework assignments and exams are not
known in advance, so like a human student the AGI team
can’t cheat.
 In addition to the core coursework, a schooling approach
also tests basic social interaction and natural language
communication, ability to do online research, and general
problem solving ability. However, there is no rigid
requirement to be strictly humanlike in order to pass
university classes.

References
Ben-David, S., Schuller, R.: Exploiting task relatedness for
learning multiple tasks. In: Proceedings of the 16th Annual
Conference on Learning Theory. (2003)
Caruana, R. (1997). Multitask learning. Machine Learning, 28,
41–75.
Chen, Jie-Qi and Gillian McNamee (2007). Bridging:
Assessment for Teaching and Learning in Early Childhood
Classrooms., Corwin Press.
French, R. (1990) “Subcognition and the Limits of the Turing
Test” Mind 99, 53-65.Gardner, Howard. (1983) "Frames of Mind:
The Theory of Multiple Intelligences." New York: Basic Books.
Goertzel, Ben, Cassio Pennachin, Nil Geissweiller, Moshe
Looks, Andre Senna, Welter Silva, Ari Heljakka, Carlos Lopes
(2008). An Integrative Methodology for Teaching Embodied

Non-Linguistic Agents, Applied to Virtual Animals in Second
Life. Proceedings of the First Conference on Artificial General
Intelligence, IOS Press.
Goertzel, Ben and Stephan Vladimir Bugaj (2006). Stages of
Cognitive Development in Uncertain-Logic-Based AI Systems, in
Proceedings of First Conference on Artificial General
Intelligence, IOS Press
Goertzel, Ben, Ari Heljakka, Stephan Vladimir Bugaj, Cassio
Pennachin, and Moshe Looks (2006). Exploring Android
Developmental Psychology in a Simulation World. Presented at
ICCS/CogSci 2006 Android Science Workshop.
Goertzel, Ben, Ken Silverman, Cate Harteley, Stephan Vladimir
Bugaj and Mike Ross. The Baby Webmind Project. Presented at
AISB 2000.
Hayes, P., and Ford, K. (1995)“Turing Test Considered Harmful”
Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence Montreal, 972-7.
Laird, John, Robert Wray, Robert Marinier and Pat Langley
(2009). Claims and Challenges in Evaluating Human-Level
Intelligent Systems, Proceedings of AGI-09
Laud, A., & Dejong, G. (2003). The influence of reward on the
speed of reinforcement learning: An analysis of shaping.
Proceedings of the 20th international conference on machine
learning.
Legg, Shane and Marcus Hutter (2007). Universal Intelligence:
A Definition of Machine Intelligence. In Minds and Machines,
pages 391-444, volume 17, number 4, November 2007.
Legg, Shane and Marcus Hutter (2006). A Collection of
Definitions of Intelligence In B. Goertzel, editor, Advances in
Artificial General Intelligence, IOS Press, 2006.
Li, L., Walsh, T., & Littman, M. (2006). Towards a unified
theory of state abstraction for MDPs. Proceedings of the ninth
international symposium on AI and mathematics.
Moor, J. (2001) “The Status and Future of the Turing Test”
Minds and Machines 11, 77-93.
Montessori, Maria (1912). The Montessori Method, Frederick A.
Stokes Company,
Neilsen, Dianne Miller (2006). Teaching Young Children,
Preschool-K: A Guide to Planning Your Curriculum, Teaching
Through Learning Centers, and Just About Everything Else,
Corwin Press.
Reece, Charlotte Strange, Kamii, Constance (2001). The
measurement of volume: Why do young children measure
inaccurately?, School Science and Mathematics, Nov 2001,
Schunk, Dale (2007). Theories of Learning: An Educational
Perspective, Prentice Hall.
Steiner, Rudolf and S.K. Sagarin. (2003) What is Waldorf
Education? Three Lectures, Steiner Books.
Taylor, M., & Stone, P. (2007). Cross-domain transfer for
reinforcement learning. Proceedings of the 24th International
Conference on Machine Learning.
Thrun, S., & Mitchell, T. (1995). Lifelong robot learning.
Robotics and Autonomous Systems, 15, 25–46.
Turing, Alan (October 1950), "Computing Machinery and
Intelligence", Mind LIX(236): 433–460,

36

Pointer Semantics with Forward Propagation

Sujata Ghosh∗
Center for Soft Computing Research

Indian Statistical Institute
Kolkata, West Bengal, India

Benedikt Löwe†
Institute for Logic,

Language and Computation
Universiteit van Amsterdam

1018 TV Amsterdam, The Netherlands

Sanchit Saraf‡
Department of Mathematics and Statistics

Indian Institute of Technology
Kanpur 208016, India

Abstract

In this paper, we will discuss a new approach to formally
modelling belief change in systems of sentences with inter-
dependency. Our approach is based on the paradigm called
pointer semantics or revision theory which forms a funda-
mental way of successfully understanding the semantics of
logic programming, but has also been used extensively in
philosophical logic and other applications of logic. With a
purely unidirectional (backward) flow of change, pointer se-
mantics are not fit to deal with belief change. We propose
an extension that allows flow of change in both directions in
order to be applied for belief change.

Introduction
Pointer semantics
Pointer semantics are a formal propositional language for
finitely many propositions {p0, ...,pn} defined in terms of
each other, and are a well-established tool in logic. The un-
derlying idea of pointer semantics is to

“iterate away uncertainties and keep the
values that stabilize”:

(#)

Starting with an initial hypothesis for the truth values that
may be in conflict with each other, you apply the Tarskian
definition of truth repeatedly and consider the iteration se-
quence. Those values that stabilize will be kept, the others
discarded. The semantics based on (#) have been rediscov-
ered several times independently and have found applica-
tions in various areas of foundational study and philosophy.1
The language of pointer semantics is closely related to logic
programming and is the logical reflection of the “Revision
∗Additional affiliation: Department of Mathematics, Visva-

Bharati, Santiniketan, India.
†Additional affiliations: Department Mathematik, Universität

Hamburg, Hamburg, Germany; Mathematisches Institut, Rheinis-
che Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
‡The third author would like to thank the Institute for Logic,

Language and Computation (ILLC) of the Universiteit van Amster-
dam and the Department Mathematik of the Universität Hamburg
for their hospitality during his visit from May to July 2008. All
three authors would like to thank Bjarni Hilmarsson (Amsterdam)
for programming support.

1For more details, cf. the section ‘The ubiquity of revision’ in
(Löw06, § 6).

Theory of Truth” (GB93). The version of pointer seman-
tics that we shall be using in this paper is essentially that of
Haim Gaifman (Gai88; Gai92). The revision rules of pointer
semantics let the truth value of a proposition depend on the
values of those propositions it points to in the dependency
graph (cf. Definition 1), so truth values “flow backward in
the dependency graph”.

Pointer semantics for belief systems
It has been suggested several times (e.g., cf. (Löw06)) that
the underlying principle (#) could be used for other pro-
cesses involving revision, e.g., the process of revising and
updating our beliefs in the face of learning new and unex-
pected facts. But the mentioned “backward flow” of tra-
ditional pointer semantics makes sure that truth values of
terminal nodes in the dependency graph (which would typi-
cally correspond to those newly learned atomic statements)
will never change in the revision process. In the context
of belief, we would need forward propagation of truth val-
ues along the dependency graph. This idea has been im-
plemented in a formal system in (GLS07), but the system
proposed by the authors was not easy to handle.

Aims, motivation and related work
Our aim is to provide a new framework for a semantics of
belief change based on the general principle (#) using the
standard definition of revision semantics (Definition 2). In
this paper, we cannot give a motivation of the general frame-
work of revision theory and refer the reader to the extensive
philosophical discussion in (GB93) or the survey (Löw06).
Our aim is to stay as close as possible to the spirit of that
framework.

There are many competing formal frameworks that deal
with the question “How can we model rational belief
change?”, most of which far more developed than what
can be outlined in this short note. Transition systems and
action description languages have been used in (HD05;
HD07); there is a rich literature on using probabilistic log-
ics for modelling belief change; in machine learning, depen-
dency networks, Bayesian networks and Markov logic net-
works have been used (KDR07; HCH03; KD05); an argu-
mentation theoretic approach can be found in (CnS07). This
short list only scratches the surface of the vast literature of
very good, intuitive and successful answers to our general

37

question. Our approach of staying as close as possible to
the pointer semantics paradigm of (#) cannot yet compete
at the same level of depth and maturity at the moment. So,
we need to explain why one should be interested in a new
approach to belief change based on pointer semantics:

Traditional logic approaches to belief update are at the
level of axiomatics of what we require of a belief change
function, not at the more detailed level of how to actually
make the decisions about the adequate belief change. For
instance, if an agent believes {p → q, p} and learns {¬q},
then the axiomatic prediction would be that either p → q or
p has to be dropped, but without further details, it is difficult
to predict which one.

As discussed in (Löw06), pointer semantics carries a lot
of information transcending the pure definition of the se-
mantics (Definition 2): you can look at how fast stable val-
ues stabilize, at the various oscillation patterns of oscillating
hypotheses, etc. This information can be used for definitions
of levels or types of stability in order to help with priori-
tizing, promising to provide new insight in possible belief
revision operators. These are tools that might be applica-
ble directly in modelling belief change, or could serve as
a subsidiary tool to support other (established) systems of
formal belief change models for applications in artificial in-
telligence.

Overview of this paper
In our section “Definitions”, we give the standard Definition
2 from pointer semantics (following (Löw06)) and define an
algebra of pointer systems. The latter definition is new to
this paper, allowing to state and prove Propositions 3 and 4
in the case of operators restricted to backward propagation.
The central new definition of this paper is in the section “Be-
lief Semantics with Forward Propagation”. In the section
“Properties of our Belief Semantics” we test our system in
an example originally used in (GLS07) and finally see that
our system is ostensibly non-logical as expected for a sys-
tem is intended to model systems of belief.2 We close with
a discussion of future work in our final section.

Definitions
Abstract Pointer Semantics
Fix a finite set of propositional variables {p0, ...,pn}. An
expression is just a propositional formula using ∧, ∨, and
¬ and some of the propositional variables or the empty se-
quence, denoted by .

We fix a finite algebra of truth values T with operations
∧, ∨ and ¬ corresponding to the syntactic symbols. We as-
sume a notion of order corresponding to information content
that gives rise to a notion of infimum in the algebra of truth
values, allowing to form inf(X) for some subset of X ⊆ T.
A truth value will represent the lowest information content
(i.e., a least element in the given order); this truth value will
be denoted by ½. We allow inf to be applied to the empty
set and let inf ∅ := ½.

2“The fact that the logic of belief, even rational belief, does
not meet principles of truth-functional deductive logic, should no
longer surprise us (Gol75, p. 6).”

Our salient example is the algebra T := {0,½, 1} with
the following operations (“strong Kleene”):

∧ 0 ½ 1
0 0 0 0
½ 0 ½ ½
1 0 ½ 1

∨ 0 ½ 1
0 0 ½ 1
½ ½ ½ 1
1 1 1 1

¬
0 1
½ ½
1 0

.

The value ½ stands for ignorance, and thus the infimum is
defined as inf({t}) := t, inf({½}∪X) := ½, inf({0, 1}) :=
½. This algebra of truth values will be used in this paper,
even though the set-up in this section is more general.

If E is an expression and pi is one of the propositional
variables, then pi←E is a clause. We intuitively interpret
pi←E as “pi states E”. If E0, ..., En are expressions, a set
of clauses Σ := {p0←E0, ...,pn←En} is called a pointer
system. An interpretation is a function I : {p0, ...,pn} →
T assigning truth values to propositional letters. Note that if
T is finite, the set of interpretations is a finite set (we shall
use this later). A given interpretation I can be naturally ex-
tended to a function assigning truth values to all expressions
(using the operations ∧, ∨ and ¬ on T). We denote this ex-
tended function with the same symbol I .

A clause can be transformed into an equation in T: if
pi←E is a clause, we can read it as an equation pi = E
in T. If Q is such an equation, we say that an interpretation I
is a solution of Q if plugging the values {I(p0), ..., I(pn)}
into the corresponding variables of the equation results in
the same value left and right of the equals sign. An interpre-
tation is a solution of a set of equations if it is a solution of
each equation in the set.

A function mapping interpretations to interpretations is
called a revision function; a family of these functions in-
dexed by pointer systems is called a revision operator. If
δ is a revision operator, we write δΣ for the revision func-
tion assigned to the pointer system Σ (and sometimes just
write δ if Σ is clear from the context). We use the usual
notation for iteration of revision functions, i.e., δ0(I) := I ,
δn+1(I) := δ(δn(I)).

Definition 1 Given a pointer system {p0←E0,...,pn←En},
we define its dependency graph by letting {0, ..., n} be the
vertices and allowing an edge from i to j if pj occurs inEi.3

Given a proposition pi, arrows point to i from the propo-
sitions occurring in Ei, and thus we call a revision operator
δ an B-operator (for “backward”) if the value of δ(I)(pi)
only depends on the values of I(pj) for pj occurring in Ei.

Fix Σ and δ. We call an interpretation I (Σ, δ)-stable if
there is some k such that for all n ≥ k, δn(I) = I . We call
I (Σ, δ)-recurring if for every k there is a n ≥ k such that
δn(I) = I . If Σ is fixed by the context, we drop it from the
notation and call interpretations δ-stable and δ-recurring.
If H is an interpretation, we consider the sequence H∞ :=
{δi(H) ; i ∈ N} of interpretations occurring in the infinite
iteration of δ onH . Clearly, if there is a stable interpretation
in H∞, then this is the only recurring interpretation in H∞.
We write RecΣ,δ(H) for the set of recurring interpretations

3The relationship between pointer semantics and the depen-
dency graph has been investigated in (Bol03).

38

in H∞. Note that since the set of interpretations in finite,
this set must be non-empty. If I ∈ RecΣ,δ(H), then there
are i, j > 0 such that I = δi(H) = δi+j(H). Then for ev-
ery k < j and every n, we have δi+k = δi+n·j+k(H), so the
sequence H∞ exhibits a periodicity of length j (or a divisor
of j). After the first occurrance of an I ∈ RecΣ,δ(H), all
further elements of H∞ are recurring as well, and in partic-
ular, there is a recurring J such that δ(J) = I . We shall call
this an I-predecessor and will use this fact in our proofs.
Definition 2

JΣ,piKδ,H := inf{I(pi) ; I ∈ RecΣ,δ(H)}, and

JΣ,piKδ := inf{I(pi) ; ∃H(I ∈ RecΣ,δ(H))}.

An algebra of pointer systems
In the language of abstract pointer systems, the possibility of
complicated referential structures means that the individual
proposition cannot be evaluated without its context.

As a consequence, the natural notion of logical operations
is not that between propositions, but that between systems.
If Σ = {p0←E0, ...,pn←En} is a pointer system and 0 ≤
i ≤ n, we define a pointer system that corresponds to the
negation of pi with one additional propositional variable p¬,

¬(Σ,pi) := Σ ∪ {p¬←¬pi}.
If we have two pointer systems

Σ0 = {p0←E0,0, ...,pn0←E0,n0}, and

Σ1 = {p0←E1,0, ...,pn1←E1,n1},
we make their sets of propositions disjoint by considering a
set {p0, ...,pn0 ,p

∗
0, ...,p

∗
n1
,p∗} of n0 +n1 +2 propositional

variables. We then set

Σ∗1 := {p∗0←E1,0, ...,p∗n1
←E1,n1}.

With this, we can now define two new pointer systems (with
an additional propositional variable p∗):

(Σ0,pi) ∧ (Σ1,pj) := Σ0 ∪ Σ∗1 ∪ {p∗←pi ∧ p∗j},
(Σ0,pi) ∨ (Σ1,pj) := Σ0 ∪ Σ∗1 ∪ {p∗←pi ∨ p∗j}.

Logical properties of Gaifman pointer semantics
Fix a system Σ = {p0←E0, ...,pn←En}. A proposition
pi is called a terminal node if Ei = ; it is called a
source node if pi does not occur in any of the expressions
E0, ..., En. This corresponds directly to the properties of i
in the dependency graph: pi is a terminal node if and only
if i has no outgoing edges in the dependency graph, and it
is a source node if and only if i has no incoming edges in
the dependency graph. The Gaifman-Tarski operator δB
is defined as follows:

δB(I)(pi) :=
{
I(Ei) if pi is not terminal,
I(pi) if pi is terminal.

Note that this operator can be described as follows:
“From the clause pi←Ei form the equation Qi by replac-
ing the occurrences of pi on the right-hand side of the
equality sign with the values I(pi). If pi is a terminal
node, let δ(I)(pi) := I(pi). Otherwise, let I∗ be the
unique solution to the system of equations {Q0, ..., Qn}
and let δ(I)(pi) := I∗(pi).”

(*)

This more complicated description will provide the motiva-
tion for the forward propagation operator δF in the section
“Belief semantics with forward propagation”.

The operator δB gives rise to a logical system, as the se-
mantics defined by δB are compatible with the operations in
the algebra of pointer systems.

Proposition 3 Let Σ = {p0←E0, ...,pn←En} be a pointer
system. For any i ≤ n, we have

J¬(Σ,pi)KδB = ¬JΣ,piKδB .

Proof. In this proof, we shall denote interpretations for the
set {p0, ...,pn} by capital letters I and J and interpreta-
tions for the bigger set {p0, ...,pn,p¬} by letters Î and Ĵ .
It is enough to show that if Î is δB-recurring, then there is
some δB-recurring J such that Î(p¬) = ¬J(pi). If I is
δB-recurring, we call J an I-predecessor if J is also δB-
recurring and δB(J) = I , and similarly for Î . It is easy to
see that every δB-recurring I (or Î) has an I-predecessor (or
Î-predecessor) which is not necessarily unique.

As δB is a B-operator, we have that if Ĵ is δB-recurring,
then so is J := Ĵ�{p0, ...,pn}.

Now let Î be δB-recurring and let Ĵ be one of its Î-
predecessors. Then by the above, J := Ĵ�{p0, ...,pn} is
δB-recurring and

Î(p¬) = δB(Ĵ)(p¬) = ¬Ĵ(pi) = ¬J(pi).

q.e.d.

Proposition 4 Let Σ0 = {p0←E0, ...,pn←En} and Σ1 =
{p0←F0, ...,pm←Fm} be pointer systems. For any i, j ≤
n, we have

J(Σ0,pi) ∨ (Σ1,pj)KδB = JΣ0,piKδB ∨ JΣ1,pjKδB .

Similarly for ∨ replaced by ∧.

Proof. The basic idea is very similar to the proof of Proposi-
tion 3, except that we have to be a bit more careful to see how
the two systems Σ0 and Σ1 can interact in the bigger system.
We reserve letters I0 and J0 for the interpretations on Σ0, I1
and J1 for those on Σ1 and I and J for interpretations on
the whole system, including p∗. If JΣ0,p1K = 1, then any
δB-recurring I must have I(p∗) = 1 by the ∨-analogue of
the argument given in the proof of Proposition 3. Similarly,
for JΣ1,pjK = 1 and the case that JΣ0,piK = JΣ1,pjK = 0.
This takes care of six of the nine possible cases.

If I0 and I1 are δB-recurring, then so is the function
I := δ(I0) ∪ δ(I1) ∪ {〈p∗, I0(pi) ∨ I1(pj)〉} (if I0 is k-
periodic and I1 is `-periodic, then I is at most k ·`-periodic).
In particular, if we have such an I0 with I0(pi) = ½ and an
I1 with I1(pj) 6= 1, then I(p∗) = ½ (and symmetrically for
interchanged rôles). Similarly, if we have recurring interpre-
tations for relevant values 0 and 1 for both small systems, we
can put them together to δB-recurring interpretations with
values 0 and 1 for the big system. This gives the truth value
½ for the disjunction in the remaining three cases.

q.e.d.

39

H0 δB(H0) δF(H0) H1 δB(H1) δF(H1) H2 δB(H2) δF(H2) H3 δB(H3) δF(H3) H4

0 ½ 0 0 1 0 ½ 1 ½ 1 1 1 1

1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1

0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0

½ 0 ½ 0 0 ½ 0 0 ½ 0 0 0 0

½ ½ ½ ½ 1 ½ 1 1 1 1 1 1 1

Figure 1: The first three iterations of values of H0 = (0, 1, 0,½,½) up to the point of stability (H3 = (1, 1, 0, 0, 1)).

Belief semantics with forward propagation
In (GLS07), the authors gave a revision operator that incor-
porated both backward and forward propagation. The value
of δ(I)(pi) depended on the values of all I(pj) such that j
is connected to i in the dependency graph. Here, we split the
operator in two parts: the backward part which is identical
to the Gaifman-Tarski operator, and the forward part which
we shall define now.

In analogy to the definition of δB, we define δF as follows.
Given an interpretation I , we transform each clause pi←Ei
of the system into an equation Qi ≡ I(pi) = Ei where the
occurrences of the pi on the left-hand side of the equation
are replaced by their I-values and the ones on the right-hand
side are variables. We obtain a system {Q0, ..., Qn} of n+ 1
equations in T. Note that we cannot mimic the definition of
δB directly: as opposed to the equations in that definition,
the system {Q0, ..., Qn} need not have a solution, and if it
has one, it need not be unique. We therefore define: if pi is
a source node, then δF(I)(pi) := I(pi). Otherwise, let S be
the set of solutions to the system of equations {Q0, ..., Qn}
and let δF(I)(pi) := inf{I(pi) ; I ∈ S} (remember that
inf ∅ = ½). Note that this definition is literally the dual
to definition (*) of δB (i.e., it is obtained from (*) by inter-
changing “right-hand side” by “left-hand side” and “termi-
nal node” by “source node”).

We now combine δB and δF to one operator δT by defin-
ing pointwise

δT(I)(pi) := δF(I)(pi)⊗ δB(I)(pi)
where ⊗ has the following truth table:4

⊗ 0 ½ 1
0 0 0 ½
½ 0 ½ 1
1 ½ 1 1

.

4The values for agreement (0⊗0, ½⊗½, and 1⊗1) are obvious
choices. In case of complete disagreement (0 ⊗ 1 and 1 ⊗ 0), you
have little choice but give the value ½ of ignorance (otherwise,
there would be a primacy of one direction over the other). For
reasons of symmetry, this leaves two values ½⊗0 = 0⊗½ and ½⊗
1 = 1 ⊗ ½ to be decided. We opted here for the most informative
truth table that gives classical values the benefit of the doubt. The
other options would be the tables

⊗0 0 ½ 1
0 0 ½ ½
½ ½ ½ 1
1 ½ 1 1

⊗1 0 ½ 1
0 0 0 ½
½ 0 ½ ½
1 ½ ½ 1

⊗2 0 ½ 1
0 0 ½ ½
f½ ½ ½ ½
1 ½ ½ 1

.

Each of these connectives will give rise to a slightly different se-
mantics. We opted for the first connective ⊗, as the semantics
based on the other three seem to have a tendency to stabilize on
the value ½ very often (the safe option: in case of confusion, opt
for ignorance).

Properties of our belief semantics
As mentioned in the introduction, we should not be shocked
to hear that a system modelling belief and belief change
does not follow basic logical rules such as Propositions 3
and 4. Let us take the particular example of conjunction:
the fact that belief is not closed under the standard log-
ical rules for conjunction is known as the preface para-
dox and has been described by Kyburg as “conjunctivitis”
(Kyb70). In other contexts (that of the modality of “ensuring
that”), we have a problem with simple binary conjunctions
(Sch08). Of course, the failure of certain logical rules in
reasoning about belief is closely connected to the so-called
“errors in reasoning” observed in experimental psychology,
e.g., the famous Wason selection task (Was68). What con-
stitutes rational belief in this context is an interesting ques-
tion for modellers and philosophers alike (Ste97; Chr07;
Cou08). Let us focus on some concrete examples to vali-
date our claim that the semantics we propose do agree with
intuitive understanding, and thus serve as a quasi-empirical
test for our system as a formalization of reasoning in self-
referential situations with evidence.

Concrete examples
So far, we have just given an abstract system of belief flow
in our pointer systems. In order to check whether our sys-
tem results in intuitively plausible results, we have to check
a few examples. Keep in mind that our goal should be to
model human reasoning behaviour in the presence of par-
tially paradoxical situations. In this paper, we can only give
a first attempt at testing the adequacy of our system: an em-
pirical test against natural language intuitions on a much
larger scale is needed. For this, also cf. our section “Dis-
cussion and Future Work”.

The Liar As usual, the liar sentence is interpreted by the
system Σ := {p0←¬p0}. Since we have only one propo-
sitional variable, interpretations are just elements of T =
{0,½, 1}. It is easy to see that δB(0) = δF(0) = δT(0) = 1,
δB(½) = δF(½) = δT(½) = ½, and δB(1) = δF(1) =
δT(1) = 0. This means that the δT-behaviour of the liar
sentence is equal to the Gaifman-semantics behaviour.

The Miller-Jones Example Consider the following test
example from (GLS07):

Professors Jones, Miller and Smith are colleagues in a com-
puter science department. Jones and Miller dislike each other
without reservation and are very liberal in telling everyone
else that “everything that the other one says is false”. Smith
just returned from a trip abroad and needs to find out about
two committee meetings on Monday morning. He sends out
e-mails to his colleagues and to the department secretary. He
asks all three of them about the meeting of the faculty, and

40

H∗
0 δB(H∗

0) δF(H∗
0) H∗

1 δB(H∗
1) δF(H∗

1) H∗
2 δB(H∗

2) δF(H∗
2) H∗

3 δB(H∗
3) δF(H∗

3) H∗
4 δB(H∗

4) δF(H∗
4) H∗

5

0 ½ 0 0 1 0 ½ 1 ½ 1 1 1 1 1 1 1

1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1

0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0

½ 0 ½ 0 0 ½ 0 0 ½ 0 0 0 0 0 0 0

0 ½ ½ ½ ½ ½ ½ 1 ½ 1 1 ½ 1 1 1 1

1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1

0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0

½ 0 1 ½ 0 ½ 0 0 ½ 0 0 0 0 0 0 0

½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 1 ½ 1 1 1 1

Figure 2: The first three iterations of values of H∗0 = (0, 1, 0,½, 0, 1, 0,½,½) up to the point of stability (H∗4 =
(1, 1, 0, 0, 1, 1, 0, 0, 1)).

Jones and the secretary about the meeting of the library com-
mittee (of which Miller is not a member).
Jones replies: “We have the faculty meeting at 10am and the
library committee meeting at 11am; by the way, don’t believe
anything that Miller says, as he is always wrong.”
Miller replies: “The faculty meeting was cancelled; by the
way don’t believe anything that Jones says, as he is always
wrong.”
The secretary replies: “The faculty meeting is at 10 am and
the library committee meeting is at 11 am. But I am sure
that Professor Miller told you already as he is always such an
accurate person and quick in answering e-mails: everything
Miller says is correct.” (GLS07, p. 408)

Trying to analyse Smith’s reasoning process after he re-
turns from his trip, we can assume that he generally believes
the secretary’s opinions, and that he has no prior idea about
the truth value of the statements “the faculty meeting is at
10am” and “the library meeting is at 11am” and the utter-
ances of Miller and Jones. We have a vague intuition that
tells us that in this hypothetical situation, Smith should at
least come to the conclusion that the library meeting will be
held at 11am (as there is positive, but no negative evidence).
His beliefs about the faculty meeting are less straightfor-
ward, as there is some positive evidence, but also some neg-
ative evidence, and there is the confusing fact that the secre-
tary supports Miller’s statement despite the disagreement in
truth value.

In (GLS07, p. 409), the authors analysed this example
with their real-valued model and ended up with a stable so-
lution in which Smith accepted both appointments and took
Jones’s side (disbelieving Miller). In our system, we now
get the following analysis: A pointer system formulation is
given as follows.

p0 ← ¬p1 ∧ ¬p4, p1 ← ¬p0 ∧ p2 ∧ p4,
p2 ← , p3 ← p0 ∧ p2 ∧ p4,
p4 ← ,

where p0 is Miller’s utterance, p1 is Jones’s utterance, p2

is “the library meeting will take place at 11am”, p3 is the
secretary’s utterance, and p4 is the “the faculty meeting will
take place at 10am”.

We identify our starting hypothesis with H :=
(½,½,½, 1,½) (here, as usual, we identify an interpretation
with its sequence of values in the order of the indices of the
propositional letters). Then δB(H) = (½,½,½,½,½) and
δF(H) = (½,½, 1, 1,½), so that we get H ′ := δT(H) =
(½,½, 1, 1,½). Then, in the second iteration step, δB(H ′) =

(½,½, 1,½,½) and δF(H ′) = (½,½, 1, 1,½), so we obtain
stability at δT(H ′) = H ′.

Examples of nonlogical behaviour

In what follows, we investigate some logical properties of
the belief semantics, viz. negation and disjunction, fo-
cussing on stable hypotheses. To some extent, our results
show that the operator δT is rather far from the logical prop-
erties of δB discussed in Propositions 3 and 4.

Negation Consider the pointer system Σ given by

p0 ← ¬p3, p1 ← ,
p2 ← , p3 ← p1 ∧ p2.

The interpretation H := (0, 1, 0,½) is δT-stable, as
δB(H) = (½, 1, 0, 0), δF(H) = (0,½,½, 1), and thus
δT(H) = H .

Now let us consider the system ¬(Σ,p3). Remember
from the proof of Proposition 3 that stable interpretations for
the small system could be extended to stable interpretations
for the big system by plugging in the expected value for p¬.
So, in this particular case, the stable value for p3 is ½, so
we would expect that by extending H by H0(p¬) := ½, we
would get another stable interpretation.

But this is not the case, as the table of iterated values given
in Figure 1 shows. Note that H0 is not even recurring.

Disjunction Consider the pointer systems Σ and Σ∗ and
their disjunction (Σ,p4) ∨ (Σ∗,p∗1) given as follows:

p0 ← ¬p3, p∗0 ← ¬p∗3,
p1 ← p∗1, ← ,
p2 ← p∗2, ← ,
p3 ← p1 ∧ p2, p∗3 ← p∗1 ∧ p∗2,
p∗ ← p4 ∨ p∗1.

Note that Σ and Σ∗ are the same system up to isomorphism
and that Σ is the system from the previous example. We
already know that the interpretation H = (0, 1, 0,½) is δT-
stable (therefore, it is δT-stable for both Σ and Σ∗ in the
appropriate reading.

The natural extension of H to the full system
with nine propositional variables would be H∗0 :=
(0, 1, 0,½, 0, 1, 0,½,½), as p∗ should take the value
H(p4) ∨ H(p∗1) = ½ ∨ 0 = ½. However, we see in Fig-
ure 2 that this interpretation is not stable (or even recurring).

41

Discussion and future work
Testing the behaviour of our system on the liar sentence and
one additional example cannot be enough as an empirical
test of the adequacy of our system. After testing more exam-
ples and having developed some theoretical insight into the
system and its properties, we would consider testing the sys-
tem experimentally by designing situations in which people
reason about beliefs in self-referential situations with evi-
dence, and then compare the predictions of our system to
the actual behaviour of human agents.

Such an experimental test should not be done with just
one system, but with a class of systems. We have already
discussed that our choice of the connective ⊗ combining δB
and δF to δT was not unique. Similarly, the rules for how to
handle multiple solutions (“take the pointwise infimum”) in
the case of forward propagation are not the only way to deal
with this formally. One natural alternative option would be
to split the sequenceH∞ into multiple sequences if there are
multiple solutions. For instance, if we are trying to calculate
δF(H) and we have multiple solutions to the set of equa-
tions, then δF(H) becomes a set of interpretations (possibly
giving rise to different recurrences and stabilities, depend-
ing on which possibility you follow). There are many vari-
ants that could be defined, but the final arbiter for whether
these systems are adequate descriptions of reasoning pro-
cesses will have to be the experimental test.

References
Thomas Bolander. Logical Theories for Agent Introspec-
tion. PhD thesis, Technical University of Denmark, 2003.
David Christensen. Putting Logic in its place. Formal Con-
straints on Rational Belief. Oxford University Press, 2007.
Carlos Iván Chesñevar and Guillermo Ricardo Simari. A
lattice-based approach to computing warranted beliefs in
skeptical argumentation frameworks. 2007. In (Vel07, pp.
280–285).
Marian E. Counihan. Looking for logic in all the wrong
places: an investigation of language, literacy and logic in
reasoning. PhD thesis, Universiteit van Amsterdam, 2008.
ILLC Publications DS-2008-10.
Haim Gaifman. Operational pointer semantics: Solution
to self-referential puzzles I. In Moshe Y. Vardi, editor,
Proceedings of the 2nd Conference on Theoretical Aspects
of Reasoning about Knowledge, Pacific Grove, CA, March
1988, pages 43–59. Morgan Kaufmann, 1988.
Haim Gaifman. Pointers to truth. Journal of Philosophy,
89(5):223–261, 1992.
Anil Gupta and Nuel Belnap. The revision theory of truth.
MIT Press, 1993.
Sujata Ghosh, Benedikt Löwe, and Erik Scorelle. Belief
flow in assertion networks. In Uta Priss, Simon Polovina,
and Richard Hill, editors, Conceptual Structures: Knowl-
edge Architectures for Smart Applications, 15th Interna-
tional Conference on Conceptual Structures, ICCS 2007,
Sheffield, UK, July 22-27, 2007, Proceedings, volume 4604
of Lecture Notes in Computer Science, pages 401–414.
Springer, 2007.

Alan H. Goldman. A note on the conjunctivity of knowl-
edge. Analysis, 36:5–9, 1975.
Geoff Hulten, David Maxwell Chickering, and David
Heckerman. Learning Bayesian networks from depen-
dency networks: A preliminary study. In Christopher M.
Bishop and Brendan J. Frey, editors, Proceedings of the
Ninth International Workshop on Artificial Intelligence and
Statistics. Society for Artificial Intelligence and Statistics,
2003.
Aaron Hunter and James P. Delgrande. Iterated belief
change: A transition system approach. In Leslie Pack Kael-
bling and Alessandro Saffiotti, editors, IJCAI-05, Proceed-
ings of the Nineteenth International Joint Conference on
Artificial Intelligence, Edinburgh, Scotland, UK, July 30-
August 5, 2005, pages 460–465. Professional Book Center,
2005.
Aaron Hunter and James P. Delgrande. An action descrip-
tion language for iterated belief change. 2007. In (Vel07,
pp. 2498–2503).
Stanley Kok and Pedro Domingos. Learning the struc-
ture of markov logic networks. In Luc De Raedt and
Stefan Wrobel, editors, Proceedings of the 22nd Inter-
national Machine Learning Conference, pages 441–448.
ACM Press, 2005.
Kristian Kerstin and Luc De Raedt. Bayesian logic
programming: Theory and tool. In Lise Getoor and
Ben Taskar, editors, Introduction to Statistical Relational
Learning. MIT Press, 2007.
Henry Kyburg. Conjunctivitis. In Marshall Swain, editor,
Induction, Acceptance, and Rational Belief, pages 55–82.
Reidel, 1970.
Benedikt Löwe. Revision forever! In Henrik Schärfe,
Pascal Hitzler, and Peter Øhrstrøm, editors, Conceptual
Structures: Inspiration and Application, 14th International
Conference on Conceptual Structures, ICCS 2006, Aal-
borg, Denmark, July 16-21, 2006, Proceedings, volume
4068 of Lecture Notes in Computer Science, pages 22–36.
Springer, 2006.
Benjamin Schnieder. On what we can ensure. Synthese,
162:101–115, 2008.
Edward Stein. Without good reason. The rationality debate
in philosophy and cognitive science. Clarendon Library of
Logic and Philosophy. Clarendon Press, 1997.
Manuela M. Veloso, editor. Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence,
Hyderabad, India, January 6-12, 2007. AAAI Press, 2007.
Peter Wason. Reasoning about a rule. Quarterly Journal
of Experimental Psychology, 20(3):273–281, 1968.

42

The Role of Logic in AGI Systems:
Towards a Lingua Franca for General Intelligence

Helmar Gust and Ulf Krumnack and Angela Schwering and Kai-Uwe Kühnberger
Institute of Cognitive Science, University of Osnabrück, Germany
{hgust|krumnack|aschweri|kkuehnbe}@uos.de

Abstract

Systems for general intelligence require a significant poten-
tial to model a variety of different cognitive abilities. It is
often claimed that logic-based systems – although rather suc-
cessful for modeling specialized tasks – lack the ability to
be useful as a universal modeling framework due to the fact
that particular logics can often be used only for special pur-
poses (and do not cover the whole breadth of reasoning abili-
ties) and show significant weaknesses for tasks like learning,
pattern matching, or controlling behavior. This paper argues
against this thesis by exemplifying that logic-based frame-
works can be used to integrate different reasoning types and
can function as a coding scheme for the integration of sym-
bolic and subsymbolic approaches. In particular, AGI sys-
tems can be based on logic frameworks.

Introduction
As a matter of fact artificial intelligence currently departs
significantly from its origins. The first decades of AI can
be characterized as the attempt to use mostly logic-based
methods for the development of frameworks and implemen-
tations of higher cognitive abilities. A few prominent exam-
ples are knowledge representation formalisms like Minsky’s
frames (Minsky, 1975), semantic networks (Sowa, 1987),
McCarthy’s situation calculus (McCarthy, 1963), Brach-
nan’s KL-ONE (Brachman and Schmolze, 1985). With the
rise and partial success of neurosciences, neuroinformatics,
dynamic system theory, and other nature-inspired comput-
ing paradigms, logic-based frameworks seem to lose their
importance in artificial intelligence. The current success
of these new methodologies are at least partially based on
the fact that several non-trivial problems are connected with
logic-based approaches. Examples of such problems are
the profusion of knowledge, the variety of reasoning for-
malisms, the problem of noisy data, and the lack of cog-
nitive plausibility with respect to learning from sparse data,
or reasoning in non-tractable domains.

A number of new research paradigms were proposed in
order to overcome some limitations of logical computational
frameworks. Many of them are inspired by biological or
psychological findings. The following list summarizes some
of these new methodologies:

• Natural Computation: This cluster contains methods like
learning with neural networks and support vector ma-

chines, evolutionary computing, genetic algorithms, dy-
namic system theory etc.

• Cognitive Robotics: Embedded and embodied models of
agents focus on perception aspects, motor control, and the
idea that the world itself is the best of all possible mod-
els. This tradition moves the interest from higher to lower
cognitive abilities.

• Cognitive Architectures: Integrated frameworks for mod-
eling cognitive abilities, often use many different method-
ologies in order to model cognitive abilities. There seems
to be a tendency for a method pluralism including also
ideas from natural computation.

• Further Approaches: Further approaches for AI sys-
tems are, for example, fuzzy and probabilistic approaches
(sometimes combined with logic), semantic networks that
are enriched with activation potentials, the modeling of
social aspects in multi-agent networks etc.

The mentioned methodologies are usually considered as
alternatives to specialized logic-based AI systems. Although
methods of, for example, natural computation may have
strengths in particular domains, it is clearly far from being
obvious that they can be used for modeling higher cogni-
tive abilities. In particular, for AGI systems, which attempt
to model the whole spectrum of higher and lower cogni-
tive abilities, the difficulty to find a basis for its underlying
methodology seems to be crucial: due to the fact that there
are no good ideas how logical frameworks can be translated
into such new computational paradigms, a starting point for
AGI is the clarification of its methodological basis.

This paper argues for the usage of a non-standard logic-
based framework in order to model different types of reason-
ing and learning in a uniform framework as well as the inte-
gration of symbolic and subsymbolic approaches. Analogi-
cal reasoning has the potential for an integration of a variety
of reasoning formalisms and neural-symbolic integration is
a promising research endeavor to allow the learning of log-
ical knowledge with neural networks. The remainder of the
paper has the following structure: first, we will discuss the
variety of logic and learning formalisms. Second, we will
show possible steps towards a logic-based theory that com-
prises different types of reasoning and learning. Third, we
will argue for using logic as the lingua franca for AGI sys-
tems based on neural-symbolic integration.

43

Types of Reasoning Corresponding Formalisms
Deductions Classical Logic

Inductions Inductive Logic Programming

Abductions Extensions of Logic Programming

Analogical Reasoning SME, LISA, AMBR, HDTP

Similarity-Based Reasoning Case-Based Reasoning

Non-Monotonic Reasoning Answer Set Programming

Frequency-Based Reasoning Bayesian Reasoning

Vague and Uncertain Rasoning Fuzzy, Probabilistic Logic

Reasoning in Ontologies Description Logics

Etc. Etc.

Table 1: Some types of reasoning and some formalisms

Tensions in Using Logic in AGI Systems
The Variety of Reasoning Types
Logical approaches have been successfully applied to ap-
plications like planning, theorem proving, knowledge rep-
resentation, problem solving, and inductive learning, just to
mention some of them. Nevertheless, it is remarkable that
for particular domains and applications very special logi-
cal theories were proposed. These theories cannot be sim-
ply integrated into one uniform framework. Table 1 gives
an overview of some important types of reasoning and their
corresponding logic formalisms. Although such formalisms
can be applied to a variety of different domains, it turns out
that the degree of their generalization potential is limited.
One will hardly find an approach that integrates inductive,
deductive, abductive, fuzzy etc. logic theories in one unified
framework.1

The Variety of Learning Types
A very similar situation can be found by shifting our atten-
tion from reasoning issues to learning aspects. The mani-
fold of learning paradigms used in applications leads to the
development of various corresponding formalisms. Major
distinctions of learning approaches like supervised, unsuper-
vised, and reinforcement learning structure the field, but are
themselves just labels for a whole bunch of learning algo-
rithms. Table 2 summarizes some important learning tech-
niques commonly used in AI.

Although the list of machine learning algorithms guaran-
tees that efficient learning strategies do exist for many ap-
plications, several non-trivial problems are connected with
these theories. The following list summarizes some of them:

• Learning from noisy data is a classical problem for sym-
bolic learning theories. Neural-inspired machine learning
mechanisms have certain advantages in this respect.

• There is no learning paradigm that convincingly can learn
from sparse, but highly conceptualized data. Whereas
natural agents are able to generate inductive hypothe-
ses based on a few data points due to the availability of

1Clearly, there are exceptions: an example may be Wang’s
NARS architecture (Wang, 2006) where the integration of the
whole range of higher cognitive abilities are programmatically
modeled in a logic-based framework.

Learning Types Learning Approaches
Unsupervised Clustering Neural Networks, SOMs,

Learning ART, RBF network

Supervised Classification, Case-based reasoning,

Learning Learning a Function k-Nearest Neighbor,

Decision Tree Learning

Reinforcement Policy Learning Q-Learning, POMDPs,

Learning Temporal Difference Learning

Analytical & Inductive Rule Extraction, Inductive Learing,

Learning Learning in Domain Explanation-Based Learning,

Theories KBANNs

Table 2: Some types of learning and some methodological
learning approaches

background knowledge, classical machine learning mech-
anisms usually need rather large numbers of (more or less)
unconceptualized examples.

• Learning in artificial systems is quite often realized ex-
plicitly in a separate module especially designed for a
particular task. Contrary to this idea, cognitive learning
is usually a continuous adaptation process taking place on
many levels: besides explicit learning, rearranging rep-
resentations in order to align structural properties of two
inputs in a complex reasoning process, resolving clashes
in a conceptualization by rewriting the representation, im-
plicitly erasing features of an entity to make it compatible
with background knowledge etc. may play an important
role for adaptation processes (Kühnberger et al., 2008).

• The gap between symbolic and subsymbolic representa-
tions is a problem for AI systems because of complemen-
tary strengths and weaknesses. A framework that can ex-
tract the strengths of both fields would be desirable.

Steps Towards a Logic-Based Theory for
Reasoning and Learning

Sketch of HDTP
A framework that proposes to integrate different reasoning
types in one framework is heuristic-driven theory projec-
tion (HDTP) described in (Gust, Kühnberger, and Schmid,
2006). HDTP has been proposed for analogical reasoning.
Due to the fact that establishing an analogical relation be-
tween a given source and target domain often requires the
combination of different reasoning types, analogical reason-
ing is a natural starting point for an integration methodology
for AGI systems.

We sketch the basic ideas of HDTP in this subsection.2
HDTP established an analogical relation between a source
theory ThS and target theory ThT (both described in a first-
order language L) by computing a generalization (structural
description) ThG of the given theories. This generalization
process is based on the theory of anti-unification (Plotkin,

2For a comprehensive presentation of the theory, the reader is
referred to (Gust, Kühnberger, and Schmid, 2006) and (Schwering
et al., 2009).

44

Solar System Rutherford Atom
α1 : mass(sun) > mass(planet)
α2 : ∀t : distance(sun, planet, t) > 0

α3 : gravity(sun, planet) > 0

α4 : ∀x∀y : gravity(x, y) > 0

→ attracts(x, y)
α5 : ∀x∀y∀t : attracts(x, y) ∧

distance(x, y, t) > 0 ∧
mass(x) > mass(y)

→ revolves arround(y, x)

β1 : mass(nucleus) > mass(electron)
β2 : ∀t : distance(nucleus, electron, t) > 0

β3 : coulomb(nucleus, electron) > 0

β4 : ∀x∀y : coulomb(x, y) > 0

→ attracts(x, y)

Generalized Theory
γ1 : mass(A) > mass(B)

γ2 : ∀t : distance(A,B, t) > 0

γ3 : F (A,B) > 0

γ4 : ∀x∀y : F (x, y) > 0→ attracts(x, y)

Table 3: A formalization of the Rutherford analogy with obvious analogous structures (Krumnack et al., 2008)

1970). Anti-unification is the dual constructions of unifica-
tion: if input terms t1 and t2 are given, the output is a gener-
alized term t such that for substitutions Θ1 and Θ2 it holds:
t1 = tΘ1 and t2 = tΘ2. It is well-known that for first-order
anti-unification a generalization always exists, there are at
most finitely many generalizations, and there exists a unique
least generalization (Plotkin, 1970).

In order to apply the idea of anti-unification to analogies,
it is necessary to extend the anti-unification framework in
several respects. We will use the Rutherford analogy formal-
ized in Table 3 as a simple example for motivating HDTP:

1. Not only terms but also formulas (theories) need to be
anti-unified.

2. Whereas the generalization of α1 and β1 to γ1 uses only
first-order variables, the anti-unification of α3 and β3

requires the introduction of second-order variables (Ta-
ble 3).

3. In order to productively generate the conclusion that elec-
trons revolve around the nucleus, it is necessary to project
α5 to the source domain and generate a formula γ5 in
ThG with

∃A∃B∀t : attracts(A,B) ∧ distance(A,B, t) > 0 ∧
mass(A) > mass(B)→ revolves arround(B,A)

In the following, we mention some properties of the ex-
tensions mentioned in the above list. The generalization of
term anti-unification to the anti-unification of formulas is
rather straightforward and will be omitted here.3 A crucial
point is the fact that not only first-order but also second-
order generalizations need to computed, corresponding to
the introduction of second-order variables. If two terms
t1 = f(a, b) and t2 = g(a, b) are given, a natural second-
order generalization would be F (a, b) (where F is a func-
tion variable) with substitutions Θ1 = {F ← f} and
Θ2 = {F ← g}. Then: t1 = f(a, b) = F (a, b)Θ1

and t2 = g(a, b) = F (a, b)Θ2. It is known that unre-
stricted second-order anti-unifications can lead to infinitely
many anti-instances (Hasker, 1995). In (Krumnack et al.,

3Cf. (Krumnack et al., 2008) for more information.

2007), it is shown that a restricted form of higher-order anti-
unification resolves this computability problem and is ap-
propriate for analogy making.
Definition 1 Restricted higher-order anti-unification is
based on the following set of basic substitutions (Vn denotes
an infinite set of variables of arity n ∈ N):

• A renaming ρF,F
′

replaces a variable F ∈ Vn by another
variable F ′ ∈ Vn of the same argument structure:

F (t1, . . . , tn)
ρF,F

′

−−−→ F ′(t1, . . . , tn).
• A fixation φVc replaces a variable F ∈ Vn by a function

symbol f ∈ Cn of the same argument structure:

F (t1, . . . , tn)
φFf−−→ f(t1, . . . , tn).

• An argument insertion ιF,F
′

V,i with 0 ≤ i ≤ n, F ∈ Vn,
G ∈ Vk with k ≤ n− i, and F ′ ∈ Vn−k+1 is defined by

F (t1, . . . , tn)
ιF,F

′
V,i−−−→

F ′(t1, . . . , ti−1, G(ti, . . . , ti+k−1), ti+k, . . . , tn).

• A permutation πF,F
′

α with F, F ′ ∈ Vn and bijective α :
{1, . . . , n} → {1, . . . , n} rearranges the arguments of a
term:

F (t1, . . . , tn)
πF,F

′
α−−−→ F ′(tα(1), . . . , tα(n)).

As basic substitutions one can rename a second-variable,
instantiate a variable, insert an argument, or permute argu-
ments. Finite compositions of these basic substitutions are
allowed. It can be shown that every first-order substitu-
tion can be coded with restricted higher-order substitution
and that there are at most finitely many anti-instances in the
higher-order case (Krumnack et al., 2007).

A last point concerns the transfer of knowledge from the
source to the target domain. In the Rutherford example, this
is the projection of α5 to the target domain governed by the
analogical relation computed so far. Such projections allow
to creatively introduce new concepts on the target side. The
importance of these transfers for modeling creativity and
productivity cannot be overestimated.

45

Integrating Different Types of Reasoning and
Learning with HDTP
As should be already clear from the rough introduction to
HDTP, analogy making involves several types of reasoning.
Not only that the result of the process is the establishment of
an analogical relation between ThS and ThT , but as a side-
effect a generalization is computed that can be interpreted as
a learning result: the generalized theory ThG together with
appropriate substitutions cover not only the input theories,
but potentially also some further theories. With respect to
the Rutherford analogy the result is a central body system.
Therefore, already at the level of the core theory, a form of
inductive inference is computed.4

Another type of inference is involved in cases where the
domain theories ThS and ThT are not in a form such that
an association of corresponding terms and formulas is pos-
sible, although the theories can be analogically associated
with each other. Assume that β2 in Table 3 is replaced by

β′2 : ∀t : distance(electron, nucleus, t) > 0.
A simple association of α2 and β′2 is no longer possible,
because the argument positions do not coincide. In order to
resolve this problem, HDTP uses a theorem prover to rewrite
the axioms and deduce a representation that is more appro-
priate for analogy making. In our example, such a piece of
background knowledge may be the formula

∀x∀y∀t : distance(x, y, t) = distance(y, x, t)
Because the system is based on a first-order logical in-

put, and for every first-order theory there are infinitely many
possible axiomatizations, such cases may occur often. In
(Krumnack et al., 2008), an algorithm is presented that
shows how such a re-representation of a theory can be im-
plemented into the HDTP core framework.

The remarks so far make clear that HDTP already covers
different types of reasoning:

• Analogical inferences are used to establish the analogical
relation between source and target.

• Anti-unification computes generalizations that can be in-
terpreted as general hypotheses about the structure of the
instance theories.

• Deductive inferences are used to rewrite the input for ap-
plicability of anti-unification.

• Vague reasoning is implicitly covered by the approach,
because analogies are intrinsically fuzzy. There are no
right or wrong analogies, rather there are psychologically
preferred and psychologically less preferred analogies.
HDTP models this aspect by using heuristics.

In alternative analogy models other types of reasoning
were proposed for the integration into the analogy mak-
ing process. As an example abductive reasoning is men-
tioned that can be modeled in the structure mapping engine
(Falkenhainer, Forbus, and Gentner, 1989).

4The generalization has similarities to an induction step. Nev-
ertheless, it is important to notice that anti-unification is governed
by two structured theories and not by many examples like in the
case of classical inductive reasoning.

Figure 1: A graphical representation of the analogy making
process involving different forms of reasoning and learning

Remarks on Learning with HDTP
As mentioned above not only the variety of different types of
reasoning, but also the variety of different types of learning
jeopardize the integration of learning into an AGI method-
ology, as well as learning from sparse and noisy data. The
analogy making process presented here gives us some hints
for possible solutions of some of these problems. First, no-
tice that analogies do not require many data points. In fact,
the input is given by just two theories (in the regular case).
This suffices to learn a new conceptualization of the tar-
get and to find a generalization of both, source and target.
Second, in (Kühnberger et al., 2008) the authors argue that
learning from inconsistencies can be seen as a basic prin-
ciple for adaptation processes in the cognitive architecture
I-Cog: clashes occurring in reasoning, learning, or repre-
sentation processes can trigger adaptation procedures that
resolve such clashes. HDTP can be interpreted as one exam-
ple where such adaptation processes can be specified on the
algorithmic level of establishing analogies.

We explain some further issues in the analogy making
process with respect to learning using Figure 1.

1. Level: The source and the target domain are compared
via analogy to identify common structures between the
domains. The commonalities are generalized to a theory
ThG . The analogy making process can transfer knowl-
edge from the source to the target yielding a new concep-
tualization of the target. This results in a learning effect
on the target side.

2. Level: The formulas projected from the source to the
target need to be tested, because the analogical knowl-
edge transfer might be true only for prototypical situa-
tions. The process runs through a number of different re-
finement steps and yields a parameter setting specifying
in which range an analogy holds.

3. Level: The aim of this level is the identification of gen-
eral principles. This type of learning requires the compar-
ison (typically analogical comparison) of many different
domain theories. At this level, the learning process starts
with an intuitive hypothesis about a general principle and
compares this iteratively with other domains to gain more
confidence.

46

Symbolic Approaches Subsymbolic Approaches
Methods (Mostly) logical and/or (Mostly) analytic

algebraic

Strengths Productivity, Recursion Robustness, Learning,
Principle, Compositionality Parsimony, Adaptivity

Weaknesses Consistency Constraints, Opaqueness
Lower Cognitive Abilities Higher Cognitive Abilities

Applications Reasoning, Problem Learning, Motor Control,
Solving, Planning etc. Vision etc.

CogSci Relation Not Biologically Inspired Biologically Inspired

Other Features Crisp Fuzzy

Table 4: Differences between symbolic and subsymbolic
theories

The three levels proposed above outline the different
mechanisms that occur. Analogical learning in this sense
is therefore a process in which different learning mecha-
nisms interact and are iteratively repeated to refine and cor-
rect knowledge on the various abstraction levels.5

Logic as Lingua Franca for AGI Systems
In this section, we sketch ideas of how logic as the under-
lying representation formalism can be used for integrating
subsymbolic devices to a logical reasoning system.

Building Neural-Symbolic Learning Systems
There is an obvious gap between symbolic and subsymbolic
theories. As a matter of fact there is not only a methodolog-
ical difference between these approaches, but furthermore
strengths and weaknesses of the two paradigms are comple-
mentary distributed. Table 4 mentions some important dis-
tinctions between these two types of modeling options. In
particular, for an AGI system intended to cover a large part
of the breadth of cognitive abilities, a natural idea would be
to bring these two research traditions together.

There has been the research endeavor “neural-symbolic
integration” attempting to resolve this tension between sym-
bolic and subsymbolic approaches.6 The idea is to transform
a highly structured input (e.g. a logical theory) into a flat in-
put appropriate for connectionist learning. It has been shown
that learning theories of propositional logic with neural net-
works can be achieved by using different frameworks like
the “core method” or KBANNs (Hölldobler and Kalinke,
1994; Towell and Shavlik, 1994). In recent years, exten-
sions to predicate logic were proposed (Bader, Hitzler, and
Hölldobler, 2008).

We sketch some ideas of learning predicate logic with
neural networks based on topos theory (Gust, Kühnberger,
and Geibel, 2007). First, we introduce some concepts. A
topos T is a category where all finite diagrams have limits
(and colimits), any two objects have an exponential object,

5This distinguishes HDTP from other learning approaches
based on analogy. For example, the SME tradition (Falkenhainer,
Forbus, and Gentner, 1989) focuses on alignment and transfer,
whereas abstraction and interactions of different mechanisms do
not play a crucial role.

6A good overview of neural-symbolic integration can be found
in (Hammer and Hitzler, 2007).

and there exists a subobject classifier (Goldblatt, 1984). As
a consequence, T has an initial and terminal object, as well
as finite products and coproducts. The prototypical example
for a topos is the category SET . The objects of SET are
sets, connected by set theoretic functions (called arrows). A
product a × b can be identified with the well-known Carte-
sian product of two sets a and b, and an exponent ab with
the set of functions f : b → a. The terminal object ! is the
one-element set {0}with the property that for all sets a there
is exactly one arrow from a into {0}. The truth value object
Ω = {0, 1} and the subobject classifier true: ! → Ω map-
ping 0 to 1 generalizes characteristic functions and therefore
interpretations of predicates.

We summarize how a topos can be used for neural learn-
ing of a logical theory T given in a first–order language L.

• T is translated into a variable-free representation in a
topos T . The result is a representation of logic expres-
sions by commuting diagrams, where objects are sets and
arrows are set theoretic functions (in case we work in
SET). Logical terms can be interpreted as mappings from
the terminal object into the universe U and logical 2-ary
connectives as mappings Ω× Ω→ Ω. Quantified formu-
las correspond to an operation mapping (complex) predi-
cates to (complex) predicates.

• An algorithm is generating equations of the form f◦g = h
and inequations of the form f 6= g corresponding to equa-
tions and inequations of arrows in the T , i.e. set theoretic
functions in SET .
• As representations for objects and arrows it is possible

to choose vectors of the vector space Rn. The resulting
equations and inequations can be used in order to train a
feedforward neural network by backpropagation.

• The network learns a representation of objects and ar-
rows of the underlying topos (which themselves represent
symbols and expressions of L), such that the truth condi-
tions of the underlying axioms of T are satisfied. In other
words, the network learns a model of T .

Although the approach still has many problems to solve,
the very possibility to code axioms of a logical theory T ,
such that a neural network can learn a model of T , can
be considered as the missing link between symbolic and
subsymbolic representations. Applied to AGI systems, this
means that logic can play the role of a lingua franca for gen-
eral intelligence, without neglecting one of the two separated
worlds of symbolic and subsymbolic computations. Rather
it is possible to integrate both worlds into one architecture.
A proposal for such an architecture (I-Cog) integrating both
devices – the analogy engine and the neural-symbolic inte-
gration device – can be found in (Kühnberger et al., 2008).

Related Work
Analogies have been playing an important role in cognitive
science and cognitively inspired AI for a long time. Clas-
sical frameworks are, for example, the symbolic approach
SME (Falkenhainer, Forbus, and Gentner, 1989), the con-
nectionist system LISA (Hummel and Holyoak, 1997), or
the hybrid approach AMBR (Kokinov and Petrov, 2001). A

47

good overview of analogy models can be found in (Gen-
tner, Holyoak, and Kokinov, 2001). There are numerous
classical papers on neural-symbolic integration, e.g. (Barn-
den, 1989) as one of the early ones. More recent work is
concerned with extensions of propositional logic (D’Avila
Garcez, Broda, and Gabbay, 2002), and the modeling of
predicate logic using the “core method” (Bader, Hitzler, and
Hölldobler, 2008).

Conclusions
This paper argues for the usage of logic as the basis for
an AGI system without neglecting other nature-inspired ap-
proaches for modeling intelligent behavior. Although there
is a zoo of logical formalisms that are sometimes hard to
integrate with each other, we claim that directions towards
such an integration of a variety of different reasoning types
already exist. As an example we proposed the analogy en-
gine HDTP in order to integrate such diverse types of rea-
soning like analogical, deductive, inductive, and vague rea-
soning. Furthermore, non-trivial learning mechanisms can
be detected by adapting and fine-tuning the analogical re-
lation. Finally, this paper claims that even the interaction
between symbolic theories and subsymbolic theories can be
achieved by the usage of techniques developed in neural-
symbolic integration.

Obviously, many issues remain open. Besides the chal-
lenge of an empirical justification of the presented frame-
work, other issues for future work need to be addressed.
Currently it is impossible to solve challenging problems
(e.g. benchmark problems) for theorem provers with neural-
symbolic integration. Similarly, many questions of analogy
making remain open and are not solved yet. One example
is the integration of large knowledge bases, in particular, the
retrieval of relevant knowledge, another one is the scalabil-
ity of analogy making to applications in the large. Never-
theless, taking these ideas together it turns out that a variety
of different cognitive abilities can be addressed in a uniform
framework using logic as a mediating tool.

References
Bader, S., Hitzler, P., and Hölldobler, S. 2008. Connection-
ist model generation: A first-order approach. Neurocomputing,
71:2420–2432.
Barnden, J.A. 1989. Neural net implementation of complex sym-
bol processing in a mental model approach to syllogistic reason-
ing. In Proceedings of the International Joint Conference on Arti-
ficial Intelligence, 568-573.
Brachman, R. and Schmolze, J. 1985. An Overview of KL-ONE
Knowledge Representation System, Cognitive Science 9(2):171–
216.
D’Avila Garcez, A., Broda, K., and Gabbay, D. 2002. Neural-
Symbolic Learning Systems: Foundations and Applications.
Berlin Heidelberg, Springer.
Falkenhainer, B., Forbus, K., and Gentner, D. 1989. The structure-
mapping engine: Algorithm and example, Artificial Intelligence,
41:1-63.
Gentner, D., Holyoak, K., and Kokinov, B. 2001. The Analogi-
cal Mind. Perspectives from Cognitive Science, Cambridge, MA:
MIT Press.

Goldblatt, R. 1984. Topoi, the categorial analysis of logic. North-
Holland, Amsterdam.
Gust, H., Kühnberger, K.-U., and Geibel, P. 2007. Learning Mod-
els of Predicate Logical Theories with Neural Networks Based on
Topos Theory. In: P. Hitzler and B. Hammer (eds.): Perspectives
of Neural-Symbolic Integration, SCI 77, Springer, pp. 233-264.
Gust, H., Kühnberger, K.-U., and Schmid, U. 2006. Metaphors
and Heuristic-Driven Theory Projection. Theoretical Computer
Science, 354:98-117.
Hammer, B. and Hitzler, P. (eds.) 2007. Perspectives of Neural-
Symbolic Integration. Springer, Berlin.
Hasker, R. 1995. The replay of program derivations. PhD thesis,
Champaign, IL, USA.
Hölldobler, S. and Kalinke, Y. 1994. Ein massiv paralleles Modell
für die Logikprogrammierung. Proceedings of the Tenth Logic
Programming Workshop, WLP 94:89-92.
Hummel, J. and Holyoak, K. 1997. Distributed representations of
structure: A theory of analogical access and mapping, Psycholog-
ical Review 104(3):427–466.
Kokinov, B. and Petrov, A. 2001. Integrating Memory and Rea-
soning in Analogy–Making: The AMBR Model, in D. Gentner,
K. Holyoak, B. Kokinov (eds.): The Analogical Mind. Perspec-
tives from Cognitive Science, Cambridge Mass. (2001).
Krumnack, U., Schwering, A., Kühnberger, K.-U., and Gust,
H. 2007. Restricted Higher-Order Anti-Unification for Analogy
Making. 20th Australian Joint Conference on Artificial Intelli-
gence, Springer, pp. 273-282.
Krumnack, U., Gust, H., Kühnberger, K.-U., and Schwering, A.
2008. Re-representation in a Logic-Based Model for Analogy
Making. 21st Australian Joint Conference on Artificial Intelli-
gence.
Kühnberger, K.-U., Geibel, P., Gust, H., Krumnack, U., Ovchin-
nikova, E., Schwering, A., and Wandmacher, T. 2008. Inconsis-
tencies in an Integrated Cognitive Architecture. In: P. Wang, B.
Goertzel, and S. Franklin (eds.): Artificial General Intelligence
2008. Proceedings of the First AGI Conference, IOS Press, pp.
212-223.
McCarthy, J. 1963 Situations, actions, and causal laws. Stanford
Artificial Intelligence Project Memo 2, Stanford University, 1963.
Minsky, M. 1975. A Framework for Representing Knowledge. In
P. Winston (ed.): The Psychology of Computer Vision, New York,
pp. 211–277.
Plotkin, G. 1970. A note on inductive generalization. Machine
Intelligence 5:153-163.
Schwering, A., Krumnack, U., Kühnberger, K.-U. and Gust, H.
2009. Syntactic Principles of HDTP. To appear in Cognitive Sys-
tems Research.
Sowa, J. 1987. Semantic Networks. In S. Shapiro (ed.): Encyclo-
pedia of Artifical Intelligence, John Wiley & Sons.
Towell, G. and Shavlik, J. 1994. Knowledge-Based Artificial
Neural Networks. Artificial Intelligence 70(1-2):119-165.

Wang, P. 2006. Rigid Flexibility: The Logic of Intelligence,
Springer, 2006.

48

The robotics path to AGI using Servo Stacks

J. Storrs Hall
Institute for Molecular Manufacturing

Laporte, PA, USA

Abstract

The case is made that the path to AGI through cogni-
tive and developmental robotics is compelling. Beyond
the familiar argument that it keeps researchers honest
by forcing their systems to cope with the real world, it
encourages them to recapitulate the evolutionary de-
velopmental path which gave rise to intelligence in hu-
mans. Insights from this perspective are embodied in
the Servo Stacks cognitive architecture with several
salient features. The brain evolved as a body controller
and thus is based largely on computational structures
appropriate to physical process control. Evolution typ-
ically copies existing structure and modi�es it mini-
mally to meet a new demand. We should therefore
expect the higher cognitive functions to be performed
by body controllers pressed into service as brain con-
trollers.

Introduction and Motivation

The brain evolved as a body controller; except for
size, the human brain is structurally similar to that
of other primates. Neocortex in surprisingly homoge-
neous, suggesting a general computing fabric instead
of hard-wired functional modules. This uniformity has
been cited as a strong argument for a common com-
putational function (Mountcastle 1978). An argument
can thus be made that evolution took a computing sub-
strate evolved for body control and simply extended it
to support the complex cognitive functions of symbolic
ratiocination characteristic of human intelligence.
The Servo Stacks architecture is an attempt to use

this insight as a guide in developing a general arti�cial
intelligence. For example, there is some evidence that
the neural structures which manipulate grammar and
language developed from, or indeed overlap, the ones
which produce �nely nuanced and sequenced manipu-
lations by the hands. Thus we feel that insight into the
former may be gained by investigating the latter, par-
ticularly to the extent of identifying mechanisms that
might be responsible for compliant dexterity and seam-
less �uidity in both domains.

Copyright c© 2008, The Second Conference on Arti�cial
General Intelligence (AGI-09.org). All rights reserved.

It is common in higher-level cognitive architectures
for there to be a chain something like �sensory input
to interpretation to cogitation to action sequencing to
motor output.� In evolution, however, the structure
of a simpler animal is usually augmented by adding a
controller to the top the entire lower-form structure,
giving rise to a laminar structure with crosstalk between
input and output at each level. This form is clearly
re�ected in the control architectures of modern robotics
as pioneered in (Brooks 1986).
To extend this laminar control architecture to be a

more general-purpose cognitive system, we reinterpret
the a�erent and e�erent signals at each level, together
with their crosstalk in both directions, as a feedback-
loop servo controller. The resulting stack of servos then
represents a classic abstraction hierarchy, with each suc-
cessive servo �thinking� about what is happening in
terms of a more general �language� as we ascend the
stack.
For example, we might have lower-level servos con-

cerned with pressure patterns on the skin and muscle
activation strengths; a higher level with joint angles and
speeds; higher yet with step-taking and foot placement;
then room-to-room navigation; then the task of serving
co�ee; then the entertainment of guests, and so forth.
Given this general form for a cognitive architecture,

the key open questions are

• Can a single general model of servo be developed that
is appropriate to a broad range of these levels? If
so, the notion that the brain grows by copying and
modifying existing servos, both evolutionarily and in
individual mental development, would gain increased
cogency.

• The servos in a working model of mind will not form
a simple linear stack but a complex network, which
must support varying patterns of communication for
di�erent overall cognitive tasks and states. How is
this done?

• For mental growth and learning, new servos, with
new internal �languages�, must be formed to imple-
ment the ability to think in new abstractions about
new concepts. How are they created, programmed,
and connected?

49

After examining these we will return to the question of
a speci�c architecture.

A Symbolic Servo

Upon seeing the algorithm of Newell and Simon's Gen-
eral Problem Solver, John McCarthy quipped, �It's a
symbolic servo.�1

A standard process-control servo receives a control
input signal s (the �setpoint�) and a feedback signal f
from the process (called the �plant�) to be controlled.
These two signals must be commensurate, e.g. both a
measure of engine speed. The servo then adjusts some
controllable parameter p of the plant based on a func-
tion of the control and feedback signals.
If the servo has a memory of enough cases, arranged

as triples (f0, f1, p) (e.g. the value of the feedback signal
before and after setting the output to p), �case-based�
control can obtained by using p from the tuple where
f0 is closest to current feedback f , and f1 is nearest the
current control input s. For well-behaved plants, even
a sparsely populated memory can be interpolated with
standard numerical regression techniques.
The Servo Stacks model speci�es a controller

whose memory is (s, p, d, f), where s is the setpoint,
f = f0 is the original value of the feedback signal,
d = f1 − f0 the di�erential of the trajectory, and p
is the process control signal sent to the plant. The use
of a di�erential as a trajectory link (instead of explic-
itly storing the successive value) is prompted by the
observed di�culty of following well-practiced behaviors
backwards, and because matching di�erentials a�ords
a cheap generalization over translation, and with a nod
to the �di�erence operators� in GPS (Newell and Simon
1963). It also brings us within shouting distance of the
standard transfer function formulation of linear dynam-
ical systems in control theory, although we have yet to
take practical advantage of this.
We refer to this as a �sigma� (situation / goal /

memory / action) to distinguish it from standard for-
mulations of servo or state machine. In our model, each
signal has a strength as well as a value; at zero strength,
it acts as a �don't-care�, and at partial strength it acts
as a bias in case the other inputs incompletely deter-
mine a memory record, but can be overriden by stronger
signals on other inputs. More precisely, each signal is a
vector whose components individually have strengths.
If su�ciently populated, the stored trajectories form

a manifold in the memory space, which is equivalent to
an equation (or system of them) which forms a model
of the observed behaviors. Typically the manifold will
be a p-valued function of (f, s)-space, and generally in-
terpreted as a function selected by s in f -space.
If some of the dimensions of the space are time deriva-

tives of others, it forms a dynamical systems model
(equivalent to a system of di�erential equations). In
the absence of such derivatives, the sigma can either be

1As related by Marvin Minsky at AAAI FSS 2001, North
Falmouth, MA

clocked to obtain state-machine behavior or allowed to
run free, in which case it will �nd �xed points of its
function.
A sigma can be used in a variety of modes, depending

on its inputs:

1. Homeostatic servo mode: as above, s is driven by a
control signal from above, f is driven by the feedback
signal from below, d is sent back up as a feedback. p
is output to drive the plant, and may optionally be
added into d as part of the feedback.

2. Sequencing control mode: s is driven by control from
above, d + f is output to drive f , and p + d is sent
back up as feedback.

3. Simulate mode: s is driven by control from above,
d + f is output to drive f , and p + d is sent back up
as feedback.

4. Recognize mode: f and d are driven by the signal
from below and its derivative; s and p+ d are output
to be sent back up as feedback. s may also be fed back
weakly to itself, and/or driven weakly from above for
a priming e�ect.

Signals and Representation

Analogy (Hofstadter 1995) and blending (Fauconnier
and Turner 2003) have both been suggested as key ba-
sic operations that a cognitive architecture must imple-
ment. It is instructive to note that vectors of real num-
bers support both these operations as simple geometric
combinations, while representing concepts as complex
as a recognizable sketch of a human face (Churchland
1986; 2005). Although at higher levels of abstraction
it is surely the case that more complex structures and
operations will be necessary to support analogy and
blending, it seems reasonable to begin with a primitive
representation that provides a head start.
The physical signals in Servo Stacks are �xed-length

numeric vectors of length n (n = 1024 in current ex-
periments), but support an arbitrary number of no-
tional signals. The components of the notional signals
are given a superimposed coding as sums of randomly-
chosen base vectors in the physical signal space. Any
two such vectors have a high probability of being nearly
orthogonal (Kanerva 1988). Any port on any sigma can
be connected to any other port, with a high probabil-
ity that notional signals unknown to the receiver will
simply be ignored (by virtue of being orthogonal to the
active manifold). Notional signals can be generated lo-
cally without the need of an overall registry, and can
be combined simply by adding physical signals. Here-
inafter, we shall ignore the encoding and refer only to
the notional signal vectors of arbitrary length.
Such vectors can obviously record the position in con-

�guration space of an arm, or be interpreted as a raster
(including the areal functions of dynamic neural �eld
theory (Erlhagen and Bicho 2006)), or specify force val-
ues for muscles. However, throughout most of the ar-
chitecture, they will typically record the activation of,

50

and signals to be sent to, sets of other sigmas. In the
sense that such a vector can be thought of as repre-
senting a situation as recognized or understood by the
other sigmas, it functions as a frame (Minsky 1975). In
cases where that is an appropriate interpretation, the
sigma itself acts as a frame-system, predicting new sit-
uations as the result of actions or suggesting actions
given desired situations.
It is perhaps important to emphasize that there is not

one big vector space in which everything is represented,
as in some connectionist theories. Each sigma has its
own language, in the sense of an interpretation of the
vectors. More precisely, each pair of sigmas which com-
municate have a common interpretation for the signals
that pass between them, but these interpretations vary
completely from one area to another.

Stacks and Networks

Servos are commonly arranged in stacks in complex
mechanisms. Upper-level servos may send control sig-
nals directly to lower ones (the attitude-control sys-
tem in a �y-by-wire aircraft commanding aileron ser-
vos) or indirectly through a process parameter (room
thermostats in a home hydronic heating system run hot-
water pumps, relying on a homeostasis provided by a
boiler thermostat). Leading roboticists Albus (Albus
1992) and Brooks (Brooks 1986) have based their �ag-
ship architectures on hierarchies of FSAs.
Thus the Servo Stacks model, as a layered net-

work of elements that can act as sequencing or home-
ostatic controllers, is straightforwardly adapted into
these roles. A key di�erence between this and a con-
ventional view of a control hierarchy, however, is that
sigmas by their nature provide a sensing and transla-
tion function. The setpoint and feedback signals s and
f are necessarily in a di�erent �language� than p, and
thus, in a directly connected stack, from the s and f of
the sigma below.
A servo stack is as reasonable a model for a sensory

pathway as for a motor one. It is becoming increasingly
recognized that sensing is neurophysiologically an ac-
tive, not a passive process (Wolpert, Ghahramani, and
Jordan 1995). In vision, for example, there are exam-
ples of homeostasis, such as iris dilation for retina illu-
mination levels, and sequencing control, as of saccading
in intermediate object recognition to trace boundaries
and salient features.
Holonic recognition, including key features such as

priming and context sensitivity, is readily provided for
in Servo Stacks by weakly driving the s input from
above. A key feature of the superimposed coding of sig-
nals is that the signal representing a percept can have
components corresponding to several possibilities, and
the interpretation process may provide (e�erent!) feed-
back from semantic constraints.
At the lower sensorimotor levels, the recon�gurability

of the sigmas is not important, and indeed there may be
a level below which they are hard-wired and cognitively

impenetrable. However, at higher levels where sigmas
represent concepts such as words and goal-directed ac-
tions, recon�gurability is crucial to the use of the net-
work as a fabric of representation. The same set of sig-
mas can be used to recognize an action, imagine doing
it, predict its e�ects, and actually to perform it.

Recursion and Concepts

We posit a mechanism similar to Minsky's k-line (Min-
sky 1980), which can record all the network elements
active at a given point, but also able to record their
connections: which port on each is driving which other
ports at what strength. These active subnet con�gura-
tions (hereinafter ASCs) can be named and passed as
values between higher-level sigmas, which can perform
operations on them such as substitution: the ASCs for
�pick up the red block�, �red block�, and �blue ball� can
be combined in such a way as to form an ASC for �pick
up the blue ball�.
The formation of ASCs is at least neurally plausi-

ble. A generally broadcast signal could cause all ac-
tive elements to associate a code (one component of the
notional vector) with their current activity or connec-
tivity, and a similar broadcast could cause that activ-
ity and connectivity to be reestablished. A number of
associative datastructure manipulation techniques are
similarly plausible for operations between ASCs (Fos-
ter 1976; Potter 1991; Hall 1994).
Since ASCs are capable of recursion (in the lin-

guistics sense, i.e. capable of being combined to
form complex structures from simple ones) and other
typically symbolic manipulations, they form a �lan-
guage of thought� in the sense of Fodor (Fodor 1975;
1978).
Perhaps the most important question one can ask of a

cognitive architecture is how it represents concepts. In
the common quip, something is a duck if it walks like a
duck and quacks like a duck. Rather than representing a
duck as some static datastructure essentially equivalent
to a dictionary entry, anASC represents a duck with an
active working machine that is capable of recognizing
a duck, simulating a duck, and even imitating a duck.
This is the active subnet which activates and connects
all the sigmas which store duck-relevant trajectories.
Note again that ASCs are manipulated, not by some

exogenous program, but by sigmas whose memories p
are records of ASC-manipulation control signals. The s
and f signals to such sigmas are typically the output of
more complex processing and recognition. The higher-
level sigmas which manipulate ASCs are no di�erent
in principle from any others � manipulating one's own
thoughts must be learned and practiced.

Play, Practice, and Imitation

Evidence ranging from visually deprived kittens (Wiesel
and Hubel 1963) to language-deprived children (Sacks
1989) indicates that appropriate sensory experience is
necessary for the development of cognitive ability across

51

a wide range of levels of organization. The same phe-
nomenon would a�ect our sigma, which would be in-
competent at its task in the absence of a populated
memory.
For a sigma to become competent at recognition or

control, its memory must be populated with enough
trajectories to form a reasonable model of the dynam-
ics of the space implied by its signals. Underpopulated
sigmas can improve their models by indulging in play:
driving outputs so that the resulting state falls into va-
cant regions of the space. The plant to be driven in
such play can be either the actual robot body, through
the entire sensorimotor stack below the playing sigma,
or simulations, in which case the stack is disconnected
by putting some cutset of intermediate sigmas into sim-
ulate mode.
By far the major mode of human learning is imita-

tion. After a sigma records the experience of someone
else doing an action, the action may be imitated sub-
stituting oneself for the original actor in the ASC. This
will rarely be perfect, but it gives the student mind a
sca�olding upon which to improve by practice.

An Architecture

The testbed for Servo Stacks is an upper-torso an-
thropoid robot in the genre of Cog (Brooks et al. 1999).
The robot is intended to be able to learn enough skills
and concepts to be roughly the equivalent of a SHRDLU
(Winograd 1972), but with physical cameras, manipu-
lators, wooden blocks and table, and hearing and re-
sponding in spoken language.
Given the demanding computational and memory re-

quirements of the Servo Stacks model, particularly
the associative memory of the sigmas, it seems likely
that processing power will form a substantial bottle-
neck for the near future. We consider this appropriate,
however: any biologically inspired theory of the mind
must take into account the substantial apparent pro-
cessing power of the brain (Merkle 1987). Any such
theory whose computational requirements �t available
computer hardware too neatly seems suspiciously ad
hoc.

Autogenous Kernel

We are primarily concerned with the ability of a mind
to learn and grow. We adopt the basic architecture
of a self-extending system from (Hall 1999), which
speci�es an �autogenous kernel� with irreducibly ba-
sic self-construction capabilities, which builds, in suc-
cessive layers, a series of extensions that have both
more general capabilities and more sophisticated self-
construction abilities.
In a cognitive architecture, the kernel consists of

some basic sensorimotor sigmas, pre-programmed with
records that allow for infant-like activities like waving
arms and learning to track them with eyes. Perhaps
more importantly, it contains higher-level sigmas pre-
programmed with records that allow them to do basic

Auditory
stack

Visual
stack

Motor
stack

perform−ASC
constructor

simulate−ASC
constructor

General sequencer
and controller
("ego")

word−ASC
constructor

phonemes

joints

positions

shapes

hand
blocks

words

actions

objects

letters

phrases

Figure 1: Kernel robot cognitive architecture.

ASC manipulation.

The key issue in learning is the provenance of the
mappings of signals and connectivity of the sigmas. For
example, consider the sigma that maps from 3-D space
to the con�guration space of a multi-jointed arm, con-
stituting the forward or inverse kinematics function de-
pending on how it is used. This works after it is pop-
ulated � where did the 3-D space come from originally,
however?

The process starts with a handful of data-mining
heuristics that are applied more or less at random to all
the signals in the system. In early experiments these are
Kohonen map formation, other standard dimensional-
ity reduction techniques such as PCA, and hierarchical
clustering using a�nity propagation (Frey and Dueck
2007).

Sigmas generated this way are run in prediction mode
and compete in an agoric/genetic ecosystem (Hall,
Steinberg, and Davison 1998) on the basis of how well
their predictions match experience. Those that suc-
ceed are linked together by the supply-chain dynamics
of the agoric phase of the ecosystem and continue to
compete in the marketplace. (The top-level in�ow of
funds in this system corresponds to motivations, and
is currently a very simplistic stub that provides for an-
swering questions and performing requested actions.)

52

Sensorimotor stack con�uence

A key feature of the Servo Stacks model is that the
stacks implementing any given sensorimotor modality
(such as vision) are not separate but merge into other
stacks at relatively low levels. In the testbed robot
architecture, the main stacks are vision, hearing, and
manipulation.

• Vision and manipulation converge at a low level to al-
low a fairly tight hand-eye coordination control loop.
The upper end of this con�uence feeds into an object-
model stack.

• At a somewhat higher level, vision and hearing con-
verge at the level of letters/words, feeding into a lan-
guage stack.

• The language stack and object model converge at a
level such that model semantics are active in sentence
parsing, as in SHRDLU.

When the robot hears the sentence, �Dutch the blue
blog,� the sigmas which store word and syntax-related
trajectories � words are trajectories through phonemes,
sentences are trajectories through words � are con�g-
ured to perform a spreading-activation parse similar to
a Jones APN (Jones 1983; Jones and Driscoll 1985).
There is enough feedback in this process to force the
recognition of �Touch the blue block.� The recognition
itself will involve setting up the performance sigmas in
simulation mode (at a high level only) to verify that
the meaning is within the robot's experience. This will
amplify the salience of �touch� and diminish that of
�dutch�, etc.

Memory

There is no separate module labelled �memory� in the
architecture. Long-term memories are represented by
the trajectory memories in all the sigmas and the map-
pings from signals to ASCs. Short-term or working
memory is represented by the content of the active sig-
nals (including which ASCs are active).
Memories within a given sigma are managed, in our

early experiments, by clustering and weighting heuris-
tics (and by having each sigma have a �xed, limited
capacity). Segmentation of trajectories into distinct
traces is frankly ad hoc and is an area of active in-
vestigation.

Related Work

Servo Stacks falls squarely in the �eld of cognitive
robotics (Clark and Grush 1999; Sloman et al. 2006).
It shares in particular a strong concern for ontogenetic
development with such projects as iCub (Tsagarakis et
al. 2007). It is distinguished from many of the spe-
ci�c e�orts in developmental robotics (Lungarella et al.
2003), however, by focussing on function, representa-
tion, and organization at a higher level than a neural
network model (Shanahan 2006) or even a dynamic neu-
ral �elds model (Erlhagen and Bicho 2006).

Minsky and Papert's original �Society of the Minds�
cognitive architecture (Minsky 1977) was considerably
more neurally inspired (and more oriented toward men-
tal growth) than the majority of the �agent-based� ar-
chitectures which followed � although the latter typi-
cally had the advantage of being more well-speci�ed and
indeed actually being implemented. The present work
is strongly inspired by SoM but di�ers from it in several
signi�cant ways, particularly in the notion that ASCs
can be handed from agent to agent as values. (Note
that the �rst published mention of a rule-based con-
troller recon�gurable as a simulator is in Marvin Min-
sky's Princeton dissertation (Minsky 1954)!)
Our model follows Grush's theory (Grush 2004) of

representation as emulation based on forward modelling
in Kalman �lters and presumed equivalent functionality
in the brain in several ways.
The notion of simply using the full record of ex-

perience as a model is generally referred to in AI as
�case-based reasoning� (Kolodner 1992). Some of the
neural-network approaches that allow one-shot learn-
ing are the original Hop�eld network (with its Hebbian
programming algorithm) (Hop�eld 1982) and Alek-
sander's G-RAM neural unit model (Aleksander 1990).
Servo Stacks might be implemented in either of
these; for example, similar in spirit to our use of sig-
mas as associative-memory based sequencers is Orpo-
nen's programming language for Hop�eld nets (Orpo-
nen and Prost 1996). However, for any digital simu-
lation, an exhaustive search of a vector list is as fast
as one single iteration of a Hop�eld relaxation, so we
choose instead to concentrate on the abstract proper-
ties of proximity in n-spaces and assume that conven-
tional techniques can be developed to implement them
e�ciently (Shakhnarovich, Darrell, and Indyk 2006;
Garcia, Debreuve, and Barlaud 2008).

References

Albus, J. S. 1992. Rcs: A reference model architecture
for intelligent control. IEEE Computer 25(5):56�59.

Aleksander, I. 1990. Neural systems engineering: to-
wards a uni�ed design discipline? Computing and
Control 1:259�265.

Brooks, R. A.; Breazeal, C.; Marjanovic, M.; Scas-
sellati, B.; and Williamson, M. M. 1999. The cog
project: Building a humanoid robot. Lecture Notes in
Computer Science 1562:52�87.

Brooks, R. A. 1986. A robust layered control system
for a mobile robot. IEEE J. of Robotics and Automa-
tion RA-2:14�23.

Churchland, P. M. 1986. Some reductive strategies in
cognitive neurobiology. Mind 95(379):279�309.

Churchland, P. M. 2005. Vector completion, relevant
abduction, and the capacity for 'globally sensitive' in-
ference. In Raftopoulos, A., ed., Cognitive Penetrabil-
ity of Perception: Attention, Action, Strategies, and

53

Bottom-Up Constraints. Nova Science Publishers. 1�
12.

Clark, A., and Grush, R. 1999. Towards a cognitive
robotics. Adaptive Behavior 1(7):5�16.

Erlhagen, W., and Bicho, E. 2006. The dynamic neural
�eld approach to cognitive robotics. Journal of Neural
Engineering 3:36�54.

Fauconnier, G., and Turner, M. 2003. Conceptual
blending, form and meaning. Recherches en commu-
nication 19(19):57�86.

Fodor, J. 1975. The Language of Thought. Thomas
Y. Crowell Company.

Fodor, J. 1978. Tom Swift and his procedural grand-
mother. Cognition 6:204�224.

Foster, C. C. 1976. Content Addressable Parallel Pro-
cessors. Wiley.

Frey, B. J., and Dueck, D. 2007. Clustering by passing
messages between data points. Science 315:972�976.

Garcia, V.; Debreuve, E.; and Barlaud, M. 2008. Fast
k nearest neighbor search using gpu.

Grush, R. 2004. The emulation theory of representa-
tion: Motor control, imagery and perception. Behav-
ioral and Brain Sciences 27(3):377�442.

Hall, J. S.; Steinberg, L.; and Davison, B. D. 1998.
Combining agoric and genetic methods in stochastic
design. Nanotechnology 9(3):274�284.

Hall, J. S. 1994. Associative Processing: Architectures,
Algorithms, Applications. Ph.D. Dissertation, Rutgers
University.

Hall, J. S. 1999. Architectural considerations for self-
replicating manufacturing systems. Nanotechnology
10(3):323�330.

Hofstadter, D. 1995. Fluid Concepts and Creative
Analogies. New York: Basic Books.

Hop�eld, J. J. 1982. Neural networks and physical sys-
tems with emergent collective computational abilities.
In Proceedings of the National Academy of Sciences,
volume 79. Washington, DC: National Academy Press.

Jones, M. A., and Driscoll, A. S. 1985. Movement in
active production networks. In Meeting of the Associ-
ation for Computational Linguistics, 161�166.

Jones, M. A. 1983. Activation-based parsing. In
IJCAI-VIII, 678�682.

Kanerva, P. 1988. Sparse Distributed Memory. Cam-
bridge, MA: MIT Press.

Kolodner, J. L. 1992. An introduction to case-based
reasoning. AI Review 6:3�34.

Lungarella, M.; Metta, G.; Pfeifer, R.; and Sandini, G.
2003. Developmental robotics: a survey. Connection
Science 15(4):151�190.

Merkle, R. 1987. Reverse engineering the brain. In
Proc. AIAA Computers in Aerospace VI, 375.

Minsky, M. 1954. Neural-Analog Networks and the
Brain-Model Problem. Ph.D. Dissertation, Princeton
University.

Minsky, M. 1975. A framework for representing knowl-
edge. In Winston, P. H., ed., The Psychology of Com-
puter Vision. McGraw-Hill.

Minsky, M. 1977. Plain talk about neurodevelopmen-
tal epistemology. In IJCAI-V, 1083�1092.

Minsky, M. 1980. K-lines: A theory of memory. Cog-
nitive Science 4(2):117�133.

Mountcastle, V. B. 1978. An organizing principle for
cerebral function: The unit model and the distributed
system. In Edelman, G. M., and Mountcastle, V. B.,
eds., The Mindful Brain. MIT Press.

Newell, A., and Simon, H. 1963. GPS: A program
that simulates human thought. In Feigenbaum, E.,
and Feldman, J., eds., Computers and Thought. New
York, NY: McGraw-Hill. 279�296.

Orponen, P., and Prost, F. 1996. Parallel program-
ming on hop�eld nets. In Proc. Finnish AI Conference,
5�12.

Potter, J. L. 1991. Associative Computing: A Pro-
gramming Paradigm for Massively Parallel Comput-
ers. Perseus Publishing.

Sacks, O. 1989. Seeing Voices, A Journey into the
World of the Deaf. Berkeley, CA: University of Cali-
fornia Press.

Shakhnarovich, G.; Darrell, T.; and Indyk, P. 2006.
Nearest-Neighbor Methods in Learning and Vision:
Theory and Practice. MIT Press.

Shanahan, M. 2006. A cognitive architecture that
combines internal simulation with a global workspace.
Consciousness and Cognition 15:433�449.

Sloman, A.; Wyatt, J.; Hawes, N.; Chappell, J.; and
Kruij�, G.-J. M. 2006. Long term requirements for
cognitive robotics. In Proceedings CogRob2006, The
Fifth International Cognitive Robotics Workshop. The
AAAI-06 Workshop on Cognitive Robotics.

Tsagarakis, N. G.; Metta, G.; Sandini, G.; Vernon, D.;
Beira, R.; Becchi, F.; Righetti, L.; Santos-Victor, J.;
Ijspeert, A. J.; Carrozza, M. C.; and Caldwell, D. G.
2007. icub: the design and realization of an open
humanoid platform for cognitive and neuroscience re-
search. Advanced Robotics 21(10):1151�1175.

Wiesel, T. N., and Hubel, D. H. 1963. Single-cell
responses in striate cortex of kittens deprived of vision
in one eye. J Neurophysiol 26:1003�17.

Winograd, T. 1972. Understanding Natural Language.
Academic Press.

Wolpert, D. M.; Ghahramani, Z.; and Jordan, M. I.
1995. An internal model for sensorimotor integration.
Science 269(5232):1880�1882.

54

A Unifying Framework for Analysis and Evaluation of Inductive Programming
Systems∗

Martin Hofmann and Emanuel Kitzelmann and Ute Schmid
Faculty Information Systems and Applied Computer Science

University of Bamberg, Germany
{martin.hofmann, emanuel.kitzelmann, ute.schmid}@uni-bamberg.de

Abstract

In this paper we present a comparison of several inductive
programming (IP) systems. IP addresses the problem of
learning (recursive) programs from incomplete specifications,
such as input/output examples. First, we introduce condi-
tional higher-order term rewriting as a common framework
for inductive logic and inductive functional program synthe-
sis. Then we characterise the several ILP systems which be-
long either to the most recently researched or currently to the
most powerful IP systems within this framework. In conse-
quence, we propose the inductive functional system IGOR II
as a powerful and efficient approach to IP. Performance of all
systems on a representative set of sample problems is evalu-
ated and shows the strength of IGOR II.

Introduction
Inductive programming (IP) is concerned with the synthesis
of programs or algorithms from incomplete specifications,
such as input/output (I/O) examples. Focus is on the synthe-
sis of declarative, i.e., logic, functional, or functional logic
programs. Research in IP provides better insights in the cog-
nitive skills of human programmers. Furthermore, power-
ful and efficient IP systems can enhance software systems
in a variety of domains—such as automated theorem prov-
ing and planning—and offer novel approaches to knowledge
based software engineering and model driven software de-
velopment, as well as end user programming support in the
XSL domain (Hofmann 2007). Depending on the target lan-
guage, IP systems can be classified as inductive logic pro-
gramming (ILP), inductive functional programming (IFP) or
inductive functional logic programming (IFLP).

Beginnings of IP research addressed inductive synthesis
of functional programs from small sets of positive I/O exam-
ples only (Biermann et al. 1984). One of the most influen-
tial classical systems was THESYS (Summers 1977) which
synthesised linear recursive LISP programs by rewriting I/O
pairs into traces and folding of traces based on recurrence
detection. Currently, induction of functional programs is
covered by the analytical approaches IGOR I (Kitzelmann
and Schmid 2006), and IGOR II (Kitzelmann 2007) and by

∗Research was supported by the German Research Community
(DFG), grant SCHM 1239/6-1.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the evolutionary/search-based approaches ADATE (Olsson
1995) and MAGICHASKELLER (Katayama 2005). Analyti-
cal approaches work example-driven, so the structure of the
given I/O pairs is used to guide the construction of gener-
alised programs. Search-based approaches first construct
one or more hypothetical programs, evaluate them against
the I/O examples and then work on with the most promising
hypotheses.

In the last decade, some inductive logic programming
(ILP) systems were presented with focus on learning recur-
sive logic programs in contrast to learning classifiers: FFOIL
(Quinlan 1996), GOLEM (Muggleton and Feng 1990), PRO-
GOL (Muggleton 1995), and DIALOGS-II (Flener 1996).
Synthesis of functional logic programs is covered by the sys-
tem FLIP (Hernández-Orallo et al. 1998).

IP can be viewed as a special branch of machine learning
because programs are constructed by inductive generalisa-
tion from examples. Therefore, as for classification learn-
ing, each approach can be characterised by its restriction and
preference bias (Mitchell 1997). However, IP approaches
cannot be evaluated with respect to some covering measure
or generalisation error since (recursive) programs must treat
all I/O examples correctly to be an acceptable hypothesis.

Current IP systems not only differ with respect to the tar-
get language and the synthesis strategies but also with re-
spect to the information which has to or can be presented
and the scope of programs which can be synthesised. Un-
fortunately, up to now there is neither a systematic empir-
ical evaluation of IP systems nor a general vocabulary for
describing and comparing the different approaches in a sys-
tematic way (see (Hofmann, Kitzelmann, and Schmid 2008)
for a preliminary evaluation of some systems and (Flener
and Yilmaz 1999) for a treatment of ILP systems). We be-
lieve that both is necessary for further progress in the field:
Only if the relative strengths and weaknesses of the different
systems become transparent, more powerful and efficient ap-
proaches can be designed by exploiting the strengths of the
given approaches and tackling their weaknesses.

We first present conditional combinatory term rewriting
as a framework for describing IP systems. Afterwards, sev-
eral systems are characterised and compared in this frame-
work and their performance is evaluated on a set of represen-
tative sample problems and shows the strength of IGOR II.
We conclude with ideas on further research.

55

A Unified Framework for IP
Conditional Constructor Systems
We shortly introduce term rewriting and conditional con-
structor systems as, e.g., described in (Baader and Nipkow
1998; Terese 2003). For a signature, i.e., a set of function
symbols Σ and a set of variables X we denote the set of all
terms over Σ and X by TΣ(X) and the (sub)set of ground
(variable free) terms by TΣ. We distinguish function sym-
bols that denote datatype constructors from those denoting
(user-)defined functions. Thus Σ = C ∪ F , C ∩ F = ∅
where C contains the constructors and F the defined func-
tion symbols respectively. We uniformly represent an in-
duced program in a functional style as a set R of recur-
sive equations (rules) over a signature Σ. The equations are
applied as simplification (or rewrite) rules (as known from
functional programming) from left to right, i.e., they form a
term rewriting system. The lefthand side (lhs) l of a rewrite
rule l→ r has the form F (p1, . . . , pn), called function head,
where F ∈ F is the name of the function implemented by
(amongst others) this rule, i. e., a defined function symbol,
and the pi ∈ TC(X) are built up from constructors and vari-
ables only. We call terms from TC(X) constructor terms.
The sequence of the pi is called pattern. This format of rules
or equations is known as pattern matching in functional lan-
guages such as HASKELL. In the term rewriting setting, a
TRS with this form is called constructor (term rewriting)
system (CS). All variables of the righthand side (rhs) must
also occur in the lhs, i.e. they must be bound (by the lhs). If
no rule applies to a term the term is in normal form.

Each rewrite rule may be augmented with a condition that
must be met to apply the conditional rule. A term rewrit-
ing system or constructor system is called conditional term
rewriting system or conditional constructor system (CCS)
respectively if it contains at least one conditional rule. A
condition is an ordered conjunction of equality constraints
vi = ui with vi, ui ∈ TΣ(X). Each ui must be grounded if
the lhs of the rule is instantiated and if all equalities vj = uj

with j < i evaluate to true, then ui evaluates to some ground
normal form. For the vi must hold (i) either the same as for
the ui or (ii) vi may contain unbound variables but then it
must be a constructor term. In the first case also vi eval-
uates to some ground normal form and the equality eval-
uates to true if both normal forms are equal. In the sec-
ond case the equality evaluates to true if vi and the ground
normal form of ui unify. Then the free variables in vi are
bound and may be used in the following conjuncts and the
rhs of the rule. We write conditional rules in the form:
l→ r ⇐ v1 = u1, . . . , vn = un. Figure 1(1) shows an ex-
ample. Rules without a condition are called unconditional.
If we apply a defined function to ground constructor terms
F (i1, . . . , in), we call the ii inputs of F . If such an appli-
cation normalises to a ground constructor term o we call o
output. A CCS is terminating if all rewriting processes end
up in a normal form. In order to implement functions the
outputs are required to be unique for each particular input
vector. This is the case if the TRS is confluent.

To lift a CCS into the higher-order context and ex-
tend it to a (conditional) combinatory rewrite system

((C)CRS) (Terese 2003) we introduce meta-variables XM =
X,Y, Z, . . . such that X = XM ∪ XT with XM ∩
XT = ∅ where XT includes all first-order variables over
terms. Meta-variables occur as X(t1, . . . , tn) and al-
low for generalisation over functions with arity n. To
preserve the properties of a CS, we need to introduce
an abstraction operator [−]− to bind variables locally
to a context. The term [A]t is called abstraction and
the occurrences of the variable A in t are bound. For
example the recursive rule for the well-known function
map would look like map([A]Z(A), cons(B,C)) →
cons(Z(B),map([A]Z(A), C)) and would match follow-
ing term map([A]square(A), cons(1, nil)).

Target Languages in the CCRS Framework
To compare all systems under equal premises, the different
occurrences of declarative languages are out into the CCRS
framework1. Considering functional target languages, the
underlying concepts are either based on abstract theories
(equational theory (Hernández-Orallo et al. 1998), CS
(Kitzelmann 2007)), or concrete functional languages (ML
(Olsson 1995), HASKELL (Katayama 2005)). Applying the
CCRS framework to IFP or IFLP systems is straight for-
ward, since they all share the basic principles and functional
semantics. This is in particular the case with IFLP, which
provided the theoretical framework for FLIP. However con-
trarily to IFLP, we additionally want to qualify for express-
ing the basic constructs of functional languages in the CCRS
framework and both apply it to existing systems for a well-
founded analysis and evaluation.

In addition to pattern matching and the functional opera-
tional semantics of CS, CCS can express constructs as if-,
case-, and let-expressions in a rewriting context. The if-
then part of an if-expression can be modeled by a condition
v = u following case (i) in the previous section. A case-
expression is modeled following case (ii), where v ∈ TC(X)
and v 6∈ X . If v ∈ X , case (ii) models a local variable dec-
laration as in a let-expression. Fig. 1(2) shows a CCRS for
the HASKELL program containing a let-expression.

In the context of IP, only logic target programs where
the output is uniquely determined by the input are consid-
ered. Such programs usually are expressed as “functional”
predicates such as multlast in Fig. 1(3). Transforming Horn
clauses containing functional predicates into CCSs is a gen-
eralisation of representing Horn clauses as conditional iden-
tities (Baader and Nipkow 1998).

IP in the CCRS Framework
Let us now formalise the IP problem in the CCRS setting.
Given a CCRS, both, the set of defined function symbols F
and the set of rules R, be further partitioned into disjoint
subsets F = FT ∪ FB ∪ FI and R = E+ ∪ E− ∪ BK,
respectively. FT are the function symbols of the functions
to be synthesised, also called target functions. FB are the

1Note the subset relationship between that CS, CCS, and CCRS.
So, if the higher-order context is of no matter we use the term CCS,
otherwise CCRS.

56

(1) CCRS

mlast([]) -> []

mlast([A]) -> [A]

mlast([A,B|C]) -> [D,D|C]

<= [D|C] = mlast([B|C])

(2) Functional (Haskell)

mlast([]) = []

mlast([A]) = [A]

mlast([A,B|C]) =

let [D|C] = mlast([B|C])

in [D,D|C]

(3) Logic (Prolog)

mlast([], []).

mlast([A], [A]).

mlast([A,B|C],[D,D|C]) :-

mlast([B|C],[D|C]).

Figure 1: Equivalent programs of multlast

symbols of predefined functions that can be used for syn-
thesis. These can either be built in or defined by the user
in the background knowledge BK. FI is a pool of func-
tion variables that can be used for defining invented func-
tions on the fly. E+ is the set of positive examples or evi-
dence and E− the set of negative examples, both containing
a finite number of I/O pairs as unconditional rewrite rules
F (t1, . . . , tn) → r, where F ∈ FT and t1, . . . , tn, r ∈
TC(XT). The rules in E− are interpreted as inequality con-
straints. BK is a finite set of conditional or unconditional
rules F (t1, . . . , tn)→ r ⇐ v1 = u1 ∧ . . .∧ vn = un defin-
ing auxiliary concepts that can be used for synthesising the
target function, where F ∈ FB , t1, . . . , tn ∈ TC(X), and
r, ui, vi ∈ TB(X). Furthermore, it is requested that for each
symbol f ∈ FT (FB), there is at least one rule in RT (RB)
with function name f .

With such a given CCRS, the IP task can be now described
as follows: find a finite set RT of rules F (t1, . . . , tn) →
r ⇐ v1 = u1 ∧ . . . ∧ vn = un (or program for short) where
F ∈ F , t1, . . . , tn ∈ TC(X), and r, ui, vi ∈ T (X), such
that it covers all positive examples (RT ∪ BK |= E+, pos-
terior sufficiency or completeness) and none of the negative
examples (RT ∪BK 6|= E−, posterior satisfiability or con-
sistency). In general, this is done by discriminating between
different inputs using patterns on the lhs or conditions mod-
elling case-expressions and computing the correct output
on the rhs. To compute the output constructors, recursive
calls, functions from the background knowledge, local vari-
able declarations, and invented functions can be used. An
invented function is hereby a function which symbol occurs
only in FI , i. e. is neither a target function nor defined in the
BKand is defined by the synthesis system on the fly.

However, there is usually an infinite number of programs
satisfying these conditions, e. g.E+ itself, and therefore two
further restrictions are imposed: A restriction on the terms
constructed, the so called restriction bias and a restriction on
which terms or rules are chosen, the preference bias.

The restriction bias allows only a specific subset of the
terms defined for ui, vi, l, r in a rule F (t1, . . . , tn) → r ⇐
u1 = v1 ∧ . . . ∧ un = vn, e.g., prohibiting nested or mutual
recursion or demanding the rhs to follow a certain scheme.

The preference bias imposes a partial ordering on terms,
lhss, rhss, conditions or whole programs defined by the CCS
framework and the restriction bias. A correct program syn-
thesised by a specific system is optimal w. r. t. this ordering
and satisfying completeness and consistency.

Table 1: Systems’ characteristics summary
C FT FB FI E+ E− BK XM

ADATE • {·} • • • • • ∅
FLIP • • • ∅ ◦ ◦,∅ • ∅
FFOIL c • ⊃ ∅ ◦ ◦,∅ ◦ ∅
GOLEM • {·} • ∅ ◦ ◦ • ∅
IGOR I • {·} ∅ • ◦ ∅ ∅ ∅
IGOR II • • • • ◦ ∅ ◦ ∅
MAGH. • {·} • ∅ • • • ◦

• unrestricted / conditional rules ◦ restricted / unconditional rules
{·} singleton set ∅ empty set
c constants ⊃ built in predicates

Systems Description in the CCRS Framework
We will consider only FFOIL, GOLEM, FLIP, MAGIC-
HASKELLER IGOR I and IGOR II. The prominent systems
FFOIL and GOLEM shall provide a baseline, as representa-
tives of ILP systems, against which the other systems can
be compared. The others belong either to the most recent
or currently to the most powerfull IP systems and attest the
current focus of research on IFLP and IFP.

PROGOL and DIALOGS-II have been excluded, because
they make heavily use of background knowledge which goes
beyond the notion the other systems have. DIALOGS-II as an
interactive system collects much more evidence which is not
expressable in I/O examples, because it virtually allows for
Horn clauses in E+ and E−. Similarly the mode declara-
tions of PROLOG. To allow for learning programs (unlike
learning classifiers), mode declarations specify positions of
recursive calls and correct data type decompositions would
be necessary, which makes the task of IP uninteresting.

Table 1 summarises the classification of the mentioned
systems into the CCRS framework and Table 2 the systems’
restriction bias and the expressiveness of the conditions in a
rule. The following paragraphs sketching the covering and
search strategy, the search space and the preference bias.

ADATE as an evolutionary computation system employs
search techniques that are inspired by basic biological prin-
ciples of evolution, like for instance mutation and crossover.
Starting from a trivial initial program, offsprings are gen-
erated which are tested against the I/O examples and rated
using criteria as time and memory usage as preference bias.
Only the “fittest” programs are developed further as the
search progresses until eventually one program covers all
I/O examples and it is aborted by the user. In this way,
ADATE searches the space of all programs, in a subset of
ML, globally, covering the examples via a generate and test.

FFOIL (Quinlan 1996) is an early representative of a func-
tional top-down learning system. Starting with an empty set
of conditions, it continues adding gainful literals to a rule
until it covers no negative examples anymore. Which condi-
tions to add is determined by a information-based heuristic
called foil gain. It favours literals with a high information
gain, i e., which discriminate notably between positive and

57

negative evidence when added to a rule. All examples ex-
plained by this rule are removed from E+ and another rule
is learnt until E+ is empty. If no candidate literals are gain-
full enough, all so called determinate literals are added. A
determinate literal does not deteriorate the foil gain of the
current rule, but introduces new variables. So FFOIL tra-
verses the space of Horn clauses heuristically lead by the
foil gain following a greedy sequential covering strategy.

FLIP (Hernández-Orallo et al. 1998) is a representative
of the IFLP approach. It starts from all possible consistent
restricted generalisations (CRG) deriveable from the posi-
tive example equations. A restricted generalisation (RG) is
a generalisation without introducing new variables on the rhs
of the equation. A RG is consistent if it does not cover any
negative example when interpreted as a rewrite rule.

Informally, narrowing combines resolution from logic
programming and term reduction from functional program-
ming. FLIP uses its inverse, similar as inverse resolution,
called inverse narrowing to solve the induction problem.

FLIP’s core algorithm is based CRG and inverse narrow-
ing which induce a space of hypothesis programs. It is
searched heuristically using a combination of minimum de-
scription length and coverage of positive examples as pref-
erence bias, following a sequential covering strategy.

GOLEM (Muggleton and Feng 1990) uses a bottom-up,
or example driven approach based on Plotkin’s framework
of relative least general generalisation (rlgg) (Plotkin 1971).
This avoids searching a large hypothesis space for consis-
tent hypothesis as, e.g, FFOIL, but rather constructs a unique
clause covering a subset of the provided examples relative to
the given background knowledge. However, such a search
space explodes and makes search nearly intractable.

Therefore, to generate a single clause, GOLEM first ran-
domly picks pairs of positive examples, computes their rlggs
and chooses the one with the highest coverage, i.e., with the
greatest number of positive examples covered. By randomly
choosing additional examples and computing the rlgg of the
clause and the new example, the clause is further gener-
alised. This generalisation is repeated using the clause with
the highest coverage until generalisation does not yield a
higher coverage. To generate further clauses GOLEM uses
the sequential covering approach. The preference bias is
defined as the clause covering most of the positive and no
negative examples in a lattice over clauses constructed by
computing the rlggs of two examples.

MAGICHASKELLER (Katayama 2005) is a comparable
new search-based synthesiser which generates HASKELL
programs. Exploiting type-constraints, it searches the space
of λ-expressions for the smallest program satisfying the
user’s specification. The expressions are created from user
provided functions and data-type constructors via func-
tion composition, function application, and λ-abstraction
(anonymous functions). The system’s preference bias can be
characterised as a breadth-first search over the length of the
candidate programs guided by the type of the target function.

Therefore it prefers the smallest program constructable from
the provided functions that satisfies the user’s constraints.

IGOR I is a modern extension of the seminal THESYS sys-
tem (Summers 1977) adopting its two-step approach. In a
first step I/O examples are rewritten to traces which explain
each output given the respective input based on a datatype
theory. All traces are integrated into one conditional expres-
sion computing exactly the output for the inputs as given in
the examples as a non-recursive program. In a second step,
this initial program is generalised into recursive equations
by searching for syntactic regularities in this term.

Synthesis is still restricted to structural problems, where
only the structure of the arguments matters, but not their
contents, such as in list reversing (and contrary to member).
Nevertheless, the scope of synthesisable programs is con-
siderably larger. For instance, tree-recursive functions and
functions with hidden parameters can be induced. Most no-
tably, programs consisting of a calling function and an arbi-
trary set of further recursive functions can be induced.

IGOR II is, contrarily to others, specialised to learn recur-
sive programs. To do this reliably, partitioning of input ex-
amples, i.e., the introduction of patterns and predicates, and
the synthesis of expressions computing the specified out-
puts, are strictly separated. Partitioning is done systemati-
cally and completely instead of randomly (GOLEM) or by
a greedy search (FFOIL). All subsets of a partition are cre-
ated in parallel, i.e., IGOR II follows a “simultaneous” cov-
ering approach. Also the search for expressions is complete,
still remaining tractable even for relative complex programs
because construction of hypotheses is data-driven. IGOR II
combines analytical program synthesis with search.

Fewer case distinctions, most specific patterns, and fewer
recursive calls or calls to background functions are pre-
ferred. Thus, the initial hypothesis is a single rule per tar-
get function. Initial rules are least general generalisations
(lggs) (Plotkin 1971) of the example equations, i.e., patterns
are lggs of the example inputs, rhss are lggs of the outputs
w.r.t. the substitutions for the pattern, and conditions are
empty. Successor hypotheses have to be computed, if un-
bound variables occur in rhss. Three ways of getting suc-
cessor hypotheses are applied: (1) Partitioning of the inputs
by replacing one pattern by a set of disjoint more specific
patterns or by adding a predicate to the condition. (2) Re-
placing the rhs by a (recursive) call of a defined function,
where finding the argument of the function call is treated as
a new induction problem. (3) Replacing the rhs subterms
in which unbound variables occur by a call to new subpro-
grams. In cases (2) and (3) auxiliary functions are invented,
abducing I/O-examples for them.

Forecast As far as one can generally already say, the “old”
systems GOLEM and FFOIL are hampered by their greedy
sequential covering strategy. Consequently, partial rules are
never revised and lead to local optima, and thus losing de-
pendencies between rules. This is especially the case with
FFOIL learning predicates or finding a separate rule for the

58

Table 2: Overview of systems’ restriction bias
F (i1, . . . , in)/lhs rhs vi/ui

ADATE ii ∈ XT TC(XT) ilc

FLIP CRG of E+ inverse narrowing of CRG of E+ —
FFOIL ii ∈ XT TC(XT) ∪ {true, false} il

GOLEM ii ∈ TC(XT) TC(XT) ∪ {true, false} ilc

IGOR I ii ∈ TC(XT) TC(XT) —
IGOR II ii ∈ TC(XT) TC(XT) i

MAGH. composition of functions from BK, higher-order via paramorphisms

i if l let c case

base case, where the foil gain may be misleading. FFOIL is
heavily biased towards constructing the next clause to cover
the most frequent function value in the remaining tuples.

Where FFOIL has only very general lhss, GOLEM and
FLIP try to be more flexible in discriminating the inputs
there, but not effective enough. Random sampling is too un-
reliable for an optimal partition of the inputs, especially for
more complex data structures or programs with many rules.

FLIP generates the lhss using the CRG on basis of com-
mon subterms on the lhs and rhs of the examples. Neces-
sary function-carrying subterms on both sides may be gen-
eralised and the lhss may tend to be overly general. Also,
neither overlap of the lhss is prohibited, nor are the rules or-
dered. Consequently, one input may be matched by several
rules resulting in a wrong output. The rhs are constructed
via inverse narrowing inducing a huge search space, so with
increasing complexity of examples the search becomes more
and more intractable when relying solely on heuristics.

MAGICHASKELLER is a promising example of including
higher-order features into IP and shows how functions like
map or filter can be applied effectively, when used advis-
edly, as some kind of program pattern or scheme. Never-
theless, MAGICHASKELLER and ADATE exhibits the usual
pros and cons common to all search-based approaches: The
more extensive the BK library, the more powerfull the syn-
thesised programs are, the greater is the search space and
the longer are the runs. However, contrarily to GOLEM, it is
not mislead by partial solutions and shows again that only a
complete search can be satisfactory for IP.

IGOR I and IGOR II will have problems were many exam-
ples are required (mult/add & allodds), but will be in other
respects very fast.

Empirical Results
As problems we have chosen some of those occurring in the
accordant papers and some to bring out the specific strengths
and weaknesses. They have the usual semantics on lists:
multlast replaces all elements with the last and shiftr makes
a right-shift of all elements in a list. Therefore it is neces-
sary to access the last element for further computations. Fur-
ther functions are lasts which applies last on a list of lists,
isort which is insertion-sort, allodds checks for odd num-
bers, and weave alternates elements from two lists into one.
For odd/even and mult/add both functions need to be learnt
at once. The functions in odd/even are mutually recursive
and need more than two rules, lasts, multlast, isort, reverse,

Table 3: Systems’ runtimes on different problems in seconds

Problems Systems

A
D

A
T

E

F
F

O
IL

F
L

IP

G
O

L
E

M

IG
O

R
I

IG
O

R
II

M
A

G
H

.

lasts 365.62 0.7⊥ × 1.062 0.051 5.695 19.43

last 1.0 0.1 0.020 < 0.001 0.005 0.007 0.01

member 2.11 0.1⊥ 17.868 0.033 — 0.152 1.07

odd/even — < 0.1⊥ 0.130 — — 0.019 —
multlast 5.69 < 0.1 448.900⊥ < 0.001 0.331 0.023 0.30

isort 83.41 × × 0.714 — 0.105 0.01

reverse 30.24 — — — 0.324 0.103 0.08

weave 27.11 0.2 134.240⊥ 0.266 0.001⊥ 0.022 �
shiftr 20.14 < 0.1⊥ 448.550⊥ 0.298 0.041 0.127 157.32

mult/add — 8.1⊥ × — — � —
allodds 466.86 0.1⊥ × 0.016⊥ 0.015⊥ � ×

— not tested × stack overflow � time out ⊥ wrong

mult/add, allodds suggest to use function invention, but only
reverse is explicitly only solvable with. lasts and allodds
also split up in more than two rules if no function invention
is applied. To solve member pattern matching is required,
because equality is not provided. The function weave is es-
pecially interesting, because it demands either for iterating
over more than one argument resulting in more than one base
case, or swapping the arguments at each recursive call.

Because FFOIL and GOLEM usually perform better with
more examples, whereas FLIP, MAGICHASKELLER and
IGOR II do better with less, each system got as much ex-
amples as necessary up to certain complexity, but then ex-
haustively, so no specific cherry-picking was allowed.

For synthesising isort all systems had a function to in-
sert into a sorted list, and the predicate < as background
knowledge. FLIP needed an additional function if to re-
late the insert function with the <. For all systems except
FLIP and MAGICHASKELLER the definition of the back-
ground knowledge was extensional. IGOR II was allowed
to use variables and for GOLEM additionally the accordant
negative examples were provided. MAGICHASKELLER had
paramorphic functions to iterate over a data type in BK.
Note that we did not test a system with a problem which it
per se cannot solve due to its restriction bias. This is in-
dicated with ‘—’ instead of a runtime. A timeout after ten
minutes is indicated with �. Table 3 shows the runtimes of
the different systems on the example problems.

All tests have been conducted under Ubuntu 7.10 on
a Intel Dual Core 2.33 GHz with 4GB memory. Fol-
lowing versions have been used: FLIP v0.7, FFOIL 1.0,
GOLEM version of August 1992, the latest version of IGOR I,
IGOR II version 2.2, ADATE version 0.50 and MAGIC-
HASKELLER 0.8.3-1. The input files can be obtained
under http://www.cogsys.wiai.uni-bamberg.
de/effalip/download.html.

As the empirical results affirm the previous considera-
tions, FFOIL fails with nearly all problems, and multlast
was only solved with more examples. This can easily be
explained with the greedy foil gain and a sequential cover-

59

ing strategy. Due to GOLEM’s random sampling, the best
result of ten runs have been chosen.

Long run times and the failures of FLIP testify for the in-
tractable search space induced by the inverse narrowing op-
erator. Wrong programs are due to overlapping lhss and its
generalisation strategy of the inputs. Despite its randomisa-
tion, GOLEM overtrumps FLIP due to its capability of intro-
ducing let-expressions (cf. multlast). IGOR I and IGOR II
need function invention to balance this weak-point.

On reverse and isort MAGICHASKELLER demonstrates
the power of higher-order functions. Although it does
not invent auxiliary functions, reverse was solved using its
paramorphism over lists which provides some kind of ac-
cumulator. The paramorphisms are also the reason why
MAGICHASKELLER fails with weave, since swapping the
inputs with each recursive call does not fit in the schema
induced by the paramorphism for lists.

These results showed, that the field of IP is not yet fully
researched, and there are improvements discovered since the
“golden times” of ILP and still to be discovered. Basically,
ILP systems need a vast number of I/O examples which is
usually impractical for a normal user to provide. Contrar-
ily, IFP systems get along with much less examples but are
still much more reliable in their results than ILP systems.
Among the IFP it is significant analytic approaches rule out
ADATE or MAGICHASKELLER on more complex problems
where the search space increases. Also the ability of generi-
cally inventing functions is a big advantage.

Conclusions and Further Work
Based on a uniform description of some well-known IP sys-
tems and as result of our empirical evaluation of IP systems
on a set of representative sample problems, we could show
that the analytical approach of IGOR II is highly promising.
IGOR II can induce a large scope of recursive programs, in-
cluding mutual recursion using a straight-forward technique
for function invention. Background knowledge can be pro-
vided in a natural way. As consequence of IGOR II’s general-
isation principle, induced programs are guaranteed to termi-
nate and to be the least generalisations. Although construc-
tion of hypotheses is not restricted by some greedy heuris-
tics, induction is highly time efficient. Furthermore, IGOR II
works with minimal information provided by the user. It
needs only a small set of positive I/O examples together with
the data type specification of the target function and no fur-
ther information such as schemes.

Due to the nature of specification by example, IP systems
in general, cannot scale up to complex software develop-
ment problems. However, integrating IP principles in the
software engineering process might relieve developers from
specifying or coding specific functions. Although IGOR II
cannot tackle problems of complex size, it can tackle prob-
lems which are intellectually complex and therefore might
offer support to inexperienced programmers.

Function invention for the outmost function without prior
definition of the positions of recursive calls will be our great-
est future challenge. Furthermore, we plan to include the
introduction of let-expressions and higher-order functions
(such as map, reduce, filter).

References
Baader, F., and Nipkow, T. 1998. Term Rewriting and All
That. United Kingdom: Cambridge University Press.
Biermann, A. W.; Kodratoff, Y.; and Guiho, G. 1984. Auto-
matic Program Construction Techniques. NY, Free Press.
Flener, P., and Yilmaz, S. 1999. Inductive synthesis of
recursive logic programs: Achievements and prospects. J.
Log. Program. 41(2-3):141–195.
Flener, P. 1996. Inductive logic program synthesis with Di-
alogs. In Muggleton, S., ed., Proc. of the 6th International
Workshop on ILP, 28–51. Stockholm University
Hernández-Orallo, J., and Ramı́rez-Quintana, M. J. 1998.
Inverse narrowing for the induction of functional logic pro-
grams. In Freire-Nistal, et al., eds., Joint Conference on
Declarative Programming, 379–392.
Hofmann, M.; Kitzelmann, E.; and Schmid, U. 2008. Anal-
ysis and evaluation of inductive programming systems in a
higher-order framework. In 31st German Conference on
Artificial Intelligence, LNAI. Springer-Verlag.
Hofmann, M. 2007. Automatic Construction of XSL Tem-
plates – An Inductive Programming Approach. VDM Ver-
lag, Saarbrücken.
Katayama, S. 2005. Systematic search for lambda expres-
sions. In Trends in Functional Programming, 111–126.
Kitzelmann, E., and Schmid, U. 2006. Inductive synthesis
of functional programs: An explanation based generaliza-
tion approach. J. of ML Research 7:429–454.
Kitzelmann, E. 2007. Data-driven induction of recur-
sive functions from input/output-examples. In Kitzelmann,
E., and Schmid, U., eds., Proc. of the ECML/PKDD 2007
Workshop on Approaches and Applications of Inductive
Programming, 15–26.
Mitchell, T. M. 1997. Machine Learning. McGraw-Hill
Higher Education.
Muggleton, S., and Feng, C. 1990. Efficient induction of
logic programs. In Proc. of the 1st Conference on Algorith-
mic Learning Theory, 368–381. Ohmsma, Tokyo, Japan.
Muggleton, S. 1995. Inverse entailment and Progol. New
Generation Computing, Special issue on Inductive Logic
Programming 13(3-4):245–286.
Olsson, R. J. 1995. Inductive functional programming us-
ing incremental program transformation. Artificial Intelli-
gence 74(1):55–83.
Plotkin, G. 1971. A further note on inductive generaliza-
tion. In Machine Intelligence, vol. 6. Edinb. Univ. Press.
Quinlan, J. R., and Cameron-Jones, R. M. 1993. FOIL: A
midterm report. In Machine Learning: ECML-93, Proc.,
vol. 667, 3–20. Springer-Verlag.
Quinlan, J. R. 1996. Learning first-order definitions of
functions. Journal of AI Research 5:139–161.
Summers, P. D. 1977. A methodology for LISP program
construction from examples. Journal ACM 24:162–175.
Terese. 2003. Term Rewriting Systems, vol. 55 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge
University Press.

60

Feature Markov Decision Processes

Marcus Hutter
RSISE @ ANU and SML @ NICTA

Canberra, ACT, 0200, Australia
marcus@hutter1.net www.hutter1.net

Abstract

General purpose intelligent learning agents cycle through
(complex,non-MDP) sequences of observations, actions, and
rewards. On the other hand, reinforcement learning is well-
developed for small finite state Markov Decision Processes
(MDPs). So far it is an art performed by human designers to
extract the right state representation out of the bare observa-
tions, i.e. to reduce the agent setup to the MDP framework.
Before we can think of mechanizing this search for suitable
MDPs, we need a formal objective criterion. The main con-
tribution of this article is to develop such a criterion. I also
integrate the various parts into one learning algorithm. Ex-
tensions to more realistic dynamic Bayesian networks are de-
veloped in the companion article [Hut09].

Introduction
Background & motivation. Artificial General Intelligence
(AGI) is concerned with designing agents that perform well
in a wide range of environments [GP07; LH07]. Among
the well-established “narrow” AI approaches, arguably Re-
inforcement Learning (RL) pursues most directly the same
goal. RL considers the general agent-environment setup in
which an agent interacts with an environment (acts and ob-
serves in cycles) and receives (occasional) rewards. The
agent’s objective is to collect as much reward as possible.
Most if not all AI problems can be formulated in this frame-
work.

The simplest interesting environmental class consists of
finite state fully observable Markov Decision Processes
(MDPs) [Put94; SB98], which is reasonably well under-
stood. Extensions to continuous states with (non)linear
function approximation [SB98; Gor99], partial observability
(POMDP) [KLC98; RPPCd08], structured MDPs (DBNs)
[SDL07], and others have been considered, but the algo-
rithms are much more brittle.

In any case, a lot of work is still left to the designer,
namely to extract the right state representation (“features”)
out of the bare observations. Even if potentially useful rep-
resentations have been found, it is usually not clear which
one will turn out to be better, except in situations where
we already know a perfect model. Think of a mobile robot
equipped with a camera plunged into an unknown environ-
ment. While we can imagine which image features are po-

tentially useful, we cannot know which ones will actually be
useful.
Main contribution. Before we can think of mechanically
searching for the “best” MDP representation, we need a for-
mal objective criterion. Obviously, at any point in time, if we
want the criterion to be effective it can only depend on the
agents past experience. The main contribution of this article
is to develop such a criterion. Reality is a non-ergodic par-
tially observable uncertain unknown environment in which
acquiring experience can be expensive. So we want/need to
exploit the data (past experience) at hand optimally, cannot
generate virtual samples since the model is not given (need
to be learned itself), and there is no reset-option. In regres-
sion and classification, penalized maximum likelihood cri-
teria [HTF01, Chp.7] have successfully been used for semi-
parametric model selection. It is far from obvious how to
apply them in RL. Ultimately we do not care about the obser-
vations but the rewards. The rewards depend on the states,
but the states are arbitrary in the sense that they are model-
dependent functions of the data. Indeed, our derived Cost
function cannot be interpreted as a usual model+data code
length.
Relation to other work. As partly detailed later, the sug-
gested ΦMDP model could be regarded as a scaled-down
practical instantiation of AIXI [Hut05; Hut07], as a way to
side-step the open problem of learning POMDPs, as extend-
ing the idea of state-aggregation from planning (based on bi-
simulation metrics [GDG03]) to RL (based on code length),
as generalizing U-Tree [McC96] to arbitrary features, or as
an alternative to PSRs [SLJ+03] for which proper learning
algorithms have yet to be developed.
Notation. Throughout this article, log denotes the binary
logarithm, ε the empty string, and δx,y =δxy =1 if x=y and
0 else is the Kronecker symbol. I generally omit separat-
ing commas if no confusion arises, in particular in indices.
For any x of suitable type (string,vector,set), I define string
x = x1:l = x1...xl, sum x+ =

∑
jxj , union x∗ =

⋃
jxj , and

vector x• = (x1,...,xl), where j ranges over the full range
{1,...,l} and l = |x| is the length or dimension or size of x.
x̂ denotes an estimate of x. P(·) denotes a probability over
states and rewards or parts thereof. I do not distinguish be-
tween random variables X and realizations x, and abbrevia-
tion P(x):=P[X=x] never leads to confusion. More specif-
ically, m ∈ IN denotes the number of states, i ∈ {1,...,m}

61

any state index, n∈IN the current time, and t∈{1,...,n} any
time. Further, due to space constraints at several places I
gloss over initial conditions or special cases where inessen-
tial. Also 0∗undefined=0∗infinity:=0.

Feature Markov Decision Process (ΦMDP)
This section describes our formal setup. It consists
of the agent-environment framework and maps Φ from
observation-action-reward histories to MDP states. I call
this arrangement “Feature MDP” or short ΦMDP.
Agent-environment setup. I consider the standard agent-
environment setup [RN03] in which an Agent interacts with
an Environment. The agent can choose from actions a∈A
(e.g. limb movements) and the environment provides (reg-
ular) observations o ∈ O (e.g. camera images) and real-
valued rewards r ∈ R ⊆ IR to the agent. The reward
may be very scarce, e.g. just +1 (-1) for winning (losing)
a chess game, and 0 at all other times [Hut05, Sec.6.3].
This happens in cycles t = 1,2,3,...: At time t, after ob-
serving ot, the agent takes action at based on history ht :=
o1a1r1...ot−1at−1rt−1ot. Thereafter, the agent receives re-
ward rt. Then the next cycle t+1 starts. The agent’s ob-
jective is to maximize his long-term reward. Without much
loss of generality, I assume that A, O, and R are finite. Im-
plicitly I assume A to be small, while O may be huge.

The agent and environment may be viewed as a pair or
triple of interlocking functions of the history H :=(O×A×
R)∗×O:

Env : H×A×R ; O, on = Env(hn−1an−1rn−1),
Agent : H ; A, an = Agent(hn),

Env : H×A ; R, rn = Env(hnan).

where ; indicates that mappings → might be stochastic.
The goal of AI is to design agents that achieve high (ex-

pected) reward over the agent’s lifetime.
(Un)known environments. For known Env(), finding the
reward maximizing agent is a well-defined and formally
solvable problem [Hut05, Chp.4], with computational effi-
ciency being the “only” matter of concern. For most real-
world AI problems Env() is at best partially known.

Narrow AI considers the case where function Env() is ei-
ther known (like in blocks world), or essentially known (like
in chess, where one can safely model the opponent as a per-
fect minimax player), or Env() belongs to a relatively small
class of environments (e.g. traffic control).

The goal of AGI is to design agents that perform well in
a large range of environments [LH07], i.e. achieve high re-
ward over their lifetime with as little as possible assumptions
about Env(). A minimal necessary assumption is that the en-
vironment possesses some structure or pattern.

From real-life experience (and from the examples below)
we know that usually we do not need to know the complete
history of events in order to determine (sufficiently well)
what will happen next and to be able to perform well. Let
Φ(h) be such a “useful” summary of history h.
Examples. In full-information games (like chess) with
static opponent, it is sufficient to know the current state
of the game (board configuration) to play well (the history

plays no role), hence Φ(ht) = ot is a sufficient summary
(Markov condition). Classical physics is essentially pre-
dictable from position and velocity of objects at a single
time, or equivalently from the locations at two consecutive
times, hence Φ(ht) = otot−1 is a sufficient summary (2nd
order Markov). For i.i.d. processes of unknown probabil-
ity (e.g. clinical trials ' Bandits), the frequency of obser-
vations Φ(hn)= (

∑n
t=1δoto)o∈O is a sufficient statistic. In

a POMDP planning problem, the so-called belief vector at
time t can be written down explicitly as some function of the
complete history ht (by integrating out the hidden states).
Φ(ht) could be chosen as (a discretized version of) this be-
lief vector, showing that ΦMDP generalizes POMDPs. Ob-
viously, the identity Φ(h) = h is always sufficient but not
very useful, since Env() as a function of H is hard to impos-
sible to “learn”.

This suggests to look for Φ with small codomain, which
allow to learn/estimate/approximate Env by Ênv such that
ot≈ Ênv(Φ(ht−1)) for t=1...n.
Example. Consider a robot equipped with a camera, i.e. o is
a pixel image. Computer vision algorithms usually extract a
set of features from ot−1 (or ht−1), from low-level patterns
to high-level objects with their spatial relation. Neither is
it possible nor necessary to make a precise prediction of ot

from summary Φ(ht−1). An approximate prediction must
and will do. The difficulty is that the similarity measure “≈”
needs to be context dependent. Minor image nuances are
irrelevant when driving a car, but when buying a painting it
makes a huge difference in price whether it’s an original or a
copy. Essentially only a bijection Φ would be able to extract
all potentially interesting features, but such a Φ defeats its
original purpose.
From histories to states. It is of utmost importance to prop-
erly formalize the meaning of “≈” in a general, domain-
independent way. Let st := Φ(ht) summarize all relevant
information in history ht. I call s a state or feature (vector)
of h. “Relevant” means that the future is predictable from
st (and at) alone, and that the relevant future is coded in
st+1st+2.... So we pass from the complete (and known) his-
tory o1a1r1...onanrn to a “compressed” history sar1:n ≡
s1a1r1...snanrn and seek Φ such that st+1 is (approxi-
mately a stochastic) function of st (and at). Since the goal
of the agent is to maximize his rewards, the rewards rt are
always relevant, so they (have to) stay untouched (this will
become clearer below).
The ΦMDP. The structure derived above is a classical
Markov Decision Process (MDP), but the primary question
I ask is not the usual one of finding the value function or
best action or comparing different models of a given state
sequence. I ask how well can the state-action-reward se-
quence generated by Φ be modeled as an MDP compared to
other sequences resulting from different Φ.

ΦMDP Coding and Evaluation
I first review optimal codes and model selection methods for
i.i.d. sequences, subsequently adapt them to our situation,
and show that they are suitable in our context. I state my
Cost function for Φ and the Φ selection principle.

62

I.i.d. processes. Consider i.i.d. x1...xn ∈ Xn for finite
X = {1,...,m}. For known θi = P[xt = i] we have
P(x1:n|θ) = θx1 ·...·θxn . It is well-known that there exists
a code (e.g. arithmetic or Shannon-Fano) for x1:n of length
−logP(x1:n|θ), which is asymptotically optimal with prob-
ability one.

For unknown θ we may use a frequency estimate θ̂i =
ni/n, where ni = |{t : xt = i}|. Then −logP(x1:n|θ̂) =
n H(θ̂), where H(θ̂) := −

∑m
i=1θ̂ilogθ̂i is the Entropy of

θ̂ (0log0 := 0=: 0log 0
0). We also need to code (ni), which

naively needs logn bits for each i. One can show that it is
sufficient to code each θ̂i to accuracy O(1/

√
n), which re-

quires only 1
2 logn+O(1) bits each. Hence the overall code

length of x1:n for unknown frequencies is

CL(x1:n) = CL(n) := n H(n/n) + m′−1
2 log n (1)

for n > 0 and 0 else, where n = (n1,...,nm) and n = n+ =
n1+...+nm and m′=|{i:ni>0}|≤m is the number of non-
empty categories. The code is optimal (within +O(1)) for
all i.i.d. sources. It can be rigorously derived from many
principles: MDL, MML, combinatorial, incremental, and
Bayesian [Grü07].

In the following I will ignore the O(1) terms and refer to
(1) simply as the code length. Note that x1:n is coded ex-
actly (lossless). Similarly (see MDP below) sampling mod-
els more complex than i.i.d. may be considered, and the one
that leads to the shortest code is selected as the best model
[Grü07].
MDP definitions. Recall that a sequence sar1:n is said to
be sampled from an MDP (S,A,T,R) iff the probability of
st only depends on st−1 and at−1; and rt only on st−1,
at−1, and st. That is, P(st|ht−1at−1)=P(st|st−1,at−1)=:
T

at−1
st−1st and P(rt|ht) = P(rt|st−1,at−1,st) =: Rat−1rt

st−1st . For
simplicity of exposition I assume a deterministic depen-
dence of rt on st only, i.e. rt = Rst . In our case, we
can identify the state-space S with the states s1,...,sn “ob-
served” so far. Hence S={s1,...,sm} is finite and typically
m� n, i.e. states repeat. Let s

a→ s′(r′) be shorthand for
“action a in state s resulted in state s′ (reward r′)”. Let
T ar′

ss′ := {t≤ n : st−1 = s,at−1 = a,st = s′,rt = r′} be the
set of times t−1 at which s

a→ s′r′, and nar′

ss′ := |T ar′

ss′ | their
number (n++

++ =n).
Coding MDP sequences. For some fixed s and a, con-
sider the subsequence st1 ...stn′ of states reached from s via
a (s a→ sti), i.e. {t1,...,tn′} = T a∗

s∗ , where n′ = na+
s+ . By

definition of an MDP, this sequence is i.i.d. with s′ occur-
ring n′s′ :=na+

ss′ times. By (1) we can code this sequence in
CL(n′) bits. The whole sequence s1:n consists of |S×A|
i.i.d. sequences, one for each (s,a) ∈ S×A. We can join
their codes and get a total code length

CL(s1:n|a1:n) =
∑

s,a
CL(na+

s•) (2)

Similarly to the states we code the rewards. There are dif-
ferent “standard” reward models. I consider only the sim-
plest case of a small discrete reward set R like {0,1} or
{−1,0,+1} here and defer generalizations to IR and a dis-
cussion of variants to the ΦDBN model [Hut09]. By the

MDP assumption, for each state s′, the rewards at times T +∗
+s′

are i.i.d. Hence they can be coded in

CL(r1:n|s1:n, a1:n) =
∑

s′
CL(n+•

+s′) (3)

bits. I have been careful to assign zero code length to non-
occurring transitions s

a→s′r′ so that large but sparse MDPs
don’t get penalized too much.
Reward↔state trade-off. Note that the code for r depends
on s. Indeed we may interpret the construction as follows:
Ultimately we/the agent cares about the reward, so we want
to measure how well we can predict the rewards, which we
do with(3). But this code depends on s, so we need a code
for s too, which is (2). To see that we need both parts con-
sider two extremes.

A simplistic state transition model (small |S|) results in
a short code for s. For instance, for |S|=1, nothing needs
to be coded and (2) is identically zero. But this obscures
potential structure in the reward sequence, leading to a long
code for r.

On the other hand, the more detailed the state transition
model (large |S|) the easier it is to predict and hence com-
press r. But a large model is hard to learn, i.e. the code for
s will be large. For instance for Φ(h) = h, no state repeats
and the frequency-based coding breaks down.
Φ selection principle. Let us define the Cost of Φ:H→S
on hn as the length of the ΦMDP code for sr given a:

Cost(Φ|hn) := CL(s1:n|a1:n) + CL(r1:n|s1:n, a1:n),(4)
where st = Φ(ht) and ht = oar1:t−1ot

The discussion above suggests that the minimum of the joint
code length, i.e. the Cost, is attained for a Φ that keeps all
and only relevant information for predicting rewards. Such
a Φ may be regarded as best explaining the rewards. So we
are looking for a Φ of minimal cost:

Φbest := arg min
Φ
{Cost(Φ|hn)} (5)

The state sequence generated by Φbest (or approximations
thereof) will usually only be approximately MDP. While
Cost(Φ|h) is an optimal code only for MDP sequences, it
still yields good codes for approximate MDP sequences.
Indeed, Φbest balances closeness to MDP with simplic-
ity. The primary purpose of the simplicity bias is not
computational tractability, but generalization ability [LH07;
Hut05].

A Tiny Example
The purpose of the tiny example in this section is to provide
enough insight into how and why ΦMDP works to convince
the reader that our Φ selection principle is reasonable. Con-
sider binary observation spaceO={0,1}, quaternary reward
space R= {0,1,2,3}, and a single action A= {0}. Obser-
vations ot are independent fair coin flips, i.e. Bernoulli(1

2),
and reward rt = 2ot−1+ot a deterministic function of the
two most recent observations.
Considered features. As features Φ I consider Φk :H→Ok

with Φk(ht)=ot−k+1...ot for various k=0,1,2,... which re-
gard the last k observations as “relevant”. Intuitively Φ2

63

is the best observation summary, which I confirm below.
The state space S = {0,1}k (for sufficiently large n). The
ΦMDPs for k=0,1,2 are as follows.

Φ0MDP

�
��
ε

r=0|1|2|3

��
?

Φ1MDP

�
��
0

r=0|2

��
?

-� �
��
1

r=1|3

��
?

Φ2MDP�
��
00

r=0

��-
�
��
11

r=3���

�
��
01 r=1

�
��
10r=2

-

?
�

6 ���
��	

Φ2MDP with all non-zero transition probabilities being
50% is an exact representation of our data source. The miss-
ing arrow (directions) are due to the fact that s=ot−1ot can
only lead to s′=o′to

′
t+1 for which o′t =ot. Note that ΦMDP

does not “know” this and has to learn the (non)zero transi-
tion probabilities. Each state has two successor states with
equal probability, hence generates (see previous paragraph)
a Bernoulli(1

2) state subsequence and a constant reward se-
quence, since the reward can be computed from the state =
last two observations. Asymptotically, all four states occur
equally often, hence the sequences have approximately the
same length n/4.

In general, if s (and similarly r) consists of x∈ IN i.i.d.
subsequences of equal length n/x over y∈ IN symbols, the
code length (2) (and similarly (3)) is

CL(s|a;xy) = n log y + x |S|−1
2 log n

x ,

CL(r|s,a;xy) = n log y + x |R|−1
2 log n

x

where the extra argument xy just indicates the sequence
property. So for Φ2MDP we get
CL(s|a; 42) = n + 6log n

4 and CL(r|s,a; 41) = 6 log n
4

The log-terms reflect the required memory to code (or the
time to learn) the MDP structure and probabilities. Since
each state has only 2 realized/possible successors, we need n
bits to code the state sequence. The reward is a deterministic
function of the state, hence needs no memory to code given
s.
The Φ0MDP throws away all observations (left figure
above), hence CL(s|a;11) = 0. While the reward sequence
is not i.i.d. (e.g. rt+1 =3 cannot follow rt =0), Φ0MDP has
no choice regarding them as i.i.d., resulting in CL(s|a;14)=
2n+ 3

2 logn.
The Φ1MDP model is an interesting compromise (middle
figure above). The state allows a partial prediction of the
reward: State 0 allows rewards 0 and 2; state 1 allows re-
wards 1 and 3. Each of the two states creates a Bernoulli(1

2)
state successor subsequence and a binary reward sequence,
wrongly presumed to be Bernoulli(1

2). Hence CL(s|a;22)=
n+logn

2 and CL(r|s,a;22)=n+3logn
2 .

Summary. The following table summarizes the results for
general k=0,1,2 and beyond:

Cost(Φ0|h) Cost(Φ1|h) Cost(Φ2|h) Cost(Φk≥2|h)
2n+ 3

2 logn 2n+4logn
2 n+12logn

4 n+ 2k+2
21−k logn

2k

For large n, Φ2 results in the shortest code, as anticipated.
The “approximate” model Φ1 is just not good enough to beat
the vacuous model Φ0, but in more realistic examples some
approximate model usually has the shortest code. In [Hut09]
I show on a more complex example how Φbest will store
long-term information in a POMDP environment.

Cost(Φ) Minimization
I have reduced the reinforcement learning problem to a for-
mal Φ-optimization problem. I briefly explain what we have
gained by this reduction, and provide some general informa-
tion about problem representations, stochastic search, and Φ
neighborhoods. Finally I present a simplistic but concrete
algorithm for searching context tree MDPs.
Φ search. I now discuss how to find good summaries Φ.
The introduced generic cost function Cost(Φ|hn), based on
only the known history hn, makes this a well-defined task
that is completely decoupled from the complex (ill-defined)
reinforcement learning objective. This reduction should not
be under-estimated. We can employ a wide range of opti-
mizers and do not even have to worry about overfitting. The
most challenging task is to come up with creative algorithms
proposing Φ’s.

There are many optimization methods: Most of them
are search-based: random, blind, informed, adaptive, local,
global, population based, exhaustive, heuristic, and other
search methods [AL97]. Most are or can be adapted to the
structure of the objective function, here Cost(·|hn). Some
exploit the structure more directly (e.g. gradient methods for
convex functions). Only in very simple cases can the mini-
mum be found analytically (without search).

General maps Φ can be represented by/as programs for
which variants of Levin search [Sch04; Hut05] and ge-
netic programming are the major search algorithms. Deci-
sion trees/lists/grids are also quite powerful, especially rule-
based ones in which logical expressions recursively divide
domainH into “true/false” regions [San08] that can be iden-
tified with different states.
Φ neighborhood relation. Most search algorithms require
the specification of a neighborhood relation or distance be-
tween candidate Φ. A natural “minimal” change of Φ is
splitting and merging states (state refinement and coarsen-
ing). Let Φ′ split some state sa∈S of Φ into sb,sc 6∈S

Φ′(h) :=
{

Φ(h) if Φ(h) 6= sa

sb or sc if Φ(h) = sa

where the histories in state sa are distributed among sb and
sc according to some splitting rule (e.g. randomly). The new
state space is S ′ = S\{sa}∪{sb,sc}. Similarly Φ′ merges
states sb,sc∈S into sa 6∈S if

Φ′(h) :=
{

φ(h) if Φ(h) 6= sa

sa if Φ(h) = sb or sc

where S ′=S\{sb,sc}∪{ss}. We can regard Φ′ as being a
neighbor of or similar to Φ.
Stochastic Φ search. Stochastic search is the method of
choice for high-dimensional unstructured problems. Monte
Carlo methods can actually be highly effective, despite their
simplicity [Liu02]. The general idea is to randomly choose
a neighbor Φ′ of Φ and replace Φ by Φ′ if it is better, i.e.
has smaller Cost. Even if Cost(Φ′|h) > Cost(Φ|h) we may
keep Φ′, but only with some (in the cost difference exponen-
tially) small probability. Simulated annealing is a version
which minimizes Cost(Φ|h). Apparently, Φ of small cost
are (much) more likely to occur than high cost Φ.

64

Context tree example. The Φk in the example of the pre-
vious section depended on the last k observations. Let us
generalize this to a context dependent variable length: Con-
sider a finite complete suffix free set of strings (= prefix
tree of reversed strings) S ⊂ O∗ as our state space (e.g.
S= {0,01,011,111} for binary O), and define ΦS(hn) := s
iff on−|s|+1:n=s∈S, i.e. s is the part of the history regarded
as relevant. State splitting and merging works as follows:
For binaryO, if history part s∈S of hn is deemed too short,
we replace s by 0s and 1s in S, i.e. S ′ =S\{s}∪{0s,1s}.
If histories 1s,0s∈S are deemed too long, we replace them
by s, i.e. S ′ = S\{0s,1s}∪{s}. Large O might be coded
binary and then treated similarly. The idea of using suffix
trees as state space is from [McC96]. For small O we have
the following simple Φ-optimizer:

ΦImprove(ΦS ,hn)
d Randomly choose a state s∈S;

Let p and q be uniform random numbers in [0,1];
if (p>1/2) then split s i.e. S′=S\{s}∪{os :o∈O}
else if {os :o∈O}⊆S
then merge them, i.e. S′=S\{os :o∈O}∪{s};
if (Cost(ΦS |hn)−Cost(ΦS′ |hn)> log(q)) then S :=S ′;

b return (ΦS);

Exploration & Exploitation
Having obtained a good estimate Φ̂ of Φbest in the previous
section, we can/must now determine a good action for our
agent. For a finite MDP with known transition probabilities,
finding the optimal action is routine. For estimated prob-
abilities we run into the infamous exploration-exploitation
problem, for which promising approximate solutions have
recently been suggested [SL08]. At the end of this section I
present the overall algorithm for our ΦMDP agent.
Optimal actions for known MDPs. For a known finite
MDP (S,A,T,R,γ), the maximal achievable (“optimal”) ex-
pected future discounted reward sum, called (Q) Value (of
action a) in state s, satisfies the following (Bellman) equa-
tions [SB98]

Q∗a
s =

∑
s′

T a
ss′ [R

a
ss′ + γV ∗

s′] and V ∗
s = max

a
Q∗a

s (6)

where 0<γ<1 is a discount parameter, typically close to 1.
See [Hut05, Sec.5.7] for proper choices. The equations can
be solved in polynomial time by a simple iteration process
or various other methods [Put94]. After observing on+1, the
optimal next action is

an+1 := arg max
a

Q∗a
sn+1

, where sn+1 = Φ(hn+1) (7)

Estimating the MDP. We can estimate the transition proba-
bility T by

T̂ a
ss′ :=

na+
ss′

na+
s+

if na+
s+ > 0 and 0 else. (8)

It is easy to see that the Shannon-Fano code of s1:n based
on PT̂ (s1:n|a1:n) =

∏n
t=1T̂

at−1
st−1st plus the code of the non-

zero transition probabilities T̂ a
ss′ > 0 to relevant accuracy

O(1/
√

na+
s+) has length (2), i.e. the frequency estimate (8)

is consistent with the attributed code length. The expected
reward can be estimated as

R̂a
ss′ :=

∑
r′∈R

R̂ar′

ss′ r
′, R̂ar′

ss′ :=
nar′

ss′

na+
ss′

(9)

Exploration. Simply replacing T and R in (6) and (7) by
their estimates (8) and (9) can lead to very poor behavior,
since parts of the state space may never be explored, causing
the estimates to stay poor.

Estimate T̂ improves with increasing na+
s+ , which can

(only) be ensured by trying all actions a in all states s suf-
ficiently often. But the greedy policy above has no incen-
tive to explore, which may cause the agent to perform very
poorly: The agent stays with what he believes to be opti-
mal without trying to solidify his belief. Trading off ex-
ploration versus exploitation optimally is computationally
intractable [Hut05; PVHR06; RP08] in all but extremely
simple cases (e.g. Bandits). Recently, polynomially opti-
mal algorithms (Rmax,E3,OIM) have been invented [KS98;
SL08]: An agent is more explorative if he expects a high re-
ward in the unexplored regions. We can “deceive” the agent
to believe this by adding another “absorbing” high-reward
state se to S, not in the range of Φ(h), i.e. never observed.
Henceforth, S denotes the extended state space. For instance
+ in (8) now includes se. We set

na
sse = 1, na

ses = δses, Ra
sse = Re

max (10)

for all s,a, where exploration bonus Re
max is polynomially

(in (1−γ)−1 and |S×A|) larger than maxR [SL08].
Now compute the agent’s action by (6)-(9) but for the ex-

tended S. The optimal policy p∗ tries to find a chain of ac-
tions and states that likely leads to the high reward absorbing
state se. Transition T̂ a

sse = 1/na
s+ is only “large” for small

na
s+, hence p∗ has a bias towards unexplored (state,action)

regions. It can be shown that this algorithm makes only a
polynomial number of sub-optimal actions.

The overall algorithm for our ΦMDP agent is as follows.

ΦMDP-Agent(A,R)
d Initialize Φ≡ε; S={ε}; h0 =a0 =r0 =ε;

for n=0,1,2,3,...
d Choose e.g. γ=1−1/(n+1);

Set Re
max =Polynomial((1−γ)−1,|S×A|)·maxR;

While waiting for on+1 {Φ:=ΦImprove(Φ,hn)};
Observe on+1; hn+1 =hnanrnon+1;
sn+1 :=Φ(hn+1); S :=S∪{sn+1};
Compute action an+1 from Equations (6)-(10);
Output action an+1;

b b Observe reward rn+1;

Improved Cost Function
As discussed, we ultimately only care about (modeling) the
rewards, but this endeavor required introducing and coding
states. The resulted Cost(Φ|h) function is a code length of
not only the rewards but also the “spurious” states. This
likely leads to a too strong penalty of models Φ with large
state spaces S. The proper Bayesian formulation developed
in this section allows to “integrate” out the states. This leads

65

to a code for the rewards only, which better trades off accu-
racy of the reward model and state space size.

For an MDP with transition and reward probabilities T a
ss′

and Rar′

ss′ , the probabilities of the state and reward sequences
are

P(s1:n|a1:n) =
n∏

t=1

T at−1
st−1st

, P(r1:n|s1:na1:n) =
n∏

t=1

Rat−1rt
st−1st

The probability of r|a can be obtained by taking the product
and marginalizing s:

PU (r1:n|a1:n) =
∑
s1:n

n∏
t=1

Uat−1rt
st−1st

=
∑
sn

[Ua0r1· · ·Uan−1rn]s0sn

where for each a∈A and r′∈R, matrix Uar′∈IRm×m is de-
fined as [Uar′]ss′ ≡Uar′

ss′ :=T a
ss′R

ar′

ss′ . The right n-fold ma-
trix product can be evaluated in time O(m2n). This shows
that r given a and U can be coded in −logPU bits. The
unknown U needs to be estimated, e.g. by the relative fre-
quency Ûar′

ss′ :=nar′

ss′ /na+
s+ . The M :=m(m−1)|A|(|R|−1)

(independent) elements of Û can be coded to sufficient ac-
curacy in 1

2M logn bits. Together this leads to a code for r|a
of length

ICost(Φ|hn) := − log PÛ (r1:n|a1:n) + 1
2M log n (11)

In practice, M can and should be chosen smaller like done in
the original Cost function, where we have used a restrictive
model for R and considered only non-zero transitions in T .

Conclusion
I have developed a formal criterion for evaluating and select-
ing good “feature” maps Φ from histories to states and pre-
sented the feature reinforcement learning algorithm ΦMDP-
Agent(). The computational flow is h ; Φ̂ ; (T̂ ,R̂) ;

(V̂ ,Q̂) ; a. The algorithm can easily and significantly be
accelerated: Local search algorithms produce sequences of
“similar” Φ, which naturally suggests to compute/update
Cost(Φ|h) and the value function V incrementally. The pri-
mary purpose of this work was to introduce and explore Φ-
selection on the conveniently simple (but impractical) un-
structured finite MDPs. The results of this work set the
stage for the more powerful ΦDBN model developed in the
companion article [Hut09] based on Dynamic Bayesian Net-
works. The major open problems are to develop smart Φ
generation and smart stochastic search algorithms for Φbest,
and to determine whether minimizing (11) is the right crite-
rion.

References
[AL97] E. H. L. Aarts and J. K. Lenstra, editors. Local Search

in Combinatorial Optimization. Discrete Mathematics and Opti-
mization. Wiley-Interscience, Chichester, England, 1997.

[GDG03] R. Givan, T. Dean, and M. Greig. Equivalence notions
and model minimization in Markov decision processes. Artificial
Intelligence, 147(1–2):163–223, 2003.

[Gor99] G. Gordon. Approximate Solutions to Markov Decision
Processes. PhD thesis, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, 1999.

[GP07] B. Goertzel and C. Pennachin, editors. Artificial General
Intelligence. Springer, 2007.

[Grü07] P. D. Grünwald. The Minimum Description Length Prin-
ciple. The MIT Press, Cambridge, 2007.

[HTF01] T. Hastie, R. Tibshirani, and J. H. Friedman. The Ele-
ments of Statistical Learning. Springer, 2001.

[Hut05] M. Hutter. Universal Artificial Intelligence: Sequential
Decisions based on Algorithmic Probability. Springer, Berlin,
2005. 300 pages, http://www.hutter1.net/ai/uaibook.htm.

[Hut07] M. Hutter. Universal algorithmic intelligence: A mathe-
matical top→down approach. In Artificial General Intelligence,
pages 227–290. Springer, Berlin, 2007.

[Hut09] M. Hutter. Feature dynamic Bayesian networks. In Arti-
ficial General Intelligence (AGI’09). Atlantis Press, 2009.

[KLC98] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochastic domains.
Artificial Intelligence, 101:99–134, 1998.

[KS98] M. J. Kearns and S. Singh. Near-optimal reinforcement
learning in polynomial time. In Proc. 15th International Conf.
on Machine Learning, pages 260–268. Morgan Kaufmann, San
Francisco, CA, 1998.

[LH07] S. Legg and M. Hutter. Universal intelligence: A defini-
tion of machine intelligence. Minds & Machines, 17(4):391–444,
2007.

[Liu02] J. S. Liu. Monte Carlo Strategies in Scientific Computing.
Springer, 2002.

[McC96] A. K. McCallum. Reinforcement Learning with Selec-
tive Perception and Hidden State. PhD thesis, Department of
Computer Science, University of Rochester, 1996.

[Put94] M. L. Puterman. Markov Decision Processes — Discrete
Stochastic Dynamic Programming. Wiley, New York, NY, 1994.

[PVHR06] P. Poupart, N. A. Vlassis, J. Hoey, and K. Regan. An
analytic solution to discrete Bayesian reinforcement learning. In
Proc. 23rd International Conf. on Machine Learning (ICML’06),
volume 148, pages 697–704, Pittsburgh, PA, 2006. ACM.

[RN03] S. J. Russell and P. Norvig. Artificial Intelligence. A Mod-
ern Approach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition,
2003.

[RP08] S. Ross and J. Pineau. Model-based Bayesian reinforce-
ment learning in large structured domains. In Proc. 24th Con-
ference in Uncertainty in Artificial Intelligence (UAI’08), pages
476–483, Helsinki, 2008. AUAI Press.

[RPPCd08] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. On-
line planning algorithms for POMDPs. Journal of Artificial Intel-
ligence Research, 2008(32):663–704, 2008.

[San08] S. Sanner. First-Order Decision-Theoretic Planning in
Structured Relational Environments. PhD thesis, Department of
Computer Science, University of Toronto, 2008.

[SB98] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[Sch04] J. Schmidhuber. Optimal ordered problem solver. Ma-
chine Learning, 54(3):211–254, 2004.

[SDL07] A. L. Strehl, C. Diuk, and M. L. Littman. Efficient struc-
ture learning in factored-state MDPs. In Proc. 27th AAAI Confer-
ence on Artificial Intelligence, pages 645–650, Vancouver, BC,
2007. AAAI Press.

[SL08] I. Szita and A. Lörincz. The many faces of optimism: a
unifying approach. In Proc. 12th International Conference (ICML
2008), volume 307, Helsinki, Finland, June 2008.

[SLJ+03] S. Singh, M. Littman, N. Jong, D. Pardoe, and P. Stone.
Learning predictive state representations. In Proc. 20th Interna-
tional Conference on Machine Learning (ICML’03), pages 712–
719, 2003.

66

Feature Dynamic Bayesian Networks

Marcus Hutter
RSISE @ ANU and SML @ NICTA

Canberra, ACT, 0200, Australia
marcus@hutter1.net www.hutter1.net

Abstract
Feature Markov Decision Processes (ΦMDPs) [Hut09] are
well-suited for learning agents in general environments.
Nevertheless, unstructured (Φ)MDPs are limited to rela-
tively simple environments. Structured MDPs like Dynamic
Bayesian Networks (DBNs) are used for large-scale real-
world problems. In this article I extend ΦMDP to ΦDBN.
The primary contribution is to derive a cost criterion that al-
lows to automatically extract the most relevant features from
the environment, leading to the “best” DBN representation.
I discuss all building blocks required for a complete general
learning algorithm.

Introduction
Agents. The agent-environment setup in which an Agent
interacts with an Environment is a very general and prevalent
framework for studying intelligent learning systems [RN03].
In cycles t = 1,2,3,..., the environment provides a (regular)
observation ot∈O (e.g. a camera image) to the agent; then
the agent chooses an action at∈A (e.g. a limb movement);
finally the environment provides a real-valued reward rt∈IR
to the agent. The reward may be very scarce, e.g. just +1
(-1) for winning (losing) a chess game, and 0 at all other
times [Hut05, Sec.6.3]. Then the next cycle t+1 starts. The
agent’s objective is to maximize his reward.
Environments. For example, sequence prediction is con-
cerned with environments that do not react to the agents
actions (e.g. a weather-forecasting “action”) [Hut03], plan-
ning deals with the case where the environmental function is
known [RPPCd08], classification and regression is for con-
ditionally independent observations [Bis06], Markov Deci-
sion Processes (MDPs) assume that ot and rt only depend
on at−1 and ot−1 [SB98], POMDPs deal with Partially Ob-
servable MDPs [KLC98], and Dynamic Bayesian Networks
(DBNs) with structured MDPs [BDH99].
Feature MDPs [Hut09]. Concrete real-world problems
can often be modeled as MDPs. For this purpose, a de-
signer extracts relevant features from the history (e.g. po-
sition and velocity of all objects), i.e. the history ht =
a1o1r1...at−1ot−1rt−1ot is summarized by a feature vector
st :=Φ(ht). The feature vectors are regarded as states of an
MDP and are assumed to be (approximately) Markov.

Artificial General Intelligence (AGI) [GP07] is concerned
with designing agents that perform well in a very large

range of environments [LH07], including all of the men-
tioned ones above and more. In this general situation, it is
not a priori clear what the useful features are. Indeed, any
observation in the (far) past may be relevant in the future. A
solution suggested in [Hut09] is to learn Φ itself.

If Φ keeps too much of the history (e.g. Φ(ht)=ht), the
resulting MDP is too large (infinite) and cannot be learned.
If Φ keeps too little, the resulting state sequence is not
Markov. The Cost criterion I develop formalizes this trade-
off and is minimized for the “best” Φ. At any time n, the
best Φ is the one that minimizes the Markov code length of
s1...sn and r1...rn. This reminds but is actually quite differ-
ent from MDL, which minimizes model+data code length
[Grü07].
Dynamic Bayesian networks. The use of “unstructured”
MDPs [Hut09], even our Φ-optimal ones, is clearly limited
to relatively simple tasks. Real-world problems are struc-
tured and can often be represented by dynamic Bayesian net-
works (DBNs) with a reasonable number of nodes [DK89].
Bayesian networks in general and DBNs in particular are
powerful tools for modeling and solving complex real-world
problems. Advances in theory and increase in computa-
tion power constantly broaden their range of applicability
[BDH99; SDL07].
Main contribution. The primary contribution of this work
is to extend the Φ selection principle developed in [Hut09]
for MDPs to the conceptually much more demanding DBN
case. The major extra complications are approximating,
learning and coding the rewards, the dependence of the Cost
criterion on the DBN structure, learning the DBN structure,
and how to store and find the optimal value function and
policy.

Although this article is self-contained, it is recommended
to read [Hut09] first.

Feature Dynamic Bayesian Networks (ΦDBN)
In this section I recapitulate the definition of ΦMDP from
[Hut09], and adapt it to DBNs. While formally a DBN is just
a special case of an MDP, exploiting the additional structure
efficiently is a challenge. For generic MDPs, typical algo-
rithms should be polynomial and can at best be linear in the
number of states |S|. For DBNs we want algorithms that
are polynomial in the number of features m. Such DBNs

67

have exponentially many states (2O(m)), hence the standard
MDP algorithms are exponential, not polynomial, in m. De-
riving poly-time (and poly-space!) algorithms for DBNs
by exploiting the additional DBN structure is the challenge.
The gain is that we can handle exponentially large structured
MDPs efficiently.
Notation. Throughout this article, log denotes the binary
logarithm, and δx,y = δxy =1 if x=y and 0 else is the Kro-
necker symbol. I generally omit separating commas if no
confusion arises, in particular in indices. For any z of suit-
able type (string,vector,set), I define string z=z1:l =z1...zl,
sum z+=

∑
jzj , union z∗=

⋃
jzj , and vector z•=(z1,...,zl),

where j ranges over the full range {1,...,l} and l = |z| is
the length or dimension or size of z. ẑ denotes an estimate
of z. The characteristic function 11B = 1 if B=true and 0
else. P(·) denotes a probability over states and rewards or
parts thereof. I do not distinguish between random variables
Z and realizations z, and abbreviation P(z) := P[Z = z]
never leads to confusion. More specifically, m ∈ IN de-
notes the number of features, i ∈ {1,...,m} any feature,
n ∈ IN the current time, and t ∈ {1,...,n} any time. Fur-
ther, due to space constraints at several places I gloss over
initial conditions or special cases where inessential. Also
0∗undefined=0∗infinity:=0.
ΦMDP definition. A ΦMDP consists of a 7 tu-
pel (O,A,R,Agent,Env,Φ,S) = (observation space, action
space, reward space, agent, environment, feature map, state
space). Without much loss of generality, I assume that A
and O are finite and R⊆ IR. Implicitly I assume A to be
small, while O may be huge.

Agent and Env are a pair or triple of interlocking functions
of the history H :=(O×A×R)∗×O:

Env : H×A×R ; O, on = Env(hn−1an−1rn−1),
Agent : H ; A, an = Agent(hn),

Env : H×A ; R, rn = Env(hnan).

where ; indicates that mappings → might be stochastic.
The informal goal of AI is to design an Agent() that achieves
high (expected) reward over the agent’s lifetime in a large
range of Env()ironments.

The feature map Φ maps histories to states

Φ : H → S, st = Φ(ht), ht = oar1:t−1ot ∈ H
The idea is that Φ shall extract the “relevant” aspects of
the history in the sense that “compressed” history sar1:n≡
s1a1r1...snanrn can well be described as a sample from
some MDP (S,A,T,R) = (state space, action space, transi-
tion probability, reward function).
(Φ) Dynamic Bayesian Networks are structured (Φ)MDPs.
The state space is S = {0,1}m, and each state s ≡ x ≡
(x1,...,xm)∈S is interpreted as a feature vector x=Φ(h),
where xi=Φi(h) is the value of the ith binary feature. In the
following I will also refer to xi as feature i, although strictly
speaking it is its value. Since non-binary features can be
realized as a list of binary features, I restrict myself to the
latter.

Given xt−1 =x, I assume that the features (x1
t ,...,x

m
t)=

x′ at time t are independent, and that each x′i depends only

on a subset of “parent” features ui ⊆ {x1,...,xm}, i.e. the
transition matrix has the structure

T a
xx′ = P(xt = x′|xt−1 = x, at−1 = a) =

m∏
i=1

Pa(x′i|ui)
(1)

This defines our ΦDBN model. It is just a ΦMDP with
special S and T . Explaining ΦDBN on an example is easier
than staying general.

ΦDBN Example
Consider an instantiation of the simple vacuum world
[RN03, Sec.3.6]. There are two rooms, A and B, and a vac-
uum Robot that can observe whether the room he is in is
Clean or Dirty; Move to the other room, Suck, i.e. clean
the room he is in; or do Nothing. After 3 days a room
gets dirty again. Every clean room gives a reward 1, but
a moving or sucking robot costs and hence reduces the re-
ward by 1. Hence O = {A,B}×{C,D}, A = {N,S,M},
R={−1,0,1,2}, and the dynamics Env() (possible histories)
is clear from the above description.
Dynamics as a DBN. We can model the dynamics by a
DBN as follows: The state is modeled by 3 features. Fea-
ture R∈{A,B} stores in which room the robot is, and fea-
ture A/B ∈ {0,1,2,3} remembers (capped at 3) how long
ago the robot has cleaned room A/B last time, hence S =
{0,1,2,3}×{A,B}×{0,1,2,3}. The state/feature transition
is as follows:

if (xR=A and a=S) then x′A=0 else x′A=min{xA+1, 3};
if (xR=B and a=S) then x′B=0 else x′B=min{xB+1, 3};
if a=M (if xR=B then x′R=A else x′R=B) else x′R=xR;

A DBN can be viewed as a two-layer Bayesian network
[BDH99]. The dependency structure of our example is de-
picted in the right diagram.

t−1 t�
��
A �
��

A′

�
��
R �
��

R′

�
��
B �
��

B′

x x′

-

-

-

�
��>

Z
ZZ~

Each feature consists of a (left,right)-
pair of nodes, and a node i ∈ {1,2,3 =
m}=̂{A,R,B} on the right is connected to
all and only the parent features ui on the
left. The reward is

r = 11xA<3 + 11xB<3 − 11a6=N

The features map Φ = (ΦA,ΦR,ΦB) can
also be written down explicitly. It depends
on the actions and observations of the last 3 time steps.
Discussion. Note that all nodes x′i can implicitly also de-
pend on the chosen action a. The optimal policies are rep-
etitions of action sequence S,N,M or S,M,N . One might
think that binary features xA/B ∈{C,D} are sufficient, but
this would result in a POMDP (Partially Observable MDP),
since the cleanness of room A is not observed while the
robot is in room B. That is, x′ would not be a (proba-
bilistic) function of x and a alone. The quaternary feature
xA∈{0,1,2,3} can easily be converted into two binary fea-
tures, and similarly xB . The purely deterministic example
can easily be made stochastic. For instance, Sucking and
Moving may fail with a certain probability. Possible, but
more complicated is to model a probabilistic transition from
Clean to Dirty. In the randomized versions the agent needs
to use its observations.

68

ΦDBN Coding and Evaluation
I now construct a code for s1:n given a1:n, and for r1:n given
s1:n and a1:n, which is optimal (minimal) if s1:nr1:n given
a1:n is sampled from some MDP. It constitutes our cost func-
tion for Φ and is used to define the Φ selection principle for
DBNs. Compared to the MDP case, reward coding is more
complex, and there is an extra dependence on the graphical
structure of the DBN.

Recall [Hut09] that a sequence z1:n with counts n =
(n1,...,nm) can within an additive constant be coded in

CL(n) := n H(n/n) + m′−1
2 log n if n>0 and 0 else

(2)
bits, where n = n+ = n1 + ...+nm and m′ = |{i : ni >
0}|≤m is the number of non-empty categories, and H(p):=
−

∑m
i=1pilogpi is the entropy of probability distribution p.

The code is optimal (within +O(1)) for all i.i.d. sources.
State/Feature Coding. Similarly to the ΦMDP case, we
need to code the temporal “observed” state=feature se-
quence x1:n. I do this by a frequency estimate of the
state/feature transition probability. (Within an additive
constant, MDL, MML, combinatorial, incremental, and
Bayesian coding all lead to the same result). In the following
I will drop the prime in (ui,a,x′i) tuples and related situa-
tions if/since it does not lead to confusion. Let T ia

uixi ={t≤
n : ut−1 = ui,at−1 = a,xi

t = xi} be the set of times t−1
at which features that influence xi have values ui, and ac-
tion is a, and which leads to feature i having value xi. Let
nia

uixi = |T ia
uixi | their number (ni+

++ =n ∀i). I estimate each
feature probability separately by P̂a(xi|ui) = nia

uixi/nia
ui+

.
Using (1), this yields

P̂(x1:n|a1:n) =
n∏

t=1

T̂ at−1
xt−1xt

=
n∏

t=1

m∏
i=1

P̂at−1(xi
t|ui

t−1)

= ... = exp
[∑

i,ui,a

nia
ui+H

(
nia

ui•

nia
ui+

)]
The length of the Shannon-Fano code of x1:n is just the
logarithm of this expression. We also need to code each
non-zero count nia

uixi to accuracy O(1/
√

nia
ui+), which each

needs 1
2 log(nia

ui+
) bits. Together this gives a complete code

of length

CL(x1:n|a1:n) =
∑

i,ui,a

CL(nia
ui•) (3)

The rewards are more complicated.
Reward structure. Let Ra

xx′ be (a model of) the observed
reward when action a in state x results in state x′. It is natu-
ral to assume that the structure of the rewards Ra

xx′ is related
to the transition structure T a

xx′ . Indeed, this is not restrictive,
since one can always consider a DBN with the union of tran-
sition and reward dependencies. Usually it is assumed that
the “global” reward is a sum of “local” rewards Ria

uix′i , one
for each feature i [KP99]. For simplicity of exposition I as-
sume that the local reward Ri only depends on the feature
value x′i and not on ui and a. Even this is not restrictive

and actually may be advantageous as discussed in [Hut09]
for MDPs. So I assume

Ra
xx′ =

m∑
i=1

Ri
x′i =: R(x′)

For instance, in the example in the previous section, two
local rewards (RA

x′A = 11x′A<3 and RB
x′B = 11x′B<3) depend

on x′ only, but the third reward depends on the action (RR=
−11a6=N).

Often it is assumed that the local rewards are directly ob-
served or known [KP99], but we neither want nor can do
this here: Having to specify many local rewards is an extra
burden for the environment (e.g. the teacher), which prefer-
ably should be avoided. In our case, it is not even possible to
pre-specify a local reward for each feature, since the features
Φi themselves are learned by the agent and are not statically
available. They are agent-internal and not part of the ΦDBN
interface. In case multiple rewards are available, they can
be modeled as part of the regular observations o, and r only
holds the overall reward. The agent must and can learn to
interpret and exploit the local rewards in o by himself.
Learning the reward function. In analogy to the MDP case
for R and the DBN case for T above it is tempting to esti-
mate Ri

xi by
∑

r′r
′nir′

+xi/ni+
+xi but this makes no sense. For

instance if rt =1 ∀t, then R̂i
xi ≡1, and R̂a

xx′ ≡m is a gross
mis-estimation of rt ≡ 1. The localization of the global re-
ward is somewhat more complicated. The goal is to choose
R1

x1 ,...,Rm
xm such that rt =R(xt)∀t.

Without loss we can set Ri
0 ≡ 0, since we can subtract

a constant from each local reward and absorb them into an
overall constant w0. This allows us to write

R(x) = w0x
0 + w1x

1 + ... + wmxm = w>x

where wi :=Ri
1 and x0 :≡1.

In practice, the ΦDBN model will not be perfect, and an
approximate solution, e.g. a least squares fit, is the best we
can achieve. The square loss can be written as

Loss(w) :=
n∑

t=1

(R(xt)−rt)2 = w>Aw−2b>w+c (4)

Aij :=
n∑

t=1

xi
tx

j
t , bi :=

n∑
t=1

rtx
i
t, c :=

n∑
t=1

r2
t

Note that Aij counts the number of times feature i and j are
“on” (=1) simultaneously, and bi sums all rewards for which
feature i is on. The loss is minimized for

ŵ := arg min
w

Loss(w) = A−1b, R̂(x) = ŵ>x

which involves an inversion of the (m+1)×(m+1) matrix
A. For singular A we take the pseudo-inverse.
Reward coding. The quadratic loss function suggests a
Gaussian model for the rewards:

P(r1:n|ŵ, σ) := exp(−Loss(ŵ)/2σ2)/(2πσ2)n/2

Maximizing this w.r.t. the variance σ2 yields the maximum
likelihood estimate

− log P(r1:n|ŵ, σ̂) = n
2 log(Loss(ŵ))− n

2 log ne
2π

69

where σ̂2=Loss(ŵ)/n. Given ŵ and σ̂ this can be regarded
as the (Shannon-Fano) code length of r1:n (there are actu-
ally a few subtleties here which I gloss over). Each weight
ŵk and σ̂ need also be coded to accuracy O(1/

√
n), which

needs (m+2) 1
2 logn bits total. Together this gives a com-

plete code of length

CL(r1:n|x1:na1:n) = (5)

= n
2 log(Loss(ŵ)) + m+2

2 log n− n
2 log ne

2π

ΦDBN evaluation and selection is similar to the MDP case.
Let G denote the graphical structure of the DBN, i.e. the set
of parents Pai⊆{1,...,m} of each feature i. (Remember ui

are the parent values). Similarly to the MDP case, the cost
of (Φ,G) on hn is defined as

Cost(Φ, G|hn) := CL(x1:n|a1:n) + CL(r1:n|x1:n, a1:n),
(6)

and the best (Φ,G) minimizes this cost.

(Φbest, Gbest) := arg min
Φ,G

{Cost(Φ, G|hn)}

A general discussion why this is a good criterion can be
found in [Hut09]. In the following section I mainly highlight
the difference to the MDP case, in particular the additional
dependence on and optimization over G.

DBN Structure Learning & Updating
This section briefly discusses minimization of (6) w.r.t. G
given Φ and even briefer minimization w.r.t. Φ. For the mo-
ment regard Φ as given and fixed.
Cost and DBN structure. For general structured local re-
wards Ria

uix′i , (3) and (5) both depend on G, and (6) repre-
sents a novel DBN structure learning criterion that includes
the rewards.

For our simple reward model Ri
xi , (5) is independent of

G, hence only (3) needs to be considered. This is a standard
MDL criterion, but I have not seen it used in DBNs before.
Further, the features i are independent in the sense that we
can search for the optimal parent sets Pai ⊆ {1,...,m} for
each feature i separately.
Complexity of structure search. Even in this case, finding
the optimal DBN structure is generally hard. In principle
we could rely on off-the-shelf heuristic search methods for
finding good G, but it is probably better to use or develop
some special purpose optimizer. One may even restrict the
space of considered graphs G to those for which (6) can be
minimized w.r.t. G efficiently, as long as this restriction can
be compensated by “smarter” Φ.

A brute force exhaustive search algorithm for Pai is to
consider all 2m subsets of {1,...,m} and select the one
that minimizes

∑
ui,aCL(nia

ui•). A reasonable and often
employed assumption is to limit the number of parents to
some small value p, which reduces the search space size to
O(mp).

Indeed, since the Cost is exponential in the maximal num-
ber of parents of a feature, but only linear in n, a Cost mini-
mizing Φ can usually not have more than a logarithmic num-
ber of parents, which leads to a search space that is pseudo-
polynomial in m.

Heuristic structure search. We could also replace the well-
founded criterion (3) by some heuristic. One such heuristic
has been developed in [SDL07]. The mutual information is
another popular criterion for determining the dependency of
two random variables, so we could add j as a parent of fea-
ture i if the mutual information of xj and x′i is above a cer-
tain threshold. Overall this takes time O(m2) to determine
G. An MDL inspired threshold for binary random variables
is 1

2n logn. Since the mutual information treats parents in-
dependently, T̂ has to be estimated accordingly, essentially
as in naive Bayes classification [Lew98] with feature se-
lection, where x′i represents the class label and ui are the
features selected x. The improved Tree-Augmented naive
Bayes (TAN) classifier [FGG97] could be used to model
synchronous feature dependencies (i.e. within a time slice).
The Chow-Liu [CL68] minimum spanning tree algorithm al-
lows determining G in time O(m3). A tree becomes a forest
if we employ a lower threshold for the mutual information.

Φ search is even harder than structure search, and remains
an art. Nevertheless the reduction of the complex (ill-
defined) reinforcement learning problem to an internal fea-
ture search problem with well-defined objective is a clear
conceptual advance.

In principle (but not in practice) we could consider
the set of all (computable) functions {Φ : H → {0,1}}.
We then compute Cost(Φ|h) for every finite subset Φ =
{Φi1 ,...,Φim} and take the minimum (note that the order is
irrelevant).

Most practical search algorithms require the specification
of some neighborhood function, here for Φ. For instance,
stochastic search algorithms suggest and accept a neighbor
of Φ with a probability that depends on the Cost reduction.
See [Hut09] for more details. Here I will only present some
very simplistic ideas for features and neighborhoods.

Assume binary observations O= {0,1} and consider the
last m observations as features, i.e. Φi(hn) = on−i+1 and
Φ(hn) = (Φ1(hn),...,Φm(hn)) = on−m+1:n. So the states
are the same as for ΦmMDP in [Hut09], but now S={0,1}m

is structured as m binary features. In the example here, m=
5 lead to a perfect ΦDBN. We can add a new feature on−m

(m;m+1) or remove the last feature (m;m−1), which
defines a natural neighborhood structure.

Note that the context trees of [McC96; Hut09] are more
flexible. To achieve this flexibility here we either have to
use smarter features within our framework (simply interpret
s=ΦS(h) as a feature vector of length m=dlog|S|e) or use
smarter (non-tabular) estimates of Pa(xi|ui) extending our
framework (to tree dependencies).

For general purpose intelligent agents we clearly
need more powerful features. Logical expressions or
(non)accepting Turing machines or recursive sets can map
histories or parts thereof into true/false or accept/reject or
in/out, respectively, hence naturally represent binary fea-
tures. Randomly generating such expressions or programs
with an appropriate bias towards simple ones is a universal
feature generator that eventually finds the optimal feature
map. The idea is known as Universal Search [Gag07].

70

Value & Policy Learning in ΦDBN
Given an estimate Φ̂ of Φbest, the next step is to determine
a good action for our agent. I mainly concentrate on the dif-
ficulties one faces in adapting MDP algorithms and discuss
state of the art DBN algorithms. Value and policy learning
in known finite state MDPs is easy provided one is satis-
fied with a polynomial time algorithm. Since a DBN is just
a special (structured) MDP, its (Q) Value function respects
the same Bellman equations [Hut09, Eq.(6)], and the opti-
mal policy is still given by an+1 := argmaxaQ∗a

xn+1
. Nev-

ertheless, their solution is now a nightmare, since the state
space is exponential in the number of features. We need al-
gorithms that are polynomial in the number of features, i.e.
logarithmic in the number of states.
Value function approximation. The first problem is that
the optimal value and policy do not respect the structure of
the DBN. They are usually complex functions of the (expo-
nentially many) states, which cannot even be stored, not to
mention computed [KP99]. It has been suggested that the
value can often be approximated well as a sum of local val-
ues similarly to the rewards. Such a value function can at
least be stored.
Model-based learning. The default quality measure for
the approximate value is the ρ-weighted squared difference,
where ρ is the stationary distribution.

Even for a fixed policy, value iteration does not converge
to the best approximation, but usually converges to a fixed
point close to it [BT96]. Value iteration requires ρ explicitly.
Since ρ is also too large to store, one has to approximate ρ
as well. Another problem, as pointed out in [KP00], is that
policy iteration may not converge, since different policies
have different (misleading) stationary distributions. Koller
and Parr [KP00] devised algorithms for general factored ρ,
and Guestrin et al. [GKPV03] for max-norm, alleviating this
problem. Finally, general policies cannot be stored exactly,
and another restriction or approximation is necessary.
Model-free learning. Given the difficulties above, I suggest
to (re)consider a very simple class of algorithms, without
suggesting that it is better. The above model-based algo-
rithms exploit T̂ and R̂ directly. An alternative is to sam-
ple from T̂ and use model-free “Temporal Difference (TD)”
learning algorithms based only on this internal virtual sam-
ple [SB98]. We could use TD(λ) or Q-value variants with
linear value function approximation.

Beside their simplicity, another advantage is that neither
the stationary distribution nor the policy needs to be stored
or approximated. Once approximation Q̂∗ has been ob-
tained, it is trivial to determine the optimal (w.r.t. Q̂∗) action
via an+1 =argmaxaQ∗a

xn+1
for any state of interest (namely

xn+1) exactly.
Exploration. Optimal actions based on approximate rather
than exact values can lead to very poor behavior due to lack
of exploration. There are polynomially optimal algorithms
(Rmax,E3,OIM) for the exploration-exploitation dilemma.

For model-based learning, extending E3 to DBNs is
straightforward, but E3 needs an oracle for planning in a
given DBN [KK99]. Recently, Strehl et al. [SDL07] accom-
plished the same for Rmax. They even learn the DBN struc-

ture, albeit in a very simplistic way. Algorithm OIM [SL08],
which I described in [Hut09] for MDPs, can also likely be
generalized to DBNs, and I can imagine a model-free ver-
sion.

Incremental Updates
As discussed two sections ago, most search algorithms are
local in the sense that they produce a chain of “slightly”
modified candidate solutions, here Φ’s. This suggests a po-
tential speedup by computing quantities of interest incre-
mentally.
Cost. Computing CL(x|a) in (3) takes at most time
O(m2k|A|), where k is the maximal number of parents
of a feature. If we remove feature i, we can simply re-
move/subtract the contributions from i in the sum. If we add
a new feature m+1, we only need to search for the best par-
ent setum+1 for this new feature, and add the corresponding
code length. In practice, many transitions don’t occur, i.e.
nia

uixi =0, so CL(x|a) can actually be computed much faster
in time O(|{nia

uixi >0}|), and incrementally even faster.
Rewards. When adding a new feature, the current local re-
ward estimates may not change much. If we reassign a frac-
tion α≤ 1 of reward to the new feature xm+1, we get the
following ansatz1.

R̂(x1, ..., xm+1) = (1−α)R̂(x)+wm+1x
m+1 =: v>ψ(x)

v := (1−α, wm+1)>, ψ := (R̂(x), xm+1)>

Minimizing
∑n

t=1(R̂(x1
t ...x

m+1
t)−rt)2 w.r.t. v analogous

to (4) just requires a trivial 2×2 matrix inversion. The
minimum ṽ results in an initial new estimate w̃ = ((1−
α̃)ŵ0,...,(1− α̃)ŵm,w̃m+1)>, which can be improved by
some first order gradient decent algorithm in time O(m),
compared to the exact O(m3) algorithm. When removing a
feature, we simply redistribute its local reward to the other
features, e.g. uniformly, followed by improvement steps that
cost O(m) time.
Value. All iteration algorithms described in the previous
section for computing (Q) Values need an initial value for V
or Q. We can take the estimate V̂ from a previous Φ as an
initial value for the new Φ. Similarly as for the rewards, we
can redistribute a fraction of the values by solving relatively
small systems of equations. The result is then used as an
initial value for the iteration algorithms in the previous sec-
tion. A further speedup can be obtained by using prioritized
iteration algorithms that concentrate their time on badly es-
timated parameters, which are in our case the new values
[SB98].

Similarly, results from time t can be (re)used as initial es-
timates for the next cycle t+1, followed by a fast improve-
ment step.

Outlook
ΦDBN leaves much more questions open and room for mod-
ifications and improvements than ΦMDP. Here are a few.

1An Ansatz is an initial mathematical or physical model
with some free parameters to be determined subsequently.
[http://en.wikipedia.org/wiki/Ansatz]

71

• The cost function can be improved by integrating out the
states analogous to the ΦMDP case [Hut09]: The likeli-
hood P(r1:n|a1:n,Û) is unchanged, except that Û ≡ T̂ R̂
is now estimated locally, and the complexity penalty be-
comes 1

2 (M +m+2)logn, where M is (essentially) the
number of non-zero counts nia

uixi , but an efficient algo-
rithm has yet to be found.

• It may be necessary to impose and exploit structure on
the conditional probability tables P a(xi|ui) themselves
[BDH99].

• Real-valued observations and beliefs suggest to extend
the binary feature model to [0,1] interval valued features
rather than coding them binary. Since any continuous se-
mantics that preserves the role of 0 and 1 is acceptable,
there should be an efficient way to generalize Cost and
Value estimation procedures.

• I assumed that the reward/value is linear in local re-
wards/values. Is this sufficient for all practical purposes?
I also assumed a least squares and Gaussian model for
the local rewards. There are efficient algorithms for much
more flexible models. The least we could do is to code
w.r.t. the proper covariance A.

• I also barely discussed synchronous (within time-slice)
dependencies.

• I guess ΦDBN will often be able to work around too re-
strictive DBN models, by finding features Φ that are more
compatible with the DBN and reward structure.

• Extra edges in the DBN can improve the linear value func-
tion approximation. To give ΦDBN incentives to do so,
the Value would have to be included in the Cost criterion.

• Implicitly I assumed that the action space A is small.
It is possible to extend ΦDBN to large structured action
spaces.

• Apart from the Φ-search, all parts of ΦDBN seem to be
poly-time approximable, which is satisfactory in theory.
In practice, this needs to be improved to essentially linear
time in n and m.

• Developing smart Φ generation and smart stochastic
search algorithms for Φ are the major open challenges.

• A more Bayesian Cost criterion would be desirable: a
likelihood of h given Φ and a prior over Φ leading to a
posterior of Φ given h, or so. Monte Carlo (search) algo-
rithms like Metropolis-Hastings could sample from such
a posterior. Currently probabilities (=̂2−CL) are assigned
only to rewards and states, but not to observations and
feature maps.

Summary. In this work I introduced a powerful framework
(ΦDBN) for general-purpose intelligent learning agents, and
presented algorithms for all required building blocks. The
introduced cost criterion reduced the informal reinforcement
learning problem to an internal well-defined search for “rel-
evant” features.

References
[BDH99] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic

planning: Structural assumptions and computational leverage.
Journal of Artificial Intelligence Research, 11:1–94, 1999.

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learn-
ing. Springer, 2006.

[BT96] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Pro-
gramming. Athena Scientific, Belmont, MA, 1996.

[CL68] C. K. Chow and C. N. Liu. Approximating discrete proba-
bility distributions with dependence trees. IEEE Transactions on
Information Theory, IT-14(3):462–467, 1968.

[DK89] T. Dean and K. Kanazawa. A model for reasoning about
persistence and causation. Computational Intelligence, 5(3):142–
150, 1989.

[FGG97] N. Friedman, D. Geiger, and M. Goldszmid. Bayesian
network classifiers. Machine Learning, 29(2):131–163, 1997.

[Gag07] M. Gaglio. Universal search. Scholarpedia, 2(11):2575,
2007.

[GKPV03] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman.
Efficient solution algorithms for factored MDPs. Journal of Arti-
ficial Intelligence Research (JAIR), 19:399–468, 2003.

[GP07] B. Goertzel and C. Pennachin, editors. Artificial General
Intelligence. Springer, 2007.

[Grü07] P. D. Grünwald. The Minimum Description Length Prin-
ciple. The MIT Press, Cambridge, 2007.

[Hut03] M. Hutter. Optimality of universal Bayesian prediction
for general loss and alphabet. Journal of Machine Learning Re-
search, 4:971–1000, 2003.

[Hut05] M. Hutter. Universal Artificial Intelligence: Sequential
Decisions based on Algorithmic Probability. Springer, Berlin,
2005. 300 pages, http://www.hutter1.net/ai/uaibook.htm.

[Hut09] M. Hutter. Feature Markov decision processes. In Artifi-
cial General Intelligence (AGI’09). Atlantis Press, 2009.

[KK99] M. Kearns and D. Koller. Efficient reinforcement learning
in factored MDPs. In Proc. 16th International Joint Conference
on Artificial Intelligence (IJCAI-99), pages 740–747, San Fran-
cisco, 1999. Morgan Kaufmann.

[KLC98] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochastic domains.
Artificial Intelligence, 101:99–134, 1998.

[KP99] D. Koller and R. Parr. Computing factored value functions
for policies in structured MDPs,. In Proc. 16st International Joint
Conf. on Artificial Intelligence (IJCAI’99), pages 1332–1339, Ed-
inburgh, 1999.

[KP00] D. Koller and R. Parr. Policy iteration for factored MDPs.
In Proc. 16th Conference on Uncertainty in Artificial Intelligence
(UAI-00), pages 326–334, San Francisco, CA, 2000. Morgan
Kaufmann.

[Lew98] D. D. Lewis. Naive (Bayes) at forty: The independence
assumption in information retrieval. In Proc. 10th European Con-
ference on Machine Learning (ECML’98), pages 4–15, Chemnitz,
DE, 1998. Springer.

[LH07] S. Legg and M. Hutter. Universal intelligence: A defini-
tion of machine intelligence. Minds & Machines, 17(4):391–444,
2007.

[McC96] A. K. McCallum. Reinforcement Learning with Selec-
tive Perception and Hidden State. PhD thesis, Department of
Computer Science, University of Rochester, 1996.

[RN03] S. J. Russell and P. Norvig. Artificial Intelligence. A Mod-
ern Approach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition,
2003.

[RPPCd08] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. On-
line planning algorithms for POMDPs. Journal of Artificial Intel-
ligence Research, 2008(32):663–704, 2008.

[SB98] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[SDL07] A. L. Strehl, C. Diuk, and M. L. Littman. Efficient struc-
ture learning in factored-state MDPs. In Proc. 27th AAAI Confer-
ence on Artificial Intelligence, pages 645–650, Vancouver, BC,
2007. AAAI Press.

[SL08] I. Szita and A. Lörincz. The many faces of optimism: a
unifying approach. In Proc. 12th International Conference (ICML
2008), volume 307, Helsinki, Finland, June 2008.

72

Economic Attention Networks:
Associative Memory and Resource Allocation

for General Intelligence

Matthew Ikle’, Joel Pitt, Ben Goertzel, George Sellman

Adams State College (ASC), Singularity Institute for AI (SIAI), Novamente LLC and SIAI, ASC
1405 Bernerd Place, Rockville MD 20851, USA

ben@goertzel.org, stephan@bugaj.com

Abstract
A novel method for simultaneously storing memories and
allocating resources in AI systems is presented. The
method, Economic Attention Networks (ECANs), bears
some resemblance to the spread of activation in attractor
neural networks, but differs via explicitly differentiating two
kinds of “activation” (Short Term Importance, related to
processor allocation; and Long Term Importance, related to
memory allocation), and in using equations that are based
on ideas from economics rather than approximative neural
modeling. Here we explain the basic ideas of ECANs, and
then investigate the functionality of ECANs as associative
memories, via mathematical analysis and the reportage of
experimental results obtained from the implementation of
ECANs in the OpenCog integrative AGI system.

Introduction
One of the critical challenges confronting any system
aimed at advanced general intelligence is the allocation of
computational resources. The central nature of this issue is
highlighted by Hutter’s (2004) mathematical results
showing that if one formalizes intelligence as the
achievement of complex computable goals, then there are
very simple software programs that can achieve arbitrarily
high degrees of intelligence, so long as they are allotted
huge amounts of computational resources. In this sense,
coping with space and time limitations is the crux of the
AGI problem.
 Not surprisingly, given its central nature, the
management of computational resources ties in with a
variety of other concrete issues that AGI systems confront,
in ways depending on the specific system in question. In
the approach we will describe here, resource allocation is
carried out by the same structures and dynamics as
associative memory, whereas the relationship between
resource allocation and other system processes like
reasoning and procedure learning involves feedback
between distinct software components.
 We will describe here a specific approach to resource
allocation and associative memory, which we call

Economic Attention Networks or ECANs. ECANs have
been designed and implemented within an integrative AGI
framework called OpenCog (which overlaps with the
related Novamente Cognition Engine system; see Goertzel,
2006). However, ECANs also have meaning outside the
OpenCog context; they may be considered nonlinear
dynamical systems in roughly the same family as attractor
neural networks such as Hopfield nets (Amit, 1992). The
main focus of this paper is the study of ECANs as
associative memories, which involves mathematical and
experimental analyses that are independent of the
embedding of ECANs in OpenCog or other AGI systems.
But we will also discuss the implications of these results
for specific interactions between ECANs and other
OpenCog components

Economic Attention Networks
First we summarize the essential ideas of ECANs; in later
sections two specific variants of ECAN equational
formalizations are presented.
 An ECAN is a graph, consisting of un-typed nodes and
links, and also links that may be typed either HebbianLink
or InverseHebbianLink. It is also useful sometimes to
consider ECANs that extend the traditional graph
formalism and involve links that point to links as well as to
nodes. The term Atom will be used to refer to either nodes
or links. Each Atom in an ECAN is weighted with two
numbers, called STI (short-term importance) and LTI
(long-term importance). Each Hebbian or InverseHebbian
link is weighted with a probability value.
 The equations of an ECAN explain how the STI, LTI
and Hebbian probability values get updated over time. The
metaphor underlying these equations is the interpretation
of STI and LTI values as (separate) artificial currencies.
The motivation for this metaphor has been elaborated
somewhat in (Goertzel, 2007) and will not be recapitulated
here. The fact that STI (for instance) is a currency means
that the total amount of STI in the system is conserved
(except in unusual instances where the ECAN controller

73

decides to introduce inflation or deflation and explicitly
manipulate the amount of currency in circulation), a fact
that makes the dynamics of an ECAN dramatically
different than that of, say, an attractor neural network (in
which there is no law of conservation of activation).
 Conceptually, the STI value of an Atom is interpreted to
indicate the immediate urgency of the Atom to the ECAN
at a certain point in time; whereas the LTI value of an
Atom indicates the amount of value the ECAN perceives in
the retention of the Atom in memory (RAM). An ECAN
will often be coupled with a “Forgetting” process that
removes low-LTI Atoms from memory according to
certain heuristics.
 STI and LTI values will generally vary continuously, but
the ECAN equations we introduce below contain the
notion of an AttentionalFocus (AF), consisting of those
Atoms in the ECAN with the highest STI values. The AF
is given its meaning by the existence of equations that treat
Atoms with STI above a certain threshold differently.
 Conceptually, the probability value of a HebbianLink
from A to B is the odds that if A is in the AF, so is B; and
correspondingly, the InverseHebbianLink from A to B is
weighted with the odds that if A is in the AF, then B is not.
A critical aspect of the ECAN equations is that Atoms
periodically spread their STI and LTI to other Atoms that
connect to them via Hebbian and InverseHebbianLinks;
this is the ECAN analogue of activation spreading in
neural networks.
 Based on the strong correspondences, one could
plausibly label ECANs as “Economic Neural Networks”;
however we have chosen not to go that path, as ECANs are
not intended as plausible neural models, but rather as
nonlinear dynamical systems engineered to fulfill certain
functions within non-brain-emulative AGI systems.

Integration into OpenCog and the NCE
The OpenCog AGI framework, within which the current
ECAN implementation exists, is a complex framework
with a complex underlying theory, and here we will only
hint at some of its key aspects. OpenCog is an open-source
software framework designed to support the construction
of multiple AI systems; and the current main thrust of work
within OpenCog is the implementation of a specific AGI
design called OpenCogPrime (OCP), which is presented in
the online wikibook (Goertzel, 2008). Much of the
OpenCog software code, and many of the ideas in the OCP
design, have derived from the open-sourcing of aspects of
the proprietary Novamente Cognition Engine, which has
been described extensively in previous publications.
 The first key entity in the OpenCog software
architecture is the AtomTable, which is a repository for
weighted, labeled hypergraph nodes and hyperedges. In
the OpenCog implementation of ECANs, the nodes and
links involved in the ECAN are stored here. OpenCog also
contains an object called the CogServer, which wraps up
an AtomTable as well as (among other objects) a
Scheduler that schedules a set of MindAgent objects that
each (when allocated processor time by the Scheduler)

carry out cognitive operations involving the AtomTable.
The essence of the OCP design consists of a specific set of
MindAgents designed to work together in a collaborative
way in order to create a system that carries out actions
oriented toward achieving goals (where goals are
represented as specific nodes in the AtomTable, and
actions are represented as Procedure objects indexed by
Atoms in the AtomTable, and the utility of a procedure for
achieving a goal is represented by a certain set of
probabilistic logical links in the AtomTable, etc.).
OpenCog is still at an experimental stage but has been used
for such projects as statistical language analysis,
probabilistic inference, and the control of virtual agents in
online virtual worlds (see opencog.org).
 So, in an OpenCog context, ECAN consists of a set of
Atom types, and then a set of MindAgents carrying out
ECAN operations such as HebbianLinkUpdating and
ImportanceUpdating. OCP also requires many other
MindAgents carrying out other cognitive processes such as
probabilistic logical inference according to the PLN system
(Goertzel et al, 2008) and evolutionary procedure learning
according to the MOSES system (Looks, 2006). The
interoperation of the ECAN MindAgents with these other
MindAgents is a subtle issue that will be briefly discussed
in the final section of the paper, but the crux is simple to
understand.
 The CogServer is understood to maintain a kind of
central bank of STI and LTI funds. When a non-EAN
MindAgent finds an Atom valuable, it sends that Atom a
certain amount of Stimulus, which results in that Atom’s
STI and LTI values being increased (via equations to be
presented below, that transfer STI and LTI funds from the
CogServer to the Atoms in question). Then, the ECAN
ImportanceUpdating MindAgent carries out multiple
operations, including some that transfer STI and LTI funds
from some Atoms back to the CogServer.

Definition and Analysis of Variant 1
 We now define a specific set of equations in accordance
with the ECAN conceptual framework described above.
We define

€

HSTI = s1,,sn[] to be the vector of STI

values, and

€

C =

c11,,c1n
  

cn1,,cnn

















 to be the connection matrix of

Hebbian probability values, where it is assumed that the
existence of a HebbianLink or InverseHebbianLink
between A and B are mutually exclusive possibilities. We

also define

€

CLTI =

g11,,g1n
  

gn1,,gnn

















 to be the matrix of LTI

values for each of the corresponding links.
 We assume an updating scheme in which, periodically, a
number of Atoms are allocated Stimulus amounts, which

74

causes the corresponding STI values to change according
to the equations

€

∀i : si = si − rent +wages ,

where rent and wages are given by

€

rent =
Rent ⋅max 0,

log 20si
recentMaxSTI










2







 







 

, if si > 0

0, if si ≤ 0













and

€

wages =

Wage Stimulus

pi
i=1

n

∑
, if pi =1

Wage Stimulus

n − pi
i=1

n

∑
, if pi = 0















,

where

€

P = p1,, pn[] , with

€

pi ∈ 0,1{ } is the cue
pattern for the pattern that is to be retieved.
All quantities enclosed in angled brackets are system
parameters, and LTI updating is accomplished using a
completely analogous set of equations.
 The changing STI values then cause updating of the
connection matrix, according to the “conjunction”
equations. First define

€

normi =

si
recentMaxSTI

, if si ≥ 0

si
recentMinSTI

, if si < 0









.

Next define

€

conj = Conjunction si,s j() = normi × normj

and

€

′ c ij = ConjDecay conj+ 1− conj()cij .

Finally update the matrix elements by setting

€

cij =
c ji = ′ c ij , if ′ c ij ≥ 0
′ c ij , if ′ c ij < 0





.

We are currently also experimenting with updating the
connection matrix in accordance with the equations
suggested by Storkey (1997, 1998, 1999.)

 A key property of these equations is that both wages
paid to, and rent paid by, each node are positively
correlated to their STI values. That is, the more important
nodes are paid more for their services, but they also pay
more in rent.
 A fixed percentage of the links with the lowest LTI
values is then forgotten (which corresponds equationally to
setting the LTI to 0).
 Separately from the above, the process of Hebbian
probability updating is carried out via a diffusion process
in which some nodes “trade” STI utilizing a diffusion
matrix D, a version of the connection matrix C normalized
so that D is a left stochastic matrix. D acts on a similarly
scaled vector v, normalized so that v is equivalent to a
probability vector of STI values.
 The decision about which nodes diffuse in each
diffusion cycle is carried out via a decision function. We
currently are working with two types of decision functions:
a standard threshold function, by which nodes diffuse if
and only if the nodes are in the AF; and a stochastic
decision function in which nodes diffuse with probability

€

tanh shape si −FocusBoundary()() +1
2

, where shape and

FocusBoundary are parameters.
 The details of the diffusion process are as follows. First,
construct the diffusion matrix from the entries in the
connection matrix as follows:

€

If cij ≥ 0, then dij = cij ,
else, set d ji = −cij .

Next, we normalize the columns of D to make D a left
stochastic matrix. In so doing, we ensure that each node
spreads no more that a

€

MaxSpread proportion of its STI,
by setting

€

if dij
i=1

n

∑ > MaxSpread :

€

dij =

dij ×
MaxSpread

dij
i=1

n

∑
, for i ≠ j

d jj =1− MaxSpread













else:

€

d jj =1− dij
i=1
i≠ j

n

∑

Now we obtain a scaled STI vector v by setting

€

minSTI =
i∈ 1,2,,n{ }
min si and maxSTI =

i∈ 1,2,,n{ }
max si

€

vi =
si −minSTI

maxSTI−minSTI

75

The diffusion matrix is then used to update the node STIs

€

′ v = Dv

and the STI values are rescaled to the interval

€

minSTI,maxSTI[] .
 In both the rent and wage stage and in the diffusion
stage, the total STI and LTI funds of the system each
separately form a conserved quantity: in the case of
diffusion, the vector v is simply the total STI times a
probability vector. To maintain overall system funds within
homeostatic bounds, a mid-cycle tax and rent-adjustment
can be triggered if necessary; the equations currently used
for this are

•

€

Rent =
recent stimulus awarded before update× Wage

recent size of AF
;

•

€

tax = x
n

, where x is the distance from the current

AtomSpace bounds to the center of the
homeostatic range for AtomSpace funds;

•

€

∀i : si = si − tax

Investigation of Convergence Properties
Now we investigate some of the properties that the above
ECAN equations display when we use an ECAN defined
by them as an associative memory network in the manner
of a Hopfield network.
 We consider a situation where the ECAN is supplied
with memories via a “training” phase in which one
imprints it with a series of binary patterns of the form

€

P = p1,, pn[] , with

€

pi ∈ 0,1{ } . Noisy versions of
these patterns are then used as cue patterns during the
retrieval process.
 We obviously desire that the ECAN retrieve the stored
pattern corresponding to a given cue pattern. In order to
achieve this goal, the ECAN must converge to the correct
fixed point.
 Theorem: For a given value of e in the STI rent
calculation, there is a subset of hyperbolic decision
functions for which the ECAN dynamics converge to an
attracting fixed point.
 Proof: Rent is zero whenever

€

si ≤
recentMaxSTI

20
, so we

consider this case first. The updating process for the rent
and wage stage can then be written as

€

f s() = s+ constant . The
next stage is governed by the hyperbolic decision function

€

g s() =
tanh shape s - FocusBoundary()() +1

2
.

The entire updating sequence is obtained by the
composition

€

g  f() s() , whose derivative is then

€

g  f()′ =
sech2 f s()() ⋅ shape

2
⋅ 1() ,

which has magnitude less than 1 whenever -2 < shape < 2.
We next consider the case

€

si >
recentMaxSTI

20
. The function f

now takes the form

€

f s() = s−
log 20s /recentMaxSTI()

2
+ constant ,

and we have

€

g  f()′ =
sech2 f s()() ⋅ shape

2
⋅ 1− 1

s








 .

which has magnitude less than 1 whenever

€

shape <
2 ⋅ recentMaxSTI
recentMaxSTI - 20

. Choosing the shape parameter to

satisfy

€

0 < shape < min 2, 2 ⋅ recentMaxSTI
recentMaxSTI - 20









 then

guarantees that

€

g  f()′ <1. Finally,

€

g  f maps the closed

interval [recentMinSti, recentMaxSTI] into itself, so
applying the Contraction Mapping Theorem completes the
proof.

Definition and Analysis of Variant 2
The ECAN variant described above has performed
completely acceptably in our experiments so far; however
we have also experimented with an alternate variant, with
different convergence properties. In Variant 2, the
dynamics of the ECAN are specifically designed so that a
certain conceptually intuitive function serves as a
Liapunov function of the dynamics.
 At a given time t, for a given Atom indexed i, we define
two quantities: OUTi(t) = the total amount that Atom i pays
in rent and tax and diffusion during the time-t iteration of
ECAN ; INi(t) = the total amount that Atom i receives in
diffusion, stimulus and welfare during the time-t iteration
of ECAN. Note that welfare is a new concept to be
introduced below. We then define DIFFi(t) = |INi(t) -
OUTi(t)| ; and define AVDIFF(t) as the average of DIFFi(t)
over all i in the ECAN.
 The design goal of Variant 2 of the ECAN equations is
to ensure that, if the parameters are tweaked appropriately,
AVDIFF can serve as a (deterministic or stochastic,
depending on the details) Liapunov function for ECAN
dynamics. This implies that with appropriate parameters
the ECAN dynamics will converge toward a state where
AVDIFF=0, meaning that no Atom is making any profit or
incurring any loss. It must be noted that this kind of
convergence is not always desirable, and sometimes one
might want the parameters set otherwise. But if one wants
the STI components of an ECAN to converge to some

76

specific values, as for instance in a classic associative
memory application, Variant 2 can guarantee this easily.
 In Variant 2, each ECAN cycle begins with rent
collection and welfare distribution, which occurs via
collecting rent via the Variant 1 equation, and then
performing the following two steps. Step A: calculate X,
defined as the positive part of the total amount by which
AVDIFF has been increased via the overall rent collection
process. Step B: redistribute X to needy Atoms as follows:
For each Atom z, calculate the positive part of (OUT - IN),
defined as deficit(z). Distribute (X + e) wealth among all
Atoms z, giving each Atom a percentage of X that is
proportional to deficit(z), but never so much as to cause
OUT < IN for any Atom (the welfare being given counts
toward IN). Here e>0 ensures AVDIFF decrease; e=0 may
be appropriate if convergence is not required in a certain
situation.
 Step B is the welfare step, which guarantees that rent
collection will decrease AVDIFF. Step A calculates the
amount by which the rich have been made poorer, and uses
this to make the poor richer. In the case that the sum of
deficit(z) over all nodes z is less than X, a mid-cycle rent
adjustment may be triggered, calculated so that step B will
decrease AVDIFF. (I.e. we cut rent on the rich, if the poor
don't need their money to stay out of deficit.)
 Similarly, in each Variant 2 ECAN cycle, there is a
wage-paying process, which involves the wage-paying
equation from Variant 1 followed by two steps. Step A:
calculate Y, defined as the positive part of the total amount
by which AVDIFF has been increased via the overall wage
payment process. Step B: exert taxation based on the
surplus Y as follows: For each Atom z, calculate the
positive part of (IN - OUT), defined as surplus(z). Collect
(Y + e1) wealth from all Atom z, collecting from each node
a percentage of Y that is proportional to surplus(z), but
never so much as to cause IN < OUT for any node (the
new STI being collected counts toward OUT).
 In case the total of surplus(z) over all nodes z is less than
Y, one may trigger a mid-cycle wage adjustment,
calculated so that step B will decrease AVDIFF. I.e. we
cut wages since there is not enough surplus to support it.
 Finally, in the Variant 2 ECAN cycle, diffusion is done a
little differently, via iterating the following process: If
AVDIFF has increased during the diffusion round so far,
then choose a random node whose diffusion would
decrease AVDIFF, and let it diffuse; if AVDIFF has
decreased during the diffusion round so far, then choose a
random node whose diffusion would increase AVDIFF,
and let it diffuse. In carrying out these steps, we avoid
letting the same node diffuse twice in the same round.
This algorithm does not let all Atoms diffuse in each cycle,
but it stochastically lets a lot of diffusion happen in a way
that maintains AVDIFF constant. The iteration may be
modified to bias toward an average decrease in AVDIFF.
 The random element in the diffusion step, together with
the logic of the rent/welfare and wage/tax steps, combines
to yield the result that for Variant 2 of ECAN dynamics,
AVDIFF is a stochastic Lyaponov function. The details of

the proof of this will be given elsewhere due to space
considerations but the outline of the argument should be
clear from the construction of Variant 2. And note that by
setting the e and e1 parameter to 0, the convergence
requirement can be eliminated, allowing the network to
evolve more spontaneously as may be appropriate in some
contexts; these parameters allow one to explicitly adjust
the convergence rate.
 One may also derive results pertaining to the
meaningfulness of the attractors, in various special cases.
For instance, if we have a memory consisting of a set M of
m nodes, and we imprint the memory on the ECAN by
stimulating m nodes during an interval of time, then we
want to be able to show that the condition where precisely
those m nodes are in the AF is a fixed-point attractor.
However, this is not difficult, because one must only show
that if these m nodes and none others are in the AF, this
condition will persist. Rigorous proof of this and related
theorems will appear in a follow-up paper.

Associative Memory
We have carried out experiments gauging the performance
of Variant 1 of ECAN as an associative memory, using the
implementation of ECAN within OpenCog, and using both
the conventional and Storkey Hebbian updating formulas.
Extensive discussion of these results (along with Variation
2 results) will be deferred to a later publication due to
space limitations, but we will make a few relevant
comments here.
 As with a Hopfield net memory, the memory capacity
(defined as the number of memories that can be retrieved
from the network with high accuracy) depends on the
sparsity of the network, with denser networks leading to
greater capacity. In the ECAN case the capacity also
depends on a variety of parameters of the ECAN equations,
and the precise unraveling of these dependencies is a
subject of current research. However, one interesting
dependency has already been uncovered in our preliminary
experimentation, which has to do with the size of the AF
versus the size of the memories being stored.
 Define the size of a memory (a pattern being imprinted)
as the number of nodes that are stimulated during
imprinting of that memory. In a classical Hopfield net
experiment, the mean size of a memory is usually around,
say, .2-.5 of the number of neurons. In typical OpenCog
associative memory situations, we believe the mean size of
a memory will be one or two orders of magnitude smaller
than that, so that each memory occupies only a relatively
small portion of the overall network.
 What we have found is that the memory capacity of an
ECAN is generally comparable to that of a Hopfield net
with the same number of nodes and links, if and only if the
ECAN parameters are tuned so that the memories being
imprinted can fit into the AF. That is, the AF threshold or
(in the hyperbolic case) shape parameter must be tuned so
that the size of the memories is not so large that the active
nodes in a memory cannot stably fit into the AF. This

77

tuning may be done adaptively by testing the impact of
different threshold/shape values on various memories of
the appropriate size; or potentially a theoretical
relationship between these quantities could be derived, but
this has not been done yet. This is a reasonably satisfying
result given the cognitive foundation of ECAN: in loose
terms what it means is that ECAN works best for
remembering things that fit into its focus of attention
during the imprinting process.

Interaction between ECANs and other

OpenCog Components
Our analysis above has focused on the associative-memory
properties of the networks, however, from the perspective
of their utility within OpenCog or other integrative AI
systems, this is just one among many critical aspects of
ECANs. In this final section we will discuss the broader
intended utilization of ECANs in OpenCog in more depth.
 First of all, associative-memory functionality is directly
important in OpenCogPrime because it is used to drive
concept creation. The OCP heuristic called “map
formation” creates new Nodes corresponding to prominent
attractors in the ECAN, a step that (according to our
preliminary results) not only increases the memory
capacity of the network beyond what can be achieved with
a pure ECAN but also enables attractors to be explicitly
manipulated by PLN inference.
 Equally important to associative memory is the
capability of ECANs to facilitate effective allocation of the
attention of other cognitive processes to appropriate
knowledge items (Atoms). For example, one key role of
ECANs in OCP is to guide the forward and backward
chaining processes of PLN (Probabilistic Logic Network)
inference. At each step, the PLN inference chainer is faced
with a great number of inference steps from which to
choose; and a choice is made using a statistical “bandit
problem” mechanism that selects each possible inference
step with a probability proportional to its expected
“desirability.” In this context, there is considerable appeal
in the heuristic of weighting inference steps using
probabilities proportional to the STI values of the Atoms
they contain. One thus arrives at a combined PLN/EAN
dynamic as follows:

1. An inference step is carried out, involving a
choice among multiple possible inference steps,
which is made using STI-based weightings (and
made among Atoms that LTI weightings have
deemed valuable enough to remain in RAM)

2. The Atoms involved in the inference step are
rewarded with STI and LTI proportionally to the
utility of the inference step (how much it
increases the confidence of Atoms in the system’s
memory)

3. The ECAN operates, and multiple Atom’s
importance values are updated

4. Return to Step 1 if the inference isn’t finished

An analogous interplay may occur between ECANs and
the MOSES procedure learning algorithm that also plays a
key role in OCP.
 It seems intuitively clear that the same attractor-
convergence properties highlighted in the present analysis
of associative-memory behavior, will also be highly
valuable for the application of ECANs to attention
allocation. If a collection of Atoms is often collectively
useful for some cognitive process (such as PLN), then the
associative-memory-type behavior of ECANs means that
once a handful of the Atoms in the collection are found
useful in a certain inference process, the other Atoms in the
collection will get their STI significantly boosted, and will
be likely to get chosen in subsequent portions of that same
inference process. This is exactly the sort of dynamics one
would like to see occur. Systematic experimentation with
these interactions between ECAN and other OpenCog
processes is one of our research priorities going forwards.

References
Amit, Daniel (1992). Modeling Brain Function. Cambridge University Press.

Goertzel, Ben (2006). The Hidden Pattern. Brown Walker.

Goertzel, Ben (2007). Virtual Easter Egg Hunting. In Advances in Artificial

General Intelligence, IOS Press.

Goertzel, Ben (2008). OpenCogPrime: Design for a Thinking Machine, online at

http://www.opencog.org/wiki/OpenCogPrime:WikiBook

Goertzel, Ben, Matthew Ikle’, Izabela Goertzel and Ari Heljakka. Probabilistic

Logic Networks. Springer.

Hutter, Marcus (2004). Universal AI. Springer.

Looks, Moshe (2006). Competent Program Evolution. PhD thesis in CS

department, Washington University at St. Louis.
Storkey A.J. (1997) Increasing the capacity of the Hopfield network without

sacrificing functionality, ICANN97 p451-456.

Storkey, Amos (1998). Palimpsest Memories:􏰔 A New High􏰈Capacity Forgetful

Learning Rule for Hopfield Networks.

Storkey A.J. and R. Valabregue (1999) The basins of attraction of a new Hopfield

learning rule, Neural Networks 12 869-876.

78

A formal framework for the symbol grounding problem
Benjamin Johnston and Mary-Anne Williams

University of Technology, Sydney
Broadway, Ultimo 2007, Australia

johnston@it.uts.edu.au

Abstract
A great deal of contention can be found within the published
literature on grounding and the symbol grounding problem,
much of it motivated by appeals to intuition and unfalsifiable
claims. We seek to define a formal framework of representa-
tion grounding that is independent of any particular opinion,
but that promotes classification and comparison. To this end,
we identify a set of fundamental concepts and then formalize
a hierarchy of six representational system classes that corre-
spond to different perspectives on the representational require-
ments for intelligence, describing a spectrum of systems built
on representations that range from symbolic through iconic to
distributed and unconstrained. This framework offers utility
not only in enriching our understanding of symbol grounding
and the literature, but also in exposing crucial assumptions to
be explored by the research community.

Introduction
The symbol grounding problem [1] represents a long standing
(and often misunderstood) point of contention within the Ar-
tificial Intelligence community (e.g., [2,3,4]) and continues to
concern researchers exploring Artificial General Intelligence1
(AGI). The problem, as it is classically conceived, concerns the
nature of the abstract symbols used in computer systems, how
they may be seen as having a real-world meaning, and how that
meaning can be made intrinsic to a system.

Consider the problem of a knowledge base designed to reason
about the possible security threats posed by terrorist organiza-
tions. The system may have an internal symbol nuclear_weapon
that we as humans understand as representing the real-world
concept of nuclear weapons. However, to a purely symbolic
computer system, the symbol nuclear_weapon is nothing more
than an arbitrary token that has no more intrinsic meaning than
any other symbol in a computer, say waffle_blah. The symbol
grounding problem concerns the question of how the meaning
of symbols can be embedded into a system, and grounding is
said to be the process of ensuring that these abstract symbols
have meaning.

While there is the philosophical question of whether a ma-
chine really can have intrinsically ground symbols (indeed, this
is the motivation for Searle’s Chinese Room argument), the
symbol grounding problem poses the more practical question
of whether a purely symbolic system could solve problems that
apparently demand deep intelligence and understanding. Is it
possible, for example, for a purely symbolic system to under-
stand the nuanced relationship between a nuclear weapon and
a dirty bomb, or to explain that a zebra is like a horse with
stripes, or even to determine what other letter of the alphabet
an upside-down ‘M’ resembles; without requiring the specific
answers to these questions to be explicitly given to the system
in advance?

Our objective is not to argue a specific position on the sym-
bol grounding problem, but rather, to provide the first formal

1	 For example, consider recent debate on an AGI email list:
www.mail-archive.com/agi@v2.listbox.com/msg07857.html

framework for the symbol grounding problem. Our approach
offers standardized terminology for discussing assumptions
and ideas and also raises important new research questions. In
particular, we aim to allow an AI researcher to express their as-
sumptions regarding the symbol grounding problem as elegant-
ly as a computer scientist might use computational complexity
classes to motivate the need for heuristics in preference to brute
force search. Furthermore, we hope that our framework will di-
rect future arguments about grounding away from appeals to
intuition and toward a greater emphasis on formalizable and
falsifiable claims.

In this paper, we will first define symbol systems and repre-
sentations, and review the problem of grounding such symbols
and representations. We then introduce our formal notation and
explore ‘semantic interpretability’. These serve as preliminaries
for the primary contribution of this paper: the definition of our
representational system classes and their correspondences with
the published literature. We then conclude with some observa-
tions about the representational classes and their relevance, in-
cluding a brief overview of future research directions.

Symbol Systems and Symbol Grounding
Harnad [1] first proposed the symbol grounding problem as a
question concerning semantics: “How can the semantic inter-
pretation of a formal symbol system be made intrinsic to the
system, rather than just parasitic on the meanings in our heads?”
While Harnad’s original formulation of the problem is largely
philosophical, his motivation is clearly of a pragmatic nature: he
implicitly assumes that the property of ‘intrinsic interpretability’
is crucial for intelligence. We therefore prefer to reformulate the
symbol grounding problem in more straightforward terms: “Is
it possible to use formal symbolic reasoning to create a system
that is intelligent?” Of course, this reformulation presupposes a
definition of what it means to be or to appear intelligent—but
the reformulation is an improvement in the sense that it brings
us closer to something objectively measurable.

Harnad saw the mechanisms of an isolated formal symbol
system as analogous to attempting to learn Chinese as a sec-
ond language from a Chinese-Chinese dictionary. Even though
characters and words are defined in terms of other characters,
reading the dictionary would amount to nothing more than a
‘merry-go-round’ passing endlessly from one symbol string
(a term) to another (its definition); never coming to a ‘halt on
what anything meant’ [1]. He therefore argued that since sym-
bols only refer to other symbols in a symbol system, there is no
place where the symbols themselves are given meaning. The
consequence of this is that it is impossible for a formal symbol
system to distinguish between any two symbols except using
knowledge that has been explicitly provided in symbolic form.
This, in the view of Harnad, limits the comprehension and capa-
bilities of a symbolic system in the same way that a non-speaker
armed with a Chinese-Chinese dictionary may manage to utter
random syntactically correct sentences, but would exhibit ex-
tremely poor performance in understanding real conversation.

79

Of course, Harnad’s argument is not universally accepted by
computer scientists. One objective of this paper is to explore the
problem, so we will use our representational system classes to
outline and classify the diversity of opinions later in this paper.

The symbol grounding problem concerns symbolic systems,
but what is a formal symbol system? Harnad [1] provides eight
criteria:

A symbol system is: (1) a set of arbitrary “physical to-
kens” (scratches on paper, holes on a tape, events in a digi-
tal computer, etc.) that are (2) manipulated on the basis of
“explicit rules” that are (3) likewise physical tokens and
strings of tokens. The rule-governed symbol-token ma-
nipulation is based (4) purely on the shape of the symbol
tokens (not their ‘meaning’), i.e., it is purely syntactic,
and consists of (5) ‘rulefully combining’ and recombin-
ing symbol tokens. There are (6) primitive atomic symbol
tokens and (7) composite symbol-token strings. The entire
system and all its parts—the atomic tokens, the composite
tokens, the syntactic manipulations both actual and possi-
ble and the rules—are all (8) ‘semantically interpretable’:
the syntax can be systematically assigned a meaning (e.g.,
as standing for objects, as describing states of affairs).

It is interesting to note that criteria 1–7 can be used to describe
any universal or Turing-complete language. However, Harnad
is not claiming that meaning or intelligence is incomputable—
he proposes his own computational framework for solving the
symbol grounding problem. It is the 8th criterion of a formal
symbol system that defines the essential point of difference be-
tween his conception of symbolic systems and representations
used in arbitrary computation. The requirement of interpretabil-
ity in criterion 8 is intended to capture the essence of famil-
iar symbolic systems such as logical theorem proving and rule
based systems, and to exclude highly distributed, ‘holographic’
or connectionist representations that do not behave in a symbol-
ic manner (even though they operate on a digital computer). For
example, while connectionist approaches to building intelligent
systems can be framed so as to meet criteria 1–7, connectionist
methods do not typically allow for a systematic assignment of
real-world interpretation to hidden layer neurons (i.e., hidden
neurons learn with a bias towards performance rather than any
particular ‘meaning’), they therefore do not satisfy criterion 8,
and are therefore not (directly) subject to Harnad’s criticism.

Harnad’s 8th criteria for a symbol system is essential to un-
derstanding the symbol grounding problem. We will consider
how changes to this criterion (whether in its phrasing or in com-
prehension) influence an understanding of the symbol ground-
ing problem. Specifically, we further generalize the symbol
grounding problem as follows: “What kinds of reasoning can
be performed by systems constrained by different representa-
tional criteria?” In this formulation, we can regard different re-
search groups as working from both different assumptions of
what constitutes intelligence (i.e., the kind of reasoning) and
different representational constraints.

Notational Preliminaries
Problems We begin by assuming the existence of a set, P, that
contains all problems that may be posed to an intelligent sys-
tem. Each problem is a declarative sentence (in some formal
language) about the world and an agent is said to be able to
solve a problem if its determination of the truth of that state-
ment matches the ‘real world’ truth. A problem might be a query

posed by a person to a theorem prover or a question-answering
system, or it might represent an encoding of the inputs and
outputs of a robotic system (i.e., “given certain sensory inputs
x, the appropriate behavior at time t, is to perform action a”).
While a real life agent may encounter complex situations and
exhibit nuanced performance that is neither success nor failure,
we assume that these situations can be analyzed as a large set of
binary sub-problems, and the agent’s performance is a measure
of how many of the sub-problems can be successfully solved. If
an agent, f, believes statement p, we denote2 this as f  p. If an
agent, f, can correctly solve a problem, p : P , then we denote
this as f ~ p.
Problem Sets We define a problem-set as a set of problems:
an object of type (P). An agent, f, can solve a problem-set,
ps : (P), if it can solve all problems within that set. This is
denoted f ~ ps, and we have f ~ ps ⇔ ∀ p : ps • f ~ p.
Intelligence We use problem-sets to define intelligence. In this
paper, we do not choose any particular definition of intelligence:
we assume a range of definitions so that we can not only denote
the largely subjective and unformalizable ‘I’ll know it when I
see it’ attitude of many AI researchers towards intelligence, but
also offer scope for formal definitions of intelligence. As such,
a given definition, I, of intelligence is a set of problem-sets; i.e.,
I : ((P)). An agent, f, is considered intelligent with respect
to a definition of intelligence I, if it can solve all problems in
some problem-set. This is denoted f ~ I, and we therefore have
f ~ I ⇔ ∃ ps : I  ∀ p : ps • f ~ p.

This approach to representing definitions of intelligence, ad-
mits many definitions beyond that of simple IQ tests or fixed
checklists of skills. Consider that how one may regard Albert
Einstein and Elvis Presley as both possessing exceptional intel-
ligence, even though their genius is expressed in different ways.
Their distinct skills correspond to different problem-sets within
our common interpretation of ‘genius’.

We allow many definitions of intelligence; for example:
•	 A set IHarnad : ((P)) for those systems that Harnad would

regard as exhibiting intelligence,
•	 A set IIQ=100 : ((P)) to denote sets of problems that a

person of average Human intelligence would be able to
solve,

•	 A set IMarket : ((P)) of buying decisions that a trading
agent would need to solve successfully in order to exceed
break-even on a market over a particular time interval,

•	 Given a formal definition of intelligence with a precise
threshold, we may have a set IFormal : ((P)) denoting
those problem-sets that a formally intelligent system
could solve.

Formal Systems We define F as the set of all finite formal sys-
tems that satisfy criteria 1–7 of Harnad and are finitely realiz-
able3. We define T as the universal set of symbols, and assume

2	 Throughout this paper, we use the Z notation per international
standard ISO/IEC 13568:2002. We treat typing as equivalent to
membership in a set and denote this with a colon. The power-set
operator is denoted as , the set of natural numbers as , the set
of partial functions from A to B as A  B, and the domain and
range of a function, f, as dom(f) and ran(f) respectively.

3	 By finitely realizable, we mean that the systems’s representa-
tions and computational processes that can be described in finite
space on a Turing machine by a finite agent within the universe,
and that the corresponding computations of the system in solv-

80

that each formal system comprises a set of fixed symbolic tran-
sition rules and a dynamic execution state. We assume (without
loss of generality) that an execution trace of a formal system, f,
on a problem, p, is comprised of a two-dimensional grid of sym-
bols. We denote this as t(f, p) :  ×   T. The two axes of the
grid correspond to the state of the system (analogous to a CPU
clock) and the position or address of each symbol. The value
of each grid-cell is the single symbol stored in the ‘address’ in
that state (be it a byte value stored in RAM, a mark on a tape, a
neural network weight, or an ‘atom’ in a logical programming
language).
Representational Units In most non-trivial systems, the indi-
vidual symbols do not convey meaning alone; the intelligent
behavior stems from the manipulation of entire subsequences
or subsets of the system’s symbolic state. Furthermore, such in-
telligent behavior stems from the manipulation of only certain
possible subsets: those subsets of the system state that corre-
spond to legal guards and arguments of the system’s transition
rules. For example, if the numbers 1, 25 and 334 are denoted as
the fixed-length sequence of digits <001025334> at a given step
of the system trace, then a system’s transition rules might only
accept sequences aligned to three-digit boundaries (i.e., 001,
025 and 334, but neither 00102 nor 253). For a given formal
symbolic system f : F, and problem p : P, we define the set of all
representational units, a(f, p) : ( ×   T) as the set of all
subsets of the system trace, t(f, p), that can match part or all of
a guard or parameter of a transition rule in f.

Semantic Interpretability
‘Semantic interpretability,’ the cornerstone of Harnard’s 8th cri-
teria for a symbol system, presents a challenge to the formaliza-
tion of the symbol grounding problem. Indeed, we believe that
the philosophical difficulties of the symbol grounding problem
lie in the elusiveness of ‘semantic interpretability’.

The model-theoretic approach to defining semantic inter-
pretability would be to assume some valuation function, m,
that maps from symbols to ‘real world’ counterparts so that the
problems that a formal system believes to be true correspond
to truths that follow from their real world valuations. That is, if
we assume the existence of a universal set, U , containing the
complete universe of actual, possible, conjectured and imagi-
nary objects, actions, categories, relations and concepts in the
‘real world,’ then given a formal system, f, we may attempt to
formalize semantic interpretability in a manner such as the fol-
lowing4:

∃ m : P  U  ∀ p : P • f  p ⇒ m(p)  p
However, such a definition is clearly not what was intended by
Harnad; it merely states that the agent has true beliefs for every
problem it can solve. Model theoretic methods do not directly
apply because problems of intelligence are already assumed to
be statements about the ‘real world’. Semantic interpretability
of a formal system demands inspection of not only its internal
symbols, but also the use of the symbols. For example, a system
that uses both constructive proof and proof-by-contradiction
may use the same symbol to denote a concept and its negation:
it the use of the symbol in reasoning that reveals the true mean-
ing of the symbol.

ing a problem occur in finite time.
4	 We introduce the semantic entailment operator, u  p, to denote

that proposition, p, is (or would be) true in every universe con-
sistent with the set u.

Unfortunately, it is impossible to analyze use without defin-
ing a particular computational model (and our goal is to retain
a level of abstraction from such particulars). In future works,
we intend to explore such philosophical challenges of defining
semantic interpretability, especially given symbol use. We pro-
pose here a working definition.

Let SI denote the type of semantic interpretations of rep-
resentational units SI = ( ×   T)  U. Then, given
a (model-theoretic) semantic interpretation m : SI, that maps
from a set of representational units, r : ( ×   T), to ele-
ments of U ; we say that a formal system, f, in solving a prob-
lem, p, is semantically interpretable if syntactic entailment (i.e.,
computation) corresponds to semantic entailment from the
model implied by the conjunction of the semantic mapping of
the system’s entire execution trace. i.e.;

si(m, f, p)
⇔
(f  p ⇔ t(f, p) ⊆ (dom(m)) ∧
	 { u  e : m  u ⊆ t(f, p) • e}  p)

While this working definition ignores the internal use of sym-
bols and may be overly stringent for any particular system, we
do not believe it limits the generality of our work. Representa-
tional units with different purposes may be expanded to include
the neighboring section markers, delimiters, type definitions,
annotations or positional information that indicates their pur-
pose: thereby embedding the use of a representational unit in
the formal system into its surface structure.

The nature and existence of ‘real world’ concepts, and conse-
quently, the membership of the set U remains an open question
that bears upon the symbol grounding problem and the work we
describe here. We have assumed that the ‘real world’ universe
includes concepts such as historical, hypothetical and imaginary
entities, as well as attributes, verbs and abstract nouns like up,
walk, happy and beauty. However, one could trivially ‘solve’
the symbol grounding problem on a technicality by excessively
generalizing U , so that the ‘real world’ concept of any symbol
can be taken as “those situations, entities and environments that
stimulate the generation of the symbol”. Such contrived entities
would seem absurd to a human-observer and are also highly
context dependent, so therefore do not correspond to our intu-
itions of meaningful ‘real world’ entities that belong in U . The
relationship between the nature of U and symbol grounding is
an interesting problem, that we plan to explore in future work.

Representational System Classes
We can now use our notions of and notation for semantic in-
terpretability to formalize the differences between attitudes to-
ward the symbol grounding problem. Our goal is to analyze the
space of finite formal systems, F, and categorize these into a
hierarchy based on the semantic interpretability of their repre-
sentations. That is, we assume Harnad’s criteria 1–7, and build a
hierarchy from specializations and generalizations of Harnad’s
8th criteria.

For example, SIR is one such class intended to denote the
set of systems with fully Semantically Interpretable Represen-
tations. We can use this class to restate Harnad’s thesis that a
symbolic system cannot be intelligent as follows:

∀ f : SIR • ¬ (f ~ IHarnad)
Or, if we extend the ‘solves’ operator to representational classes
so that c ~ i ⇔ ∃ f : c • f ~ i, then we have Harnad’s thesis as:

¬ SIR ~ IHarnad

81

By exploring variations of Harnad’s definition of symbolic
systems, we have identified a range of representational system
classes beyond SIR . In particular, we have identified six repre-
sentational system classes that appear to capture the philosophi-
cal position of many AI researchers, and that form (by their
definition) a hierarchy of representational expressiveness. Each
class represents a set of formal systems and is therefore of the
type (F).

The following subsections describe the classes ordered from
most restrictive to most general. Each class has been defined
so that it subsumes (i.e., is a super-set of) those classes that
have been presented before it. The subsumption property can be
proven syntactically from the formal definitions in this work,
and holds irrespective of the foundational assumptions of this
work.

3.1	 Context-Free Semantically Interpretable Repre-
sentation
CFSIR : Every symbol must have a unique semantic interpre-
tation.
CFSIR = {f : F  ∃ m : SI  ∀ p : P • si(m, f, p) ∧
	 ∀ r : dom(m) • #r = 1}
Systems in CFSIR are those in which every single symbol has
some meaning (given by valuation function, m): symbols do not
acquire meaning from their context in some larger representa-
tional unit such as a sentence or structure.

A system that, for example, uses the symbol Mouse to repre-
sent the common house mouse, but also uses that same symbol
in the context of a Disney movie to state that Mickey Mouse
is a mouse could not be regarded as making use of symbols
with universal and unambiguous meanings (consider, for ex-
ample, posing the system the question of whether a mouse
can speak English). In a symbolic system with context-free
semantic interpretations, such distinctions would first need to
be translated into separate symbols: e.g., Natural_Mouse and
Cartoon_Mouse. Whether complete translations are possible
for all symbolic systems remains an open question, and is, in
fact, the question of whether SIR = CFSIR .

Systems in CFSIR include:
1.	 Semantic web systems based on RDF: every resource

is denoted by a globally unique URL that is intended to
capture some unique context-free interpretation. RDF
provides no facility to contextualize the truth of an RDF
triple without complex reification [5].

2.	 Traditional database systems: in typical database designs,
each record is intended to have a unique and context-free
interpretation.

3.	 Internal representations of industrial robotic systems: ev-
ery variable in the control system of an industrial robot
can be assigned a unique meaning (e.g., joint position,
current distance sensor reading, x-coordinate of a recog-
nized widget).

3.2	 Semantically Interpretable Representation
SIR : Every representational unit must have a semantic inter-
pretation.
SIR = {f : F  ∃ m : SI  ∀ p : P • si(m, f, p) ∧
	 dom(m) ⊆ a(f, p)}
The set SIR corresponds to those systems that match Harnad’s
original definition of formal symbolic systems. Every represen-

tational unit in the system must have a semantic interpretation,
and every symbol used by the system belongs to a representa-
tional unit.

Systems in SIR (but not CFSIR) include:
1.	 John McCarthy’s early proposal to incorporate context

into formal symbolic systems [6], and related efforts that
have arisen from this, such as PLC and MCS [7].

2.	 The CYC project’s symbolic engineering wherein sym-
bols have meaning, and that meaning is given within con-
text spaces [8].

3.3	 Iconic and Symbolic Representation
ISR : Representational units may have semantic interpretation.
Non-interpretable representational units must be composable
as sets that in aggregate have semantic interpretation and re-
semble their meaning.
ISR = {f : F  ∃ m : SI  ∀ p : P • si(m, f, p) ∧
	 iconic(dom(m)  a(f, p))}
In ISR , individual representational units need not have a se-
mantic interpretation, but may be part of an aggregate that is
semantically interpretable as a whole. Such aggregations in
ISR must have a structure that somehow resembles the mean-
ing of their referent (e.g., by projection or analogy)—they must
be iconic.

For example, the individual pixels of a high-resolution
image could not typically be regarded as having a particular
meaning when considered individually, but in aggregate may
be understood as denoting the object that they depict. A sys-
tem with hybrid visual/symbolic representations could refer to
its symbolic knowledge to answer factual queries, but use high
resolution images to compute answers to queries about nuanced
physical traits or to compare the appearances of different peo-
ple. Iconic representations in some way resemble their mean-
ing: be they low-level resemblances such as images, 3D models
and perspective invariant features, or more abstract forms such
as graphs representing the social networks in an organization or
the functional connections of components.

Precisely what, then, does it mean for a symbol to resemble
its meaning? If a system resembles its meaning, then a small
representational change should correspond to a small seman-
tic change. That is, for a set of iconic representations, i, there
should exist a computable representational distance function,
rdist, and a semantic distance function (with some real world
meaning, and therefore a member of U), sdist, and error limit,
ε, such that:

iconic(i)
⇔
∀ i1, i2 : i • |rdist(i1,i2) - sdist(m(i1),m(i2))| ≤ ε

Systems in ISR include:
1.	 Harnad’s [1] proposed ‘solution’ to the symbol grounding

problem via the use of visual icons.
2.	 The Comirit project that combines ‘imaginative’ graph-

based iconic representation and reasoning with the deduc-
tive reasoning of a logical theorem prover [9].

3.	 Reasoning performed within Gärdenfors’ conceptual
spaces framework, especially as a mechanism for embed-
ding greater ‘semantics’ into symbolic systems such as
the Semantic Web [10]. The cases or prototypes of a case-
based reasoner may also be regarded as a similar form of
iconic representation.

4.	 Setchi, Lagos and Froud’s [11] proposed agenda for com-

82

putational imagination.

3.4	 Distributed Representation
DR : Representational units may have semantic interpretation.
Non-interpretable representational units must be composable
as sets that in aggregate have semantic interpretation.
DR = {f : F  ∃ m : SI  ∀ p : P • si(m, f, p)}
Every element of the set DR is a finite system that makes use
of two kinds of representations: those that can be systemati-
cally assigned meaning, and those that only have meaning in
aggregate (and may be of arbitrary form). That is, DR requires
semantic interpretability, but does not require that the units of
semantic interpretation correspond to the same representational
units that are manipulated by the rules of the formal system.

Consider, for example, a neural network that has been trained
to identify the gender of a human face. Some of the network’s
output nodes may be specifically trained to activate in the pres-
ence of masculine features: these output nodes, in addition to
the hidden layer neurons that feed into the output nodes, may in
aggregate be seen as meaning ‘facial masculinity’. Even though
it may be impossible to assign a coherent semantic interpreta-
tion to the representations and values of the hidden layer neu-
rons that the formal system manipulates, the aggregated net-
work can be seen as capturing specific real-world meaning.

Examples of systems that make representational assump-
tions or restrictions consistent with DR include:

1.	 Hybrid systems wherein neural networks have been
trained under supervised learning to recognize symbols
of a higher level symbolic reasoning processes. Indeed,
all forms of supervised machine learning where the inter-
nal structure of the induced representations are regarded
as a black box would be consistent with the restrictions of
DR .

2.	 Neural-symbolic systems that, for example, perform sym-
bolic reasoning within connectionist mechanisms (e.g.,
[12]).

3.5	 Unconstrained Representation
UR : Representational units may or may not have any particu-
lar semantic interpretation.
UR = F
Every element of the set UR corresponds to a problem-set that
may be solved by a finite formal system (i.e., a Turing-complete
machine). The set UR therefore corresponds to the capabilities
of computational systems, irrespective of whether their internal
representations can be assigned particular semantic interpreta-
tions.
Examples of systems that make representational assumptions or
restrictions consistent with UR include:

1.	 Neural-network-based systems, in which output or activity
is triggered entirely by arbitrary connectionist processes
(e.g., [13,14]). In such systems, input nodes correspond
to raw sensory data, output nodes are motor commands
corresponding to actions, and internal hidden nodes are
trained without regard to the development of meaningful
cognitive symbols (i.e., black-box intelligence): none of
these nodes can be seen as capturing meaningful semantic
interpretations.

2.	 Universal computable models of intelligence such as AIξtl
[15]. Such approaches emphasise computation or mod-
elling that maximizes a reward function without regard

for the semantic interpretability of the computational
processes (though there is an implicit assumption that the
most successful representations are likely to be those that
best capture the environment and therefore are likely to
acquire semantic interpretability in the limit).

3.	 Reactive systems, such as those concrete implementations
of Brooks [16]. Such systems do not attempt to explicitly
model the world (or may only partially model the world),
and so lack semantic interpretability.

3.6	 Non-Formal
NF : Representation units may or may not have any particular
semantic interpretation, and may be manipulated by rules (such
as interaction with the environment or hyper-computational
systems) that are beyond formal definition.
NF = F  F *

The class NF extends UR with a set of ‘enhanced’ formal
symbolic systems, F *—systems with distinguished symbols
that are connected to the environment5. While problems associ-
ated with action in the physical environment may already be
found in the set P, and these may already be solved by systems
of other representational system classes (such as UR), the set
NF includes those systems that use embodiment directly as
part of its deductive processes: systems where the environment
is ‘part’ of the reasoning, rather than merely the ‘object’ of a
solution. NF encompasses systems that, for example, need the
environment to generate truly random sequences, to perform
computations that aren’t finitely computable on a Turing ma-
chine but may be solved by physical systems, to exploit some
as-yet-unknown quantum effects, to build physical prototypes,
or more simply, to solve problems about objects and complex
systems that simply cannot be described or modelled in suffi-
cient detail on a realizable computer system.

Examples of systems and research that make representation-
al assumptions or restrictions consistent with NF include:

1.	 Embodied robotics in the true spirit of Brooks’ vision,
that treat ‘the world [as] its own best model’ and that
refute the possibility of a disembodied mind [16]. Such
work regards direct sensory experience and manipulation
of the physical environment throughout problem solving
as an essential part of the intelligent thought: that intel-
ligence has co-evolved with the environment and sensory
abilities; that it is not sufficient merely to have a reactive
system; but that higher order intelligence arises from the
complex interactions between reactivity and the environ-
ment. Note however, actual reactive robots/systems to
date would, in fact, be better classified in UR (as we
have done) because they do not yet operate at a level of
interaction beyond primitive reactivity.

2.	 Models of intelligence and consciousness that are not
Turing-computable or constrained by Gödel’s incom-
pleteness theorem. Examples of these may be found in
work such as that of Penrose [17] postulating significant
(but currently unspecified) quantum effects on intelligent
thought and consciousness.

5	 For example, we can allow a Turing machine to interact with
the environment by reserving a segment of its tape as ‘memory
mapped’ I/O. Symbols written to this segment of the tape will
manipulate actuators and sensory feedback is itself achieved by
a direct mapping back onto symbols of the I/O segment of the
tape.

83

Discussion
The representational system classes not only serve to clarify
many of the loose and ambiguous concepts that appear in de-
bate on symbol grounding, but offer many other benefits: a
language for rapidly communicating assumptions; a tool for
analyzing the symbol grounding problem and generating new
research assumptions; and a framework for better understand-
ing underlying assumptions and the inter-relationships between
assumptions. For example, Harnad’s claims may be succinctly
summarized as ¬ SIR ~ IHarnad ∧ ISR ~ IHarnad.

Simple proof techniques can show that the representational
classes form a hierarchy (i.e., CFSIR ⊆ SIR ⊆ ISR ⊆ DR ⊆
UR ⊆ NF), and it follows that the combined sets of problems
that each class may solve also forms a hierarchy (i.e., we have
a hierarchy of intelligence). However, it remains an interesting
question whether this hierarchy is strict: are there classes of rep-
resentational systems C1 and C2 such that C1 ⊆ C2 but there ex-
ists some definition of intelligence I where ¬ C1 ~ I, and C2 ~ I
(we denote this, C1 < C2). i.e., is C2 strictly more intelligent than
C1? Our intuitions are that this is indeed the case for our hierar-
chy, and we plan to show this in future work. Here, we briefly
outline our reasons for believing so:

•	 CFSIR < SIR , because even though the context-sen-
sitive symbols of SIR could be systematically mapped
into sets of context-free symbols in CFSIR (e.g., Mouse
→ Cartoon_Mouse), the potentially unbounded regress
of contexts may make it impossible to ensure that this
mapping remains finite when problem-sets are unbound-
ed (i.e., it can be done for any particular problem, but not
in general, in advance of knowledge of the problem).

•	 SIR < ISR , following the arguments of Harnad.
•	 ISR < DR , because we believe that there are pathologi-

cal concepts that emerge from complex chaotic systems
so that iconic representations of structure or appearance
hinder rather than enhance performance (i.e., systems in
which emergence is crucial to understanding the global
system behavior, but for which properties of emergence
cannot be predicted from local or structural analysis).

•	 DR < UR , because we believe that there are pathologi-
cal situations where an attempt to analyze the situation
into concepts diminishes the ability to learn appropriate
behaviors (compare this to the manner in which human
beings ‘discover’ false patterns in randomized data, hin-
dering their ability to make optimal decisions using that
data).

•	 UR < NF , because even though the universe may be
formally computable, it may not be possible for any agent
situated within the universe to describe the universe in
sufficient detail such that a Turing machine could com-
pute the solution to all ‘intelligent’ problems.

Finally, we are careful to emphasise again that we do not claim
to have solved the problem. Instead, our framework reduces
the symbol grounding to two long-standing philosophical chal-
lenges: the selection and definition of intelligence, I, and the
problem of the nature of ‘meaningful’ entities in the universe
(i.e., the set U, and consequently how to define si(m, f, p)).
While our framework does not yet offer precise guidance to-
wards solving these sub-problems, it provides straightforward
machinery by which the symbol grounding problem can be un-
derstood in such terms. Our contribution lies in formalizing the

connections between sub-problems, and thereby narrowing the
ambiguity in the problem and closing opportunities for circular
reasoning.

Conclusion
By defining a formal framework of representation ground-

ing, we help clarify the contention in important work on symbol
grounding as stemming from arguments about different kinds of
representational system classes. We have proposed six classes to
this end: CFSIR ⊆ SIR ⊆ ISR ⊆ DR ⊆ UR ⊆ NF . These
capture many perspectives on the symbol grounding problem:
the classes have significant power both for explanation and in-
vestigation. Not only can future research use these classes to
quickly express assumptions, but the abstractions assist in the
exploration of the problem, the classification and comparison
of existing work, and provide machinery for the development
of novel conjectures and research questions.

References
1.	 Harnad, S. 1990. ‘The symbol grounding problem’, Physica D,

42:335-346.
2.	 Coradeschi, S. and Saffiotti A. (eds) 2003. Robotics and Au-

tonomous Systems, 43(2-3).
3.	 Williams, M-A., Gärdenfors, P., Karol, A., McCarthy, J. and

Stanton, C. 2005. ‘A framework for evaluating the grounded-
ness of representations in systems: from brains in vats to mo-
bile robots’, IJCAI 2005 Workshop on Agents in Real Time and
Dynamic Environments.

4.	 Ziemke, T. 1997. ‘Rethinking grounding’, Proceedings of New
Trends in Cognitive Science, 1997, Austrian Society for Com-
puter Science.

5.	 Bouquet, P., Serafini, L. and Stoermer, H. 2005. ‘Introducing
context into RDF knowledge bases’, SWAP 2005.

6.	 McCarthy, J. 1993. ‘Notes on formalizing context’, IJCAI
1993.

7.	 Serafini, L. and Bouquet, P. 2004. ‘Comparing formal theories
of context in AI’, Artificial Intelligence, 155(1): 41-67.

8.	 Lenat, D. 1998. ‘The dimensions of context space’, Cycorp
Technical Report.

9.	 Johnston, B. and Williams, M-A. 2008. ‘Comirit: Common-
sense reasoning by integrating simulation and logic’, AGI
2008, 200-211.

10.	 Gärdenfors, P. 2004. ‘How to make the semantic web more se-
mantic’, In Varzi, A. and Lieu, L. (eds) Formal Ontology in
Information Systems, 17-34, IOS Press.

11.	 Setchi, R., Lagos, N. and Froud, D. 2007. ‘Computational
imagination: research agenda’, Australian AI 2007, 387-393.

12.	 Kilkerry Neto, A., Zaverucha, G. and Carvalho, L. 1999. ‘An
implementation of a theorem prover in symmetric neural net-
works’, IJCNN 1999, 6: 4139-4144.

13.	 Markram, H. 2006. ‘The Blue Brain project’, Nature Reviews:
Neuroscience, 7: 153-160.

14.	 de Garis, H., Tang, J-Y., Huang, Z-Y., Bai, L., Chen, C., Chen,
S., Guo, J-F., Tan, X-J., Tian, H., Tian, X-H., Wu, X-J., Xiong,
Y., Yu, X-Q. and Huang, D. 2008. ‘The China-Brain project:
building China’s artificial brain using an evolved neural net
module approach’, AGI 2008, 107-121.

15.	 Hutter, M. 2000. ‘Towards a universal theory of artificial intel-
ligence based on algorithmic probability and sequential deci-
sions’, EMCL 2001, 226-238.

16.	 Brooks, R. 1991 ‘Intelligence without reason’, IJCAI 1991,
569-595.

17.	 Penrose, R. 1999. The Emperor’s New Mind, Oxford Univer-
sity Press.

84

A Cognitive Map for an Artificial Agent

Unmesh Kurup
Rensselaer Polytechnic Institute

Carnegie 013, 110 8th Street

Troy, NY 12180

kurupu@rpi.edu

B. Chandrasekaran
The Ohio State University

591 Dreese, 2015 Neil Ave

Columbus, OH 43210

chandra@cse.ohio-state.edu

Abstract

We show how a general-purpose cognitive architecture
augmented with a general diagrammatic component can
represent and reason about Large-scale Space. The
diagrammatic component allows an agent built in this
architecture to represent information both symbolically and
diagrammatically as appropriate. Using examples we show
(a) how the agent’s bimodal representation captures its
knowledge about large-scale space as well as how it learns
this information while problem solving and (b) the agent’s
flexibility when it comes to using learned information and
incorporating new information in solving problems
involving large-scale space.

Introduction

An agent based on a general purpose cognitive architecture
has the ability to work on a range of problems. Agents
based on task-specific structures are usually restricted to
particular task and problem domains. The advantages of
task-specific knowledge such as faster solution times can
however be realized in the general architecture case
through the use of general-purpose learning mechanisms
that account for the formation of task-specific knowledge
from the general underlying representations. Newell has
made a comprehensive case for the development of unified
general architectures for solving the problem of general
human cognition (Newell 1990). Soar (Laird, Newell et al.
1987) and ACT-R (Anderson and Lebiere 1998) have been
two of the architectures that have tried to rise to the
challenge of generality. For our purposes it is not their
differences that are important but what they share. Their
central representational framework is symbolic, or more
precisely, predicate-symbolic. In the predicate-symbolic
view, the agent’s knowledge, goals etc are represented in
terms of symbol structures that describe the world of
interest in terms of properties of and relations between
individuals in the world.
 Cognitive models built in Soar and ACT-R have been
very effective in showing how a general purpose cognitive

architecture can produce task-optimal behavior, and how
learning provides efficiencies over time and across tasks.
However, work using these architectures has tended to
focus more on certain kinds of tasks over others. Among
the tasks that have received less attention are those that
deal with the representation of and reasoning about large-
scale space. As it happens, for any given spatial reasoning
task, a model builder can represent the task-specific spatial
information symbolically, treating the extraction of such
symbolic information to perceptual processes outside the
architecture. On the other hand, it has been proposed that
there are certain forms of perceptual representation that
belong inside the cognitive architecture itself
(Chandrasekaran 2002). In this paper, we demonstrate how
an agent based on a general cognitive architecture, albeit
one with an additional diagrammatic representation, can
represent and reason about space. We further show the
agent can learn during problem solving and show transfer
of learning within and between tasks.

Representing and Reasoning about Large-

Scale Space

In 1948, (Tolman 1948) proposed that animals have an
internal representation of large-scale space which he called
the cognitive map. In 1960, (Lynch 1960) produced his
seminal study of the environment in which he identified
landmarks, routes, nodes, districts and edges as the
features that are important in building a cognitive map.
Since then there have been a number of models, both
descriptive models without commitment to mechanisms,
and computational models that propose mechanisms,
which have been proposed to account for various
phenomena associated with the representation of space
(add refs). A variety of behavioral/psychological studies
have also aided the development of these models by
providing a set of characteristics or behaviors that a model
should posses. Chief among them is the understanding that

85

the cognitive map is less of a map and more of a collage
(Tversky 1993). That is, representations of large-scale
spaces are not holistic but stored in pieces and that these
pieces are brought together as needed during problem
solving. Such a representation allows the agent to be
flexible with respect to representing inconsistent and
incomplete information.
 Knowledge of large-scale space can come from multiple
sources. The most common, of course, being personal
experience of navigation in space. We automatically build
representations of our environment as we traverse them. A
second, and important, source is maps. Our knowledge of
large environments, such as the spatial extent and
geographical locations of the fifty states of the USA,
originated from our use of maps. Representations,
originating from either source, are combined and modified
in various ways and for various purposes during problem
solving. In this paper, we focus on spatial reasoning tasks
that involve an external map rather than the agent moving
about in space. This is because biSoar, being built on Soar,
is a theory of high-level cognition, and navigating in the
world requires perception of the external world (as well as
motor systems to act on it), capabilities which biSoar, and
cognitive architectures in general, are not intended to
capture. However, we believe our proposal can be suitably
extended in the case when such abilities become available.
 Generality comes at a price. Currently, biSoar agents
cannot outperform more task-specific proposals for
representing and reasoning about space. Instead, our focus
in this paper is in showing how agents built in the biSoar
architecture are flexible and versatile. Using examples we
show how information about large-scale space can be
represented in a piece-meal fashion in biSoar’s underlying
bimodal representation. We then show how an agent,
during the course of problem solving, learns these pieces of
information. We use two sets of examples to show biSoar’s
flexibility and versatility. In the first one, we show how
information learned by an agent in one task (route-finding)
can be used to solve problems in a different but similar
task (geographic recall). In the second example, we show
how the agent can incorporate information from multiple
sources during an episode of route-finding.

biSoar

To create biSoar (Kurup and Chandrasekaran 2006), a
general-purpose cognitive architecture, Soar was
augmented with the Diagrammatic Reasoning System
(DRS), a domain-independent system for representing
diagrams (Chandrasekaran, Kurup et al. 2005). The
diagrammatic component of the state, encoded in DRS, is
part of the agent's internal representation, just as the
predicate symbolic component is in an agent's state
representation in current theories of cognitive architecture.
The content can come from various sources, recall from
memory, imagination by composing elements from
memory, or from an external image of a diagrammatic
representation. DRS of an external diagram is an

abstraction of the external diagram: regions in the image
intended to be points are abstracted in DRS as points but
with the same location of the intended point, regions
intended to be curves are abstracted into the intended
curves, symbolic annotations abstracted to symbols
associated with the DRS element, and so on. The
perceptual routines operate on the DRS elements, whether
they were generated internally or from external
representations. Of course, creating a DRS corresponding
to an external diagram requires image processing routines,
such as those that do background subtraction or edge
detection, to go from an image to a collection of objects
with their spatial extents. Such external processing,
however, is not part of the theory of the bimodal internal
state, nor of the operation of the cognitive architecture. In
our examples that involve an agent interacting with an
external map, we assume that such image processing
routines are available to the agent and focus on how the
result of these routines, the diagrammatic representation, is
represented and manipulated in spatial reasoning tasks
 While a physical diagram (on a screen or on paper) is an
image that contains diagrammatic objects, each to be
interpreted as a point, curve or a region, the diagram is
viewed as a configuration of diagrammatic objects. Note
too that while in the physical diagram all the objects are
regions, so that they can be perceived, DRS captures the
intended diagram. If an object in the physical diagram
appears as a circle, in DRS it would be treated as a
Euclidean point object with just location to characterize it.
DRS is domain-independent – the only objects are points,
curves or regions. Interpreting them in domain terms is the
job of the user of the representation. The objects in DRS
have associated with them information about their
spatiality -- locations for point objects, and representations
that are functionally equivalent to the sets of points that
constitute the objects for curves and regions. Associated
with the DRS are a set of perception and diagram
construction/modification capabilities; following (Ullman
1984), these are called routines. All these routines are
visual, but we use the more general term so that it will
apply to the more general multi-modal view.
 Perception Routines take diagrammatic elements as
arguments and return information about specified spatial
properties or spatial relations. There are two types of
perception routines: the ones in the first type re-perform
the figure-ground separation on the image – rather than on
the DRS – perceiving emergent objects (e.g., the two sub-
regions that emerge when a curve intersects a region.)
Routines of the second type return specified spatial
properties of objects, e.g., the length of a curve; and
evaluate specified spatial relations between objects, e.g.,
Inside(Region1, Region2). These routines work from
descriptions in DRS. DRS thus is an intermediate
representation that supports reconstituting the image, a
capability needed for emergent object identification, and
also the perceptual routines that perceive properties of and
relations between objects.

86

 Routines that help in constructing or modifying the
diagram are action routines. They create diagrammatic
objects that satisfy specific perceptual criteria, such as “a
curve object that intersects a given region object,” and “a
point object inside the region object.” The sets of routines
are open-ended, but routines that are useful across a
number of domains are described in (Chandrasekaran,
Kurup et al. 2004), which also contain more information
on DRS.

Cognitive State in Soar

Soar’s representations are predicate-symbolic. The
cognitive state in Soar is represented by the contents of
Soar’s WM and operator, if any, that has been selected. Fig
1(b) shows Soar’s cognitive state representation of the
blocks world example in 1(a).

Cognitive State in biSoar

The cognitive state in biSoar is bimodal – it has both
symbolic and diagrammatic parts. Fig 2 shows the bimodal
representation of the world depicted in Fig 1(a). Working
memory in biSoar is represented as a quadruplet, with each
Identifier, Attribute, Value triplet augmented with a
diagrammatic component in DRS that represents the
visualization (metrical aspect) of the triplet. Since not all
triplets need to be (or can be) visualized, the diagrammatic
components are present only as needed. States represent
the current or potential future state of interest in the world
and the symbolic and the diagrammatic part may represent
related or distinct aspects of the world. However, the
diagrammatic representation is “complete” in a way that
the symbolic representation is not. For example, from the
symbolic representation alone it is not possible to say
without further inference whether A is above C. But the
same information is available for pick up in the diagram
with no extra inference required. This has advantages (for
instance in dealing with certain aspects of the Frame
Problem) and disadvantages (over-specificity).

Bimodal LTM and Chunking

There are two questions that have to be answered in an
implementation of Long Term Memory (LTM) – how are
elements put into LTM (i.e., learned) and how are elements
retrieved from LTM. In the case of Soar the answers to
these two questions are chunking for learning and a
matching process that matches the LHS of a LTM rule to
WM for retrieval.
Chunking - Chunking simply transfers the relevant
contents of WM to LTM. In the case of biSoar, chunking
transfers to LTM both symbolic and diagrammatic
elements present in WM.
Matching - In the case of Soar the retrieval process is
straightforward because matching (or even partial
matching when variables are present) symbols and symbol
structures to each other is an exact process; either they
match or they don’t. When the cognitive state is bimodal,
WM has metrical elements in addition to symbols.
Matching metrical elements to each other (say a curve to
another curve) is not an exact process since two metrical
elements are unlikely to be exactly the same. Matching
metrical elements would require a different approach like a
non-exact process that can match roughly similar elements
in a domain-independent manner (since the matching
should be architectural). It may also turn out that only calls
to perceptual routines are present in LTM while matching
metrical elements is a more low-level cognitive process
present only in stimulus-response behavior. For now we
take the latter approach where the LHS of biSoar rules
contain only symbol structures while the RHS contains
calls to the diagram that execute perceptual routines. The
results of executing these routines appear as symbol
structures in the symbolic side at the end of a decision
cycle. We think that this approach can account for many of
the diagrammatic learning capabilities that are required in

C

B

A
Working Memory:

Block (A), Block (B), Block

(C), On (A,B), On (B,C)

Selected Operator: None

Figure 2: biSoar representation of the world shown in 1(a)

R3

R2

R1

R4
R5

Figure 3: (a) A map of main highways in Columbus, OH

showing routes R1...R5 and locations P1...P4. Intersections

of routes also form additional locations. (b) The DRS

representation of the route from R2R5 to P2

(a)

(b)

Working Memory:

Block (A), Block (B), Block

(C), On (A,B), On (B,C)

Selected Operator: None

(a) (b
)

Figure 1: (a) Blocks World and (b) Soar’s representation

of the world in (a).

87

models of cognition except in cases where goal
specifications contain irreducible spatial components, such
as might be the case in the problem solving of a sculptor.

Representing Large-Scale Space in BiSoar

Soar’s LTM is in the form of rules. Each rule can be
thought of as an if-then statement where the condition (if)
part of the rule matches against the existing conditions in
WM and the action (then) part of the rule describes the
changes to be made to WM. Thus, Soar’s LTM is arranged
to respond to situations (goals) that arise as part of problem
solving. This makes sense because, ideally, a majority of
an agent’s rules are learned as part of problem solving and
hence in response to a particular situation. If the situation
(or a similar one) arises in the future, Soar can now use this
learned rule in response. For the route-finding scenario, the
agent has knowledge about various locations on the map
and about routes between these locations, presumably as a
result of learning from previous problem solving episodes.
The agent’s knowledge of the area consists of bimodal
rules in the following form:

If goal is find_destination and at location A and traveling
in direction Dx on route Rx, then destination is location B,

diagram is DRSx

Where DRSx represents the spatial extent of the section of
the route that runs from Lx to Ly along route Rx and is
represented using DRS. So, for example, for the map in Fig
3(a), the spatial relationship between locations R2R5 and
P2 would be expressed as

If goal is find_destination and at R2R5 and traveling Right

on Route R2, then destination is P2, diagram is DRS1

Where DRS1 is shown in Fig 3(b). The directions
available are Right, Left, Up and Down though this choice
of directions is arbitrary. For convenience, we represent the
above information in a more concise form as follows:

Gx,Lx,Dx,Rx � Ly,DRSx

Route-finding & Learning Using BiSoar

 We created an agent to perform route-finding tasks given a
map using the simple strategy shown in Fig 4. The agent
finds a route by locating the starting and destination points
and finds a path by moving to the next point on the route
that is the closest to the destination using a simple
Euclidean distance measure. Some of the steps of the
algorithm require information from the diagrammatic
component. This information is of two types - in certain
cases it is symbolic, such as the answer to the query “On
what route(s) is the point located?” while in other cases,
the information is diagrammatic, like for the question
“What’s the route between the point P1 and R1R3?”
 Each step of the algorithm is implemented such that it
becomes a sub-goal for the biSoar agent. As a result, when
the agent solves a sub-goal, the architecture automatically
learns a chunk (rule) that captures the solution to the task.
For example, corresponding to step 5 of the algorithm, the
agent finds that if you move down from P1 along route R1,
you reach R1R3. The next time the agent is faced with this
sub-goal, the chunk that was learned is used to answer it.
Fig 5(a) shows the path found by the agent from P1 to P2.
Table 1 shows the information learned by the agent as a
result of that task. Fig 5(b) similarly shows the result of
route-finding by the agent between the locations P4 and
R3R5 and Table 2, the information learned by the agent
Within-task Transfer – To show within-task transfer of
learning, we ran the agent on route-finding tasks with an
external map. As a result of learning, the agent acquired a
number of chunks. The external map was then removed
and the agent was giving a new route-finding task, one in

Figure 4: The wayfinding strategy used by the biSoar agent

1. locate the starting & destination locations in the map

2. make the starting location the current location

3. Find the routes on which the current location lies

4. For each route, find the directions of travel

5. for each route and direction of travel, find the next

location

6. calculate the Euclidean distance between these new

locations and the destinations

7. pick the location that is closest to the destination and

make that the current point

8. repeat 3-8 until destination is reached

Figure 5: Routes found by the agent from (a) P1

to P2 b) P4 to R3R5 and (c) R1R4 to P2

(a)

(b)

(c)

88

which the starting and destination points were present in
the previous tasks but never as a pair between which a
route had to be found. For example, with the external map
available, the agent was asked to find routes from P1 to P2
and from P4 to R3R5. The external map was then removed
and the agent was asked to find a route from R1R4 to P2.
The agent using information learned during the previous
two tasks (Tables 1 & 2), found the route in Fig 5(c).

Gon,P1 � R1

Gon,R1R3 � R1,R3

Gon,R1R2 � R1,R2

Gon,R2R4 � R2,R4

Gon,R2R5 � R2,R5

Gdir,P1,R1 � up,down

Gdir,R1R3,R1 � up,down

Gdir,R1R2,R2 � right,left

Gdir,R2R4,R2 � right, left

Gdir,R2R5,R2 � right,left

Gdest,P1,R1,down � R1R3

Gdest,R1R3,R1,down �

R1R2

Gdest,R1R2,R2,right �

R2R4
Gdest,R2R4,R2,right �

R2R5

Gdest,R2R5,R2,right � P2

.
Between-task Transfer – To show between-task transfer,
we had an agent trained on one type of task (route-finding)
perform a different spatial task (geographic recall). As an
example, the agent in the within-task transfer example,
with the knowledge in tables 1 and 2, was asked to find the
geographic relationship between two points that it had
encountered during the tasks. The agent’s strategy was to
recreate (not just recall) the map using the learned
information, and extract the relationship between the
locations from the re-created map. Fig 6 shows the map
created by the agent.

Predicting Paths – To show how the agent can incorporate
information from multiple sources, we gave the biSoar
agent an incomplete version of the earlier map (as shown
in Fig 7) with route R5 missing. The agent was also given
the symbolic information that there is a path from R2R5 in
the up direction, but because the diagram was incomplete it
is not clear what the destination of traveling along that
route is. The goal of the agent was to find a route from P2
to P3 taking into account possible paths. Fig 8 shows the
route found by the agent. The strategy shown in Fig 4 is
slightly modified so that the agent makes predictions about
destinations. In step 5 of the strategy, when the agent
checks the external representation to find the destination
from R2R5 on R5 in the “up” direction, it finds that the
information is not available in the map. In response, the
agent creates a straight line path from R2R5 in that

direction and sees that it intersects R3. It names this point
INT1 and proposes a route that goes through INT1.
Comparing the map in Fig 3(a) and the route found in Fig

Gon,P4 � R1

Gon,R1R4 � R1,R4

Gdir,P4,R1 � left,right

Gdir,R1R4,R4 � up

Gdir,R2R5,R5 � up

Gdest,P4,R1,right � R1R4

Gdest,R1R4,up � R2R4

Gdest,R2R5,up � R3R5

Table 1: rules learned by the agent in finding the route

from P1 to P2

Table 2: rules learned by the agent in finding the route

from P4 to R3R5

Figure 6: Map created by the agent for

geographic recall

89

7(b), we can see that the straight line assumption by the
agent results in a slightly different route R5 than what
would have been found using the complete map.

Conclusion

Representations of large-scale space in general purpose
architectures are usually limited to topological graph-like
representations due to constraints imposed by the
underlying predicate-symbolic representation. Reasoning,
most commonly route-finding, then proceeds via the
application of a graph-traversal algorithm. In our bimodal
architecture, biSoar, large-scale space is represented using
both symbolic and diagrammatic representations. This
bimodal representation provides a richer representational
format that can be used to solve a wider range of spatial
reasoning tasks. At the same time, the diagrammatic
representations are not specific to large-scale space but part
of a more general approach to understanding cognition as
multi-modal. In the case of large-scale space reasoning,
such an approach has the following benefits. First, it
captures not only the topological but also the metrical
aspects of space. Depending on the task, either or both of
the representations can be used to solve the problem.
Second, an agent in this architecture can learn both
symbolic and diagrammatic elements via chunking. This
information can then be used to solve similar and related
tasks. Third, the agent’s representation of the space is not
holistic in nature. Instead it is spread over a number of
rules and smaller diagrammatic pieces. This allows the
agent to function under the presence of inconsistencies as
well as include information from multiple sources during

problem solving. The lack of a consistent single
representation also makes it easier for the agent since it
does not have to maintain consistency as new information
comes in. In these respects, the agent’s representation is
similar to human spatial representation. Lastly, the
presence of a metrical representation allows the agent to
reason about space in a way that topological
representations cannot, namely, in predicting destinations
of paths or finding shortcuts or novel paths.

Acknowledgements

Advanced Decision Architectures Collaborative
Technology Alliance sponsored by the U.S. Army
Research Laboratory under Cooperative Agreement
DAAD19-01-2-0009.

References

Anderson, J. R., and Lebiere, C. 1998. The Atomic

Components of Thought, Lawrence Erlbaum Associates.

Chandrasekaran, B. 2002. Multimodal Representations as

Basis for Cognitive Architecture: Making Perception More

Central to Intelligent Behavior. Intelligent Information

Processing, Kluwer Academic Publishers.

Chandrasekaran, B.; Kurup, U.; Banerjee, B. 2005. A

Diagrammatic Reasoning Architecture: Design,

Implementation and Experiments. AAAI Spring

Symposium Reasoning with Mental and External

Diagrams: Computational Modeling and Spatial

Assistance.

Chandrasekaran, B.; Kurup, U.; Banerjee B.; Josephson, J.;

Winkler, Robert. 2004. An Architecture for Problem

Solving with Diagrams. Diagrammatic Representation and

Inference conference, Springer-Verlag.

Kurup, U., and Chandrasekaran, B. 2006. Multi-modal

Cognitive Architectures: A Partial Solution to the Frame

Problem. 28th Annual Conference of the Cognitive Science

Society, Vancouver.

Laird, J. E.; Newell, A.; Rosenbloom, P. 1987. Soar: an

architecture for general intelligence. Artificial Intelligence

33(1): 1-64.

Lynch, K. 1960. The Image of the City. Cambridge, MIT

Press.

Newell, A. 1990. Unified theories of cognition. Harvard

University Press.

Tolman, E. C. 1948. Cognitive Maps in Rats and Man.

Psychological Review 55: 189-208.

Tversky, B. 1993. Cognitive maps, cognitive collages, and

spatial mental model. Spatial information theory:

Theoretical basis for GIS. U. Frank and I. Campari.

Heidelberg-Berlin, Springer-Verlag: 14-24.

Ullman, S. 1984. Visual Routines. Cognition 18: 97-159.

Figure 7: (a) Map without route R5 for the predicting

paths task. (b) Route found between P2 and P5

R1

R3

R2

R4

R2 R5

R3

(a)

(b)

90

Claims and Challenges in Evaluating
Human-Level Intelligent Systems

John E. Laird*, Robert E. Wray III**, Robert P. Marinier III*, Pat Langley***

*Division of Computer Science and Engineering, University of Michigan, Ann Arbor, MI 48109-2121
**Soar Technology, Inc., 3600 Green Court, Suite 600, Ann Arbor, MI 48105

***School of Computing and Information, Arizona State University, Tempe, AZ 85287-8809

Abstract
This paper represents a first step in attempting to engage the
research community in discussions about evaluation of
human-level intelligent systems. First, we discuss the
challenges of evaluating human-level intelligent systems.
Second, we explore the different types of claims that are
made about HLI systems, which are the basis for
confirmatory evaluations. Finally, we briefly discuss a range
of experimental designs that support the evaluation of
claims.

Introduction
One of the original goals of Artificial Intelligence (AI) was
to create systems that had general intelligence, able to
approach the breadth and depth of human-level intelligence
(HLI). In the last five years, there has been a renewed
interest in this pursuit with a significant increase in
research in cognitive architectures and general intelligence
as indicated by the first conference on Artificial General
Intelligence. Although there is significant enthusiasm and
activity, to date, evaluation of HLI systems has been weak,
with few comparisons or evaluations of specific claims,
making it difficult to determine when progress has been
made. Moreover, shared evaluation procedures, testbeds,
and infrastructure are missing. Establishing these elements
could bring together the existing community and attract
additional researchers interested in HLI who are currently
inhibited by the difficulty of breaking into the field.

To confront the issue of evaluation, the first in a series of
workshops was held in October 2008 at the University of
Michigan, to discuss issues related to evaluation and
comparison of human-level intelligent systems. This paper
is a summarization of some of the discussions and
conclusions of that workshop. The emphasis of the
workshop was to explore issues related to the evaluation of
HLI, but to stop short of making proposals for specific
evaluation methodologies or testbeds. That is our ultimate
goal and it will be pursued at future workshops. In this first
workshop, we explored the challenges in HLI evaluation,
the claims that are typically made about HLI, and how
those claims can be evaluated.1

 1For an in depth and more complete discussion of evaluation of AI
systems in general, see Cohen (1995).

Challenges in Evaluating HLI Systems

Defining the goal for HLI
One of the first steps in determining how to evaluate
research in a field is to develop a crisp definition its goals,
and if possible, what the requirements are for achieving
those goals. Legg and Hutter (2007) review a wide variety
of informal and formal definitions and tests of intelligence.
Unfortunately, none of these definitions provide practical
guidance in how to evaluate and compare the current state
of the art in HLI systems.

Over fifty years ago, Turing (1950) tried to finesse the
issue of defining HLI by creating a test that involved
comparison to human behavior, the Turing Test. In this
test, no analysis of the components of intelligence was
necessary; the only question was whether or not a system
behaved in a way that was indistinguishable from humans.
Although widely known and popular with the press, the
Turing Test has failed as a scientific tool because of its
many flaws: it is informal, imprecise, and is not designed
for easy replication. Moreover, it tests only a subset of
characteristics normally associated with intelligence, and it
does not have a set of incremental challenges that can pull
science forward (Cohen, 2005). As a result, none of the
major research projects pursuing HLI use the Turing Test
as an evaluation tool, and none of the major competitors in
the Loebner Prize (an annual competition based on the
Turing Test) appear to be pursuing HLI.

One alternative to the Turing Test is the approach taken in
cognitive modeling, where researchers attempt to develop
computational models that think and learn similar to
humans. In cognitive modeling, the goal is not only to
build intelligent systems, but also to better understand
human intelligence from a computational perspective. For
this goal, matching the details of human performance in
terms of reaction times, error rates, and similar metrics is
an appropriate approach to evaluation. In contrast, the goal
of HLI research is to create systems, possibly inspired by
humans, but using that as a tactic instead of a necessity.
Thus, HLI is not defined in terms of matching human

91

reaction times, error rates, or exact responses, but instead,
the goal is to build computer systems that exhibit the full
range of the cognitive capabilities we find in humans.

Primacy of Generality
One of the defining characteristics of HLI is that there is
no single domain or task that defines it. Instead, it involves
the ability to pursue tasks across a broad range of domains,
in complex physical and social environments. An HLI
system needs broad competence. It needs to successfully
work on a wide variety of problems, using different types
of knowledge and learning in different situations, but it
does not need to generate optimal behavior; in fact, the
expectation is it rarely will. This will have a significant
impact on evaluation, as defining and evaluating broad
competency is more difficult than evaluating narrow
optimality.

Another aspect of generality is that, within the context of a
domain, an HLI system can perform a variety of related
tasks. For example, a system that has a degree of
competence in chess should be able to play chess, teach
chess, provide commentary for a chess game, or even
develop and play variants of chess (such as Kriegspeil
chess). Thus, evaluation should not be limited to a single
task within a domain.

Integrated Structure of HLI Systems
Much of the success of AI has been not only in single
tasks, but also in specific cognitive capabilities, such as
planning, language understanding, specific types of
reasoning, or learning. To achieve HLI, it is widely
accepted that a system must integrate many capabilities to
create coherent end-to-end behavior, with non-trivial
interactions between the capabilities. Not only is this
challenging from the standpoint of research and
development, but it complicates evaluation because it is
often difficult to identify which aspects of a system are
responsible for specific aspects of behavior.

A further complication is that many HLI systems are
developed not by integrating separate implementations of
the cognitive capabilities listed earlier, but instead by
further decomposing functionality into more primitive
structures and process, such as short-term and long-term
memories, primitive decision making and learning,
representations of knowledge, and interfaces between
components, such as shown in Figure 1. In this approach,
higher-level cognitive capabilities, such as language
processing or planning are implemented in a fixed
substrate, differing in knowledge, but not in primitive
structures and processes. This is the cognitive architecture
approach to HLI development (Langley, Laird, & Rogers,
in press), exemplified by Soar (Laird, 2008) and ICARUS
(Langley & Choi, 2006).

This issue is clear in research on cognitive architectures
because they make the following distinctions:
• The architecture: the fixed structure that is shared across

all higher-level cognitive capabilities and tasks.
• The initial knowledge/content that is encoded in the

architecture to achieve capabilities and support the
pursuit of a range of tasks.

• The knowledge/content that is learned through
experience.

For any HLI system, it is often difficult to disentangle the
contributions of the fixed processes and primitives of the
systems to the system’s behavior from any initial, domain-
specific content and the learned knowledge, further
complicating evaluation. There is a concern that when
evaluating an agent’s performance, the quality of behavior
can be more a reflection of clever engineering of the
content than properties of the HLI systems itself. Thus, an
important aspect of evaluation for HLI is to recognize the
role of a prior content in task performance and attempt to
control for such differences in represented knowledge.

Long-term Existence
Although not a major problem in today’s implementations,
which typically focus on tasks of relatively short duration,
HLI inherently involves long-term learning and long-term
existence. It is one thing to evaluate behavior that is
produced over seconds and minutes – it is possible to run
many different scenarios, testing for the effects of
variation. When a trial involves cumulative behavior over
days, weeks, or months, such evaluation becomes
extremely challenging due to the temporal extents of the
experiments, and the fact that behavior becomes more and
more a function of experience.

Claims about HLI
We are primarily interested in constructive approaches to
HLI; thus, our claims are related to the functionality of our
systems, and not their psychological or neurological
realism. Achieving such realism is an important scientific
goal, but one of the primary claims made by many

Notional HLI System

Programmed
Content

Learned
Content

Fixed Processes and
Representational Primitives

Perception Actions

Figure 1: Structure of a Notional HLI System.

92

practitioners in HLI is that it can be achieved without an
exact reimplementation of the human mind and/or brain.

A major step in empirical evaluation is to consider the
claims we want or expect to make about the systems we
develop. Only by knowing these claims can we define
appropriate experiments that test those claims and let us
determine what we need to measure in those experiments.
An explicit claim (hypothesis) is usually about the
relationship between some characteristic of a HLI system
and its behavior. To test the hypothesis, a manipulation
experiment can be performed in which the characteristic
(the independent factor) is varied and changes in behavior
along some dimensions (dependent variables) are
measured. Many of the difficulties described earlier arise
because of the types of claims that we as researchers are
attempting to make in the pursuit of HLI.

HLI System Claims
There are varieties of claims that can be made about HLI at
the systems level. We highlight four types of claims below:

1. A computer system (HLI1) can achieve some type of

behavior or cognitive capability related to HLI. There
are many examples of this type of claim from the early
history of cognitive architectures. For example,
cognitive architectures were used to illustrate
capabilities such as associative retrieval and learning,
improvements in performance with experience, and the
“emergence” of so-called high-level capabilities, such as
planning or natural-language comprehension, from the
primitives of the architecture. Such a claim is invariably
a sufficiency claim, where the structure of the agent is
not claimed to be the only way of achieving the desired
behavior (a necessity claim). These claims are generally
made within the context of some class of environments,
tasks, and an agent’s ability to interact with its
environment. A few cases where necessity claims have
been made about the general properties of architectures
such as Newell and Simon’s (1976) symbol system
hypothesis.

2. A modification of a system (HLI1′) leads to expanding
the set of problems the system can solve or improving
behavior along some dimension related to HLI across a
range of tasks (see section on dependent variables for a
discussion of metrics related to behavior). For example,
the progression from version 7 of Soar to version 8 led
to improvements in system robustness and learning
capability in Soar (Wray & Laird, 2003). This is
probably the most common claim, as it is part of the
standard practice of systematically improving and
extending the capabilities of an HLI system.

3. One system (HLI1) differs from another system (HLI2)
in the set of problems that can be solved or in its
performance. This claim usually involves comparing
two systems and is currently less common, as it involves
creating two separate systems and applying them to
similar tasks. Once notable example of systematic

comparison was the Agent Modeling and Behavior
Representation (AMBR) program, sponsored by the Air
Force Research Laboratory (Gluck & Pew, 2005).
AMBR compared four different architectures on a few
tasks in a single task domain. One lesson of AMBR is
the importance and difficulty of controlling for a priori
content, as suggested previously. The HLI community is
capable of descriptive and analytical comparisons of
architectures (e.g., see Jones & Wray, 2006) but
empirical comparison of architectures and HLI systems
(as opposed to example instances in single task
domains) is currently infeasible.

4. One system (HLI1) has behavior similar along some
relevant dimension to human behavior (H1). This is a
special case of 3 above, where human behavior provides
the target metric and the emphasis is usually on
similarity. Even though we are concentrating on the
functionality of HLI systems, humans often provide the
best yardstick for comparison. However, even in the
cognitive modeling community, evaluation is typically
focused on model evaluation rather than evaluation of
the underlying system. Anderson and Lebiere (2003)
offer suggestions for more systematic evaluation of the
paradigm supporting task models, which may also
provide a framework for a near-term, descriptive
approach to HLI evaluation.

There will often be a hierarchy of claims. Stronger claims
are usually reserved for general properties of the
architecture, such as that symbol systems are necessary in
order to achieve general competence. Claims about the
general properties of a specific component in relation to
achieving competency will usually be weaker sufficiency
claims. One can also make claims about specific
algorithms and data structures, such as that the RETE
algorithm achieves nearly constant match time even as the
number of rules grows (Doorenbos, 1994).

Independent Variables
Central to claims are that there is some relationship among
different variables, in particular that varying the
independent variables leads to changes in the dependent
variables. In HLI systems, the independent variables often
fall in three classes:
• Components of the overall system: As components or

modules are added, removed, or modified, it is claimed
that there will be changes in behavior. With these types
of independent variables, there often is not an ordering –
these are categorical and not numeric, so that results are
not summarized on a graph in which the values of the
dependent variables can be connected with lines.

• Amount of knowledge: Knowledge is varied to
determine how effectively the system can use or process
knowledge to guide its behavior. One challenge is to
compare knowledge across systems, given their different
representations. However, within a given architecture, it
is usually easy to measure the impact of knowledge by

93

comparing behavior with and without specific
knowledge elements.

• System parameters: Many systems have parameters that
affect their behavior, such as the learning rate in a
reinforcement learning agent. This leads to parametric
studies that involve systematic variation of system
parameters. The current state-of-art in computational
cognitive modeling provides examples of how much
parametric exploration is possible and offers glimpses
into how those explorations can inform one’s evaluation
of contributions to overall behavior.

In addition to changes in the HLI systems, many claims
concern how changes in the environment or task influence
the behavior of an HLI system. For such claims, the
independent variables are properties of the environment
and task. These are often more difficult to vary
systematically.

Examples of environmental independent variables include:
• Experience in an environment: For claims related to

efficacy of learning, independent variables can be the
amount of experience, the time existing in the
environment, and related properties.

• Complexity of the environment: Analysis of how a
system responds as one changes the number of objects,
their relations and properties, and the types of
interactions between objects.

• Accessibility of the environment: The kinds of
information can be known/perceived at any time.

• Indeterminacy in environmental interaction: The ease of
unambiguously sensing and acting in the environment.

• Dynamics of the environment: How different aspects of
the environment change independently of the HLI
system and how fast the environment changes relative to
the basic processing rate of the system.

Examples of task-related independent variables include:
• Whether the task requires satisficing vs. optimizing.

Given the competing constraints on HLI systems, often
the goal is to satisfice.

• Complexity of the task: How many goals/subgoals must
be achieved? What interdependences are there between
goals?

• Length of existence: How long does the system behave in
the environment in ways that put significant stress on its
ability to respond quickly to environmental dynamics?

Dependent Variables: Metrics
Dependent variables allow measurement of properties of
behavior relevant to evaluating claims. These metrics can
be either quantitative or qualitative, and we evaluations
will often involve multiple metrics.

We do not consider properties of theories of HLI, such as
parsimony, because they relate to claims about theories as
opposed to properties of the HLI system.

Our analysis of metrics is split into two parts. The first
addresses concrete metrics that directly measure some
aspect of behavior, such as solution quality, while the
second will address metrics that cover abstract properties
of HLI systems that cannot be measured directly, such as
robustness and flexibility.

Concrete metrics:
• Performance includes measures such as solution time,

quality of solution, and whether or not a solution is
found. These are the standard metrics used in evaluating
AI systems. One must careful when using CPU time
because of variation in the underlying hardware. Usually
solution time will be in some hardware independent
measure (such as nodes expanded in a search) that can
then be mapped to specific hardware.

• Scalability involves change in some performance
variable as problem complexity changes. Scalability is an
important metric for HLI systems because of the need for
large bodies of knowledge acquired through long-term
learning. Other scalability issues can arise from
interacting with complex environments where the
number of relevant objects varies.

Evaluating only concrete metrics of behavior poses the
danger of driving research toward engineering
optimizations. Behavioral evaluations should include both
a notion of behavior (e.g., learning optimization) and what
goes in (level of programming, research, etc.). Current
practice is usually just to measure behavior. However, a
general claim is that an HLI approach should decrease the
amount of re-engineering (what goes in) required for a
task. Thus, there are other metrics that are typically
independent variables (varied during testing to determine
their effect on performance and scalability) but that can
become dependent variables if the experiment is set up to
determine when a certain level of performance is achieved.
For example, one could measure how much knowledge or
training is required to achieve a certain level of
performance or how much additional knowledge and
training (or re-engineering of the architecture) is required
to perform on a new task, a property termed incrementality
(Wray & Lebiere, 2007).

Abstract metrics
Concrete metrics have the advantage that they are usually
easy to measure; however, many of the claims about HLI
systems are not directly grounded in concrete metrics such
as performance measures or scalability. Usually claims
concern more abstract properties, such as generality,
expressiveness, and robustness. Abstract metrics are often
properties that involve integration of multiple properties
across multiple trials and even across multiple tasks and
domains. One challenge is to determine how to ground
these abstract metrics in measurable properties of HLI
systems’ behavior.

94

• Task and Domain Generality: How well does a system
(or architecture) support behavior across a wide range of
tasks and domains? Concerns about task and domain
generality are one of the primary factors that distinguish
research in HLI from much of the other research in AI.
This requires measures of diversity of tasks and domains,
which are currently lacking. Given the primacy of
generality, it is not surprising that many other abstract
metrics address aspects of behavior and system
construction that are related to generality.

• Expressivity: What kinds or range of knowledge can an
HLI system accept and use to influence behavior? This
relates to generality because restrictions on
expressiveness can, in turn, restrict whether a system can
successfully pursue a task in a domain. For example,
systems that only support propositional representations
will have difficulty reasoning about problems that are
inherently relational.

• Robustness: How does speed or quality of solutions
change as a task is perturbed or some knowledge is
removed or added? One can also measure robustness of
an architecture – how behavior changes as an aspect of
the architecture is degraded – but this is rarely considered
an important feature of HLI systems. Instead, the interest
lies in how well the system can respond to partial or
incomplete knowledge, incorrect knowledge, and
changes in a task that require some mapping of existing
knowledge to a novel situation.

• Instructability: How well can a system accept
knowledge from another agent? Instructability
emphasizes acquiring new skills and knowledge, as well
as acquiring new tasks. Finer-grain measures of
instructability include the language needed for
instruction, the breadth of behavior that can be taught,
and the types of interactions supported, such as whether
the instructor is in control, whether the agent is in
control, or whether dynamic passing of control occurs
during instruction.

• Taskability: To what extent can a system accept and/or
generate, understand, and start on a new task? Taskability
is related to instructability, but focuses working on new
tasks. Humans are inherently taskable and retaskable,
being able to attempt new tasks without requiring a
external programmer that understands its internal
representations. Humans also generate new tasks on their
own. In contrast, most current systems only pursue the
tasks and subtasks with which they were originally
programmed and cannot dynamically extend the tasks
they pursue.

• Explainability: Can the system explain what it has
learned or experienced, or why it is carrying out some
behavior? Humans do not have “complete” explanability
– the ability to provide justifications for all decisions
leading up to external behavior – so this capability is a
matter of degree.

Conclusion
It is obvious that developing human-level intelligence is a
huge challenge. However, important parts of that scientific
and engineering enterprise are the methods and practices
for evaluating the systems as they are developed. In this
paper, we present some of the primary challenges that arise
in evaluation that distinguish it from research on more
specialized aspects of artificial intelligence. We also
attempt to characterize the types of scientific claims that
arise in research on HLI, distinguishing different classes of
claims that can be made at the system level, and then
further analyzing the independent and dependent variables
of those claims.

Having clear, explicit claims has always been a critical part
of scientific progress, and we encourage researchers to be
more explicit in the claims of the theories and systems they
develop. This not only helps ourselves in designing
appropriate experiments, it also makes it much easier for
other researchers to evaluate the contribution of a piece of
work. In addition to being specific about claims, the field
also needs shared notions of methodologies and metrics
associated with evaluating those claims. The abstract
metrics enumerated here suggest some ways in which HLI
researchers can begin to better distinguish these systems
from more traditional AI systems. However, much work
remains to identify methods for measuring and evaluating
these capabilities.

The next step for this effort is to explore tasks and
environments that can be shared across the community.
Given the broad goals of HLI research, we need multiple
testbeds that support environments in which many tasks
can be pursued, and which include tools for performing
experimentation and evaluation. Working on common
problems will simplify cross-system evaluation and
collaboration, both important steps toward developing
human-level intelligence.

Acknowledgments
This paper is based on discussions at a workshop on
evaluation of human-level intelligence, held at the
University of Michigan in October, 2008. Participants
included Joscha Bach, Paul Bello, Nick Cassimatis, Ken
Forbus, Ben Goertzel, John Laird, Christian Lebiere, Pat
Langley, Robert Mariner, Stacey Marsella, Matthias
Scheultz, Satinder Singh, and Robert Wray. The workshop
was funded under grant N00014-08-1-1214 from ONR.

References
Anderson, J. R. & Lebiere, C. L. 2003. The Newell test for a
theory of cognition. Behavioral & Brain Science 26, 587-637.
Cohen, P. R., 1995. Empirical methods for artificial intelligence,
Cambridge, MA: MIT Press.
Cohen. P.R. 2005. If not Turing’s test, then what? AI Magazine,
Winter, 26; 61-68.

95

Doorenbos, R. B. 1994. Combining left and right unlinking for
matching a large number of learned rules. In Proceedings of the
Twelfth National Conference on Artificial Intelligence.
Gluck, K. A. & Pew, R.W. 2005. Modeling human behavior with
integrated cognitive architectures: comparison, evaluation, and
validation LEA/Routledge.
Jones, R. M., & Wray, R. E. 2006. Comparative analysis of
frameworks for knowledge-intensive intelligent agents. AI
Magazine, 27, 57-70.
Laird, J. E., 2008. Extending the Soar cognitive architecture. In
Proceedings of the First Conference on Artificial General
Intelligence.
Langley, P., & Choi, D., 2006. A unified cognitive architecture
for physical agents. In Proceedings of the Twenty-First National
Conference on Artificial Intelligence. Boston: AAAI Press.
Langley, P., Laird, J. E., & Rogers, S., in press. Cognitive
architectures: Research issues and challenges. Cognitive Systems
Research.
Langley, P., & Messina, E. 2004. Experimental studies of
integrated cognitive systems. Proceedings of the Performance
Metrics for Intelligent Systems Workshop. Gaithersburg, MD.
Legg , S. & Hutter, M. 2007. Universal Intelligence: A Definition
of Machine Intelligence, Minds and Machines, 17:4, 391-444.
Newell, A., Simon, H. A., 1976. Computer science as empirical
inquiry: Symbols and search. Communications of the ACM, 19
Turing, A., 1950. Computing Machinery and Intelligence. Mind,
59; 433–460.
Wray, R. E., & Laird, J. E. 2003. An architectural approach to
consistency in hierarchical execution. Journal of Artificial
Intelligence Research. 19; 355-398.
Wray, R. E., & Lebiere, C. 2007. Metrics for Cognitive
Architecture Evaluation. In Proceedings of the AAAI-07
Workshop on Evaluating Architectures for Intelligence,
Vancouver, B. C.

96

Extending Cognitive Architectures with Mental Imagery

Scott D. Lathrop John E. Laird

 United States Military Academy University of Michigan
 D/EECS 2260 Hayward
 West Point, NY 10996 Ann Arbor, MI 48109-2121
 scott.lathrop@usma.edu laird@umich.edu

Abstract
Inspired by mental imagery, we present results of extending
a symbolic cognitive architecture (Soar) with general
computational mechanisms to support reasoning with
symbolic, quantitative spatial, and visual depictive
representations. Our primary goal is to achieve new
capabilities by combining and manipulating these
representations using specialized processing units specific to
a modality but independent of task knowledge. This paper
describes the architecture supporting behavior in an
environment where perceptual-based thought is inherent to
problem solving. Our results show that imagery provides the
agent with additional functional capabilities improving its
ability to solve rich spatial and visual problems.

Introduction
The generality and compositional power of sentential,
symbolic processing has made it central to reasoning in
general AI systems. However, these general symbolic
systems have failed to address and account for inherently
perceptual, modality-specific processing that some argue
should participate directly in thinking rather than serve
exclusively as a source of information (Barsalou 1999;
Chandrasekaran 2006). Mental imagery is an example of
such thought processing.

In this paper, we argue that general, intelligent systems
require mechanisms to compose and manipulate amodal,
symbolic and modality-specific representations. We defend
our argument by presenting a synthesis of cognition and
mental imagery constrained by a cognitive architecture,
Soar (Laird 2008). Empirical results strengthen our claim
by demonstrating how specialized, architectural components
processing these representations can provide an agent with
additional reasoning capability in spatial and visual tasks.

Related Work
One of the key findings in mental imagery experiments is
that humans imagine objects using multiple representations
and mechanisms associated with perception (Kosslyn, et al.,
2006). For spatial and visual imagery, we assume there are
at least three distinct representations: (1) amodal symbolic,
(2) quantitative spatial, and (3) visual depictive. General
reasoning with each of these representations is a key

distinction between this work and others. The history of
using these representations in AI systems begins perhaps
with Gelernter’s (1959) geometry theorem prover and
Funt’s (1976) WHISPER system that reasoned with
quantitative and depictive representations respectively.
Some researchers, to include Glasgow and Papadias (1992)
and Barkowsky (2002), incorporated mental imagery
constraints in the design of their specific applications.

The CaMeRa model of Tabachneck-Schijf’s et al. (1997)
is perhaps the closest system related to this work. CaMeRa
uses symbolic, quantitative, and depictive representations
and includes visual short-term and long-term memories.
Whereas their shape representation is limited to algebraic
shapes (i.e. points and lines), we leave the type of object
open-ended. CaMeRa’s spatial memory is limited to an
object’s location while ignoring orientation, size, and
hierarchical composition (e.g. a car is composed of a frame,
four wheels, etc.). Our system uses these spatial properties,
providing significantly more reasoning capability.

Cognitive architectures have traditionally ignored
modality specific representations. ACT-R’s (Anderson,
2007) perceptual and motor systems focus on timing
predictions and resource constraints rather than their reuse
for reasoning. Some researchers have extended the
perception and motor capabilities of cognitive architectures
(e.g. see Best et al., 2002; Wray et al., 2005). Each
contribution effectively pushes the system closer to the
environment but requires ad-hoc, bolted-on components
tailored for specific domains. These approaches assume that
cognition abandons perceptual mechanisms after input
rather than using these mechanisms for problem solving.

Kurup and Chandrasekaran (2007) argue for general,
multi-modal architectures and augment Soar with
diagrammatic reasoning. They are non-committal as to
whether diagrams are quantitative or depictive. Their
current implementation uses strictly quantitative structures.
Key differences include their proposal for a single, working
memory containing both symbolic and diagrammatic
representations. We propose separate symbolic and
representation-specific short-term memories where
perceptual representations are not directly accessible to the
symbolic system. Whereas their diagrammatic system
constrains the specific types of objects to a point, curve, or

97

region, we leave the type of object open-ended to any shape
the agent experiences in the world or imagines by
composing known objects.

Wintermute and Laird (2008) extend Soar with a spatial
reasoning system that focuses on translating qualitative
predicates into quantitative representations and simulating
continuous motion—extending the framework described
here as it relates to spatial imagery. Gunzelmann and Lyon
(2007) propose extending ACT-R with specialized, spatial
processing that includes quantitative information. They do
not plan to incorporate depictive representations without
compelling evidence for their use. We hope to provide some
evidence and argue that all three representations are
necessary to achieve general functionality.

Experimental Environment
In previous work, Lathrop and Laird (2007) demonstrated
how extending Soar with quantitative spatial and visual
depictive representations provided an agent with capabilities
for recognizing implicit spatial and visual properties.
However, the results were limited to solving internally
represented problems. This paper extends those results to a
dynamic environment where the agent must interpret and act
on information from multiple internal and external sources.

The U.S. Army’s work in developing robotic scouts for
reconnaissance missions (Jaczkowski, 2002) motivates the
evaluation environment. In support of this effort, we built a
simulation modeling a section of two robotic scout vehicles
that must cooperate to maintain visual observation with an
approaching enemy (Figure1a). One scout, the section lead,
is a Soar agent, modeled with and without mental imagery
for evaluation purposes. The other, teammate, scout is
scripted. The section’s primary goal is to keep their
commander informed of the enemy’s movement by
periodically sending observation reports (through the lead)
of the enemy’s location and orientation. The agent cannot
observe its teammate because of terrain occlusions.
However, the teammate periodically sends messages
regarding its position. The teammate continuously scans the
area to its front (Figure 1b) and sends reports to the agent
when it observes the enemy. The teammate can reorient its
view in response to orders from the agent. The agent can
look at the environment (Figure 1c) or its map (Figure 1d).

To motivate the reasoning capabilities when using
multiple representations, consider how the agent makes
decisions in this domain. Typically, a scout follows these
steps after initial visual contact: (1) Deploy and report, (2)
analyze the situation, and (3) choose and execute a course of
action (U.S. Army 2002). Analysis involves reasoning about
friendly and enemy locations and orientations, terrain, and
obstacles. If the scout leader does not know the locations of
all expected enemy, then he might hypothesize where other
enemy entities are (Figure 1d). Note that the hypothesized
enemy in Figure 1d is not the same as the actual situation in
Figure 1a but rather an estimate based on the agent’s
knowledge of how the enemy typically fights.

Analysis involves visualizing the situation and mentally
simulating alternatives. Using spatial imagery, an agent can
imagine each observed entity’s map icon on its external
map. If the agent is confident in the information, it can
“write” it on the external map, in effect making it persist. As
information changes the agent updates the map, keeping its
perceived image of the situation up to date. Using the
external map as perceptual background, the agent can then
imagine key terrain (enemy goals), possible enemy paths, its
viewpoint, and its teammate’s viewpoint. Using visual
imagery to take advantage of explicit space representation in
a depiction, the agent can imagine what portion of those
viewpoints cover the possible enemy paths and then imagine
alternative courses of action by simulating different
viewpoints. Based on the analysis the agent decides if it
should reorient itself, its teammate, or both.

In summary, decision-making proceeds by combining
perceptual representations with task specific knowledge to
construct an imagined scene. Analysis emerges through the
manipulation of symbolic, quantitative, and depictive
representations. Retrieval of the resulting representations
provides new information to the agent that it uses to reason
and produce action in the environment.

(a) Actual situation (b) Teammate’s view

(c) Agent’s view (d) Agent’s perceived

map/imagined situation
Figure 1: Experimental Environment

Architecture
Soar and its Spatial-Visual Imagery (Soar+SVI) module are
the two major components in our system (Figure 2). Soar
encompasses the symbolic representation. SVI includes the
quantitative and depictive representations. It encapsulates
high-level visual perception and mental imagery processing.

Soar’s symbolic memories include a declarative, short-
term memory (STM) and a procedural, long-term memory
(LTM). The symbolic STM is a graph structure (Figure 2)

98

representing the agent’s current state. Some symbols may
represent an object (filled gray circle in Figure 2). These
“visual-object” symbols emerge from the current perception
or activation of a previously stored memory. They may be
associated with non-visual symbols that augment the object
with additional information (e.g., the object is an enemy
scout). The visual-object symbol may have properties
defining its explicit visual features and qualitative spatial
relationships with other objects. Procedural LTM is a set of
productions, some of which propose operators that a
decision procedure selects for application. The application
of an operator makes persistent changes to short-term
memory and may send commands to a motor system, or, in
SVI’s case, imagery processes. Processing occurs by
iteratively proposing, selecting, and applying operators.

Figure 2: Architectural overview with visual perceptual processing

Within SVI, the Visual Buffer (bottom of Figure 2) is a
depictive memory activated from bottom-up visual-
perception or top-down imagery processing. In contrast to
sentential symbols, space is inherent in the representation
and the encoding is strictly visual information. The
depiction as a whole represents shape, size, orientation,
location, and texture from a specific perspective.
Computationally, it is a set of 2D bitmaps with at least one
bitmap representing either the egocentrically perceived
scene or an imagined scene from a specific viewpoint. The
system creates additional bitmaps to support the processing.

The Object Map (right side of Figure 2) maintains the
quantitative spatial representation of objects in the currently
perceived or imagined scene by fixing an object’s location,
orientation, and size in space. The Object Map uses a scene-
graph data structure (Figure 3). The root node represents the
perceived or imagined scene and children nodes are salient,
visual objects. Figure 3 shows the number of visual objects
to be N where N is hypothesized to be four to five based on
working-memory capacity (Jonides et al., 2008).
Intermediate nodes represent an object’s composition and
contain translation, scaling, and rotation metrics to capture
spatial relationships between objects. Leaf nodes represent

shape (i.e. a three-dimensional mesh of vertices and indices)
and texture to support rendering a bitmap. The structure is a
graph because multiple leaf nodes may share shape and
texture (e.g. a shared wheel). A viewpoint facilitates the
generation of a depiction from a particular perspective.

Sentential, geometric algorithms are the basis for the
computational processing that infers knowledge from this
representation. The structure is sufficient for spatial
reasoning between convex objects and simulating dynamical
systems (Wintermute 2008). However, if reasoning requires
specific shape or visual properties, a depictive
representation is more appropriate.

Figure 3: Object Map’s scene-graph and viewpoint data structures

The remaining two memories in SVI are not associated

with a particular representation but support reasoning
indirectly. The Visual-Spatial STM (middle of Figure 2) is a
shared memory between Soar and SVI. It is hierarchical
with the root representing sets of extracted salient objects,
spatial relationships, and visual features applying to the
current scene. Each salient object may have subsequent
levels in the hierarchy with its own feature, object, and
spatial sets. Perceptual long-term memory (PLTM) is a
container of prototypical objects where each object is a
scene graph. A scene-graph in PLTM is distinct from the
Object Map as the graph is not an instance in the current
scene but rather a memory of an object’s shape, texture, and
spatial configuration without a fixed frame of reference.

Visual Perception
Our modeling of visual perception, to include the separation
between “what” and “where” pathways is theoretical. We
include it since psychological evidence indicates that mental
imagery and vision share similar mechanisms thereby
constraining the architectural design. Our ultimate goal is to
incorporate realistic perception in the architecture.

A Refresher process activates the Visual Buffer from
sensory stimulus (bottom right of Figure 2). Upon
activation, a “Saliency” Inspector marks relevant objects in
the current scene and creates a symbolic structure for each
salient object in VS-STM. Two parallel processes then
initiate a more detailed inspection of the Visual Buffer,
focusing on the marked objects. The “What” inspectors

…

…

…

Current-Scene
Object

Visual-Object-1 Visual-Object-2 Visual-Object-N

Visual-Object-2
A

Visual-Object-2
B

Visual-Object-2
C

Shape, Texture

Viewpoint

99

extract features in support of recognition by matching
features with shape and color in PLTM. Simultaneously, the
“Where” inspectors extract the location, orientation, and
size of the objects from the Visual Buffer and build the
quantitative spatial representation in the Object Map. Both
inspectors update the structures in VS-STM and symbolic
results are sent to Soar where operators associate the input
with existing knowledge (e.g. the object is an enemy).

Spatial Imagery
An agent uses spatial imagery by invoking an imagery
operator (top right of Figure 2). To construct a spatial
image, the agent can compose two visual-objects from
PLTM or add a visual-object from PLTM to the scene.
Specialized processing units within SVI respond to the
specific imagery command (Figure 4). The Constructor
receives the operator’s symbolic information and builds the
quantitative representation in the Object Map by combining
each object’s general shape from PLTM with qualitative
spatial knowledge from Soar. In the scout domain, the agent
continuously analyzes the situation by imagining the
friendly, enemy, and obstacle locations and orientations.

Figure 4: Mental imagery processes

The transform operator manipulates the Object Map’s

quantitative representation through its Manipulator (Figure
4). The manipulation may change the viewpoint or
transform (i.e. translation, rotation, scaling) a specific
object. In the scout domain, the agent dynamically updates
specific objects when observing (either visually or via a
teammate’s report) changes to spatial relationships. The
agent may also imagine different situations, effectively
simulating hypothesized scenarios, and infer the changed
spatial relationships. For example, the agent modifies the
orientation of imagined views to determine if its team can
improve coverage of enemy routes. When the agent or its
teammate loses visual contact with the enemy, the agent can
simulate movement with knowledge of a vehicle’s velocity.
From SVI’s perspective, the objects it is manipulating are
general—task knowledge remains encoded in Soar.

Visual Imagery
If a depictive representation is required (e.g. to determine if
the scout section has adequate visual coverage), the
generate operator (Figure 4) initiates processing. The
Refresher interprets the command and combines each
object’s specific shape and texture from PLTM with the
Object Map’s quantitative information to generate the
bitmap in the Visual Buffer. Generation may render some or
all of the visual objects in the Object Map and create one or
more bitmaps to support visual reasoning.

The VBManipulator transforms the images in the
VisualBuffer using either standard image processing (e.g.
edge detectors) or algorithms that take advantage of the
topological structure and color using pixel-level rewrites
(Furnas et al., 2000). Unlike sentential processing (e.g.
Gaussian filters), pixel-level rewrites take advantage of the
explicit topological structure and color of a bitmap. Similar
to a production system, there are a set of rules with a left-
hand side (LHS) and a right-hand side (RHS). Rather than
predicate symbols, however, the LHS conditions and RHS
actions are depictive representations that operate on the
shared image. The color and shape of each LHS depiction,
determines a match rather than the sentential structure.

Figure 5 illustrates an example of two depictive rules. The
top rule is a 1x2 rule stating, “If there is a black pixel
adjacent to a gray pixel then change the gray pixel to a
white pixel.” Similarly, the bottom rule is a 2x2 rule that
states, “If there is a black pixel diagonally adjacent to a gray
pixel then change the gray pixel to a white pixel.” The
asterisks represent wildcard values and a rule may specify
alternative rotations (90, 180, 270 degrees) for matching.
Each rule can have arbitrary shape and color and a set of
these rules can represent a high-level task in Soar (e.g. find-
enemy-path). Priorities enforce sequencing, and the
processing iterates over the image while there are matches.

Figure 5: Example pixel rewrite rules

A way for the agent to analyze its team’s position is to

imagine a hypothesized path from each enemy’s location to
key terrain (Figure 6). The analysis should take into account
the agent’s knowledge about the surrounding terrain and
known obstacles. An algorithmic solution translated into a
set of pixel rewrites is the following:

(1) Mark all known obstacles and impassable terrain
(known threshold values) with a color (yellow). Mark
all other pixels gray.

(2) Grow an iso-distance contour field of four colors
avoiding any previously marked, barriers (Figure 6a).

(3) Walk the contour field from source to sink, marking
the path along the way (Figure 6b).

100

After the imagined path(s) are marked, the agent can
generate each scout’s view to determine if there is
adequate coverage (Figure 7).

(a) Distance field flood (b) Path finding

Figure 6: Demonstration of pixel-level rewrites

Figure 7: Agent imagining coverage of an imagined enemy path

After constructing and manipulating the representations,

the agent can infer spatial and visual properties. The inspect
operator (Figure 4) provides the symbolic query. For
example, “what is the direction and distance between enemy
scout-1 and the key terrain in the east” or “how much of the
teammate’s view covers enemy-1’s hypothesized path
(Figure 7)?” The appropriate “What” or “Where” process
interprets the query and returns the symbolic results to Soar
as described for visual perception.

The reasoning uses abstract mechanisms rather than
problem specific annotations. For example, “how much of
the teammate’s view covers enemy-1’s hypothesized path?”
proceeds as follows:

(1) What is the topology between object-1 (the

teammate’s view) and object-2 (the
hypothesized path)? The inspector provides a
symbolic “overlaps” result and stores a shape
feature (shape-1) representing the overlap in
VS-STM (Figure 4).

(2) What is the scalar size (i.e. length) of shape-1?
SVI calculates and returns the size of shape-1.

Functional Evaluation
Extending a symbolic architecture with mental imagery
mechanisms provides an agent with functional capability
that the system cannot achieve without it. To evaluate this
claim, we created three agents modeling the lead scout. The
first agent (Soar+SVI) observes, analyzes, and decides on a
course of action by using symbolic, quantitative spatial, and
visual depictive representations. The second agent (Soar-
SVI) uses the same task knowledge as the first agent but
reasons using strictly symbolic representations and

processing in Soar. As a baseline, a third agent (Observer)
and its teammate simply observe to their front and send
reports without any attempt at re-positioning.

Figure 8: Measure of information over time

Figure 9: Number of reported observations

There are two evaluation metrics. The first is the amount

of information the commander receives on the enemy’s
location over time (Figure 8). The second metric is the
number of reported enemy observations (Figure 9). Each
reflects an average of 30 trials. In Figure 8, the x-axis is the
current time and the y-axis measures the amount of
information per unit time with 1.0 signaling perfect
information and –1.0 indicating no information. The
measure of information is an average of all three enemy
entities at simulation time, t, calculated as follows:

 where:

 (obsx,obsy) is the reported location of an entity at time, t and
(actx,acty) is the actual location of an entity at time, t

The agent receives a positive score for a given enemy if at
simulation time, t, a reported enemy’s location is within a
500 x 500 meter square area of the enemy’s actual location
at that time. Otherwise, the information score is negative for

101

with a minimum score of -1.0. The “Tracker” in Figure 8
illustrates the amount of information a scout team provides
if each scout observes one enemy at the beginning of the
simulation and then “tracks” that entity to the simulation’s
conclusion. Assuming no terrain occlusions, instantaneous
message passing, and the third enemy not in vicinity of the
tracked entities, the “Tracker” would receive an information
score of (1.0 + 1.0 - 1.0) / 3 = 0.33 for each time unit.

The results demonstrate that the Soar+SVI agent provides
more information upon initial contact (the slope of its line in
Figure 8 is steeper) and for a longer, sustained period. The
reason is that the Soar+SVI agent is able to reposition its
team more effectively as its analysis is more accurate. The
Soar-SVI agent often under or overestimates adjustments
resulting in the team missing critical observations.

On average, the Soar+SVI agent sends more observation
reports to the commander (Figure 9) indicating that the team
has detected the enemy more frequently. The number of
observation reports also shows that the agent is able to
perform other cognitive functions (observe, send and
receive reports) indicating that imagery is working in
conjunction with the entire cognitive system.

Conclusion
In this paper, we demonstrate that augmenting a cognitive
architecture with mental imagery mechanisms provides an
agent with additional, task-independent capability. By
combining symbolic, quantitative, and depictive
representations, an agent improves its ability to reason in
spatially and visually demanding environments. Our future
work includes expanding individual architectural
components—specifically by pushing the architecture closer
to sensory input. To investigate this in more depth, we are
exploring robotics to determine how cognitive architectures
augmented with mental imagery can provide a robot with
higher-level reasoning capabilities. Paramount in this
exploration is an understanding of how our perceptual
theory incorporates typical robotic sensors (e.g. laser,
stereoscopic video, global positioning system, etc.) and how
imagery may prime robotic effectors (motor imagery).

References
Anderson, J. R. (2007). How Can the Human Mind Occur in

the Physical Universe? New York, NY: Oxford University
Press.

Barkowsky, T. (2002). Mental representation and processing
of geographic knowledge - A computational approach.
Berlin: Springer-Verlag.

Barsalou, L. W. (1999). Perceptual symbol systems.
Behavioral and Brain Sciences, 22, 577-660.

Best, B.J., Lebiere, C., and Scarpinatto, C.K. (2002). A Model
of Synthetic Opponents in MOUT Training Simulations
using the ACT-R cognitive architecture. In Proceedings of
the Eleventh Conference on Computer Generated Forces
and Behavior Representation). Orlando, FL.

Chandrasekaran, B. (2006). Multimodal Cognitive
Architecture: Making Perception More Central to
Intelligent Behavior. AAAI National Conference on
Artificial Intelligence, Boston, MA.

Funt, B.V. (1976). “WHISPER: A computer implementation
using analogues in reasoning,” PhD Thesis, The University
of British Columbia, Vancouver, BC Canada.

Furnas, G., Qu,Y., Shrivastava, S., and Peters, G. (2000). The
Use of Intermediate Graphical Constructions in Problem
Solving with Dynamic, Pixel-Level Diagrams. In
Proceedings of the First International Conference on the
Theory and Application of Diagrams: Diagrams 2000,
Edinburgh, Scotland, U.K.

Glasgow, J., and Papadias, D. (1992). Computational imagery.
Cognitive Science, 16, 355-394.

Gelernter, H. (1959). Realization of a geometry theorem-
proving machine. Paper presented at the International
Conference on Information Processing, Unesco, Paris.

Gunzelmann, G., and Lyon, D. R. (2007). Mechanisms of
human spatial competence. In T. Barkowsky, M. Knauff, G.
Ligozat, & D. Montello (Eds.), Spatial Cognition V:
Reasoning, Action, Interaction. Lecture Notes in Artificial
Intelligence #4387 (pp. 288-307). Berlin, Germany:
Springer-Verlag.

Jaczkowski, J. J. (2002). Robotic technology integration for
army ground vehicles. Aerospace and Electronic Systems
Magazine, 17, 20-25.

Jonides, J., Lewis, R.L., Nee, D.E., Lustig, C.A., Berman,
M.G., and Moore, K.S. (2008). The Mind and Brain of
Short-Term Memory. Annual Review of Psychology, 59,
193-224.

Kosslyn, S. M., Thompson, W. L., and Ganis, G. (2006). The
Case for Mental Imagery. New York, New York: Oxford
University Press.

Kurup, U., and Chandrasekaran, B. (2007). Modeling
Memories of Large-scale Space Using a Bimodal Cognitive
Architecture. In Proceedings of the Eighth International
Conference on Cognitive Modeling, Ann Arbor, MI.

Laird, J.E. (2008). Extending the Soar Cognitive Architecture,
Artificial General Intelligence Conference, 2008.

Lathrop, S. D., and Laird, J. E. (2007). Towards Incorporating
Visual Imagery into a Cognitive Architecture. In
Proceedings of the Eighth International Conference on
Cognitive Modeling, Ann Arbor, MI.

Tabachneck-Schijf, H.J.M., Leonardo, A.M., and Simon, H.A.
(1997). CaMeRa: A Computational Model of Multiple
Representations. Cognitive Science, 21(3), 305-350.

U.S. Army. (2002). Field Manual 3-20.98, Reconnaissance
Platoon. Department of the Army, Washington D.C.

Wintermute, S. and Laird, J. E. (2008). Bimodal Spatial
Reasoning with Continuous Motion. Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI-08), Chicago, Illinois

Wray, R. E., Laird, J.E., Nuxoll, A., Stokes, D., and Kerfoot,
A. (2005). Synthetic Adversaries for Urban Combat
Training. AI Magazine, 26(3), 82-92.

102

A Comparative Approach to Understanding General Intelligence:
Predicting Cognitive Performance in an Open-ended Dynamic Task

Christian Lebiere1, Cleotilde Gonzalez2 and Walter Warwick3

1 Psychology Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213
2 Department of Social and Decision Sciences, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213

 3 Alion Science and Technology, 4949 Pearl East Circle, Boulder, CO 80401
cl@cmu.edu, coty@cmu.edu, wwarwick@alionscience.com

Abstract
The evaluation of an AGI system can take many forms.
There is a long tradition in Artificial Intelligence (AI) of
competitions focused on key challenges. A similar, but less
celebrated trend has emerged in computational cognitive
modeling, that of model comparison. As with AI
competitions, model comparisons invite the development of
different computational cognitive models on a well-defined
task. However, unlike AI where the goal is to provide the
maximum level of functionality up to and exceeding human
capabilities, the goal of model comparisons is to simulate
human performance. Usually, goodness-of-fit measures are
calculated for the various models. Also unlike AI
competitions where the best performer is declared the
winner, model comparisons center on understanding in
some detail how the different modeling “architectures” have
been applied to the common task. In this paper we
announce a new model comparison effort that will
illuminate the general features of cognitive architectures as
they are applied to control problems in dynamic
environments. We begin by briefly describing the task to be
modeled, our motivation for selecting that task and what we
expect the comparison to reveal. Next, we describe the
programmatic details of the comparison, including a quick
survey of the requirements for accessing, downloading and
connecting different models to the simulated task
environment. We conclude with remarks on the general
value in this and other model comparisons for advancing the
science of AGI development.

Introduction

The evaluation of an AGI system can take many forms.
Starting with Turing (e.g., Turing, 1950), the idea that
artificial intelligence might be “tested” has led quite
naturally to a tradition of competition in AI in which
various systems are pitted against each other in the
performance of a well-specified task. Among the most
famous include the Friedkin prize for a machine chess
player that could beat the human chess champion (Hsu,
2002), the robocup soccer competition for autonomous
robots (Asada et al., 1999) and the DARPA Grand
Challenge race across the desert (Thrun et al., 2006). A
similar, but less celebrated trend has emerged in
computational cognitive modeling, that of model
comparison. As with AI competitions, model comparisons

invite the development of different computational
cognitive models on a well-defined task. However, unlike
AI where the goal is to provide the maximum level of
functionality up to and exceeding human capabilities, the
goal of model comparisons is to most closely simulate
human performance. Thus, usually, goodness-of-fit
measures are calculated for the various models. Also,
unlike AI competitions where the best performer is
declared the winner, model comparisons center on
understanding in some detail how the different modeling
“architectures” have been applied to the common task. In
this regard model comparisons seek to illuminate general
features of computational approaches to cognition rather
than identify a single system that meets a standard of
excellence on a narrowly defined task (Newell, 1990).

In this paper we announce a new model comparison effort
that will illuminate the general features of cognitive
architectures as they are applied to control problems in
dynamic environments. We begin by briefly describing the
general requirements of a model comparison. Next, we
describe the task to be modeled, our motivation for
selecting that task and what we expect the comparison to
reveal. We then describe the programmatic details of the
comparison, including a quick survey of the requirements
for accessing, downloading and connecting different
models to the simulated task environment. We conclude
with remarks on the general value we see in this and other
model comparison for advancing the science of AGI
development. Although everyone loves a winner, the real
value of a model comparison is found in its methodological
orientation. Indeed, given the inherent flexibility of
computational abstractions, understanding the workings of
a particular cognitive system, much less judging its
usefulness or “correctness,” is not easily done in isolation.

General Requirements of a Model
Comparison

We have gained direct experience from a number of
modeling comparisons projects, including the AFOSR
AMBR modeling comparison (Gluck & Pew, 2005) and

103

the NASA Human Error Modeling comparison (Foyle &
Hooey, 2008). We have also entered cognitive models into
multi-agent competitions (Billings, 2000; Erev et al,
submitted) and organized symposia featuring competition
between cognitive models as well as mixed human-model
competitions (Lebiere & Bothell, 2004; Warwick,
Allender, Strater and Yen, 2008). From these endeavors,
we have gained an understanding of the required (and
undesirable) characteristics of a task for such projects.

While previous modeling comparison projects did illustrate
the capabilities of some modeling frameworks, we found
that the tasks were often ill-suited for modeling
comparison for a number of reasons:

• The task demands a considerable effort just to
model the details of task domain itself (and
sometimes, more practically, to connect the model
to the task simulation itself). This often results in
a model whose match to the data primarily
reflects the structure and idiosyncrasies of the task
domain itself rather than the underlying cognitive
mechanisms. While this task analysis and
knowledge engineering process is not without
merit, it does not serve the primary purpose of a
model comparison effort, which is to shed light
upon the merits of the respective modeling
frameworks rather than the cleverness and
diligence of their users.

• The task is defined too narrowly, especially with
regard to the data available for model fitting. If
the task does not require model functionality well
beyond the conditions for which human data is
available, then the comparison effort can be
gamed by simply expanding effort to parameterize
and optimize the model to the data available. This
kind of task puts frameworks that emphasize
constrained, principled functionality at a
disadvantage over those that permit arbitrary
customization and again serves poorly the goals of
a modeling comparison.

• The task is too specialized, emphasizing a single
aspect, characteristic or mechanism of cognition.
While this type of task might be quite suitable for
traditional experimentation, it does not quite the
kind of broad, general and integrated cognitive
capabilities required of a general intelligence
framework.

• No common simulation or evaluation framework is
provided. While this allows each team to focus
on the aspects of the task that are most amenable
to their framework, it also makes direct
comparison between models and results all but
impossible.

• No suitably comparable human data is available.
While a purely functional evaluation of the

models is still possible, this biases the effort
toward a pure competition, which emphasizes raw
functionality at the expense of cognitive fidelity.

This experience has taught us that the ideal task for a
model comparison is:

• lightweight, to limit the overhead of integration
and the task analysis and knowledge engineering
requirements

• fast, to allow the efficient collection of large
numbers of Monte Carlo runs

• open-ended, to discourage over-parameterization
and over-engineering of the model and test its
generalization over a broad range of situations

• dynamic, to explore emergent behavior that is not
predictable from the task specification

• simple, to engage basic cognitive mechanisms in a
direct and fundamental way

• tractable, to encourage a direct connect between
model and behavioral data

Like other enduring competitive benchmarks of human
cognition that have kept on driving the state of the art in
some fields (e.g. Robocup), the key is to find the right
combination of simplicity and emergent complexity. We
believe the task we have selected, described in detail
below, meets these requirements and strikes the right
combination between simplicity and complexity. In fact,
in our own pilot studies, we have encountered significant
challenges in developing models of the task that could
account for even the basic results of the data and our
models have consistently surprised us by their emergent
behavior, and even minor changes in task representation
have had deep consequences for model behavior (Lebiere,
Gonzalez, & Warwick, under review). We expect the same
will be true for other participants in this effort.

The Dynamic Stocks and Flows Task
In dynamic systems, complexity has often been equated
with the number of elements to process at a given time:
goals, alternatives, effects and processes (Brehmer &
Allard, 1991; Dorner, 1987). Researchers have
investigated the problems and errors that people make
while dealing with this type of complexity in dynamic
systems to foster our understanding of decision making.
However, dynamic systems manifest another type of
complexity that is less well known, that is dynamic
complexity (Diehl & Sterman, 1995). This type of
complexity does not depend on the number of elements to
process in a task. In fact, the underlying task could be
superficially simple depending on a single goal and one
element to manage and make decisions. Dynamic
complexity follows from the combinatorial relationships
that arise from the interactions of even a few variables over
time.

104

Gonzalez & Dutt (2007) and Dutt & Gonzalez (2007) have
investigated human performance in dynamically complex
environments using a simple simulation called the dynamic
stocks and flows (DSF). DSF (see figure 1) is an
interactive learning tool that represents a simple dynamic
system consisting of a single stock in which the rate of
accumulation is a function of time; inflows increase the
level of stock, and outflows decrease the level of stock.
The goal in DSF is to maintain the stock within an
acceptable range over time. The stock is influenced by
external flows (External Inflow and Outflow) that are out
of the user’s control, and by user flows (User Inflow and
Outflow) that the player of DSF decides on in every time
period.

Figure 1: DSF Interface

A stock, inflows and outflows are the basic elements of
every dynamic task, at the individual, organizational, and
global levels (for a discussion of the generality of this
structure in complex dynamic systems, see Cronin,
Gonzalez, & Sterman, 2008). For example, the structure of
the task discussed here, is currently being used to
investigate the problems of control of the atmospheric
CO2, believed to lead to Global Warming (Dutt &
Gonzalez, 2008).

Despite its seeming simplicity, controlling the DSF is very
difficult for most subjects (Gonzalez & Dutt, 2007; Dutt &
Gonzalez, 2007). For example, Cronin, Gonzalez &
Sterman (2008) found that in a sample of highly educated
graduate students with extensive technical training nearly
half were unable to predict the qualitative path of a stock
given very simple patterns for its inflow and outflow.
Subject learning was slow and ultimately sub-optimal even
in the simple conditions of the task, for example, that of
controlling the system due to an increasing inflow and zero
outflow (Gonzalez & Dutt, 2007; Dutt & Gonzalez, 2007).
Moreover, Cronin and Gonzalez (2007) presented subjects
with a series of manipulations related to the form of
information display, context of the task, incentives and
others factors intended to help the subject understand the

task, demonstrating that the difficulty in understanding the
DSF is not due to lack of information or the form of
information presentation.

For all the difficulty subjects have controlling DSF, the
task environment itself is easily modeled and extended.
The state of the task environment is completely determined
by the functional relationship among inflow, outflow, user
action and stock, while the functions themselves can be
modified in direct ways. For example, stochastic “noise”
can be added to the functions that control environmental
inflow and outflow to explore the effects of uncertainty;
the addition of different or variable delays between user
actions and outcomes changes the nature of the dynamic
complexity; finally, the task lends itself to the exploration
of team or adversarial performance simply by allowing
another agent to control the environmental inputs and
outputs.

Participating in the DSF Model Comparison

Participation in this model comparison begins with a visit
to the DSF Model Comparison website:
http://www.cmu.edu/ddmlab/ModelDSF. There, potential
participants will be asked to register for the competition.
Registration is free, but is required so that we can plan to
allocate adequate resources to the evaluation of the
participants’ models (as described below).

At the website, participants will find a more detailed
description of the DSF task and a free downloadable
version of the task environment. The DSF task
environment requires a Windows platform and can be run
in two modes. First, the DSF can be run as a live
experiment so that participants can interact with exactly the
same task environment the subjects used in the
experiments. In this way, modelers can gain hands-on
experience with the task and use this experience to inform
the development of their own models. Second, the DSF
environment can be run as a constructive simulation,
without the user interface, in a faster-than-real time mode
with the participants’ computational models interacting
directly with the task environment.

The DSF uses a TCP/IP socket protocol to communicate
with external models. Details about the “client”
requirements and the communication syntax will be
available on the website, along with example software
code for connecting to the DSF.

Once participants have established a connection to the DSF
environment, we invite them to calibrate their models
running against the “training” protocols and comparing
model performance against human performance data. Both
the training protocols and data will be available from the
website. In this way, participants will be able to gauge

105

whether their models are capable of simulating the basic
effects seen in human control of the DSF task. Our past
experience suggests that this will lead to an iterative
development process where models are continually refined
as they are run under different experimental protocols and
against different data sets.

Model comparison begins only after participants are
satisfied with the performance they have achieved on the
training data. At that point, participants will submit
executable version of their model through the website to be
run against “transfer” protocols. As we indicated above,
the DSF task supports several interesting variants. We are
currently running pilot studies with human subjects to
identify robust effects under these various conditions. The
choice of specific transfer conditions will be entirely at our
discretion and submitted models will be run under these
conditions as-is.

Our goal for this blind evaluation under the transfer
condition is not to hamstring participants, but to see how
well their models generalize without the benefit of
continual tweaking or tuning. Assessing robustness under
the transfer condition is an important factor to consider
when we investigate the invariance of architectural
approaches. That said, goodness-of-fit under the training
and transfer conditions is not the only factor will use in our
comparison effort. In addition to submitting executable
versions of their models, we will require participants to
submit written accounts of their development efforts and
detailed explanations of the mechanisms their models
implement. As we discuss below, this is where model
comparisons bear the most fruit. Again, based on our past
experience, we recognize that it is difficult to explain the
workings of a cognitive model to the uninitiated, but it is
exactly that level of detail that is required to understand
what has been accomplished.

On the basis of both model performance and written
explanation, we will select three participants to present
their work at the 2009 International Conference on
Cognitive Modeling
(http://web.mac.com/howesa/Site/ICCM_09.html). We
will also cover basic travel expense to that conference.
Finally, participants will be invited to prepare manuscripts
for publication in a Special Issue of the Journal for
Cognitive Systems Research
(http://www.sts.rpi.edu/~rsun/journal.html) devoted to the
topic of model comparison.

Model Comparison as Science
The call for the development of an artificial general
intelligence is meant to mark a turn away from the
development of “narrow AI.” From that perspective, a
model comparison might seem to be an unwelcome return
to the development of one-off systems engineered to excel

only on well-specified highly-constrained tasks. It would
be a mistake, however, to view the outcome of a model
comparison as merely a matter of identifying the approach
that produces the best fit to the human performance data on
a specific task. Rather, a goodness-of-fit measure is only a
minimum standard for the more detailed consideration of
the computational mechanisms that lead to that fit. Insofar
as these mechanisms implement invariant structures, they
shed light on the general nature of cognition. But the devil
is in the details; understanding whether an architecture
actually constrains the modeling approach and thereby
shed some insight into the general features of cognition, or
whether it merely disguises the skill of the clever modeler
is never easy.

This difficulty is compounded by several other factors.
First, as Roberts and Pashler (2000) have pointed out, good
human performance data are hard to come by and it is
harder still to see these data, by themselves, can undergird
an experimentum crucis among different modeling
approaches. Simply put, even good fits to good data will
underdetermine the choices of architecture. This is not
merely a problem of loose data, but is also due to one of
the defining insights of computation, that of Turing
equivalence and the related notion in the philosophy of
mind of multiple realizability. The fact that any algorithm
can be implemented by any number of Turing-equivalent
mechanisms all but guarantees some degree of
underdetermination when we consider the relationship
between model and theory. Unless one is willing to
engage in a question-begging argument about the
computational nature of mind, Turing equivalence does not
guarantee theoretical equivalence when it comes to
cognitive modeling and different computational
mechanisms will come with different theoretical
implications.

While some might argue that this latter problem can be
addressed by fixing the appropriate level of abstraction this
otherwise sound advice has had the practical effect of
allowing the modeler to decide what the appropriate
relationship is between model and theory. Moreover,
proposing an abstraction hierarchy, no matter how elegant
or appealing, is not the same thing as discovering a natural
kind, and it remains an empirical endeavor to establish
whether the abstractions we impose really carve the nature
of cognition at the joints. Thus, correspondence is too
often asserted by fiat, and notions like “working memory,”
“situation awareness” “problem detection” and such are
reduced to simple computational mechanisms without any
serious theoretical consideration. Those concerned about
the implementation of a general intelligence are left to
wonder whether if-then-else is all there is to it.

A number of tests for a general theory of intelligence have
been advanced (e.g. Cohen, 2005; Selman et al, 1996;

106

Anderson & Lebiere, 2003). A key common aspect is to
enforce generality in approach, in order to prevent special-
purpose optimization to narrow tasks and force integration
of capabilities. One can view that strategy as effectively
overwhelming the degrees of freedom in the architecture
with converging constraints in the data. However, precise
computational specifications of those tests have to tread a
tight rope between requiring unreasonable amounts of
effort in modeling broad and complex tasks and falling
back into narrow task specifications that will again favor
engineered, optimized approaches. This model
competition is our attempt at testing general cognitive
capabilities in an open-ended task while offering low
barriers to entry.

We see model comparison as one solution to these
problems. Model comparison is not just a practical
solution for understanding how different systems work, but
a theoretical prescription for identifying invariant
structures among different approaches, seeing how they
are, in fact, applied to specific problems and a way of
seeing past the buzzwords to the mechanism that might
finally illuminate what is needed to realize an artificial
general intelligence.

References
Anderson, J. R. & Lebiere, C. L. 2003. The Newell test for
a theory of cognition. Behavioral & Brain Sciences 26,
587-637.
Asada, M., Kitano, H., Noda, I., and Veloso, M. 1999.
RoboCup: Today and tomorrow – What we have have
learned. Artificial Intelligence, 110:193–214.
Brehmer, B., & Allard, R. 1991. Dynamic decision-
making: The effects of task complexity and feedback
delay. In J. Rasmussen, B. Brehmer & J. Leplat (Eds.),
Distributed decision making: Cognitive models of
cooperative work (pp. 319-334). Chichester: Wiley.
Billings, D. 2000. The First International RoShamBo
Programming Competition. ICGA Journal, Vol. 23, No. 1,
pp. 42-50.
Cohen, P. 2005. If Not Turing’s Test, Then What? AI
Magazine 26(4): 61–67.
Cronin, M., & Gonzalez, C. 2007. Understanding the
building blocks of dynamic systems. System Dynamics
Review. 23(1), 1-17.
Cronin, M., Gonzalez, C., & Sterman, J. D. 2008. Why
don't well-educated adults understand accumulation? A
challenge to researchers, educators and citizens. In press.
Organizational Behavior and Human Decision Processes.
Diehl, E., & Sterman, J. D. 1995. Effects of feedback
complexity on dynamic decision-making. Organizational
Behavior and Human Decision Processes, 62(2), 198-215.
Dutt, V. & Gonzalez, C. 2008. Human Perceptions of
Climate Change. The 26th International Conference of the
System Dynamics Society. (pp.). Athens, Greece: System
Dynamics Society.

Dutt, V. & Gonzalez, C. 2007. Slope of Inflow Impacts
Dynamic Decision Making. The 25th International
Conference of the System Dynamics Society. (pp. 79).
Boston, MA: System Dynamics Society.
Erev, I., Ert, E., Roth, A. E., Haruvy, E., Herzog, S., Hau,
R., Hertwig, R., Stewart, T., West, R., & Lebiere, C.
(submitted). A choice prediction competition, for choices
from experience and from description. Journal of
Behavioral Decision Making.
Foyle, D. & Hooey, B. 2008. Human Performance
Modeling in Aviation. Mahwah, NJ: Erlbaum.
Gluck, K, & Pew, R. 2005. Modeling Human Behavior
with Integrated Cognitive Architectures. Mahwah, NJ:
Erlbaum.
Gonzalez, C., & Dutt, V. 2007. Learning to control a
dynamic task: A system dynamics cognitive model of the
slope effect. In Proceedings of the 8th International
Conference on Cognitive Modeling, Ann Arbor, MI.
Hsu, F-H. 2002. Behind Deep Blue: Building the Computer
that Defeated the World Chess Champion. Princeton
University Press.
Lebiere, C., & Bothell, D. 2004. Competitive Modeling
Symposium: PokerBot World Series. In Proceedings of
the Sixth International Conference on Cognitive Modeling,
Pp. 32-32.
Lebiere, C., Gonzalez, C., & Warwick, W. (submitted).
Emergent Complexity in a Dynamic Control Task: Model
Comparison.
Newell, A. 1990. Unified Theories of Cognition. Harvard
University Press.
Roberts, S. and Pashler, H. 2000. “How Persuasive Is a
Good Fit? A Comment on Theory testing.” Psychological
Review 107(2): pp358-367.
Schunn, C. D. & Wallach, D. 2001. Evaluating goodness-
of-fit in comparisons of models to data. Online
manuscript. http://lrdc.pitt.edu/schunn/gof/index.html
Selman, B., Brooks, R., Dean, T., Horvitz, E., Mitchell, T.,
& Nilsson, N. 1996. Challenge problems for artificial
intelligence. In Proceedings of the 13th Natl. Conf. on
Artificial Intelligence (AAAI-96), Portland, OR, pp. 193-
224.
Thrun, S. et al. 2006. Stanley, the robot that won the
DARPA Grand Challenge. Journal of Field Robotics,
23(9), 661–692.
Turing, A. 1950. Computing Machinery and Intelligence,
Mind LIX (236): 433–460.
Warwick, W., Allender, L., Strater, L., & Yen, J. 2008.
AMBR Redux: Another Take on Model Comparison.
Symposium given at the Seventeenth Conference on
Behavior Representation and Simulation. Providence, RI.

107

Incorporating Planning and Reasoning into a Self-Motivated,
Communicative Agent

Daphne Liu and Lenhart Schubert
Department of Computer Science

University of Rochester
Rochester, NY USA

Abstract

Most work on self-motivated agents has focused on ac-
quiring utility-optimizing mappings from states to ac-
tions. But such mappings do not allow for explicit, rea-
soned anticipation and planned achievement of future
states and rewards, based on symbolic knowledge about
the environment and about the consequences of the
agent’s own behavior. In essence, such agents can only
behave reflexively, rather than reflectively. Conversely,
planning and reasoning have been viewed within AI as
geared towards satisfaction of explicitly specified user
goals, without consideration of the long-range utility
of the planner/reasoner’s choices. We take a step here
towards endowing a self-motivated, utility-optimizing
agent with reasoning and planning abilities, and show
that such an agent benefits both from its knowledge
about itself and its environment, and from exploiting
opportunities as it goes. Our simulated simple agent
can cope with unanticipated environmental events and
can communicate with the user or with other agents.

Introduction
There is rather broad agreement in AI that general
human-like intelligent behavior, apart from lower-level
activities like perception and reflexes, is guided by plan-
ning and reasoning. However, planning and reasoning
have traditionally been understood as aimed at the ful-
fillment of specified user goals, rather than as inter-
nally motivated by consideration of the long-range util-
ity of the planner/reasoner’s choices. Conversely, re-
search on self-motivated agents has focused almost ex-
clusively on acquiring utility-optimizing mappings from
states to actions, without reasoned anticipation and
planned attainment of future states and rewards based
on symbolic knowledge about the environment and con-
sequences of the agent’s own behavior. These observa-
tions have motivated our work on explicit self-awareness
(Sch05) and more thoughtful self-motivation in agents.

Here we present a self-aware and self-motivated agent
that thinks ahead, plans and reasons deliberately, and
acts reflectively, both by drawing on knowledge about
itself and its environment and by seizing opportunities

Copyright c© 2009, The Second Conference on Artificial
General Intelligence (AGI-09.org). All rights reserved.

to optimize its utility. As an initial step towards a full
conversation agent, our simple agent can communicate
with the user or with other agents in addition to cop-
ing with unforeseen environmental events while acting
opportunistically.

In the following sections, we discuss the notions
of explicit self-awareness (Sch05) and thoughtful self-
motivation, as well as how they are realized in our sys-
tem. Then we outline our system and describe how
our agent benefits from self-awareness, thoughtful self-
motivation, and opportunistic choices. We conclude
with a summary and a discussion of future work.

Explicit Self-Awareness
Explicit self-awareness was characterized by Schubert
(Sch05) as being both human-like and explicit. Specif-
ically, it is human-like in that an explicitly self-aware
agent must have a well-elaborated human-like model
of the world, including a model of itself and its rela-
tionships to the world. The self-model encompasses its
beliefs, desires, intentions, knowledge, abilities, auto-
biography, the current situation, etc.; in addition, the
agent must be capable of goal- and utility-directed rea-
soning and planning.

In addition to prescribing the aforementioned human-
like capabilities, explicit self-awareness is explicit in
three respects. First, an agent’s representation of self-
knowledge must be amenable to self-observation and
use by the agent (and for engineering reasons, brows-
able and comprehensible to the designer). Second, ex-
plicit self-awareness must be conveyable by the agent,
through language or other modalities. Third, the
agent’s self-knowledge must be amenable to inferences
in conjunction with world knowledge.

Schubert (Sch05) enumerated reasons motivating the
need for explicit self-awareness. First, given its boot-
strapping potential with respect to meta-control, error
recovery, autoepistemic reasoning, and learning of skills
or facts, explicit self-awareness would help expand the
frontiers of AI. Moreover, an explicitly self-aware agent
can interact with human users in a transparent, nat-
ural, and engaging manner by having a shared con-
text. Lastly, operational, explicitly self-aware agents
can serve as exemplars of entities whose internal ba-

108

sis for self-awareness can be analyzed by consciousness
theorists wishing to better understand self-awareness.

For additional discussions of explicit self-awareness,
see (MS05; MS07; MS08) and (Liu08). The last elabo-
rates on the contrast with other (weaker) notions of self-
awareness as exhibited by self-monitoring agents (e.g.,
the metacognitive loop of Anderson and Perlis (AP05)),
self-explaining agents (e.g., SHRDLU by Winograd
(Win71)), global workspace systems (e.g., the oppor-
tunistic planning model by Hayes-Roth and Hayes-Roth
(HRHR79)), and adaptive and robust goal-directed sys-
tems (e.g., an antibody system combatting viral intru-
sions). These conceptions of self-awareness either do
not assume a self-model, or do not assume integration
the self-model into general reasoning mechanisms.

Our conception of self-awareness has much in com-
mon with that of McCarthy, who proposes a formaliza-
tion in terms of a mental situation calculus (McC95).
He postulates that a machine must declaratively repre-
sent its mental states in order to introspect – observe
and reason about its mental states, including beliefs,
desires, intentions, knowledge, abilities, and conscious-
ness. Schubert’s proposal (Sch05) further specifies the
knowledge representation and reasoning requirements
for explicit self-awareness. In addition to a basic log-
ical framework, these requirements include logical for-
mulations of events, situations, attitudes, autoepistemic
inferences, generic knowledge, and various metasyntac-
tic devices such as axiom schemas, knowledge catego-
rization, knowing or deriving a value, and experience
summarization.

Our agent, dubbed ME for Motivated Explorer, to
some extent meets the requirements for explicit self-
awareness. ME knows specific facts about itself and
the current situation, expressed as ground predications,
as well as possessing general knowledge in the form of
Horn-like clauses (but also allowing for reified propo-
sitions and questions). In effect, ME has a self-model
that relates it to its simulated world and potentially
the user. ME’s knowledge of the current situation
is initialized with its initial location, its possessions,
geographical knowledge about the world, the current
state facts about itself, and its propositional attitudes.
For example, facts (book book5), (owns ME book5),
(knows ME (that (likes Grunt book5))), and
(knows ME (whether (readable book5))) in ME’s
knowledge base specify that ME owns the book book5,
knows whether book5 is readable, and knows that entity
Grunt likes book5.

ME operates according to a plan of actions to be
carried out, which ME dynamically modifies, evalu-
ates for expected cumulative utility, and partially exe-
cutes. Specifically, ME thinks ahead into the future and
chooses to execute a seemingly best action. Such an ac-
tion is one that constitutes the first action in some plan
(with a limited horizon) that is judged to be executable
from the current state, and in addition is anticipated
to yield the highest cumulative utility among all such
plans. Both the contemplated actions and the states

they are expected to lead to can contribute positively
or negatively to the anticipated utility of a plan. As
actions are performed, ME’s knowledge base, as well as
the world state, will evolve accordingly. For instance,
when ME obtains a book, the effect will be that ME
has the book; this fact will enter ME’s knowledge base,
and as a result it will know that it has the book.

ME is introspective in three key respects. First, ME
has knowledge of what operators it can invoke and what
goals it can readily achieve in a given state. Second,
ME can introspect about what it knows and doesn’t
know, and can handle propositional attitudes. Third,
when ME performs an action, this is recorded in ME’s
history list of all actions and exogenous events that have
occurred thus far in the world. ME’s history list and
knowledge base are both open to introspection, enabling
ME to engage in more interesting question-answering
with the human user and with other agents.

In a limited way, ME also meets the reasoning and
communication requirements for explicitly self-aware
agents. Apart from its ability to plan, it can also rea-
son. In any given state, it performs bounded forward
inference based on all of its current factual knowledge
and all of its general quantified knowledge. One current
limitation is that ME is excessively “skeptical”, in the
sense that it presumes to be false any ground predica-
tion that it cannot establish. Conversely, ME depends
on a “commonsense inertia” assumption that whatever
was true in the past and has not observably become
false remains true.

Thoughtful Self-Motivation
A dynamic world poses three main types of challenges
to a planning agent; namely, unexpected changes can
arise in the form of unexpected action failures, unex-
pected threats, and unexpected serendipitous opportu-
nities. In essence, these unexpected eventualities are
due to the agent’s incomplete or partial knowledge of
the world. Thus the agent is necessarily confronted with
the qualification and ramifications problems, that is, it
simply does not know all the conditions for an action
to succeed or all the possible consequences of an action,
and so may experience unexpected outcomes. This is
aggravated by the possibility of unpredictable exoge-
nous events such as rain and fire. In the face of such
indeterminacy, it is important that the agent act op-
portunistically in order to recover from (unexpected)
failures, avoid (unexpected) threats, and pursue (unex-
pected) favorable opportunities in an appropriate and
timely manner.

ME’s opportunistic behavior is the byproduct of its
constant, step-by-step striving towards maximum cu-
mulative utility. For instance, suppose ME chooses to
walk from home to school as that seems to be a best
action to take. While walking from home to school, it
may encounter a fire that makes the road unnavigable,
at which point ME, undeterred, will do another look-
ahead into the future to select a best next action to
take. Or, while walking from home to school, ME may

109

see an unclaimed ten-dollar bill along the way, at which
point it may pocket it if it finds doing so sufficiently
pleasing (i.e., if doing so turns out to be the first step
of the (cumulatively) most promising course of action).

ME is self-motivated in the sense that it has its own
metrics of rewards (and penalties), and is driven by
the “desire” to maximize cumulative rewards, rather
than by some particular symbolic goal assigned to it,
and to be pursued at all costs. Nonetheless, it pursues
goals, to the extent that those goals promise high re-
turns. ME’s self-motivation is thoughtful, because of its
grounding in reasoned look-ahead and evaluation. (De-
tails concerning the look-ahead scheme are given in the
following section.) Such deliberate self-motivation dif-
fers importantly from the impulsive self-motivation in-
herent in behavioral robots and reinforcement-learning
agents, as most commonly understood. Broadly, such
an agent functions in accord with a (preprogrammed
or learned) policy that maps states of the world to the
actions the agent should take in those states in order
to maximize some overall reward criterion. However,
neither the policy, nor the search for it, is guided by
reasoning about future actions and situations, but in-
stead both depend on the current state alone, and any
past experience associated with it. In fact, reasoning
typically is not an option, because states are typically
not represented by symbolic descriptions, or in any case
are not amenable to application of general planning and
inference methods. The notions of beliefs, desires, and
intentions are realized in only very elementary ways in
such agents, if at all.

ME’s self-motivation does not necessarily imply self-
ishness. While it may find certain self-involved states
and actions rewarding (e.g., eating) or displeasing (e.g.,
being tired), and this will definitely affect its behav-
ior, ME can also experience vicarious satisfaction, for
example by answering the human user’s questions, or,
say, helping another agent in its world in some way.
Notably, the anticipatory satisfaction in the look-ahead
can also be used to implement curiosity, by making the
acquisition of new knowledge, or going to as yet unvis-
ited places, intrinsically satisfying for ME.

System Implementation
The knowledge, planning and behavior (both physical
and dialog) of ME are programmed in LISP in a sim-
ulated world consisting of locations, connecting roads,
and both animate entities (agents) and inanimate enti-
ties (objects) positioned at various locations. Some ob-
jects in the world may be consumable or portable and
potentially useful to ME, while others might be harmful
or mere obstacles. ME navigates the world interacting
with the human user (in dialog) and with other entities
in the world. All agents except ME are stationary and
might be asked questions by ME and may supply things
or information that ME wants upon request.

Creation of a world is enabled through commands
for creating a road network, defining object types with
various properties, and for placing instances of object

types, with additional properties, at various locations
in the network. Miscellaneous general knowledge can
also be added. The additional properties of an instan-
tiated entity include its associated objects (such as pos-
sessions or parts), and initial state facts about it, such
as location or edibility, and for agents, propositional
attitudes (beliefs, wants). ME’s initial knowledge base
contains the geographical knowledge about the world,
general quantified conditional facts (with a conjunctive
antecedent and a positive predication as consequent),
and ME keeps a history list of all actions and exoge-
nous events that have occurred so far in the simulated
world. Examples of general knowledge might be prop-
erties of certain types of entities (e.g., that a sasquatch
is an animate agent), or that certain conditions imply
others (e.g., being asleep implies not being awake).

ME does not in general know the current facts,
possessions, or propositional attitudes associated with
other entities. However, all non-occluded, local facts
about an entity become known to ME when ME is at
the location of the entity. Occluded facts are deter-
mined by certain predicates (such as hungry, knows,
or contains) being marked as occluded; as mentioned
above, a fact with an occluded predicate is known ini-
tially only to the subject of the predication, if that
subject is animate. For example, hungry might be an
occluded predicate, but the subject 〈term〉 of a fact
(hungry 〈term〉) is assumed to know that it is hun-
gry whenever this is true. Moreover, ME may discover
occluded knowledge via appropriate actions. For in-
stance, the action open applied to a box followed by
read-message may cause ME to know the contents of
the message if the box has a message in it.

ME’s action types have a list of parameters, a set of
preconditions, a set of effects, and an associated value.
One of the more unusual features is that both precon-
ditions and effects allow for procedural evaluation or
simplification, once all parameters are bound. In this
way quantitative preconditions and effects can be han-
dled quite effectively, as can side-effects such as ME
producing a printed answer. As an example, consider
the following operator sleep with formal fatigue and
hunger level parameters ?f and ?h, respectively:
(setq sleep

(make-op :name ’sleep :pars ’(?f ?h)
:preconds ’((is_at ME home)

(is_tired_to_degree ME ?t)
(>= ?f 0.5)
(is_hungry_to_degree ME ?h)
(> ?f ?h)
(not (there_is_a_fire)))

:effects ’((is_tired_to_degree ME 0)
(not (is_tired_to_degree

ME ?f))
(is_hungry_to_degree ME

(+ ?h 2)))
:time-required ’(* 4 ?f)
:value ’(* 2 ?f)))

From ME’s perspective, if it is at home, is more tired
than hungry, is at least of fatigue level 0.5, and there is
no fire, then it can sleep for a duration given by (∗ 4 ?f)

110

and, as a result, it will relieve its fatigue at the expense
of increasing its hunger level by 2. Performing an in-
stantiated sleep action will afford ME a net increase of
(∗ 2 ?f) in its cumulative utility.

Instantiating an operator requires replacing its for-
mal parameters with actual values through unifying
the preconditions with facts in ME’s current knowledge
base, and such an instantiated action is considered ap-
plicable in the current state. At all times, ME main-
tains a plan comprised of a sequence of instantiated ac-
tions. Planning is accomplished by forward search from
a given state, followed by propagating backward the an-
ticipated rewards and costs of the various actions and
states reached, to obtain a seemingly best sequence of
actions. The forward search is constrained by a search
beam, which specifies the allowable number of branches
and the allowable operators for each search depth. In-
formed by this projective forward search, ME will then
execute the first action of the seemingly best plan, and
update its knowledge accordingly (in effect, observing
non-occluded facts, including ones that have become
false, in its local environment).

The simulated world is a dynamic one in which ex-
ogenous events such as fire and rain can spontaneously
begin and end with some probability at each time step;
therefore, unexpected changes can arise in the form of
unexpected action failures, unexpected threats, and un-
expected serendipitous opportunities. For example, a
fire may start and disrupt ME’s travel, or ME may
scratch a lottery coupon and find that it has won one
million dollars. Since the world is only partially known
and partially predictable from ME’s perspective, and
since actions (such as traveling) can take multiple time
steps, with the possibility of interference by exogenous
events, we need to model “actual” actions in ME’s
world separately from ME’s (STRIPS-like) conception
of those actions.

The following is the stepwise version sleep.actual of
the sleep operator:

(setq sleep.actual
(make-op.actual :name ’sleep.actual

:pars ’(?f ?h)
:startconds ’((is_at ME home)

(is_tired_to_degree ME ?t)
(>= ?f 0.5)
(is_hungry_to_degree ME ?h)
(> ?f ?h))

:stopconds ’((there_is_a_fire)
(is_tired_to_degree ME 0))

:deletes ’((is_tired_to_degree ME ?#1)
(is_hungry_to_degree ME ?#2))

:adds ’((is_tired_to_degree ME
(- ?f (* 0.5

(elapsed_time?))))
(is_hungry_to_degree ME

(+ ?h (* 0.5
(elapsed_time?)))))))

The start conditions as given by startconds are the
same except for removal of the (there is a fire) for-
mula. Notably, the actual action will continue for an-

other time step if and only if neither of its stop condi-
tions as given by stopconds is true in the current state.
If at least one of them is true in the current state, then
the action will immediately terminate. Otherwise, the
current state and ME’s knowledge base will be updated
with ME’s lower fatigue level and higher hunger level.

ME currently has various operators at its disposal,
enabling it to answer the user’s yes/no questions and
wh- questions, to walk, sleep, eat, drink, ask other
agents whether something is true, play, read, withdraw
money from a bank, buy something from a store, and
work and save money. Moreover, via operator (listen!),
the user can signal to ME that a question or assertion
(in symbolic form, not in English at this point) is about
to be sent, and ME will ”hear” and save that assertion
or question, and potentially respond. Since answering
questions has been assigned a high utility, ME will pre-
fer to answer questions and verbalize its responses (as
English sentences printed on the screen). Alternatively,
for diagnostic reasons, the user is also provided with the
ability to peer into ME’s knowledge base and obtain
the answer to a question immediately, without having
to ask ME a question.

Preliminary Results
To empirically demonstrate the benefits of explicit self-
awareness and of opportunistic (but still thoughtful)
behavior in a self-motivated agent, we have created sce-
narios allowing some initial ablation tests. Here we de-
scribe some as yet incomplete attempts to investigate
ME’s performance (in terms of cumulative utility) with
and without self-knowledge, and with and without op-
portunistic tendencies.

In all scenarios, there are four locations home,
grove1, plaza1, and company1, with road path1 of
length 2 connecting home and grove1, path2 of length
3 connecting home and plaza1, and path3 of length
2 connecting grove1 and company1 in the simulated
world. Agent ME’s knowledge base is initialized to re-
flect that it is at home, is not tired, has a thirst level of
4, has a hunger level of 2, and knows that applejuice1
is potable and at home. Object pizza1 is edible and
at plaza1. Object applejuice1 is potable and at home.
Agent guru knows whether applejuice1 is potable and
whether pizza1 is edible.

In addition, ME has a variety of operators at its dis-
posal, enabling it to answer the user’s yes/no questions
and wh-questions, walk, sleep, eat, drink, ask other
agents whether something is true, play, read, buy some-
thing from a store, and work and save money. Also
there are two types of exogenous events, namely fire
and rain. Provided there is no rain, a spontaneous fire
has a 5% chance of starting; once it has started, it has
a 50% chance of stopping, and it also goes out as soon
as there is rain. Spontaneous rain has a 33% chance
of starting; once it has started, it has a 25% chance of
stopping.

In normal operation, ME will gain rewards from
the actions it performs (e.g., roaming, eating, or an-

111

swering user queries) and the states it reaches (e.g.,
not being hungry, thirsty, or tired). One rather
trivial way to ablate self-awareness is to eliminate
all first-person knowledge such as (is at ME home),
(is hungry to degree ME 2), etc., without altering op-
erator definitions. In such a case, ME can no longer con-
firm the preconditions of its own actions, since these all
involve facts about ME; thus, it is immobilized. But
a more meaningful test of the effect of ablating first-
person knowledge should replace ME’s conceptions of
its operators with ones that make no mention of the
agent executing them, yet are still executable, perhaps
with no effect or adverse effects in actuality, when ac-
tual preconditions unknown to ME are neglected. We
would then expect relatively haphazard, unrewarding
behavior, but this remains to be implemented.

A more interesting test of the advantages of
self-awareness would be one focused on first-
person metaknowledge, e.g., knowledge of type
(knows ME (whether (edible pizza1))). Intuitively,
given that ME can entertain such knowledge, and
there are ways of finding out whether, for instance,
(edible pizza1), ME should be able to plan and
act more successfully than if its self-knowledge were
entirely at the object- (non-meta-) level. In fact,
this is why our scenarios include the above kind of
meta-precondition in the definition of the eat oper-
ator, and why they include a guru who can advise
ME on object edibility. Our experimentation so far
successfully shows that ME does indeed ask the guru
about the edibility of available items, and is thereby
is enabled to eat, and hence to thrive. However,
ablating meta-level self-knowledge, much as in the
case of object-level self-knowledge, should be done by
replacing ME’s conceptions of its operators with ones
that do not involve the ablated predications (in this
case, meta-level predications), while still keeping the
actual workings of operators such as eat more or less
unchanged. So in this case, we would want to make
an eat-simulation either unrewarding or negatively
rewarding if the object to be eaten is inedible. This
would surely degrade ME’s performance, but this also
remains to be confirmed.

To investigate the effects that ablation of opportunis-
tic behavior has on ME’s cumulative utility, we will
focus our attention on one representative scenario. Ini-
tially, ME is at home feeling hungry and thirsty, knows
applejuice1 at home to be potable, but does not know
any item to be edible. To find out about the (only)
edible item pizza1, ME must walk to grove1 and ask
guru. With sufficient lookahead, having knowledge
about pizza1 will incline ME to walk to plaza1 and eat
pizza1 there. To entirely suppress ME’s opportunis-
tic behavior, we designate eating pizza1 as ME’s sole
goal and make ME uninterested in any action other
than asking guru to acquire food knowledge, traveling
to reach guru and pizza1, and eating pizza1.

In this case, none of ME’s actions are disrupted by
any spontaneous fire, and upon accomplishing its goal of

eating pizza1 after 18 steps, ME achieves a cumulative
utility of 66.5. The sequence of actions and events,
each annotated with its time of occurrence in reverse
chronological order, is as follows:
((EAT PIZZA1 PLAZA1) 17), (FIRE 15), ((WALK HOME PLAZA1

PATH2) 14), ((WALK HOME PLAZA1 PATH2) 12), ((WALK GROVE1

HOME PATH1) 9), (RAIN 9), (FIRE 8), ((WALK GROVE1 HOME

PATH1) 5), (RAIN 5), ((ASK+WHETHER GURU (EDIBLE PIZZA1)

GROVE1) 3), (FIRE 2), ((WALK HOME GROVE1 PATH1) 1),

((WALK HOME GROVE1 PATH1) 0), (RAIN 0).

With its opportunistic behavior restored, ME thinks
ahead into the future and chooses to execute a seem-
ingly best action at each step, achieving a higher cumu-
lative utility of 80.5 after 18 steps. The higher cumu-
lative utility comes from ME’s better choices of actions
(e.g., drinking when thirsty); specifically, it is a direct
result of ME’s seizing the initial opportunity to drink
the potable applejuice1 to relieve its thirst, and ME
can see and exploit such an opportunity because it is
not blindly pursuing any one goal but rather is acting
opportunistically. This case is shown below; no spon-
taneous fire disrupts any of ME’s actions, and ME also
finds out about pizza1 and eventually eats it.
((EAT PIZZA1 PLAZA1) 17), (RAIN 16), ((WALK HOME PLAZA1

PATH2) 15), ((WALK HOME PLAZA1 PATH2) 13), (RAIN 13),

((WALK GROVE1 HOME PATH1) 11), (RAIN 11), ((WALK GROVE1

HOME PATH1) 10), (RAIN 9), ((ASK+WHETHER GURU

(EDIBLE PIZZA1) GROVE1) 8), (FIRE 7), ((WALK HOME GROVE1

PATH1) 0) 6), ((WALK HOME GROVE1 PATH1) 5), (RAIN 5),

(FIRE 2), ((DRINK 4 APPLEJUICE1 HOME) 0), (RAIN 0).

These preliminary results indicate that ME can in-
deed benefit from both self-awareness and opportunis-
tic, thoughtful self-motivation. While the results are
encouraging, we are planning on doing systematic eval-
uations of our hypotheses, as we will outline in the con-
cluding section.

Conclusion
We have presented an explicitly self-aware and self-
motivated agent that thinks ahead, plans and reasons
deliberately, and acts reflectively, both by drawing on
knowledge about itself and its environment and by seiz-
ing opportunities to optimize its cumulative utility.

We have pointed out that deliberate self-motivation
differs significantly from the impulsive self-motivation
in behavioral robots and reinforcement-learning agents,
driven by policies acquired through extensive experi-
ence (or through imitation), but not guided by symbolic
reasoning about current and potential future circum-
stances. Our approach can be viewed as an integration
of two sorts of agent paradigms – behavioral (purely
opportunistic) agents on the one hand, and planning-
based (goal-directed) agents on the other. Agents in
the former paradigm focus on the present state, using
it to choose an action that conforms with a policy re-
flecting past reward/punishment experience. Agents in
the latter paradigm are utterly future-oriented, aiming
for some goal state while being impervious to the cur-
rent state, except to the extent that the current state
supports or fails to support steps toward that future

112

state. Some work in cognitive robotics (e.g., (TWN04;
FFL04)) and in autonomous agents in computer games
(e.g., (DEVG08)) intersects our approach, in that
moves are chosen on the basis of the expected value
of a sequence of moves (for instance, for a player in a
Robocup world, or a person walking in a crowd, avoid-
ing collisions). But generally these agents either are fo-
cused on externally supplied goals, or use feature-based
rather than logical representations of states, and so can-
not truly reason about them.

Additionally, we noted that our agent to some extent
meets the knowledge representation and reasoning re-
quirements (Sch05) for explicitly self-aware agents. Its
ability to handle propositional attitudes (and in that
sense metaknowledge) are particularly relevant to that
point. Its self-knowledge, world knowledge, and intro-
spection enable it to create and evaluate possible plans;
furthermore, ME uses its current factual knowledge in
any given state to perform bounded forward inference.

There are issues to address in our future work. First,
ME is excessively skeptical in its presumption that
ground predications are false whenever they cannot eas-
ily be established. Ignorance should not equal nega-
tion of knowledge. For example, not knowing if there
is food does not mean there is no food; instead, be-
ing hungry and not knowing if there is food should
prompt the agent to find out if there is food, that is,
the agent should still consider pursuing eating. Some
of this can probably be handled alternatively with “(¬)
know-whether” propositions in ME’s knowledge base.
If ME knows whether φ but φ is not inferrable by or
known to ME, then ME can conclude ¬φ. If φ is not
known to ME and ME does not know whether φ, then
this might motivate ME to find out whether φ holds.

Eventually, degrees of uncertainty should be allowed
for in ME’s knowledge. If ME has definite negative
knowledge of a precondition, then ME certainly should
not consider pursuing the action. On the other hand,
if it is still possible that a precondition currently not
known to be satisfiable might be true, and if ME would
like to pursue this action, then ME should aim to prove
or disprove this precondition. To make ME less skepti-
cal, we can specify that if ME has been to a location,
then any non-occluded facts at that location that are
not known by ME to be true are false; otherwise, no
such assumption should be made.

Ultimately, we envisage an explicitly self-aware and
self-motivated conversation agent with knowledge- and
suggestion-driven dialogue behavior. The agent’s be-
havior is ultimately driven by a planning executive that
continually augments, modifies and partially executes a
“life plan” that guides all of the agent’s deliberate ac-
tions, whether physical, verbal or mental. Given the
large number of possible dialogue moves corresponding
to particular dialogue states, it is desirable to guide
such a continually evolving planning executive by “sug-
gestions” (certain kinds of if-then rules) triggered by the
current situation. Such suggestions could be extremely
helpful in inclining the agent to particular actions in

particular situations.
By way of systematic demonstration, we would ide-

ally want to show that our agent comes closer to reap-
ing the maximum attainable cumulative utility than
does either a purely opportunistic one or a solely goal-
directed one. This raises the challenge of computing
what the maximum attainable cumulative utility ac-
tually is in a given scenario. A possible approach to
computing this maximum may be exhaustive forward
search, as far into the future as possible. We would
also want to explore probabilistic versions of such eval-
uations, in not-entirely-predictable worlds.

References
M. L. Anderson and D. R. Perlis. Logic, self-awareness
and self-improvement: The metacognitive loop and the
problem of brittleness. Journal of Logic and Computation,
15(1):21–40, 2005.

J. Dinerstein, P.K. Egbert, D. Ventura, and M. Goodrich.
Demonstration-based behavior programming for embodied
virtual agents. Computational Intelligence, 24(4):235–256,
2008.

E. Ferrein, C. Fritz, and G. Lakemeyer. On-line decision-
theoretic golog for unpredictable domains. In Proceedings
of the 27th German Conference on Artificial Intelligence
(KI2004), pages 322–336, Ulm, Germany, 2004.

B. Hayes-Roth and F. Hayes-Roth. A cognitive model of
planning. Cognitive Science, 3:275–310, 1979.

D. H. Liu. A survey of planning in intelligent agents:
from externally motivated to internally motivated systems.
Technical Report TR-2008-936, Department of Computer
Science, University of Rochester, June 2008.

J. McCarthy. Making robots conscious of their mental
states. In Machine Intelligence 15, pages 3–17, 1995.

F. Morbini and L.K. Schubert. Conscious agents. Technical
Report TR-2005-879, Department of Computer Science,
University of Rochester, September 2005.

F. Morbini and L. Schubert. Towards realistic autocog-
nitive inference. In Logical Formalizations of Common-
sense Reasoning, Papers from the AAAI Spring Sympo-
sium, pages 114–118, Menlo Park, CA, March 26-28 2007.
AAAI Press.

F. Morbini and L. Schubert. Metareasoning as an in-
tegral part of commonsense and autocognitive reasoning.
In AAAI-08 Workshop on Metareasoning, pages 155–162,
Chicago, IL, July 13-14 2008. Revised version in M. T. Cox
& A. Raja (eds.), Metareasoning: Thinking about Think-
ing, MIT Press, to appear.

L. Schubert. Some knowledge representation and reason-
ing requirements for self-awareness. In M. Anderson and
T. Oates, editors, Metacognition in Computation: Papers
from the 2005 AAAI Spring Symposium, pages 106–113.
AAAI Press, 2005.

M. Tacke, T. Weigel, and B. Nebel. Decision-theoretic
planning for playing table soccer. In Proceedings of the 27th
German Conference on Artificial Intelligence (KI2004),
pages 213–225, Ulm, Germany, 2004.

T. Winograd. Procedures as a representation for data in
a computer program for understanding natural language.
Technical Report 235, Massachusetts Institute of Technol-
ogy, February 1971.

113

Program Representation for General Intelligence

Moshe Looks
Google, Inc.

madscience@google.com

Ben Goertzel
Novamente LLC

ben@novamente.net

Abstract

Traditional machine learning systems work with relatively
flat, uniform data representations, such as feature vectors,
time-series, and context-free grammars. However, reality
often presents us with data which are best understood in
terms of relations, types, hierarchies, and complex functional
forms. One possible representational scheme for coping with
this sort of complexity is computer programs. This imme-
diately raises the question of how programs are to be best
represented. We propose an answer in the context of ongoing
work towards artificial general intelligence.

Background and Motivation
What are programs? The essence of programmatic repre-
sentations is that they are well-specified, compact, combi-
natorial, and hierarchical. Well-specified: unlike sentences
in natural language, programs are unambiguous; two dis-
tinct programs can be precisely equivalent. Compact: pro-
grams allow us to compress data on the basis of their regu-
larities. Accordingly, for the purposes of this paper, we do
not consider overly constrained representations such as the
well-known conjunctive and disjunctive normal forms for
Boolean formulae to be programmatic. Although they can
express any Boolean function (data), they dramatically limit
the range of data that can be expressed compactly, compared
to unrestricted Boolean formulae. Combinatorial: programs
access the results of running other programs (e.g. via func-
tion application), as well as delete, duplicate, and rearrange
these results (e.g., via variables or combinators). Hierarchi-
cal: programs have intrinsic hierarchical organization, and
may be decomposed into subprograms.

Baum has advanced a theory “under which one under-
stands a problem when one has mental programs that can
solve it and many naturally occurring variations” (Bau06).
Accordingly, one of the primary goals of artificial general
intelligence is systems that can represent, learn, and reason
about such programs (Bau06; Bau04). Furthermore, inte-
grative AGI systems such as Novamente (LGP04) may con-
tain subsystems operating on programmatic representations.
Would-be AGI systems with no direct support for program-
matic representation will clearly need to represent proce-
dures and procedural abstractions somehow. Alternatives
such as recurrent neural networks have serious downsides,
however, including opacity and inefficiency.

Note that the problem of how to represent programs for
an AGI system dissolves in the limiting case of unbounded
computational resources. The solution is algorithmic prob-
ability theory (Sol64), extended recently to the case of se-
quential decision theory (Hut05). The latter work defines
the universal algorithmic agent AIXI, which in effect sim-
ulates all possible programs that are in agreement with the
agent’s set of observations. While AIXI is uncomputable,
the related agent AIXItl may be computed, and is superior
to any other agent bounded by time t and space l (Hut05).
The choice of a representational language for programs1 is
of no consequence, as it will merely introduce a bias that
will disappear within a constant number of time steps.2

The contribution of this paper is providing practical tech-
niques for approximating the ideal provided by algorithmic
probability, based on what Pei Wang has termed the as-
sumption of insufficient knowledge and resources (Wan06).
Given this assumption, how programs are represented is of
paramount importance, as is substantiated the next two sec-
tions, where we give a conceptual formulation of what we
mean by tractable program representations, and introduce
tools for formalizing tractability. The fourth section of the
paper proposes an approach for tractably representing pro-
grams. The fifth and final section concludes and suggests
future work.

Representational Challenges
Despite the advantages outlined in the previous section,
there are a number of challenges in working with program-
matic representations:

• Open-endedness – in contrast to other knowledge rep-
resentations current in machine learning, programs vary
in size and “shape”, and there is no obvious problem-
independent upper bound on program size. This makes
it difficult to represent programs as points in a fixed-
dimensional space, or to learn programs with algorithms
that assume such a space.

• Over-representation – often, syntactically distinct pro-
grams will be semantically identical (i.e. represent
the same underlying behavior or functional mapping).

1As well as a language for proofs in the case of AIXItl.
2The universal distribution converges quickly (Sol64).

114

Lacking prior knowledge, many algorithms will ineffi-
ciently sample semantically identical programs repeat-
edly (GBK04; Loo07b).

• Chaotic Execution – programs that are very similar,
syntactically, may be very different, semantically. This
presents difficulties for many heuristic search algorithms,
which require syntactic and semantic distance to be cor-
related (TVCC05; Loo07c).

• High resource-variance – programs in the same space
vary greatly in the space and time they require to execute.

Based on these concerns, it is no surprise that search over
program spaces quickly succumbs to combinatorial explo-
sion, and that heuristic search methods are sometimes no
better than random sampling (LP02). Regarding the dif-
ficulties caused by over-representation and high resource-
variance, one may of course object that determinations of
e.g. programmatic equivalence for the former, and e.g. halt-
ing behavior for the latter, are uncomputable. Given the
assumption of insufficient knowledge and resources, how-
ever, these concerns dissolve into the larger issue of com-
putational intractability and the need for efficient heuristics.
Determining the equivalence of two Boolean formulae over
500 variables by computing and comparing their truth ta-
bles is trivial from a computability standpoint, but, in the
words of Leonid Levin, “only math nerds would call 2500

finite” (Lev94). Similarly, a program that never terminates
is a special case of a program that runs too slowly to be of
interest to us.

In advocating that these challenges be addressed through
“better representations”, we do not mean merely trading one
Turing-complete programming language for another; in the
end it will all come to the same. Rather, we claim that
to tractably learn and reason about programs requires us to
have prior knowledge of programming language semantics.
The mechanism whereby programs are executed is known
a priori, and remains constant across many problems. We
have proposed, by means of exploiting this knowledge, that
programs be represented in normal forms that preserve their
hierarchical structure, and heuristically simplified based on
reduction rules. Accordingly, one formally equivalent pro-
gramming language may be preferred over another by virtue
of making these reductions and transformations more ex-
plicit and concise to describe and to implement.

What Makes a Representation Tractable?
Creating a comprehensive formalization of the notion of a
tractable program representation would constitute a signifi-
cant achievement; and we will not fulfill that summons here.
We will, however, take a step in that direction by enunciating
a set of positive principles for tractable program representa-
tions, corresponding closely to the list of representational
challenges above. While the discussion in this section is es-
sentially conceptual rather than formal, we will use a bit of
notation to ensure clarity of expression; S to denote a space
of programmatic functions of the same type (e.g. all pure
Lisp λ-expressions mapping from lists to numbers), and B
to denote a metric space of behaviors.

In the case of a deterministic, side-effect-free program,
execution maps from programs in S to points in B, which
will have separate dimensions for function outputs across
various inputs of interest, as well as dimensions correspond-
ing to the time and space costs of executing the program.
In the case of a program that interacts with an external
environment, or is intrinsically nondeterministic, execution
will map from S to probability distributions over points in
B, which will contain additional dimensions for any side-
effects of interest that programs in S might have. Note
the distinction between syntactic distance, measured as e.g.
tree-edit distance between programs in S, and semantic dis-
tance, measured between programs’ corresponding points in
or probability distributions over B. We assume that seman-
tic distance accurately quantifies our preferences in terms of
a weighting on the dimensions of B; i.e., if variation along
some axis is of great interest, our metric for semantic dis-
tance should reflect this.

Let P be a probability distribution over B that describes
our knowledge of what sorts of problems we expect to en-
counter, and let R(n) ⊆ S be the set of all of the programs
in our representation with (syntactic) size no greater than
n. We will say that “R(n) d-covers the pair (B,P) to ex-
tent p” if p is the probability that, for a random behavior
b ∈ B chosen according to P , there is some program in R
whose behavior is within semantic distance d of b. Then,
some among the various properties of tractability that seem
important based on the above discussion are as follows:

• for fixed d, p quickly goes to 1 as n increases,

• for fixed p, d quickly goes to 0 as n increases,

• for fixed d and p, the minimal n needed for R(n) to d-
cover (B,P) to extent p should be as small as possible,

• ceteris paribus, syntactic and semantic distance (measured
according to P) are highly correlated.

Since execution time and memory usage measures may be
incorporated into the definition of program behavior, mini-
mizing chaotic execution and managing resource variance
emerges conceptually here as a subcase of maximizing cor-
relation between syntactic and semantic distance. Minimiz-
ing over-representation follows from the desire for small n:
roughly speaking the less over-representation there is, the
smaller average program size can be achieved.

In some cases one can empirically demonstrate the
tractability of representations without any special assump-
tions about P: for example in prior work we have shown
that adoption of an appropriate hierarchical normal form can
generically increase correlation between syntactic and se-
mantic distance in the space of Boolean functions (Loo06;
Loo07c). In this case we may say that we have a generically
tractable representation. However, to achieve tractable rep-
resentation of more complex programs, some fairly strong
assumptions about P will be necessary. This should not be
philosophically disturbing, since it’s clear that human intelli-
gence has evolved in a manner strongly conditioned by cer-
tain classes of environments; and similarly, what we need
to do to create a viable program representation system for
pragmatic AGI usage is to achieve tractability relative to the

115

distribution P corresponding to the actual problems the AGI
is going to need to solve. Formalizing the distributions P of
real-world interest is a difficult problem, and one we will not
address here. However, we hypothesize that the representa-
tions presented in the following section may be tractable to
a significant extent irrespective3 of P , and even more pow-
erfully tractable with respect to this as-yet unformalized dis-
tribution. As weak evidence in favor of this hypothesis, we
note that many of the representations presented have proved
useful so far in various narrow problem-solving situations.

(Postulated) Tractable Representations
We use a simple type system to distinguish between the var-
ious normal forms introduced below. This is necessary to
convey the minimal information needed to correctly apply
the basic functions in our canonical forms. Various systems
and applications may of course augment these with addi-
tional type information, up to and including the satisfaction
of arbitrary predicates (e.g. a type for prime numbers). This
can be overlaid on top of our minimalist system to convey
additional bias in selecting which transformations to apply,
and introducing constraints as necessary. For instance, a call
to a function expecting a prime number, called with a poten-
tially composite argument, may be wrapped in a conditional
testing the argument’s primality. A similar technique is used
in the normal form for functions to deal with list arguments
that may be empty.

Normal Forms
Normal forms are provided for Boolean and number prim-
itive types, and the following parametrized types:
• list types, listT , where T is any type,
• tuple types, tupleT1,T2,...TN

, where all Ti are types, and
N is a positive natural number,

• enum types, {s1, s2, . . . sN}, where N is a positive num-
ber and all si are unique identifiers,

• function types T1, T2, . . . TN → O, where O and all Ti

are types,
• action result types.

A list of type listT is an ordered sequence of any num-
ber of elements, all of which must have type T . A tuple of
type tupleT1,T2,...TN

is an ordered sequence of exactly N
elements, where every ith element is of type Ti. An enum
of type {s1, s2, . . . sN} is some element si from the set.
Action result types concern side-effectful interaction with
some world external to the system (but perhaps simulated,
of course), and will be described in detail in their subsection
below. Other types may certainly be added at a later date,
but we believe that those listed above provide sufficient ex-
pressive power to conveniently encompass a wide range of
programs, and serve as a compelling proof of concept.

The normal form for a type T is a set of elementary func-
tions with codomain T , a set of constants of type T , and a
tree grammar. Internal nodes for expressions described by

3Technically, with only weak biases that prefer smaller and
faster programs with hierarchical decompositions.

the grammar are elementary functions, and leaves are either
Uvar or Uconstant, where U is some type (often U = T).

Sentences in a normal form grammar may be transformed
into normal form expressions as follows. The set of expres-
sions that may be generated is a function of a set of bound
variables and a set of external functions (both bound vari-
ables and external functions are typed):

• Tconstant leaves are replaced with constants of type T ,

• Tvar leaves are replaced with either bound vari-
ables matching type T , or expressions of the form
f(expr1, expr2, . . . exprM), where f is an external func-
tion of type T1, T2, . . . TM → T , and each expri is a nor-
mal form expression of type Ti (given the available bound
variables and external functions).

Boolean Normal Form The elementary functions are
and, or, and not. The constants are {true, false}. The
grammar is:

bool_root = or_form | and_form
| literal | bool_constant

literal = bool_var | not(bool_var)
or_form = or({and_form | literal}{2,})
and_form = and({or_form | literal}{2,}) .

The construct foo{x,} refers to x or more matches of foo
(e.g. {x | y}{2,} is two or more items in sequences
where each item is either an x or a y).
Number Normal Form The elementary functions are
times and plus. The constants are some subset of the ra-
tionals (e.g. those with IEEE single-precision floating-point
representations). The grammar is:

num_root = times_form | plus_form
| num_constant | num_var

times_form = times({num_constant |
plus_form}

plus_form{1,})
| num_var

plus_form = plus({num_constant |
times_form}

times_form{1,})
| num_var .

List Normal Form For list types listT , the elementary
functions are list (an n-ary list constructor) and append.
The only constant is the empty list (nil). The grammar is:

list_T_root = append_form | list_form
| list_T_var | list_T_constant

append_form = append({list_form |
list_T_var}{2,})

list_form = list(T_root{1,}) .

Tuple Normal Form For tuple types tupleT1,T2,...TN
, the

only elementary function is the tuple constructor (tuple).
The constants are T1_constant×T2_constant× · · · ×
TN_constant. The normal form is either a constant, a
var, or tuple(T1_root T2_root . . . TN_root).

Enum Normal Form Enums are atomic tokens with no
internal structure - accordingly, there are no elementary
functions. The constants for the enum {s1, s2, . . . sN} are
the sis. The normal form is either a constant or a var.

116

Function Normal Form For T1, T2, . . . TN → O, the nor-
mal form is a lambda-expression of arity N whose body is of
type O. The list of variable names for the lambda-expression
is not a “proper” argument - it does not have a normal form
of its own. Assuming that none of the Tis is a list type, the
body of the lambda-expression is simply in the normal form
for type O (with the possibility of the lambda-expressions
arguments appearing with their appropriate types). If one or
more Tis are list types, then the body is a call to the split
function, with all arguments in normal form.

Split is a family of functions with type signatures

(T1, listT1 , T2, listT2 , . . . Tk, listTk
→ O),

tuplelistT1 ,O, tuplelistT2 ,O, . . . tuplelistTk
,O → O .

To evaluate split(f, tuple(l1, o1), tuple(l2, o2), . . .
tuple(lk, ok)), the list arguments l1, l2, . . . lk are examined
sequentially. If some li is found that is empty, then the re-
sult is the corresponding value oi. If all li are nonempty,
we deconstruct each of them into xi : xsi, where xi is
the first element of the list and xsi is the rest. The result
is then f(x1, xs1, x2, xs2, . . . xk, xsk). The split function
thus acts as an implicit case statement to deconstruct lists
only if they are nonempty.

Action Result Normal Form An action result type act
corresponds to the result of taking an action in some world.
Every action result type has a corresponding world type,
world. Associated with action results and worlds are two
special sorts of functions.

• Perceptions - functions that take a world as their first
argument and regular (non-world and non-action-result)
types as their remaining arguments, and return regular
types. Unlike other function types, the result of evalu-
ating a perception call may be different at different times.

• Actions - functions that take a world as their first argu-
ment and regular types as their remaining arguments, and
return action results (of the type associated with the type
of their world argument). As with perceptions, the result
of evaluating an action call may be different at different
times. Furthermore, actions may have side-effects in the
associated world that they are called in. Thus, unlike any
other sort of function, actions must be evaluated, even if
their return values are ignored.

Other sorts of functions acting on worlds (e.g. ones that take
multiple worlds as arguments) are disallowed.

Note that an action result expression cannot appear nested
inside an expression of any other type. Consequently, there
is no way to convert e.g. an action result to a Boolean,
although conversion in the opposite direction is permitted.
This is required because mathematical operations in our lan-
guage have classical mathematical semantics; x and y must
equal y and x, which will not generally be the case if x or
y can have side-effects. Instead, there are special sequential
versions of logical functions which may be used instead.

The elementary functions for action result types are
andseq (sequential and, equivalent to C’s short-circuiting
&&), orseq (sequential or, equivalent to C’s short-circuiting
||), and fails (negates success to failure and vice versa).

The constants may vary from type to type but must at
least contain success and failure, indicating absolute suc-
cess/failure in execution.4 The normal form is as follows:
act_root = orseq_form | andseq_form

| seqlit
seqlit = act | fails(act)
act = act_constant | act_var
orseq_form = orseq({andseq_form |

seqlit}{2,})
andseq_form = andseq({orseq_form

| seqlit}{2,}) .

Program Transformations
A program transformation is any type-preserving mapping
from expressions to expressions. Transformations may be
guaranteed to preserve semantics. When doing program
evolution there is an intermediate category of fitness pre-
serving transformations that may alter semantics. In general,
the only way that fitness preserving transformations will be
uncovered is by scoring programs that have had their seman-
tics potentially transformed to determine their fitness.

Reductions These are semantics preserving transforma-
tions that do not increase some size measure (typically
number of symbols), and are idempotent. For example,
and(x, x, y) → and(x, y) is a reduction for the Boolean
type. A set of canonical reductions is defined for every type
with a normal form. For the number type, the simplifier in
a computer algebra system may be used. The full list of re-
ductions is omitted in this paper for brevity. An expression
is reduced if it maps to itself under all canonical reductions
for its type, and all of its subexpressions are reduced.

Another important set of reductions are the compressive
abstractions, which reduce or keep constant the size of ex-
pressions by introducing new functions. Consider
list(times(plus(a, p, q) r),

times(plus(b, p, q) r),
times(plus(c, p, q) r)) ,

which contains 19 symbols. Transforming this to
f(x) = times(plus(x, p, q) r)
list(f(a), f(b), f(c))

reduces the total number of symbols to 15. One can general-
ize this notion to consider compressive abstractions across
a set of programs. Compressive abstractions appear to
be rather expensive to uncover, although perhaps not pro-
hibitively so (the computation is easily parallelized).

Neutral Transformations Semantics preserving transfor-
mations that are not reductions are not useful on their own
- they can only have value when followed by transforma-
tions from some other class. This class of transformations
is thus more speculative than reductions, and more costly to
consider - cf. (Ols95).

• Abstraction - given an expression E containing non-
overlapping subexpressions E1, E2, . . . EN , let E′ be E

4A do(arg1, arg2, . . . argN) statement (known as progn in
Lisp), which evaluates its arguments sequentially regardless of
success or failure, is equivalent to andseq(orseq(arg1, success),
orseq(arg2, success), . . . orseq(argN , success)).

117

with all Ei replaced by the unbound variables vi. Define
the function f(v1, v2, . . . v3) = E′, and replace E with
f(E1, E2, . . . EN). Abstraction is distinct from compres-
sive abstraction because only a single call to the new func-
tion f is introduced.5

• Inverse abstraction - replace a call to a user-defined
function with the body of the function, with arguments
instantiated (note that this can also be used to partially
invert a compressive abstraction).

• Distribution - let E be a call to some function f , and let
E′ be a subexpression of E’s ith argument that is a call
to some function g, such that f is distributive over g’s ar-
guments, or a subset thereof. We shall refer to the actual
arguments to g in these positions in E′ as x1, x2, . . . xn.
Now, let D(F) by the function that is obtained by eval-
uating E with its ith argument (the one containing E′)
replaced with the expression F . Distribution is replacing
E with E′, and then replacing each xj (1 ≤ j ≤ n) with
D(xj). For example, consider

plus(x, times(y, ifThenElse(cond,
a, b))) .

Since both plus and times are distributive over the result
branches of ifThenElse, there are two possible distribu-
tion transformations, giving the expressions

ifThenElse(cond,
plus(x, times(y, a)),
plus(x, times(y, b))),

plus(x (ifThenElse(cond,
times(y, a),
times(y, b)))) .

• Inverse distribution - the opposite of distribution. This
is nearly a reduction; the exceptions are expressions such
as f(g(x)), where f and g are mutually distributive.

• Arity broadening - given a function f , modify it to take
an additional argument of some type. All calls to f must
be correspondingly broadened to pass it an additional ar-
gument of the appropriate type.

• List broadening6 - given a function f with some ith ar-
gument x of type T , modify f to instead take an argument
y of type listT , which gets split into x : xs. All calls to f
with ith argument x′ must be replaced by corresponding
calls with ith argument list(x′).

• Conditional insertion - an expression x is replaced by
ifThenElse(true, x, y), where y is some expression of the
same type of x.

As a technical note, action result expressions (which
may cause side-effects) complicate neutral transformations.
Specifically, abstractions and compressive abstractions must
take their arguments lazily (i.e. not evaluate them before
the function call itself is evaluated), in order to be neutral.
Furthermore, distribution and inverse distribution may only
be applied when f has no side-effects that will vary (e.g.

5In compressive abstraction there must be at least two calls in
order to avoid increasing the number of symbols.

6Analogous tuple-broadening transformations may be defined
as well, but are omitted for brevity.

be duplicated or halved) in the new expression, or affect
the nested computation (e.g. change the result of a condi-
tional). Another way to think about this issue is to consider
the action result type as a lazy domain-specific language em-
bedded within a pure functional language (where evaluation
order is unspecified). Spector has performed an empirical
study of the tradeoffs in lazy vs. eager function abstraction
for program evolution (Spe96).

The number of neutral transformation applicable to any
given program grows quickly with program size.7 Further-
more, synthesis of complex programs and abstractions does
not seem to be possible without them. Thus, a key hypoth-
esis of any approach to AGI requiring significant program
synthesis, without assuming the currently infeasible com-
putational capacities required to brute-force the problem, is
that the inductive bias to select promising neutral transfor-
mations can be learned and/or programmed. Referring back
to the initial discussion of what constitutes a tractable rep-
resentation, we speculate that perhaps, whereas well-chosen
reductions are valuable for generically increasing program
representation tractability, well-chosen neutral transforma-
tions will be valuable for increasing program representation
tractability relative to distributions P to which the transfor-
mations have some (possibly subtle) relationship.

Non-Neutral Transformations Non-neutral transforma-
tions may encompass the general class defined by removal,
replacement, and insertion of subexpressions, acting on ex-
pressions in normal form, and preserving the normal form
property. Clearly these transformations are sufficient to con-
vert any normal form expression into any other. What is
desired is a subset of these transformations that is combi-
natorially complete, where each individual transformation is
nonetheless a semantically small step.

The full set of transformations for Boolean expressions
is given in (Loo06). For numerical expressions, the tran-
scendental functions sin, log, and ex are used to construct
transformations. These obviate the need for division (a/b =
elog(a)−log(b)), and subtraction (a − b = a + −1 ∗ b). For
lists, transformations are based on insertion of new leaves
(e.g. to append function calls), and “deepening” of the nor-
mal form by insertion of subclauses; see (Loo06) for de-
tails. For tuples, we take the union of the transformations of
all the subtypes. For other mixed-type expressions the union
of the non-neutral transformations for all types must be con-
sidered as well. For enum types the only transformation is
replacing one symbol with another. For function types, the
transformations are based on function composition. For ac-
tion result types, actions are inserted/removed/altered, akin
to the treatment of Boolean literals for the Boolean type.

We propose an additional set of non-neutral transforma-
tions based on the marvelous fold function:

fold(f, v, l) =
ifThenElse(empty(l), v,

f(first(l), fold(f, v, rest(l)))) .

With fold we can express a wide variety of iterative con-

7Exact calculations are given by Olsson (Ols95).

118

structs, with guaranteed termination and a bias towards low
computational complexity. In fact, fold allows us to repre-
sent exactly the primitive recursive functions (Hut99).

Even considering only this reduced space of possible
transformations, in many cases there are still too many pos-
sible programs “nearby” some target to effectively consider
all of them. For example, many probabilistic model-building
algorithms, such as learning the structure of a Bayesian net-
work from data, can require time cubic in the number of vari-
ables (in this context each independent non-neutral transfor-
mation can correspond to a variable). Especially as the size
of the programs we wish to learn grows, and as the number
of typologically matching functions increases, there will be
simply too many variables to consider each one intensively,
let alone apply a cubic-time algorithm.

To alleviate this scaling difficulty, we propose three tech-
niques. The first is to consider each potential variable (i.e.
independent non-neutral transformation) to heuristically de-
termine its usefulness in expressing constructive semantic
variation. For example, a Boolean transformation that col-
lapses the overall expression into a tautology is assumed to
be useless.8 The second is heuristic coupling rules that allow
us to calculate, for a pair of transformations, the expected
utility of applying them in conjunction. Finally, while fold
is powerful, it may need to be augmented by other meth-
ods in order to provide tractable representation of complex
programs that would normally be written using numerous
variables with diverse scopes. One approach that we have
explored involves application of Sinot’s ideas about direc-
tor strings as combinators (SMI03). In this approach, spe-
cial program tree nodes are labeled with director strings,
and special algebraic operators interrelate these strings. One
then achieves the representational efficiency of local vari-
ables with diverse scopes, without needing to do any actual
variable management. Reductions and (non-)neutral trans-
formation rules related to broadening and reducing variable
scope may then be defined using the director string algebra.

Conclusions
In this paper, we have articulated general conceptual require-
ments that should be fulfilled by a program representation
scheme if it is to be considered tractable, either generically
or with respect to particular probabilistic assumptions about
the environments and tasks on which programs will be eval-
uated. With the intention of addressing these requirements,
the system of normal forms begun in (Loo06) has been ex-
tended to encompass a full programming language. An ex-
tended taxonomy of programmatic transformations has been
proposed to aid in learning and reasoning about programs.

In the future, we will experimentally validate that these
normal forms and heuristic transformations do in fact in-
crease the syntactic-semantic correlation in program spaces,
as has been shown so far only in the Boolean case. We
would also like to explore the extent to which even stronger
correlation, and additional tractability properties, can be ob-
served when realistic probabilistic constraints on “natural”

8This is heuristic because such a transformation might be useful
together with other transformations.

environments and task spaces are imposed. Finally, we in-
tend to incorporate these normal forms and transformations
into a program evolution system, such as meta-optimizing
semantic evolutionary search (Loo07a), and apply them as
constraints on probabilistic inference on programs.

References
E. B. Baum. What is Thought? MIT Press, 2004.
E. B. Baum. A working hypothesis for general intelligence.
In Advances in Artificial General Intelligence: Concepts,
Architectures and Algorithms, 2006.
S. Gustafson, E. K. Burke, and G. Kendall. Sampling of
unique structures and behaviours in genetic programming.
In European Conference on Genetic Programming, 2004.
G. Hutton. A tutorial on the universality and expressiveness
of fold. Journal of Functional Programming, 1999.
M. Hutter. Universal algorithmic intelligence: A mathe-
matical top-down approach. In B. Goertzel and C. Pen-
nachin, editors, Artificial General Intelligence. Springer-
Verlag, 2005.
L. Levin. Randomness and nondeterminism. In The Inter-
national Congress of Mathematicians, 1994.
M. Looks, B. Goertzel, and C. Pennachin. Novamente: An
integrative architecture for artificial general intelligence. In
AAAI Fall Symposium Series, 2004.
M. Looks. Competent Program Evolution. PhD thesis,
Washington University in St. Louis, 2006.
M. Looks. Meta-optimizing semantic evolutionary search.
In Genetic and evolutionary computation conference,
2007.
M. Looks. On the behavioral diversity of random pro-
grams. In Genetic and evolutionary computation confer-
ence, 2007.
M. Looks. Scalable estimation-of-distribution program
evolution. In Genetic and evolutionary computation con-
ference, 2007.
W. B. Langdon and R. Poli. Foundations of Genetic Pro-
gramming. Springer-Verlag, 2002.
J. R. Olsson. Inductive functional programming using in-
cremental program transformation. Artificial Intelligence,
1995.
F. R. Sinot, Fernández M., and Mackie I. Efficient reduc-
tions with director strings. In Rewriting Techniques and
Applications, 2003.
R. Solomonoff. A formal theory of inductive inference.
Information and Control, 1964.
L. Spector. Simultaneous evolution of programs and their
control structures. In Advances in Genetic Programming 2.
MIT Press, 1996.
M. Tomassini, L. Vanneschi, P. Collard, and M. Clergue. A
study of fitness distance correlation as a difficulty measure
in genetic programming. Evolutionary Computation, 2005.
P. Wang. Rigid Flexibility: The Logic of Intelligence.
Springer, 2006.

119

Consciousness in Human and Machine:
A Theory and Some Falsifiable Predictions

Richard P. W. Loosemore

Surfing Samurai Robots, Inc.
1600 McAllister Road, Genoa NY 13071 USA

rloosemore@susaro.com

Abstract
To solve the hard problem of consciousness we first note
that all cognitive systems of sufficient power must get into
difficulty when trying to analyze consciousness concepts,
because the mechanism that does the analysis will bottom
out in such a way that the system declares these concepts to
be both real and ineffable. Rather than use this observation
to dismiss consciousness as an artifact, we propose a
unifying interpretation that allows consciousness to be
regarded as explicable at a meta level, while at the same
time being mysterious and inexplicable on its own terms. It
is further suggested that science must concede that there are
some aspects of the world that deserve to be called ‘real’,
but which are beyond explanation. The main conclusion is
that thinking machines of the future will, inevitably, have
just the same subjective consciousness that we do. Some
testable predictions can be derived from this theory.

Introduction
The idea that an artificial general intelligence might soon
be built raises urgent questions about whether AGIs would
(a) be conscious, (b) feel emotions, and (c) have dangerous
motivations. Given the strength of public feeling on these
matters—for example, the widespread belief that AGIs
would be dangerous because as self-aware beings they
would inevitably rebel against their lack of freedom—it is
incumbent upon the AGI community to resolve these
questions as soon as possible. Philosophers may have the
luxury of a relaxed debate, but with some people
demanding reassurance about the safety of AGI, we do not.
 Questions about consciousness, emotion and motivation
may be separate issues, but in the public mind they are
often conflated, so in this paper I propose to make a start
by addressing the first of these. I will argue that if we look
carefully at how intelligent systems understand the world
we can explain consciousness in a comprehensive manner.
This is the first part of a research program aimed at
providing a technical foundation for discussions of
consciousness, emotion and friendliness in AGI systems.

Copyright © 2008, The Second Conference on Artificial General
Intelligence (agi-09.org). All rights reserved.

The Hard Problem of Consciousness
One of the most notorious difficulties with understanding
consciousness is the widespread confusion about what the
term “consciousness” is supposed to refer to. Chalmers
(1996) clarified this somewhat by pointing out that the
confusion can be split into two components. First, the word
“consciousness” has multiple meanings, so people use it at
different times to mean (1) “awakeness,” (2) the ability to
have intentions, (3) the thing that makes a philosophical
zombie different from a human, and so on.
 The second point of confusion is more interesting.
Chalmers pointed out that one of these multiple meanings
(roughly speaking, the one that is the zombie-human
differentiator) is where all of the real philosophical
difficulty resides, and he labeled this the “hard problem” of
consciousness. Other questions—for example, about the
neural facts that distinguish waking from sleeping—may
be interesting in their own right, but they do not involve
deep philosophical issues and should not be confused with
the hard problem.
Defining the Hard Problem. The hard problem is all
about the first-person, subjective experience of a creature
that is conscious, and about the fact that no matter how
good our objective scientific knowledge of the world might
become, there seems to be no way to account for that
internal subjective experience. Included within the scope of
these subjective experiences are questions about “qualia”
(the subjective quality of color sensations, pains and the
like) and the concept of “self” (that indefinable feeling that
we are each a non-physical agent that looks out at the
world). Most importantly, the hard problem revolves
around the conviction that there could conceivably be such
a thing as a “philosophical zombie,” which is defined to be
a creature that is identical to a human, but which lacks any
subjective phenomenology. If zombies are conceivable, we
have to account for the thing that they lack, and the
problem of accounting for that thing is the hard problem.
 Many philosophers and most lay people would say that
these subjective aspects of consciousness are so far
removed from normal scientific explanation that if anyone
proposed an objective explanation for the hard problem of
consciousness they would be missing the point, because

120

such an explanation would have to start with a bridge
between the ideas of objective and subjective, and since no
consensus idea has ever been proposed that might act as
such a bridge, no explanation is even on the horizon.
 We can summarize the current situation in the
philosophical analysis of the hard problem by framing it in
terms of the following impasse:
 Skeptic: Tell me in objective terms what exactly is meant
by terms such as “consciousness” and “qualia,” and we
might begin to build an explanation for them. Unless you
can say exactly what you mean by these things, you are not
saying anything.
 The Reply: Unfortunately, the thing we are talking
about seems to be intrinsically beyond the reach of
objective definition, while at the same time being just as
deserving of explanation as anything else in the universe.
This lack of objective definition should not be taken as
grounds for dismissing the problem—rather, this lack of
objective definition IS the problem.

A Preview of the Strategy
The line of attack in this paper has two parts. First, we pick
up the idea that the hard problem is about ideas that cannot
be clearly defined. Why are they indefinable? Why are we
nevertheless compelled to explain them? After suggesting
a way to understand how something could be so unusual as
to drive philosophers into this paradoxical mixed state, we
then go to a second phase of the argument, in which we ask
about the “reality” of things that test the limits of what
minds can know. At the end of part 1 we seem to be
heading in a direction that the skeptic would favor
(eliminating the explanandum as an epiphenomenon), but
then part 2 makes an unusual turn into a new compromise,
neither dualist nor physicalist, which resolves the problem
of consciousness in an unorthodox way.

Part 1: The Nature of Explanation
The various facets of consciousness have one thing in
common: they involve some form of introspection, because
we “look inside” at our subjective experience of the world
(qualia, sense of self, and so on) and ask what these
experiences amount to. In order to analyze the nature of
these introspection we need to take one step back and ask
what happens when we think about any concept, not just
those that involve subjective experience.

Talking About Analysis Mechanisms
In any sufficiently complete AGI system there has to be a
powerful mechanism that lets the system analyze its own
concepts. The system has to be able to explicitly think
about what it knows, and deconstruct that knowledge in
many ways. The scope of this analysis mechanism must be
extremely broad, and the knowledge that lies within its
scope must be couched at an appropriate level. (So: merely
giving the AGI access to its own source code would not
count as an analysis mechanism).

 AGI systems will surely have this analysis mechanism at
some point in the future, because it is a crucial part of the
“general” in “artificial general intelligence,” but since there
is currently no consensus about how to do this, we need to
come up with a language that allows us to talk about the
kind of things that such a mechanism might get up to. For
that reason, I am going to use a language derived from my
own approach to AGI—what I have called elsewhere a
“molecular framework” for cognition (Loosemore, 2007;
Loosemore and Harley, forthcoming).
 Nothing depends on the details of this molecular
framework, because any other AGI formalism can be
translated into this architectural style, but since the
molecular framework is arguably more explicit about what
the analysis mechanism does, we get the benefit of a
concrete picture of its doings. Other AGI formalisms will
perhaps take a different approach, but any analysis
mechanism must have the crucial features on which this
explanation of consciousness depends, so the molecular
framework does nothing to compromise the argument.

The Molecular Framework
The following is a generic model of the core processes
inside any system that engages in intelligent thought. This
is meant as both a description of human cognition and as a
way to characterize a wide range of AGI architectures.
 The basic units of knowledge, in this framework, are
what we loosely refer to as “concepts,” and these can stand
for things [chair], processes [sitting], relationships [on],
operators [describe], and so on. The computational entities
that encode concepts are to be found in two places in the
system: the background (long-term memory, where there
is one entity per concept) and the foreground, which
contains the particular subset of concepts that the system is
using in its current thoughts.
 The concept-entities in the foreground will be referred to
as atoms, while those in the background are elements.
 Many instances of a given concept can be thought about
at a given time, so there might be several [chair] atoms in
the foreground, but there will only be one [chair] element
in the background. From now on, we will almost
exclusively be concerned with atoms, and (therefore) with
events happening in the foreground.
 Theorists differ in their preference for atoms that are
either active or passive. A passive approach would have
all the important mechanisms on the outside, so that the
atoms are mere tokens. An active approach, on the other
hand, would have no external mechanisms that manipulate
atoms, but instead put all the interesting machinery in and
between the atoms. In the present case we will adopt the
active, self-organized point of view: the atoms themselves
do all of the work of interacting with and operating on one
another. This choice makes no difference to the argument,
but it gives a clearer picture of some claims about
semantics that come later.
 Two other ingredients that need to be mentioned in this
simplified model are external sensory input and the self-
model. We will assume that sensory information originates

121

at the sensory receptors, is pre-processed in some way, and
then arrives at the edge of the foreground, where it causes
atoms representing primitive sensory features to become
active. Broadly speaking, atoms near the foreground
periphery will represent more concrete, low-level concepts,
while atoms nearer the “center” of the foreground will be
concerned with more high-level, abstract ideas.
 The self-model is a structure (a large cluster of atoms)
toward the center of the foreground that represents the
system itself. This self-model is present in the foreground
almost all of the time, because the self is clearly present
whenever the system is thinking about anything. At the
core of the self-model is a part of the system that has the
authority to initiate and control actions.
 Finally, note that there are a variety of operators at work
in the foreground. The atoms themselves do some of this
work, by trying to activate other atoms with which they are
consistent (thus, a [cat] atom that is linked to a [crouching-
posture] atom will tend to activate an atom representing
[pounce]). But there will also be mechanisms that do such
things as creation (making a new element to encode a new
conjunction of known atoms), elaboration (the assembly of
a cluster to represent a situation in more detail), various
forms of analogy construction, and so on.
 Overall, this model of cognition depicts the process of
thought as being a collective effect of the interaction of all
these atoms and operators. The foreground resembles a
molecular soup in which atoms assemble themselves (with
the help of operators) into semi-stable, dynamically
changing structures. Hence the term “molecular
framework” to describe this way of modeling cognition.

Explanation in General
Atoms can play two distinct roles in the foreground,
corresponding to the difference between use and mention.
If the system is perceiving a chair in the outside world, a
[chair] atom will be part of the representation of that
outside situation. But if the system asks itself “What is a
chair?”, there will be one [chair] atom that stands as the
target of the representation.
 When an atom becomes a target, operators will cause
this target atom to be elaborated and unpacked in various
ways. Call this set of elaboration and unpacking operations
an “analysis” event. An analysis event involves various
connected concepts being activated and connected to the
[chair] atom. If we answer the question by saying that a
chair has four legs and is used for sitting on, then this will
be because the analysis has gone in such a direction as to
cause [sitting] and [function-of] atoms to be activated, as
well as a cluster involving [legs], [four] and [part-of].
 It is important to be clear that the sense of “explain” that
we are examining here is the one that distinguishes itself
clearly from the sense that means, simply, “finding all
associated concepts.” Analysis, as it is construed here, is
not about the fact that [red] tends to be associated with
[lips], [blood], [redcurrants] and so on. Humans, and
sufficiently powerful AGI systems, clearly have the ability
to reduce concepts to more basic terms. This reductionist

type of mechanism is the one that we mean when we talk
about the analysis o a target atom.
 If this were about narrow AI, rather than AGI, we might
stop here and say that the essence of “explanation” was
contained in the above description of how the [chair]
concept was analyzed into a more detailed representation.
However, in an AGI system these core aspects of the
analysis process are only part of a much larger
constellation of other structures and operators, including
representations of: the person who asked the question; that
person’s intentions; some background about the different
kinds of explanation that are appropriate in different
contexts; the protocols for constructing sentences that
deliver an answer; the status and reliability of the
knowledge in question, and so on.
 Analysis is not really a single mechanism, it is an open-
ended cluster of flexible, context-dependent mechanisms.
More like a poorly demarcated sector of an ecology, than a
crisply defined mechanism. However, for the purposes of
discussion we will to refer to the whole thing as if it were a
single “analysis mechanism.”

Explaining Subjective Concepts
In the case of human cognition, what happens when we try
to answer a question about our subjective experience of the
color red? In this case the analysis mechanism gets into
trouble, because the [red] concept is directly attached to an
incoming signal line and has no precursors. The [red]
concept cannot be unpacked like most other concepts.
 The situation here is much worse than simply not
knowing the answer. If we are asked to define a word we
have never heard of, we can still talk about the letters or
phonemes in the word, or specify where in the dictionary
we would be able to find the word, and so on. In the case
of color qualia, though, the amount of analysis that can be
done is precisely zero, so the analysis mechanism returns
nothing.
 Or does it? I propose that, because of the nature of the
representations used in the foreground, there is no way for
the analysis mechanism to fail to return some kind of
answer, because a non-answer would be the same as
representing the color of red as “nothing,” and in that case
all colors would be the same. Nothing is not an option, for
the same reason that a calculator cannot report that “3
minus 3 is …” and then not show anything on its display.
Structurally, the analysis mechanism must return an atom
representing [the subjective essence of the color red], but
this atom is extremely unusual because it contains nothing
that would allow it to be analyzed. Any further attempt to
apply the analysis mechanism to this atom will yield just
another atom of the same element.
 This bottoming-out of the analysis mechanism causes
the cognitive system to eventually report that “There is
definitely something that it is like to be experiencing the
subjective essence of red, but that thing is ineffable and
inexplicable.” This is the only way it can summarize the
utterly peculiar circumstance of analyzing [x] and getting
[x] back as an answer.

122

 This same “failure” of the analysis mechanism is
common to all of the consciousness questions. For qualia,
the mechanism dead-ends into the sensory atoms at the
edge of the foreground. For the concept of self, there is an
innate representation for the self that cannot be analyzed
further because its purpose is to represent, literally, itself.
On reflection, it seems that all subjective phenomenology
is associated with such irreducible atoms.
 In each case it is not really a “failure,” in the sense that a
mechanism is broken, nor is it a failure that results from
the system simply not knowing something. It is an
unavoidable consequence of the fact that the cognitive
system is powerful enough to recursively answer questions
about its own knowledge. According to this view, any
intelligent system powerful enough to probe its own
intellect in this deep way—any system with an analysis
mechanism—would spontaneously say the same things
about consciousness that we do.
 Finally, it is worth reiterating the point made earlier: this
account does not depend on the specifics of the molecular
framework. All AGI systems must fail in the same way.

The ‘That Misses The Point’ Objection
The most common philosophical objection to the above
argument is that it misses the point, because it explains
only the locutions that people produce when talking about
consciousness, not the actual experiences they have.
 The problem with this objection is that it involves an
implicit usage of the very mechanism that is supposed to
be causing the trouble. So, when we say “There is
something missing from this argument, because when I
look at my subjective experiences I see things that are not
referenced by the argument”, what we are doing is staying
within the system and asking for an explanation of (say)
color qualia that is just as good as the explanations we can
find for other concepts. But this within-the-system
comparison of consciousness with ordinary concepts is
precisely the kind of thought process that will invoke the
analysis mechanism. And the analysis mechanism will then
come back with the verdict that the Loosemore Argument
fails to describe the nature of conscious experience, just as
other attempts to explain consciousness have failed.
 There is no space to analyze all possible objections here,
but I would offer instead the following conjecture: when
the objections are examined carefully, they will always be
found to rely, for their force, on a line of argument that
causes the analysis mechanism to run into a dead end. At
the same time that the argument cites the analysis
mechanism as the chief culprit, then, the objections try to
use deploy the analysis mechanism (with flaw intact) to
explain why the argument cannot be right.
 But this still leaves something of an impasse. The
argument does says nothing about the nature of conscious
experience, qua subjective experience, but it does say why
it cannot supply an explanation of subjective experience. Is
explaining why we cannot explain something the same as
explaining it?

Part 2: The Real Meaning of Meaning
This is not a very satisfactory resolution of the problem,
because it sounds as if we are being asked to believe that
our most immediate, subjective experience of the world is,
in some sense, an artifact produced by the operation of the
brain. Of course, the word “artifact” is not quite right here,
but then neither are “illusion,” “mirage,” “hallucination,”
or any of the other words that denote things that seem to
exist, but are actually just a result of our brains doing
something odd. By labeling consciousness as a thing that
intelligent systems must say they experience, (because their
concept-analysis mechanisms would not function correctly
otherwise), we seem to be putting consciousness on a par
with artifacts, illusions and the like. That seems, on the
face of it, a bizarre way to treat something that dominates
every aspect of our waking lives.
 I believe that it is wrong to take the view that the meta-
account of consciousness given above leads inexorably to
the conclusion that consciousness is some kind of artifact.
The best, most satisfying conclusion is that all of the
various subjective phenomena associated with
consciousness should be considered just as “real” as any
other phenomenon in the universe, but that science and
philosophy should concede that they have the special status
of being unanalyzable. We should declare that such
phenomena can be predicted to occur under certain
circumstances (namely, when an intelligent system has the
kind of powerful “analysis” mechanism described earlier),
but that nothing can be said about their nature. In effect,
we would be saying that these things are real, but beyond
the reach of science.
 The remainder of the argument is an attempt to explain
and justify this position.

Getting to the Bottom of Semantics
The crucial question, then, is what status we should give to
the atoms in a cognitive system that have this peculiar
property of making the analysis mechanism return a verdict
of “this is real, but nothing can be said about it”.
 To answer this question in a convincing way, we need to
be more specific about the criteria we are using to justify
our beliefs about the realness of different concepts
(epistemology), the meaning of concepts (semantics and
ontology), and the standards we use to judge the validity of
scientific explanations. We cannot simply wave our hands
and pick a set of criteria to apply to these things, we need
some convincing reasons for choosing as we do.
 There seem to be two choices here. One would involve
taking an already well-developed theory of semantics or
ontology—off the shelf, so to speak—then applying it to
the present case. For example, we might choose to go with
some form of “possible worlds” semantics, and then note
that, according to this perspective, the offending concept-
atoms do not take part in any conceivable functions
defined over possible worlds, so therefore they can be
dismissed as fictions that do not correspond to anything
meaningful.

123

 The second choice is to take a detailed look at all the
different semantic/ontological frameworks that are
available and find out which one is grounded most firmly;
which one is secure enough in its foundations to be the
true theory of meaning/reality/explanation.
 The perceptive reader will notice that we are in the
process of walking into a trap.
 The trap is as follows. If someone were to suggest that
the concept of the “meaning” of language can be reduced
to some simpler constructs (perhaps, the meanings of basic
terms plus rules of compositionality), and that these
constructs may then be reduced further (perhaps to
functions over possible worlds), and that this reduction
could continue until we reach some very basic constructs
that are intuitively obvious or self-evident, then that person
would be embarking on a doomed endeavor, because any
such reductionist plan would end in circularity, or descend
into an infinite regress. No matter how far down the
reduction went, questions could always be asked about the
meanings of the most basic terms (“You are explaining this
in terms of ‘possible worlds’? Please tell me the meaning
of ‘possible world’?”) . The choice then is to either declare
an arbitrary limit to the process, or admit that it leads to an
infinite regress of questions.
 This circularity or question-begging problem applies
equally to issues of the meaning of “meaning” and
explanations of the concept of “explanation,” and it afflicts
anyone who proposes that the universe can be discovered
to contain some absolute, objective standards for the
“meanings” of things, or the fundamental nature of
explanatory force.

Extreme Cognitive Semantics
The only attitude to ontology and semantics that escapes
this trap is something that might be called “Extreme
Cognitive Semantics”—the idea that there is no absolute,
objective standard for the mapping between symbols and
things in the world, because this mapping is entirely
determined by the purely contingent fact of the design of
real cognitive systems (Croft and Cruse, 2004; Smith and
Samuelson, 1997). There is no such thing as the pure,
objective meaning of the symbols that cognitive systems
use, there is just the way that cognitive systems do, in fact
use them. Meanings are determined by the ugly, inelegant
design of cognitive systems, and that is the end of it.
 How does this impact our attempt to decide the status of
those atoms that make our analysis mechanisms bottom
out? The first conclusion should be that, since the
meanings and status of all atoms are governed by the way
that cognitive systems actually use them, we should give
far less weight to any externally-imposed formalism (like
possible-worlds semantics) which says that according to its
strictures, subjective concepts point to nothing and are
therefore fictitious.
 Second—and in much the same vein—we can note that
the atoms in question are such an unusual and extreme
case, that formalisms like traditional semantics should not
even be expected to handle them. This puts the shoe firmly

on the other foot: it is not that these semantic formalisms
have no place for the consciousness-concepts and therefore
the latter are invalid, it is rather that the formalisms are too
weak to be used for such extreme cases, and therefore they
have no jurisdiction in the matter.
 Finally, we can use the Extreme Cognitive Semantics
(ECS) point of view to ask what it means to judge various
concepts as possessing different degrees of “realness.”
 The natural, usage-centered meaning of “real” seems to
have two parts. The first involves the precise content of a
concept and how it connects to other concepts. So,
unicorns are not real because they connect to our other
concepts in ways that clearly involve them residing only in
stories. The second criterion that we use to judge the
realness of a concept is the directness and immediacy of its
phenomenology. Tangible, smellable, seeable things that
lie close at hand are always more real.
 Interestingly, the consciousness atoms score differently
on these two measures of realness: they connect poorly to
other concepts because we can say almost nothing about
them, but on the other hand they are the most immediate,
closest, most tangible concepts of all, because they define
what it means to be “immediate” and “tangible.”

Implications
What to conclude from this analysis? I believe that the
second of these two criteria is the one that should
dominate, and that the correct explanation for
consciousness is that all of its various phenomenological
facets deserve to be called as “real” as any other concept
we have, because there are no meaningful objective
standards that we can apply to judge them otherwise. But
while they deserve to be called “real” they also have the
unique status of being beyond the reach of scientific
inquiry. We can talk about the circumstances under which
they arise, but we can never analyze their intrinsic nature.
Science should admit that these phenomena are, in a
profound and specialized sense, mysteries that lie beyond
our reach.
 This is a unique and unusual compromise between
materialist and dualist conceptions of mind. Minds are a
consequence of a certain kind of computation; but they
also contain some mysteries that can never be explained in
a conventional way. We cannot give scientific explanations
for subjective phenomena, but we can say exactly why we
cannot say anything: so in the end, we can explain it.

Conclusion: Falsifiable Predictions
This theory of consciousness can be used to make some
falsifiable predictions. Unfortunately, we are not yet in a
position to make tests of the these prediction, because
doing so would require the kind of nanotechnology that
would let us rewire our brains on the fly.
 The uniqueness of these predictions lies in the fact that
there is a boundary (the edge of the foreground) at which
the analysis mechanism gets into trouble. In each case, the

124

prediction is that these phenomena will occur at exactly
that boundary, and nowhere else. Once we understand
enough about the way minds are implemented in brains (or
in full-scale AGI systems), we will be in a position to test
the predictions, because the predicted effects must occur at
the boundary if the prediction is to be confirmed.
Prediction 1: Blindsight. Some kinds of brain damage
cause the subject to experience ‘blindsight,’ a condition in
which they report little or no conscious awareness of
certain visual stimuli, while at the same time showing that
they can act on the stimuli (Weiskrantz, 1986). The
prediction in this case is that some of the visual pathways
will be found to lie outside the scope of the analysis
mechanism, and that the ones outside will be precisely
those that, when spared after damage, allow visual
awareness without consciousness.
Prediction 2: New Qualia. If we were to build three sets
of new color receptors in the eyes, with sensitivity to three
bands in, say, the infrared spectrum, and if we also built
enough foreground wiring to supply the system with new
concept-atoms triggered by these receptors, this should
give rise to three new color qualia. After acclimatizing to
the new qualia, we could then swap connections on the old
colors and the new IR pathways, at a point that lies just
outside the scope of the analysis mechanism.
 The prediction is that the two sets of color qualia will be
swapped in such a way that the new qualia will be
associated with the old visible-light colors. This will only
occur if the swap happens beyond the analysis mechanism.
 If we subsequently remove all traces of the new IR
pathways outside the foreground (again, beyond the reach
of the analysis mechanism), then the old color qualia will
disappear and all that will remain will be the new qualia.
 Finally, if we later reintroduce a set of three color
receptors and do the whole procedure again, we can bring
back the old color qualia, but only if we are careful: the
new receptors must trigger the foreground concept-atoms
previously used for the visible-light colors. If, on the other
hand, we completely remove all trace of the original
concept atoms, and instead create a new set, the system
will claim not to remember what the original qualia looked
like, and will tell you that the new set of colors appear to
have brand new qualia.
Prediction 3: Synaesthetic Qualia. Take the system
described above and arrange for a cello timbre to excite the
old concept-atoms that would have caused red qualia:
cello sounds will now cause the system to have a
disembodied feeling of redness.
Prediction 4: Mind Melds. Join two minds so that B has
access to the visual sensorium of A, using new concept-
atoms in B’s head to encode the incoming information
from A. B would say that she knew what A’s qualia were
like, because she would be experiencing new qualia. If, on
the other hand, the sensory stream from A is used to trigger
the old concept atoms in B, with no new atoms being
constructed inside B’s brain, B would say that A’s qualia
were the same as hers.

Conclusion
The simplest explanation for consciousness is that the
various phenomena involved have an irreducible duality to
them. On the one hand, they are meta-explicable, because
we can understand that they are the result of a powerful
cognitive system using its analysis mechanism to probe
concepts that are beyond its reach. On the other hand, these
concepts deserve to be treated as the most immediate and
real objects in the universe, because they define the very
foundation of what it means for something to be real—and
as real things, they appear to have ineffable aspects to
them. Rather than try to resolve this duality by allowing
one interpretation to trump the other, it seems more
rational to conclude that both are true at the same time, and
that the subjective aspects of experience belong to a new
category of their own: they are real but inexplicable, and
no further scientific analysis of them will be able to
penetrate their essential nature.
 According to this analysis, then, any computer designed
in such a way that it had the same problems with its
analysis mechanism as we humans do (arguably, any fully
sentient computer) would experience consciousness. We
could never “prove” this statement the way that we prove
things about other concepts, but that is part of what it
means to say that they have a special status—they are real,
but beyond analysis—and the only way to be consistent
about our interpretation of these phenomena is to say that,
insofar as we can say anything at all about consciousness,
we can be sure that the right kind of artificial general
intelligence would also experience it.

References
Chalmers, D. J. 1996. The Conscious Mind: In Search of a
Fundamental Theory. Oxford: Oxford University Press.
Croft, W. and Cruse, D. A. 2004. Cognitive Linguistics.
Cambridge: Cambridge University Press.
Dowty, D. R., Wall, R. E., & Peters, S. 1981. Introduction
to Montague Semantics. Dordrecht: D. Reidel.
Loosemore, R. P. W. (2007). Complex Systems, Artificial
Intelligence and Theoretical Psychology. In B. Goertzel &
P. Wang (Eds.), Proceedings of the 2006 AGI Workshop.
IOS Press, Amsterdam.
Loosemore, R. P. W., & Harley, T.A. (forthcoming).
Brains and Minds: On the Usefulness of Localisation Data
to Cognitive Psychology. In M. Bunzl & S. J. Hanson
(Eds.), Foundations of Functional Neuroimaging.
Cambridge, MA: MIT Press.
Smith, L. B., and Samuelson, L. K. 1997. Perceiving and
Remembering: Category Stability, Variability, and
Development. In K. Lamberts & D. Shanks (Eds.),
Knowledge, Concepts, and Categories. Cambridge:
Cambridge University Press.
Weiskrantz, L., 1986. Blindsight: A Case Study and
Implications. Oxford: Oxford University Press.

125

Hebbian Constraint on the Resolution of the Homunculus Fallacy Leads

to a Network that Searches for Hidden Cause-Effect Relationships

András Lőrincz

Department of Information Systems, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary 1117

Abstract

We elaborate on a potential resolution of the homunculus
fallacy that leads to a minimal and simple auto-associative
recurrent ‘reconstruction network’ architecture. We insist
on Hebbian constraint at each learning step executed in this
network. We find that the hidden internal model enables
searches for cause-effect relationships in the form of
autoregressive models under certain conditions. We discuss
the connection between hidden causes and Independent
Subspace Analysis. We speculate that conscious experience
is the result of competition between various learned hidden
models for spatio-temporal reconstruction of ongoing
effects of the detected hidden causes.

Introduction

The homunculus fallacy, an enigmatic point of artificial
general intelligence, has been formulated by many (see
e.g., Searle 1992). It says that representation is
meaningless without „making sense of it‟, so the
representation needs an interpreter. Then it continues with
the questions: Where is this interpreter? What kind of
representation is it using? This line of thoughts leads to an
infinite regress. The problem is more than a philosophical
issue. We are afraid that any model of declarative memory
or a model of structures playing role in the formation of
declarative memory could be questioned by the kind of
arguments provided by the fallacy.

Our standpoint is that the paradox stems from vaguely

described procedure of „making sense’. The fallacy arises

by saying that the internal representation should make

sense. To the best of our knowledge, this formulation of

the fallacy has not been questioned except in our previous

works (see, Lőrincz et al. (2002), and references therein).

We distinguish input and the representation of the input. In

our formulation, the „input makes sense’, if the

representation can produce an (almost) identical copy of it.

This is possible, if the network has experienced and

properly encoded similar inputs into the representation

previously. According to our approach, the internal
representation interprets the input by (re)constructing it.

This view is very similar to that of MacKay (1956) who

emphasized analysis and synthesis in human thinking and

to Horn‟s view (1977), who said that vision is inverse

graphics.

In the next section, we build an architecture by starting
from an auto-associative network that has input and hidden
representation. We will insist on Hebbian learning for each
transformation, i.e., from input to representation and from
representation to reconstructed input, of the network. We
will have to introduce additional algorithms for proper
functioning and will end up with a network that searches
for cause-effect relationships. During this exercise we
remain within the domain of linear approximations. In the
discussion we provide an outlook to different extensions of
the network, including non-linear networks, and
probabilistic sparse spiking networks. The paper ends with
conclusions.

Making sense by reconstruction

We start from the assumption that the representation
„makes sense‟ of the input by producing a similar input.
Thus, steps of making sense are:

1. input  representation
2. representation  reconstructed input

If there is a good agreement between the input and the
reconstructed input then the representation is appropriate
and the input „makes sense‟. Observe that in this construct
there is no place for another interpreter, unless it also has
access to the input. However, there is place for a hierarchy,
because the representation can serve as the input of other
reconstruction networks that may integrate information
from different sources. A linear reconstruction network is
shown in Fig. 1. We note that if the model recalls a
representation, then it can produce a reconstructed input in
the absence of any real input.

First, we shall deal with static inputs. Then we consider
inputs that may change in time.

The Case of Static Inputs

We start from the constraints on the representation to
reconstructed input transformation. The case depicted in
Fig. 1 corresponds to Points 1 and 2 as described above.
However, it requires a slight modification, because we

Copyright © 2008, The Second Conference on Artificial General

Intelligence (agi-09.org). All rights reserved.

126

need to compare the input and the reconstructed input. This
modification is shown in Fig. 2.

Input is compared with the reconstructed input

 and produces the reconstruction error .

Then, reconstruction error can be used to correct the

representation. It is processed by bottom-up (BU) matrix

 and updates the representation .

Representation is processed by top-down (TD) matrix

to produce the reconstructed input. The

relaxation dynamics is:

 (1)

 (2)

Note that update (1) requires a recurrent synapse system

that represents the identity matrix I to add to the

update at time We will come

back to this point later.

Equation (2) is stable if (is positive

definite). Then the architecture solves equation

for h, so it effectively computes the (pseudo-)inverse,

provided that the input is steady. Even for steady input,

condition should be fulfilled, so we have to train

matrix . Training aims to reduce the reconstruction error

and we get cost function

and then the on-line tuning rule:

 (3)

where apostrophe denotes transpose and

.

Figure 2. : the input layer receives inhibitory

(negative) feedback from the reconstructed input and

becomes a comparator. The input layer holds the

reconstruction error . Arrow with solid circle: additive

inhibition.

We have to modify Fig. 2 to make this learning rule

Hebbian (Fig. 3):

Figure 3. Hebbian training for TD matrix (Eq. (3)).

Clearly, training of matrix stops if , which

includes the trivial solution, . Condition

 is satisfied. The situation is somewhat more

delicate if input may change by time. We treat this case

below.

Figure 1. : We say that input layer has n neurons.

The activity of the neuron is . : there are n

neurons in the hidden representation layer. :

input-to-representation, or bottom-up (BU)

transformation. is the element of matrix :

„synapse‟ or weight from neuron j to neuron i. :

there are n neurons in the reconstructed input layer.

: top-down (TD) transformation.

127

The Case of Inputs that Change by Time

If inputs change by time, then we can not reconstruct them,
because of two reasons (i) there are delays in the
reconstruction loop and (ii) the network may need
considerable relaxation time if matrix is not properly
tuned. We have to include predictive approximations to
overcome these obstacles.

First, we introduce a predictive model. Second, we
discover problems with Hebbian learning that we
overcome by means of the representation. New Hebbian
problems will constrain us that we solve by another
rearrangement of the network.

Figure 4. Hebbian learning for predictive matrix .

For the sake of simplicity, we assume that the input is a
first order autoregressive model (AR(1)):

 (4)

where and its largest eigenvalue is smaller than
1 (for stability) and is the driving noise having
normal distribution. Our approximations are Ĥ for matrix
H, and for input estimation, i.e., we estimate as

 (5)

and the estimation error is

 (6)

and is our estimation for noise n. Our cost function is

 that leads to the
Hebbian training rule:

 (7)

The network that can realize Eq. (7) is shown in Fig. 4.

The network in Fig. 4 works as follows. Input arrives
to the two input layers and starts to propagate through
matrix . At the next time instant input arrives
and the propagated input is subtracted, so we have
activities on the output end
of matrix and the synapses were traversed by ,
satisfying the constraints of rule (7).

There is a problem with the network of Fig. 4: we can not
ensure identical inputs at different layers. This problem can
be solved if we insert this new network into our previous
two-layer architecture (Fig. 3). Having done this, for time
varying inputs Eq. (3) assumes the form

 (8)

As we shall see, Eq. (8) enables the learning of a hidden
model.

Two layer network with hidden predictive matrix. We
add a predictive model (matrix) to the
representation layer; it replaces the identity matrix I as
required by non-steady inputs (Fig. 5). Now, we examine
how this matrix could be trained.

Equation still holds, provided that matrix –
our estimated model – can compensate for the temporal
changes. The model at the representation layer is:

 , (9)

where according to our notations, noise should be an
estimation of .

Figure 5: Representation with predictive model.

The question we have is whether we can learn a non-
inhibitory prdictive matrix by Hebbian means or not.
Although we can learn predictive matrices, see, e.g.,
Eq.a(7), but they would work as comparators.

For model learning, the same trick does not work, we need
other means. Our simple structure can be saved if we
assume two-phase operation. It is important that two-phase
operation fits neuronal networks (Buzsáki, 1989), so we
are allowed to use this trick. We assume that and

 are transferred in Phase I and Phase II respectively
by bottom-up matrix . Under this condition, training of
predictive matrix can be accomplished in Phase II: in

128

Phase II, the output of matrix is , whereas it
experiences input . The same quantities emerge
when considering cost , i.e.,
the squared error at time . Note, however, that
training of matrix is supervised and so matrix can
play an additive role.

Discussion

The resolution of the homunculus fallacy has been
suggested in our previous works (see, e.g., Lőrincz et al.
(2002), and references therein). Here we elaborated that
work by more rigorous considerations on Hebbian
learning. We were led to a simple network that provides
further insights into the „making sense‟ process:

(1) The network discovers two components: (i) a
deterministic process characterized by the predictive
matrix and (ii) the driving noise of this deterministic
process. One may say that the network discovers the causes
(the driving noises) and the effects (the deterministic
evolution of the driving noises).

(2) The network builds up an internal model that can run
without input. Assume that the network runs for steps on
its own

 (10)

and then it compares the result with the input steps later:

 (11)

If the disagreement between the two quantities is small (if

 that appears at the input layer is small), then the
input process „makes sense‟ according to what has been
learned.

We note for the sake of arguments on consciousness that if
the network runs for k time steps, then – according to the
dimensional constraints – the network can be increased up
to k pieces of parallel running temporal processes, each of
them trying to reconstruct the input during the whole k
time step history. The pseudo-inverse method is suitable to
select the sub-network with the smallest reconstruction
error over the k time steps. This sub-network makes the
most sense according to history.

(3) The same predictive network can be used for replaying
temporal sequences, provided that the starting hidden
representation is saved somewhere.

The novelty of this work comes from the examination of
Hebbian constraints on reconstruction networks. Neural
networks with reconstruction capabilities, however, are not
new; there is long history of such networks.

Other works starting from similar thoughts

There are many network models that have similar
structure. These networks are typically more complex than
the simple/minimal linear autoregressive network that we
described here. There are similar networks that aim to
model real neuronal architectures. The literature is huge;
we can list only some of the most prominent works.

To our best knowledge, the first neocortex related

reconstruction network model that suggested approximate

pseudo-inverse computation for information processing

between neocortical areas was published by Kawato et al.,

(1993). It was called the forward-inverse model and

modeled the reciprocal connections between visual

neocortical areas. The motivation of the model was to

connect regularization theories of computational vision

(Poggio et al., 1985, Ballard et al., 1983) to neocortical

structure and explain how multiple visual cortical areas are

integrated to allow coherent scene perception. The

computational model of the neocortex was extended by

Rao and Ballard (Rao and Ballard, 1997, Rao and Ballard,

1999), who suggested that neocortical sensory processing

occurs in a hierarchy of Kalman filters. The Kalman filter

model extends previous works into the temporal domain.

Non-linear extensions include the so called recurrent

neural networks that have non-linear recurrent collaterals

at the representation layer. For a review on recurrent neural

networks, see Jacobsson (2005). A particular recurrent

network model with hidden layer is called Echo State

Network (ESN, Jaeger, 2003). ESN – unlike to most

models – is non-linear with strictly Hebbian learning. It

does not assume two-phase operation. It is made efficient

by a huge random recurrent network that forms the internal

representation.

Another type of networks with reconstruction flavor

belongs to stochastic networks and is called generative

model (see, e.g., (Hinton, 2007). An attempt that connects

generative models with two phase operation appeared early

(Hinton, 1995), but without details on Hebbian constraints.

The Kalman filter model and the generative network model

are the close relatives of the minimal architecture that we

described here. They are more sophisticated, but Hebbian

learning is so strict as in our minimal model.

Extensions of reconstruction networks

The role of the bottom-up matrix. It is intriguing that

Hebbian learning did not provide constraints for the
bottom-up matrix. Our proposal, that hidden models

discover cause-effect relationships (see point (1) above),

leads to the thought that the role of the bottom-up matrix is

to help searches for causes. Causes – by definition – are

independent, so we have to look for independent sources.

129

This route is relevant if the noise is not normal, which the

typical case for natural sources is. If non-normal sources

are hidden and only their mixture is observed, then

observed distribution may approximate a normal

distribution, because of the d-central limit theorem. Then

the following situation is achieved:

1. Deterministic prediction can be subtracted from

the observation under the assumption that the

driving noise is close to normal distribution

2. Independent sources can be estimated by

independent subspace analysis (see, e.g., Cardoso

(1998), Hyvarinen and Hoyer (2000)). For a

review, see Szabó et al. (2007).

3. The autoregressive processes in the independent

subspaces can be learnt by supervisory training

that overcomes the problem of non-normal

distributions. We note: (a) the least mean square

approach that we applied fits the normal

distribution, (b) higher order autoregressive

processes with moving averages can also be

included into the representation (Szabó et. al,

2007, Póczos et. al, 2007), although it is not yet

known how to admit Hebbian constraints.

4. It is unclear if Independent Subspace Analysis can

be performed by Hebbian means or not. Efforts to

find strictly Hebbian methods for the whole loop

including the independent subspace analysis are in

progress (Lőrincz et al., 2008a).

The search for cause-effect dependencies can be related to

the Infomax concept (Barlow, 1961, Linsker, 1988, Atick

and Redlich, 1992, Bell and Sejnowski, 1995, Linsker,

1997), because upon removing the temporal process, the

search for the independent causes is analogous to the

Infomax concept (Cardoso, 1997). However, the reasoning

is different; here, the aim of independent subspace analysis

is to find the causes that drive deterministic processes.

Extensions of this simple architecture to ARMA(p,q)

processes (Póczos et al., 2007), non-linear extensions

(Jaeger, 2003), extensions with control and reinforcement

learning (Szita and Lőrincz, 2004, Szita et al., 2006) are

possible. Overcomplete probabilistic sparse spiking

extension of the reconstruction architecture has also been

suggested (Lőrincz et al., 2008b) and this direction has

promises for biologically plausible probabilistic spatio-

temporal extensions of the „making sense procedure‟ under

Hebbian constraints.

Outlook to a potential model for consciousness. It has

been mentioned before that if the model runs without input

for k steps, then the number of models can be multiplied by

k, because the pseudo-inverse method can select the best

candidate. There is a cost to pay: the best process can not

be switched off arbitrarily often, it should be the best

candidate that reconstructs k time steps. Such competition

between models to represent the sensory information may

explain certain aspects of consciousness, including rivalry

situations, when perception is changing steadily, whereas

the sensory information is steady.

Conclusions

We have shown that under Hebbian constraints, the

resolution of the homunculus fallacy leads to a particular

reconstruction network. The network is potentially the

simplest in its structure, but not in its functioning: (i) it has

a bottom-up, a top-down, and a predictive network, and it

is linear, but (ii) it works in two separate phases.

We have shown that the emerging network turns the

philosophical infinite regress into a finite loop structure

and this finite loop uncovers hidden cause-effect

relationships. This is one way to interpret the making sense

procedure of the „homunculus‟. The representation

produces the next expected input from time-to-time and

computes the difference between the input and this

expected reconstructed input. We say that the input makes

sense, if this difference is within the range of the expected

noise. Also, the network can run by itself as required if

inputs are missing.

We have found that constraints arising from the resolution

of the fallacy leave the form of the bottom-up network

open. However, the reconstruction network uncovers

hidden deterministic processes and estimates the driving

noise, the hidden causes. Causes are independent „by

definition‟, so the network should work better if the

bottom-up transformation is trained on the estimated noise

according to Independent Subspace Analysis (ISA), which

is provably non-combinatorial under certain circumstances

(Póczos et al., 2007, Szabó et al., 2007). The concept of

finding causes that drive deterministic processes leads to

and takes advantage of a relative of ISA, the so called

Infomax concept, which has been developed for modeling

sensory information processing in the brain (Barlow 1961,

Linsker 1988).

We have speculated that competing models in

reconstruction networks may provide a simple explanation

for certain features of consciousness. This speculation can

be taken further: the model hints that conscious experience

may emerge as the result of distributed and self-

orchestrated competition amongst predictive models to

reconstruct their common inputs over longer time intervals.

This line of thoughts suggests to seek not (only) the

conductor of the orchestra (see, e.g., Crick and Koch,

2005), but the distributed selection algorithm triggered by

unexpected independent causes as disclosed by

reconstruction errors of competing reconstruction models.

130

References

Atick, J. J. and Redlich, A. N. 1992. What does the retina

know about natural scenes? Neural Comput. 4:196-210.

Ballard, D. H., Hinton, G. E., and Sejnowski, T. J. 1983.

Parallel visual computation. Nature, 306:21-26.

Barlow, H. 1961. Possible principles underlying the

transformations of sensory messages. In: Sensory

Communication, W. Rosenblith (ed.), pp. 217-234. MIT

Press, Cambridge, MA.

Bell, A. J. and Sejnowski, T. J. 1995. An information-

maximization approach to blind separation and blind

deconvolution. Neural Comput. 7:1129-1159

Buzsáki, Gy. 1989. A two-stage model of memory trace

formation: a role for “noisy” brain states. Neuroscience 31:

551–570.

Cardoso, J.-F. 1997. Infomax and maximum likelihood for

source separation, IEEE Letters on Signal Processing, 4:

112-114.

Cardoso, J.-F. 1998. Multidimensional independent

component analysis. In Proc. of Int. Conf. on Acoustics,

Speech, and Sign. Proc. Seattle, WA, USA. 4: 1941–1944.

Crick, F. C. and Koch, C. 2005. What is the function of the

claustrum? Phil. Trans. R. Soc. B 360: 1271-1279.

Hinton, G., E. 2007. To recognize shapes, first learn to

generate images. Prog. Brain. Res. 165:535-547.

Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. 1995.

The wake-sleep algorithm for self-organizing neural

networks. Science, 268:1158-1161.

Horn, B. 1977. Understanding image intensities. Artificial

Intelligence 8: 201–231.

Hyvarinen, A., Hoyer, P.O. 2000. Emergence of phase and

shift invariant features by decomposition of natural images

into independent feature subspaces. Neural Comput., 12:

1705–1720.

Jacobsson, H., 2005. Rule Extraction from Recurrent

Neural Networks: A Taxonomy and Review. Neural

Comput., 17:1223-1263.

Jaeger, H. 2003, Adaptive nonlinear system identification

with echo state networks, Adv. in Neural Information Proc.

Systems 15: 593-600.

Kawato, M., Hayakawa, H., and Inui, T. 1993. A forward-

inverse model of reciprocal connections between visual

neocortical areas. Network, 4:415-422.

Linsker, R. 1988. Self-organization in a perceptual

network. IEEE Computer 21:105-117.

Linsker, R. 1997. A local learning rule that enables infor-

mation maximization for arbitrary input distributions.

Neural Comput. 9:1661-1665.

Lőrincz, A. Kiszlinger, M., Szirtes, G. 2008a. Model of the

hippocampal formation explains the coexistence of grid

cells and place cells. http://arxiv.org/pdf/0804.3176

Lőrincz, A., Palotai, Zs., Szirtes, G., 2008b. Spike-based

cross-entropy method for reconstruction. Neurocomputing,

71: 3635-3639.

Lőrincz, A., Szatmáry, B., and Szirtes, G. 2002. Mystery

of structure and function of sensory processing areas of the

neocortex: A resolution. J. Comp. Neurosci. 13:187–205.

MacKay, D., 1956. Towards an information-flow model of

human behavior. British J. of Psychology 47: 30–43.

Póczos, B., Szabó, Z., Kiszlinger, M., Lőrincz, A. 2007.

Independent Process Analysis Without a Priori Dimen-

sional Information. Lecture Notes in Comp. Sci. 4666:

252–259.

Poggio, T., Torre, V., and Koch, C. 1985. Computational

vision and regularization theory. Nature, 317:314-319.

Rao, R. P. N. and Ballard, D. H. 1997. Dynamic model of

visual recognition predicts neural response properties in

the visual cortex. Neural Comput., 9:721-763.

Rao, R. P. N. and Ballard, D. H. 1999. Predictive coding in

the visual cortex: A functional interpretation of some extra-

classical receptive-field effects. Nature Neurosci., 2:79-87.

Searle, J., 1992 The Rediscovery of Mind. Cambridge,
MA.: Bradford Books, MIT Press.

Szabó, Z., Póczos, B., Lőrincz, A. 2007. Undercomplete
Blind Subspace Deconvolution. J. of Machine Learning
Research 8: 1063-1095.

Szita, I., Gyenes, V., Lőrincz, A. 2006. Reinforcement

Learning with Echo State Networks, ICANN 2006, Lect.

Notes in Comp. Sci. 4131: 830–839.

Szita, I., Lőrincz, A., 2004. Kalman filter control
embedded into the reinforcement learning framework.
Neural Comput. 16: 491-499.

131

http://arxiv.org/pdf/0804.3176

 1

Everyone’s a Critic:

Memory Models and Uses for an Artificial Turing Judge

W. Joseph MacInnes
1
, Blair C. Armstrong

2
, Dwayne Pare

3
,

George S. Cree
3
 and Steve Joordens

3

Abstract
The Turing test was originally conceived by Alan Turing [20] to

determine if a machine had achieved human-level intelligence.

Although no longer taken as a comprehensive measure of human

intelligence, passing the Turing test remains an interesting

challenge as evidenced by the still unclaimed Loebner prize[7], a

high profile prize for the first AI to pass a Turing style test. In this

paper, we sketch the development of an artificial “Turing judge”

capable of critically evaluating the likelihood that a stream of

discourse was generated by a human or a computer. The

knowledge our judge uses to make the assessment comes from a

model of human lexical semantic memory known as latent

semantic analysis[9]. We provide empirical evidence that our

implemented judge is capable of distinguishing between human

and computer generated language from the Loebner Turing test

competition with a degree of success similar to human judges.

Keywords
Semantic Memory, General Knowledge, Decision Making, Machine

learning, Language, Turing test.

Introduction
Even before the formal birth of Artificial Intelligence (AI),

it was believed by some that computers would achieve

human-level intelligence within a relatively short time, so

it was essential to devise a test to determine exactly when

this milestone had been reached. To this end, Alan Turing

[20] proposed the Turing test as one means of evaluating

the intelligence of an artificial entity. In essence, he

proposed that a computer could be deemed intelligent if it

could believably mimic human communication.

Specifically, he proposed a guessing game, played by a

human confederate, an artificial entity, and – central to this

paper - a judge. Without knowing their true identities, the

judge would converse with both the confederate and the

artificial entity. If the judge was unable to systematically

identify which of the two was human, the artificial entity

would be said to be intelligent.

Although the classic Turing test is no longer seen as an

acceptable measure of human intelligence[18][17] , it

remains an excellent and incredibly difficult test of

language mastery. It can also serve as a valid test of agent

believability where the standard may only be to mimic

human behaviour [15]. Currently, the annual Loebner

competition[7] the most renowned forum for attempts at

passing the Turing test, has set a more modest threshold for

intelligence than the Turing test: only 30% of the judges

need to make incorrect attributions of human intelligence

for an attribution of intelligence to be made. Nevertheless,

this achievement has yet to be accomplished.

This paper will focus on the oft-forgotten third party of the

Turing test: the Turing judge. Since it is the objective of

the judge to make the determination of whether the

intelligence is human or artificial, the task of implementing

an artificial judge is simpler than that of creating a

artificial contestant – a test of language recognition and

understanding, not generation.

The applications of a language judge are many, both within

and outside the context of the Turing test. Within the

context of the Turing test, we argue that improved AIs

would benefit from a component which evaluates the

quality of a generated reply. Our argument to this effect is

derived in part from evidence within the cognitive

psychology and cognitive science literatures indicating that

humans employ some form of critic themselves during

sentence comprehension and generation – “a reader tries to

digest each piece of text as he encounters it” [22, p. 16].

As one salient example, the manner in which humans

process ‘garden path’ sentences[4] whose latter portions do

not conform to the interpretation typically expected by the

former portion (e.g., the cotton clothing is made of is

grown in the South) suggests that we evaluate likely

sentence meaning continuously as we read a sentence.

1. Oculus Info. Inc.

Toronto, Ont. Canada

Joe.macinnes@oculusinfo.com

2. Department of Psychology

Carnegie Mellon University and

The Center for the Neural Basis of Cognition

Pittsburgh, PA, USA

3. Department of Psychology

University of Toronto Scarborough

Toronto, Ont., Canada

132

 2

Outside the context of the Turing test, multiple alternative

applications abound: evaluation of the quality of student

essays[10][19] identification of human versus computer

generated on-line forum posts, e-mails, and other forms of

web traffic, and the development of security software

designed to segregate typical human computer interactions

versus automated intrusion attempts.

We have undertaken a principled approach to the

development of the first generation of our Turing judge.

Our approach draws its inspiration from the early

development of artificial intelligence (e.g., Newell &

Simon, 1956), which is currently embodied to some extent

within the interdisciplinary realm of cognitive science: we

aim to advance AI in part through our understanding of

human intelligence. Further discussion of this issue awaits

later in the paper, but this fact is worthy of emphasis for

two reasons: first, it highlights the benefits of a

multidisciplinary approach to tackling general AI issues.

Second, we wish to explicitly acknowledge that although

the “human computer” has been honed over millions of

years of evolution, it is clearly lacking in many regards.

Future collaborative efforts integrating more non-human

approaches in the development of improved Turing judges

would therefore be most welcome.

The Turing Judge

The fundamental goal of the Turing judge is to ascertain

whether a sentence or passage of text was generated by a

human or not. The passage could be evaluated on multiple

dimensions: grammaticality (e.g., he throws the ball vs. he

throw the ball), meaningfulness of content (e.g., colorless

green ideas sleep furiously [2]), relatedness of content to

previously discussed content, and so on. Vast literatures

and many complex issues surround each of these topics. In

developing our first model, we have focused our efforts on

two of these issues: assessing the meaningfulness and

relatedness of semantic content. These issues in particular

seem to be the most fundamentally challenging and

relevant to AIs currently being developed to pass the

Turing test, as a common strategy in recent years been to

simply select a pre-programmed response to a given

question from amongst a database of sentences recorded

from humans [23].

For the judge to appropriately evaluate the passage of text,

it must be supplied with some knowledge of human

discourse. To address this issue, we turned to the literature

examining the derivation of lexical semantic knowledge

(i.e., the derivation of a word’s meaning) from how words

co-occur within large samples of natural language (corpora

of written text). Numerous computational models have

been developed aimed at extracting different components

of structure from within text, and these models have shown

considerable success at accounting for a wide variety of

comprehension phenomena. Examples include: assessing

the correctness of word order in a section of text [24] and

comprehending metaphors [25] among others.

When selecting a particular word co-occurrence model to

employ in our judge, two main forces came into play. The

first was a model’s performance on conversational tasks

similar to those a Turing judge might encounter, and the

second was the degree to which the model tends to perform

well across a wide variety of tasks. Space constraints

prevent a detailed discussion of these issues here, but they

are expounded in [3]. It suffices to say that consideration

of these issues led us to select the Latent Semantic

Analysis (LSA [8]) model for use in our Turing judge. It

chronologically predates most other models and has been

tested in the most diverse set of tasks. It has performed

well in most tasks and has been adopted as the de facto

benchmark model when comparing the performance of

newer models. LSA also has the tangential benefit of

being debatably the most well known and easy-to-

implement of these models, which should facilitate both

the comprehension of the present work, and the execution

of future investigations.

Overview of LSA

LSA [8] is a corpus-based statistical method for generating

representations that capture aspects of word meaning based

on the contexts in which words co-occur. In LSA, the text

corpus is first converted into a word x passage matrix,

where the passages can be any unit of text (e.g., sentence,

paragraph, essay). The elements of the matrix are the

frequencies of each target word in each passage (see Figure

1). The element values are typically re-weighted, following

a specific mathematical transformation (e.g., log

transform) to compensate for disproportionate

contributions from high-frequency words. The entire

matrix is then submitted to singular value decomposition

(SVD), the purpose of which is to abstract a lower

dimensional (e.g., 300 dimensions) meaning space in

which each word is represented as a vector in this

compressed space. In addition to computational efficiency,

this smaller matrix tends to better emphasize the

similarities amongst words. Following the generation of

this compressed matrix, representations of existing or new

passages can be generated as the average vectors of the

words the passage contains.

Methods

133

 3

Our implemented Turing judge used an LSA memory

model to assess the meaningfulness and relatedness of

discourse. The discourse used at test was from previous

attempts at the Loebner competition, so as to determine

whether the model can accurately distinguish human

generated and computer generated responses. Our

hypothesis was that human judges use (at least in part) a

measure of the semantic relatedness of an answer to a

question to spot the computers, so a model which has these

strengths should perform fairly well.

LSA Training

The first step in building an LSA model is to select the text

database from which the word matrix will be built.

Selecting appropriate training data presents a challenge as

the questions posed in the Turing test are completely open

ended and can be about any topic. As with many machine

learning algorithms, the quality of the semantic

representations generated by the LSA model often comes

down to a question of quantity versus quality of training

data. Ultimately, Wikipedia was chosen due to the online

encyclopaedia’s aim of providing a comprehensive

knowledgebase of virtually all aspects of human

knowledge, and for its similarity to the training corpora

typically used to train word co-occurrence models. It was

hoped that the large volume of information in the

Wikipedia corpus would compensate for the lack of

question and answer style dialogue (as is present in the

Live Journal website), although we intend to revisit the

trade-offs associated with each of these alternatives in the

future.

The entire June 2005 version of Wikipedia was used as a

training set for our instantiation of LSA. This corpus

contained approximately 120 million words stored in

approximately 800 000 unique articles. Each article was

pre-processed to remove all of its html and Wikipedia

mark-up, so as to generate a “what you see is what you

get” version of the database from which LSA could learn.

These articles were further stripped of all of their non-

alphanumeric characters, all words were converted to

lowercase, and function words such as ‘the’ and ‘that’ were

trimmed because their high frequency (“the” occurs about

once every ten words in the average English sentence) and

low meaning content tend to detract from LSA’s

performance.

To illustrate the judging process, consider how the judge

would evaluate the similarity of the question “The humans

built what?” relative to the responses “The humans built

the Cylons” and “They built the Galactica and the vipers”,

in the case where the judge had access to the simplified

LSA memory model outlined in Table 1 (this example

matrix forgoes the SVD compression of the matrix for ease

of interpretation, but this transformation would be applied

in the full version of the model). First, it would combine

the vector representations of each of words (i.e., the rows

from the matrix) in each sentence to form a vector

representing the combined meaning of each of these

words. Ignoring words not present in LSA’s memory, the

question vector vq would be equal to (vhuman + vbuild), and

the answer vectors va1 and va2 would be equal to (vhuman +

vbuild + vcylon) and (vbuilt + vgalactica + vviper) respectively.

Note that all of the component vectors which make up vq

and va1 point in roughly the same direction in LSA’s

memory space (the human-building-cylon region), whereas

the component vectors in va2 tend to point to a different

region of space than the question vector (the survivors-

with-vipers-on-galactica region). Consequently, vq and va1

would have a higher cosine value, and va1 would be

considered the better or more “human” answer.

LSA Turing Judge Performance

We aimed to evaluate the similarity between the Judge’s

questions relative to both the AI and the human answers in

A1. Humans built the Cylons to make their lives easier.

A2.The Cylons did not like doing work for the humans.

A3.In a surprise attack, the Cylons destroyed the humans that built them.

A4.The Cylons were built by humans to do arduous work.

B1. Some survivors escaped and fled on the Galactica.

B2. The Galactica protected the survivors using its Viper attack ships.

B3. The Cylons were no match for a Viper flown by one of the survivors.

B4. A Viper flown by one of the survivors found Earth and led the

 Galactica there.

 A1 A2 A3 A4 B1 B2 B3 B4

built 1 1 1

cylons 1 1 1 1 1

humans 1 1 1

a 1 1 1

galactica 1 1 1

survivors 1 1 1 1

viper 1 1 1

Table 1. Simplified LSA representation for the eight sentences listed

above. Each column represents a sentence, and each row represents how

frequently each word occurred in that sentence. In this example, words

which did not occur at least three times across all sentences and the entry

for the function word ‘the’ have been removed from the table. This

matrix has also not been subject to singular value decomposition so as to

render it more conceptually straightforward to interpret, although this

procedure would be applied in the full model. Note that although LSA

has no other knowledge about the world, it nevertheless captures the fact

that (‘humans’, ‘built’, and ‘cylons’), and (‘galactica’, ‘survivors’,

and’viper’) form clusters of meaningfully related knowledge, and that

these clusters are largely separated from one another.

134

 4

previous Loebner prize conversations. To do so, we first

compiled each conversation into question and answer

pairs: the judge’s question followed by the answer of the

conversational agent. Our artificial judge then queried the

LSA model and had it return the high-dimensional memory

vector corresponding to each word in each of the questions

and answers. The vectors for the words comprising the

questions and answers were then separately conflated to

derive a separate representation of the question and the

answer in the high-dimensional memory space provided by

LSA. The cosine similarity of these vectors was then

calculated and used as the metric for the “humanness” of

the human or AI agent in question.

Our hypothesis was that a human agent, by virtue of their

better overall conversation ability, would have higher

semantic similarity with the human judge’s question than

any of the artificial agents. Furthermore, we hypothesized

that our LSA judge would employ a metric similar to

human judges in assessing whether the agent was a human

or not. Consequently, the rank ordering of the different

agents provided by our artificial judge should correspond

with those of the human judges. To assess the validity of

these hypotheses, we used our judge to evaluate the

humanness of the artificial and human agent discourse with

the human Turing judge from the 2005 Loebner

competition. There were approximately 35 question-

answer pairs tested for each of the AIs, and 135 question-

answer pairs tested for the humans; humans having more

data points because they participated along with each AI in

each run of the Turing test.

Results

Based on the process outlined above, our artificial Turing

judge generated a ‘humanness’ rating for the human and

artificial intelligences and these are reported in Figure 1.

As predicted, humans were rated as most “human” by our

judge, with each of the artificial agents showing lower

performance relative to actual humans. We subjected the

humanness ratings to one-way analysis of variance

(ANOVA), and pair-wise t-tests1 of the human agent

against all of the artificial agents. A significance threshold

of p = .05 was used in all analyses. These analyses

indicated significant overall differences between the

conditions (F(4,262) = 2.7), and the pair-wise t-tests

indicated that the human agent was rated as significantly

more human than all of the AIs except for ALICE (Human

vs. ALICE t(88.6) = 1.6; Human vs. EUGENE t(142.8) =

1 Given that large differences in the variability of the humanness

ratings for the different agents, equal variance was not

assumed when running the t-tests; hence, a separate

estimate of each condition’s variance and adjusted degrees of

freedom was used to compensate for violating the t-test’s

homogeneity of variance assumption.

Figure 1. The artificial Turing judge’s “humanness” rating for

both the human agent (black bar) and the artificial agents (white

bars; Ali � Alice, Eug � Eugene, Jab � Jabberwacky, Ton �

Toni). “Humanness” was operationalized as the cosine of the

conflated LSA vector similarity for all of the words in the

question relative to all of the words in the answer. Error bars

are the standard error of the mean. Statistically significant

differences between the human agent and the artificial agents are

denoted with stars (see text for details). With the exception of

ALICE, humans scored significantly higher than the artificial

agents.

Artificial

Judge

Human

Judge 1

Human

Judge 2

Human

Judge 3

Human

Judge 4

Hum (.20) Hum (77) Hum (75) Hum (79) Hum (88)

Ali (.17) Jab (40) Eug (40) Eug (45) Eug (30)

Eug (.12) Eug (35) Ton (30) Jab (20) Ali (10)

Jab (.10) Ton (10) Ali (20) Ton (15) Jab (8)

Ton (.07) Ali (9) Eug (10) Ali (5) Ton (2)

Table 2. Rank orderings and performance scores of the different

artificial agents as determined by our artificial Turing judge and

the four human judges who evaluated the agents during the

Loebner competition. Note both the similarity between our

artificial judge’s ratings and those of the fourth human judge (both

in italics), and the substantial variability in the rank orderings of

the different agents by the different human judges (Hum � Human,

Eug � Eugene, Jab � Jabberwacky, Ton � Toni).

135

 5

2.7; Human vs. JabberWacky t(157.6) = 3.4; Human vs.

Tony t(157.1) = 4.5).

To further assess the performance of our artificial Turing

judge, we investigated how well our judge’s approximation

compared to the humanness metric used by actual human

judges. To do so, we compared the ordinal rank orderings

of the artificial agents in terms of humanness as

determined by our artificial Turing judge against the

ordinal rank orderings generated by the human judges

during the Loebner competition. These data are presented

in Table 2. First, on a qualitative level our artificial

judge’s rank orderings (first column) are quite similar to

those of the fourth human judge (the two top rated agents

being interchanged across the two judges). Second, there

is considerable variability in the rank ordering of the

different agents across the different judges.

More formally, we examined the correlations amongst the

raw scores provided by each of the judges so as to

determine the average consistency across the different

judges. These analyses showed that there are significant

differences in terms of the average correlation amongst the

human judges (mean correlation = .83, SE = .045) and

amongst each of the human judges and the artificial judge

(mean correlation = .59, SE = .06), t(8) = 3.34. Thus, in

the details there is clearly room for improvement in our

artificial judge, primarily in terms of rating humans as

being vastly more “human” than their AI counterparts.

Nevertheless, our mean human judge versus artificial judge

correlation of .59 is quite substantial (reaching a maximum

of .76 amongst the artificial judge and the fourth human

judge), and provides at least modest support for the

conceptual validity of our approach.

Discussion

This work demonstrates that an artificial Turing judge with

access to lexical semantic representations such as those

derived by LSA is capable of distinguishing human and

computer generated conversation agents with a high degree

of accuracy. This test bodes well for semantic detectors as

a key component of a more comprehensive artificial Turing

judge capable of making more robust and sensitive

discriminations. Moreover, the failing of most artificial

agents to achieve “human” level semantic similarity

amongst the question and responses indicates that

enhancing the meaningfulness and relatedness of the

answers artificial agents provide to questions they are

posed warrants substantial attention by AI researchers

interested in the Turing test and related issues.

Despite our model’s success, we note several means in

which it could be enhanced. For instance, it has yet to be

determined whether LSA represents the best knowledge

base for the Turing judge to probe when evaluating the

humanness of a sentence, nor whether the usage of the

cosine is the best metric for assessing the similarity of the

content of two passages of text (see [26] for discussion).

Furthermore, there are clearly many other dimensions of

humanness of a text passage which the current judge

ignores (e.g., grammaticality). Framed in a broader

context, we view the present work as demonstrating the

validity and potential of an artificial Turing judge and the

importance semantic knowledge plays in assessing

‘humanness’. Nevertheless, there is much which remains

unexplored in developing this oft-neglected subcomponent

of the Turing test.

Next steps will include a comparison of the current critic

trained on Wikipedia with a second critic trained on Live

Journal conversations to determine if the conversational

style corpus helps in a conversational critic. Live journal

offers interesting potential for Turing judges. Since the

data is organized by the on-line persona which authored

the text, we have an excellent opportunity to train

algorithms which also exhibit certain personalities. Each

persona contains an accessible description of its author’s

personality along with a keyword list of user interests.

Using these lists, it is quite feasible to train an algorithm

with personas interested in a particular topic. For example,

we could train algorithms from personas interested in

anthropology, computers, or swimming, and in theory, the

algorithms may learn more from these areas than others.

Conclusion

Ultimately, for any system to perform the Turing test at a

high level it will have to combine information from a

variety of sources, and choose among a number of

potential responses supported by these sources. Some

form of internal judge or critic could be critical in this

regard. The current research is the first stage in an

interdisciplinary project designed to model human

cognition. As we improve our techniques to more human-

level computer interaction, we will also need to consider

our methods for assessing those techniques. Self-

evaluation processes are likely critical to efficient human

performance in a wide range of problem solving contexts.

The Turing test provides a clearly defined context in which

to create and test such self-evaluation processes, and

modelling the judge seems to us to be a very reasonable

starting point in this regard, and a useful task in its own

right.

136

 6

Acknowledgements

This work was supported by a University of Toronto

Scarborough Academic Initiative Fund Grant to WJM,

National Sciences and Engineering Research Council

(NSERC) Alexander Graham Bell Canada Graduate

Scholarship to BCA, and an NSERC Discovery Grant to

GSC and WJM.

References
[1] Burgess, C., & Lund, K. (1997). Parsing constraints

and high dimensional semantic space. Language &

Cognitive Processes, 12, 177-210.

[2] Chomsky, N. (1957). Syntactic Structures. Mouton:
The Hague.

[3] Cree, G. S., & Armstrong, B. (in press).
Computational models of semantic memory. In M.

Spivey, K. McRae, & M. Joanisse, The Cambridge

Handbook of Psycholinguistics.

[4] Ferreira, F., & Henderson, J. M. (1991). Recovery

from misanalyses of garden-path sentences. Journal of

Memory and Language, 25, 725–745

[5] Foltz, P. W., Kintsch, W., & Landauer, T. K. (1998).
The measurement of textual coherence with Latent

Semantic Analysis. Discourse Processes, 25, 2&3,

285-307.

[6] Live Journal website. Http://www.livejournal.com

[7] Home page for the Loebner prize, a current
implementation of the Turing test.

Http://www.loebner.net/Prizef/loebner-prize.html

[8] Landauer, T. K., Foltz, P. W., & Laham, D.
(1998).Introduction to Latent Semantic Analysis.

Discourse Processes, 25, 259-284.

[9] Landauer, T. K., & Dumais, S. T. (1997). A solution

to Plato's problem: The latent semantic analysis theory
of acquisition, induction, and representation of

knowledge. Psychological Review, 104(2), 211-240.

[10] Landauer T.K., Laham D. & Foltz P. (2003)
Automatic essay

[11] assessment. Assessment in Education, Principles,
Policy &

[12] Practice 10, 295–308.

[13] Lund, K., & Burgess, C. (1996). Producing high-
dimensional semantic spaces from lexical co-

occurrence. Behavior Research Methods, Instruments,

& Computers, 28, 203-208.

[14] Lund, K., Burgess, C., & Atchley, R. A. (1995).
Semantic and associative priming in high dimensional

semantic space. Proceedings of the Cognitive Science

Society. 660-665. Hillsdale, NJ: Erlbaum.

[15] MacInnes, W.J. (2004) Believability in Multi-Agent
Computer Games: Revisiting the Turing Test.

Proceedings of CHI, 1537.

[16] Newell, A., & Simon, H. A. (1956). The logic theory
machine: A complex information processing system.

IRE Transactions on Information Theory.

[17] Nilsson, N. J. (2005). Human-level artificial
intelligence? Be serious!. AI Magazine, 26(4), 68-75.

[18] Oppy, G., & Dowe, D. (2003). The Turing Test. In
E. Zalta (Ed.) The Stanford Encyclopedia of

Philosophy. Available online at
http://plato.stanford.edu/entries/turing-test/.

[19] Pare, D. E., & Joordens, S. (2008). Peering into large
lectures: Examining peer and expert mark agreement

using peerScholar, an online peer assessment tool.

The Journal of Computer Assisted Learning, 24, 526-

540.

[20] Turing, A. (1950). Computing Machinery and

Intelligence. Mind, 236, P433.

[21] Walter Kintsch (2001). Predication, Cognitive Science
25, 173–202

[22] Just, M. A., & Carpenter, P. A. (1987). The
Psychology of Reading and Language

Comprehension. Allyn and Bacon, Inc: Newton, MA.

[23] http://loebner.net/SDJ_Interview.html

[24] Landauer. T. K., Laham, D., Rehder, B., & Schreiner,
M. E. (1997). How well can passage meaning be

derived without using word order? A comparison of

latent Semantic Analysis and humans. In M. G. Shafto

& P. Langley, (Eds.), Proceedings of the 19
th
 Annual

Meeting of the Cognitive Science Society, pp. 214-417.

Mahwah, NJ: Erlbaum.

[25] Kintsch, W. (2000). Metaphor comprehension: A
computational theory. Psychonomic Bulletin and

Review, 7, 257-266.

[26] Rohde, D. L., Gonnerman, L. M., & Plaut, D. C.
(2007). An improved method for deriving word

meaning from lexical co-occurrence. Cognitive

Science, Submitted.

137

Unsupervised Segmentation of Audio Speech Using the Voting Experts Algorithm

Matthew Miller Peter Wong Alexander Stoytchev
Developmental Robotics Lab

Iowa State University
mamille@iastate.edu, pwwong@iastate.edu, alexs@iastate.edu

Abstract

Human beings have an apparently innate ability to seg-
ment continuous audio speech into words, and that abil-
ity is present in infants as young as 8 months old. This
propensity towards audio segmentation seems to lay the
groundwork for language learning. To artificially repro-
duce this ability would be both practically useful and
theoretically enlightening. In this paper we propose an
algorithm for the unsupervised segmentation of audio
speech, based on the Voting Experts (VE) algorithm,
which was originally designed to segment sequences of
discrete tokens into categorical episodes. We demon-
strate that our procedure is capable of inducing breaks
with an accuracy substantially greater than chance, and
suggest possible avenues of exploration to further in-
crease the segmentation quality.

Introduction

Human beings have an apparently innate ability to seg-
ment continuous spoken speech into words, and that abil-
ity is present in infants as young as 8 months old (Saffran,
Aslin, & Newport 1996). Presumably, the language learn-
ing process begins with learning which utterances are to-
kens of the language and which are not. Several experi-
ments have shown that this segmentation is performed in an
unsupervised manner, without requiring any external cues
about where the breaks should go (Saffran, Aslin, & New-
port 1996)(Saffran et al. 1999). Furthermore, Saffran and
others have suggested that humans use statistical properties
of the audio stream to induce segmentation. This paper pro-
poses a method for the unsupervised segmentation of spoken
speech, based on an algorithm designed to segment discrete
time series into meaningful episodes. The ability to learn
to segment audio speech is useful in and of itself, but also
opens up doorways for the exploration of more natural and
human-like language learning.

Paul Cohen has suggested an unsupervised algorithm
called Voting Experts (VE) that uses the information theo-
retical properties of internal and boundary entropy to seg-
ment discrete time series into categorical episodes (Cohen,
Adams, & Heeringa 2007). VE has previously demonstrated,
among other things, the ability to accurately segment plain
text that has had the spaces and punctuation removed. In this

Copyright c© 2008, The Second Conference on Artificial General
Intelligence (AGI-09.org). All rights reserved.

paper we extend VE to work on audio data. The extension is
not a trivial or straightforward one, since VE was designed
to work on sequences of discrete tokens and audio speech is
continuous and real valued.

Additionally, it is difficult to evaluate an algorithm that
tries to find logical breaks in audio streams. In continu-
ous speech, the exact boundary between phonemes or be-
tween words is often indeterminate. Furthermore, there are
no available audio datasets with all logical breaks labeled,
and given an audio stream it is unclear where all the logical
breaks even are. What counts as a logical break? It is dif-
ficult to quantify the level of granularity with which human
beings break an audio stream, and more so to specify the
limits of any rational segmentation. This paper describes a
method to address these problems.

Our results show that we are able to segment audio
sequences with accuracy significantly better than chance.
However, given the limitations already described, we are
still not at a point to speak to the objective quality of the
segmentation.

Related Work

Our work is directly inspired by the psychological studies
of audio segmentation in human beings (Saffran, Aslin, &
Newport 1996)(Saffran et al. 1999)(Saffran et al. 1997).
These studies show us that the unsupervised segmentation
of natural language is possible, and does not require pro-
hibitively long exposure to the audio. However, these studies
do little to direct us towards a functioning algorithm capable
of such a feat.

Conversely, there are several related algorithms capa-
ble of segmenting categorical time series into episodes
(Magerman & Marcus 1990)(Kempe 1999)(Hafer & Weiss
1974)(de Marcken 1995)(Creutz 2003)(Brent 1999)(Ando
& Lee 2000). But these are typically supervised algorithms,
or not specifically suited for segmentation. In fact, many
of them have more to do with finding minimum descrip-
tion lengths of sequences than with finding logical segmen-
tations.

Gold and Scassellati have created an algorithm specifi-
cally to segment audio speech using the MDL model (Gold
& Scassellati 2006). They recorded 30 utterances by a
single speaker and used MDL techniques to compress the
representation of these utterances. They then labeled each
compressed utterance as positive or negative, depending on

138

whether the original utterance contained a target word, and
then trained several classifiers on the labeled data. They
used these classifiers to classify utterances based on whether
they contained the target word. This technique achieved
moderate success, but the dataset was small, and it does not
produce word boundaries, which is the goal of this work.

This work makes use of the Voting Experts (VE) algo-
rithm. VE was designed to do with discrete token sequences
exactly what we are trying to do with real audio. That is,
given a large time series, specify all of the logical breaks so
as to segment the series into categorical episodes. The ma-
jor contribution of this paper lies in transforming an audio
signal so that the VE model can be applied to it.

Overview of Voting Experts

The VE algorithm is based on the hypothesis that natural
breaks in a sequence are usually accompanied by two in-
formation theoretic signatures (Cohen, Adams, & Heeringa
2007)(Shannon 1951). These are low internal entropy of
chunks, and high boundary entropy between chunks. A
chunk can be thought of as a sequence of related tokens. For
instance, if we are segmenting text, then the letters can be
grouped into chunks that represent the words.

Internal entropy can be understood as the surprise associ-
ated with seeing the group of objects together. More specif-
ically, it is the negative log of the probability of those ob-
jects being found together. Given a short sequence of tokens
taken from a longer time series, the internal entropy of the
short sequence is the negative log of the probability of find-
ing that sequence in the longer time series. So the higher the
probability of a chunk, the lower its internal entropy.

Boundary entropy is the uncertainty at the boundary of
a chunk. Given a sequence of tokens, the boundary en-
tropy is the expected information gain of being told the next
token in the time series. This is calculated as HI(c) =
−

∑
m

h=1
P (h, c)log(P (h, c)) where c is this given sequence

of tokens, P (h, c) is the conditional probability of symbol h
following c and m is the number of tokens in the alphabet.
Well formed chunks are groups of tokens that are found to-
gether in many different circumstances, so they are some-
what unrelated to the surrounding elements. This means
that, given a subsequence, there is no particular token that
is very likely to follow that subsequence.

In order to segment a discrete time series, VE preproces-
sors the time series to build an n-gram trie, which represents
all its possible subsequences of length less than or equal to n.
It then passes a sliding window of length n over the series.
At each window location, two “experts” vote on how they
would break the contents of the window. One expert votes
to minimize the internal entropy of the induced chunks, and
the other votes to maximize the entropy at the break. The
experts use the trie to make these calculations. After all the
votes have been cast, the sequence is broken at the “peaks” -
locations that received more votes than their neighbors. This
algorithm can be run in linear time with respect to the length
of the sequence, and can be used to segment very long se-
quences. For further details, see the journal article (Cohen,
Adams, & Heeringa 2007).

It is important to emphasize the VE model over the actual

implementation of VE. The goal of our work is to segment
audio speech based on these information theoretic markers,
and to evaluate how well they work for this task. In order
to do this, we use a particular implementation of Voting Ex-
perts, and transform the audio data into a format it can use.
This is not necessarily the best way to apply this model to
audio segmentation. But it is one way to use this model to
segment audio speech.

The model of segmenting based on low internal en-
tropy and high boundary entropy is also closely related to
the work in psychology mentioned above (Saffran et al.
1999). Specifically, they suggest that humans segment au-
dio streams based on conditional probability. That is, given
two phonemes A and B, we conclude that AB is part of a
word if the conditional probability of B occurring after A is
high. Similarly, we conclude that AB is not part of a word if
the conditional probability of B given A is low. The informa-
tion theoretic markers of VE are simply a more sophisticated
characterization of exactly this idea. Internal entropy is di-
rectly related to the conditional probability inside of words.
And boundary entropy is directly related to the conditional
probability between words. So we would like to be able to
use VE to segment audio speech, both to test this hypothesis
and to possibly facilitate natural language learning.

Experimental Procedure
Our procedure can be broken down into three steps. 1) Tem-
porally discretize the audio sequence while retaining the rel-
evant information. 2) Tokenize the discrete sequence. 3)
Apply VE to the tokenized sequence to obtain the logical
breaks. These three steps are described in detail below, and
illustrated in Figure 2.

100 200 300 400 500 600 700 800

5

10

15

20

25

30

Figure 1: A voiceprint of the first few seconds of one of our
audio datasets. The vertical axis represents 33 frequency
bins and the horizontal axis represents time. The intensity
of each frequency is represented by the color. Each vertical
line of pixels then represents a spectrogram calculated over
a short Hamming window at a specific point in time.

Step 1

In order to discritize the sequence, we used the discrete
Fourier transform in the Sphinx software package to ob-
tain the spectrogram information (Walker et al. 2004). We
also took advantage of the raised cosine windower and the
pre-emphasizer in Sphinx. The audio stream was windowed
into 26.6ms wide segments called Hamming windows, taken
every 10ms (i.e. the windows were overlapping). The
windower also applied a transformation on the window to
emphasize the central samples and de-emphasize those on
the edge. Then the pre-emphasizer normalized the volume
across the frequency spectrum. This compensates for the
natural attenuation (decrease in intensity) of sound as the
frequency is increased.

139

Finally we used the discrete Fourier Transform to obtain
the spectrogram. This is a very standard procedure to obtain
the spectrogram information of an audio speech signal, and
technical explanation of each of these steps is available in
the Sphinx documentation (Walker et al. 2004).

We performed the Fourier Transform at 64 points. How-
ever, since we are only concerned with the power of the au-
dio signal at each frequency level, and not the phase, then
the points are redundant. Only the first 33 contained unique
information. This transformation converted a 16kHz mono
audio file into a sequence of spectrograms, representing the
intensity information in 33 frequency bins, taken every 10ms
through the whole file. These spectrograms can be viewed
as a voiceprint representing the intensity information over
time. Figure 1 shows a voiceprint taken from the beginning
of one of the datasets used in our experiments.

Step 2
After discretization the next step is tokenization. Once we
obtained the spectrogram of each Hamming window over
the entire audio sequence, we converted it to a time series
composed of tokens drawn from a relatively small alphabet.
In order to do this we trained a Self Organizing Map (SOM)
on the spectrogram values (Kohonen 1988).

An SOM can be used as a clustering algorithm for in-
stances in a high dimensional feature space. During train-
ing, instances are presented to a 2D layer of nodes. Each
node has a location in the input space, and the node clos-
est to the given instance “wins.” The winning node and its
neighbors are moved slightly closer to the training instance
in the input space. This process is repeated for some num-
ber of inputs. Once training is complete the nodes in the
layer should be organized topologically to represent the in-
stances presented in training. Instances can then be classi-
fied or clustered based on the map. Given a new instance,
we can calculate the closest node in the map layer, and the
instance can be associated with that node. This way we can
group all of the instances in a dataset into clusters corre-
sponding to the nodes in the SOM.

However, this approach has its drawbacks. For instance,
it requires the specification of a set number of nodes in the
network layer before training begins. Layer size selection is
not an inconsequential decision. Selecting too many nodes
means that similar instances will be mapped to different
nodes, and selecting too few means dissimilar instances will
be mapped to the same one.

Instead of guessing and checking, we used a Growing
Grid self organizing network (Fritzke 1995). The Growing
Grid starts with a very small layer of SOM nodes arranged
in a rectangular pattern. It trains these nodes on the dataset
as usual, and maps the dataset to the nodes based on their
trained values. The node whose mapped instances have the
highest variance is labeled as the error node. Then a new
row or column is inserted into the map between the error
node and its most dissimilar neighbor. The new nodes are
initialized as the average of the two nodes they separate, and
the map is retrained on the entire dataset.

Figure 2: Illustration of the Audio Segmentation Procedure.

140

The stopping criterion is specified by an error parameter
τ . If the variance of the error node is less than τ times the
variance of the entire dataset, no new rows or columns are
added. This effectively ensures that no single node will ac-
count for more than τ of the total error in the dataset. This
way the SOM ends up sized appropriately for the particular
problem, and the data is spread evenly through the nodes.
For our experiments we used a τ = 0.01. We used the im-
plementation of a Growing Hierarchical SOM (GH-SOM)
in the Java SOM Toolbox to train our Growing Grid (Ditten-
bach, Merkl, & Rauber 2000).

After training a Growing Grid SOM on the spectrogram
data we used it to classify each instance the dataset. Each
node in the SOM was represented by a unique label - its co-
ordinates in the network layer. For instance the node with
layer coordinates (1, 2) was represented by the string “1,2”.
So the clustering produced a sequence of node labels corre-
sponding to each spectrogram instance (see Figure 3). In this
way we produced a discrete sequence of tokens representing
the audio data.

In the resulting sequence, it was common for several con-
secutive instances to be mapped to the same node in the
SOM. For instance, silence always maps to the same SOM
node, so any period of silence in the original audio was rep-
resented by several instances of the same node in the discrete
sequence. This also happened for similar sounds that were
held for any length of time. In order to be time independent,
we collapsed these repeated sequences into just one instance
of the given node. This effectively denotes a period of si-
lence by a single state, as well as the same sound held for
several time steps (see Figure 4). This way our segmenta-
tion algorithm only looked at changes between SOM states,
and not the duration that the sound stayed the same.

Step 3
In order to segment the tokenized sequence, we ran VE on
the sequence of SOM states. VE placed breaks at locations
of low internal entropy and high boundary entropy. Then,
after accounting for the collapsed (i.e. repeated) tokens, we
produced the time stamps of all of the induced break loca-
tions in the audio stream.

Experiments
We performed two experiments to test this algorithm.

Experiment 1 First we used text-to-speech software to
generate spoken audio. We modeled our dataset on the audio
used for the study of speech segmentation in 8-month-old in-
fants. In that study the infants were played artificially gen-
erated speech consisting of four made up words ”golabu,”
”tupiro,” ”bidaku” and ”padoti,” in random order. We com-
posed a randomly ordered list of 900 instances of the made
up words, and then generated audio speech using the built
in text-to-speech synthesizer on a Macintosh laptop. We
chose their most natural sounding voice, called ”Alex,” set
on medium speed. This resulted in approximately 10 min-
utes of speech.

We then ran the segmentation process described above on
the audio to obtain the induced breaks. That is, we used
Sphinx to obtain the spectrogram information for each Ham-
ming window, trained a Growing Grid SOM on the spectro-

gram data, and then used the SOM to convert the spectro-
gram data into a sequence of SOM node labels. Figure 3
shows the first 100 labels in a sample sequence. It is ev-
ident that most nodes are repeated several times in a row,
and replacing the repeated nodes with a single instance pro-
duces the sequence in Figure 4. The VE algorithm was then
run on this collapsed sequence, each coordinate pair being
used as a fundamental token by the Voting Experts algo-
rithm. VE induced breaks between the coordinate pairs, and
by re-expanding the sequence to its original length, we cal-
culated the timestamps of the induced breaks. This entire
procedure is visualized in Figure 2.

Figure 3: The coordinates of the SOM nodes corresponding
to the first 100 spectrogram instances from a sample artifi-
cially generated baby talk audio dataset.

Figure 4: The coordinates of the SOM nodes corresponding
to the first 100 spectrogram instances from a sample artifi-
cially generated baby talk audio dataset with the repeated
states removed.

Experiment 2 We also performed this exact same proce-
dure on the audio from the first of 9 CDs taken from an audio
recording of George Orwell’s novel “1984.” The audio file
was roughly 40 minutes in length. The reason we chose this
particular audio book is that the text from 1984 was used
in the original segmentation experiments with VE (Cohen,
Adams, & Heeringa 2007). This experiment was performed
to evaluate the procedure’s effectiveness on language spoken
by a person, as compared to artificially generated language.

Evaluation Methodology
Evaluating the output of the algorithm proved to be very dif-
ficult. In fact, one of the major contributions of this paper
is the methodology described here for evaluating the algo-
rithm. In the first experiment, the audio was generated arti-
ficially. It would seem simple to determine the duration of
each phoneme and word, and compare those time stamps
with the induced breaks, however there are two separate
problems with this approach.

First of all, the speech generation software does not gen-
erate regularly spaced phonemes. It actually constitutes the
sequence using diphones, so that the sound and duration of
one phoneme is affected by those around it. Furthermore,
the sound generally fades between one phoneme and the
next, resulting in an ambiguous break location.

141

Secondly, there exists more than one logical break loca-
tion between certain phonemes. In particular, there are silent
spaces between some words and after certain phonemes. It
is acceptable to place a break anywhere in that silence, or
even one break at the beginning and one at the end. In other
words, there is much more lee-way in proper audio segmen-
tation than one might expect.

These problems are, of course, exacerbated in the case of
experiment 2, which uses continuous natural speech instead
of the regular artificially generated audio from experiment
1. When evaluating the audio from experiment 1, there are
only a limited number of phonemes in use, and a limited
number of ways they are combined. This is not the case in
experiment 2. Evaluating the breaks then involves solving
a different problem at each suggested break location. No
two proposed breaks look alike, and so each one is a unique
judgment call.

Given these constraints, we tested our segmentation by
using human volunteers to verify the breaks. For each in-
duced break, they checked the audio stream to see whether
it was placed correctly. In order for it to count as a correct
break, it had to be placed within 13ms of an obvious break
location. Such locations include the beginning and ending
of words, as well as phoneme boundaries where the audio
stream suddenly changes in intensity or frequency. Any
break placed in the silence between words or phonemes was
also counted as correct. These locations were verified visu-
ally using software we wrote to view the waveforms and the
breaks. The reason the breaks were given a 13ms window on
either side is that Sphinx uses a 26.6ms wide Hamming win-
dow to calculate the spectrogram information. The breaks
output by the algorithm correspond to the center of that win-
dow. We counted an induced break as “correct” if there was
a true break anywhere inside that window.

If t is the number of true breaks induced by the algorithm,
and n is the total number of breaks it induces, then the accu-
racy is given by a = t/n. This tells us how likely it is that an
induced break is correct. However, this doesn’t tell us how
well the algorithm is really doing. After all, for a break to be
considered “correct” it simply has to fall within 13ms of any
artifact in the audio stream that a human would consider a
logical breaking point. As it turns out, this is actually pretty
likely. To account for this, we compared the performance of
our algorithm with the performance of randomly generated
breaks.

Over the 10 minutes of audio in experiment 1, our al-
gorithm induced roughly 4000 breaks. Experiment 2 had
roughly four times that many. It would have been impossi-
ble to manually check every single one of the 20,000 breaks
induced in the two experiments. Instead, we chose a subset
of the data, and checked over that. There are several rea-
sons to think that “spot checking” the algorithm is a good
measure of its overall accuracy. In experiment 1 the audio
stream consists of the same four words repeated over and
over in random order. So we would expect the segmenta-
tion algorithm to perform fairly uniformly everywhere. In
experiment 2 this was not the case, but we strove to sam-
ple enough points to ensure that the estimated accuracy was
reliable.

Figure 5: A short sample of the audio from one of our exper-
iments which shows the breaks generated by our algorithm.
The “correct” breaks are highlighted in green. The two blue
lines around each break show the bounds of the 13ms win-
dow.

Figure 6: The same audio segment as shown in Figure 5, but
with the randomly generated breaks shown instead.

In order to check subsets of the data, 5 sections of 1
minute each were randomly chosen from the audio stream
of each experiment. The breaks in these 1 minute segments
were recorded. At the same time, for each of these sections
we randomly generated the same number of break times-
tamps over the same 1 minute. We wrote a Java program
to load all the breaks at once, visualize the waveform, and
allow the volunteers to scroll through the breaks and make
their decisions quickly (see Figures 5 and 6).

The volunteers were not told which file contained random
breaks, and were instructed to use their best judgment to de-
termine the correctness of each break. They were specifi-
cally told to use consistent judging criteria between the two
files. This way we compared the performance of our algo-
rithm to an algorithm that randomly generates roughly the
same number of breaks. Figure 5 shows an sample section of
audio with the induced breaks drawn in. Figure 6 shows the
same section of audio with the randomly generated breaks.
These sections have already been graded, and the “correct”
breaks are marked in green.

Intercoder Reliability
Two volunteers were trained how to use the visualization
software, and how to visually identify breaks in the audio
stream. One grader was chosen to grade all 20 files, to main-
tain consistency over the entire dataset.

The second grader was used to test intercoder reliability
(Holsti 1969). That is, how consistently human beings will
make the same grading decisions regarding the correctness
of an induced audio break. The second grader was trained
separately from the first, and given 4 pairs of files to evalu-
ate - 2 pairs taken from each experiment. Thus, the second
grader evaluated roughly 40% of the same data as the first
grader. If t is the total number of decisions to be made by
two graders and a is the number of times they agree, then
the intercoder reliability is given by ICR = a/t. The ICR
values for both experiments are summarized in Table 1. The

142

agreement between our graders is fairly high, considering
the subjective nature of most audio break judgements. Typ-
ically, an intercoder reliability of 0.8 is considered accept-
able.

Table 1: The Intercoder Reliability for experiments 1 and 2

Experiment Total Breaks Agreed Breaks ICR

Exp 1 1542 1346 0.873

Exp 2 1564 1356 0.867

Results
The graded segmentation results are shown in Table 2. For
each experiment the breaks induced by our algorithm are
shown next to the breaks that were randomly assigned. As
you can see, the VE segmentation performed substantially
better than chance. In both experiments the accuracy was
above 80%, which is considerably good. However, the prob-
ability of a random break being placed at a correct location
is above 60% in both datasets. It is impossible to know
whether a significant portion of our algorithm’s breaks were
placed “randomly,” (i.e. for bad reasons) and then acciden-
tally marked as correct by the graders.

However, anecdotally, the breaks induced by VE were
much more logical than the random ones, even in cases when
its breaks were incorrect. They tended to be placed at the
beginning and ending of words, and at dramatic shifts in the
audio signal. Many times the “incorrect” breaks came at lo-
cations that could have been phoneme boundaries, but were
impossible to distinguish visually by the graders. An au-
dio evaluation of each break would have taken a substantial
amount of time compared to the quick visual grading, and
we could not perform that experiment at this time.

Also, the randomly generated breaks got a substantial
number “correct” that happened to fall in the silence be-
tween words. We instructed the volunteers to count any
breaks that fell in silence as correct, so these breaks helped
to increase the accuracy of the random segmentation. The
VE breaks, however, generally did not exhibit this behavior.
They were usually placed either neatly between the words,
or at the end of the silence before the next word began.
These qualitative observations are not reflected in the dif-
ference in accuracy between the VE segmentation and the
random one. Which leads us to believe that further evalua-
tion will show a much greater gap between the two methods.
Figures 5 and 6 illustrate a typical example of the difference
in segmentation.

Table 2: Accuracy Results for Experiments 1 and 2

Experiment Total Correct Accuracy
Breaks Breaks

Exp 1 - Algorithm 1922 1584 0.824

Exp 1 - Random 1922 1312 0.683

Exp 2 - Algorithm 1910 1538 0.805

Exp 2 - Random 1910 1220 0.639

Conclusions and Future Work
We have described a technique for transforming spoken au-
dio into a discrete sequence of tokens suitable for segmen-
tation by the Voting Experts algorithm. And we have shown
that this technique is clearly capable of inducing logical

breaks in audio speech. This is a very significant result and
demonstrates that the unsupervised segmentation of audio
speech based on the information theoretic model of VE is
possible. We have tested the algorithm on simple “baby
talk” inspired by literature on statistical learning in infants
(Saffran, Aslin, & Newport 1996). We have also tested it on
large audio dataset of spoken English taken from an audio
book. This demonstrates its ability to work on real world
audio, as well as its tractability when dealing with large
datasets. The segmentation, however, is imperfect. There
are several possible avenues of future work that might im-
prove the segmentation accuracy of the algorithm.

For example, we decided to use the spectrogram informa-
tion calculated at discrete time slices as our base instances.
We could have used cepstral information, which has been
shown more effective in speech recognition tasks. But the
spectrogram is more straightforward and applies to audio
other than speech. It is possible in future work to use the
cepstral coefficients and their derivatives in place of the
spectrograms.

It is also possible that the dimension of the Fourier trans-
form might be increased. The SOM might produce better
clustering with a higher or lower τ parameter. Or, there
might be a better method altogether for finding boundaries
that produce low internal entropy of chunks and high bound-
ary entropy between them. There are many possibilities for
improvement and future investigation of this procedure. All
that can be said right now is that finding such breaks does
produce a somewhat logical segmentation of audio speech.
It will be interesting to discover whether truly reliable seg-
mentation can be performed this way, and whether these seg-
ments can be used as a basis for human-like language learn-
ing.

References
Ando, R., and Lee, L. 2000. Mostly-unsupervised statistical segmentation of japanese: applica-

tions to kanji. In Proceedings of the first conference on North American chapter of the Association

for Computational Linguistics, 241–248.

Brent, M. R. 1999. An efficient, probabilistically sound algorithm for segmentation and word

discovery. Machine Learning.

Cohen, P.; Adams, N.; and Heeringa, B. 2007. Voting experts: An unsupervised algorithm for

segmenting sequences. Journal of Intelligent Data Analysis.

Creutz, M. 2003. Unsupervised segmentation of words using prior distributions of morph length

and frequency. In ACL ’03: Proceedings of the 41st Annual Meeting on Association for Computa-

tional Linguistics, 280–287.

de Marcken, C. 1995. The unsupervised acquisition of a lexicon from continuous speech. Techni-

cal Report AIM-1558.

Dittenbach, M.; Merkl, D.; and Rauber, A. 2000. The growing hierarchical self-organizing map.

Neural Networks, 2000. IJCNN 2000 6:15–19 vol.6.

Fritzke, B. 1995. Growing grid - a self-organizing network with constant neighborhood range and

adaptation strength. Neural Processing Letters 2(5):9–13.

Gold, K., and Scassellati, B. 2006. Audio speech segmentation without language-specific knowl-

edge. In Proceedings of the 2nd Annual Conference on Human-Robot Interaction (HRI-07).

Hafer, M. A., and Weiss, S. F. 1974. Word segmentation by letter successor varieties. Information

Storage and Retrieval 10(11-12):371–385.

Kempe, A. 1999. Experiments in unsupervised entropy-based corpus segmentation.

Kohonen, T. 1988. Self-organized formation of topologically correct feature maps. 509–521.

Magerman, D. M., and Marcus, M. P. 1990. Parsing a natural language using mutual information

statistics. In National Conference on Artificial Intelligence, 984–989.

Saffran, J. R.; Aslin, R. N.; and Newport, E. L. 1996. Statistical learning by 8-month-old infants.

Science 274(5294):1926–1928.

Saffran, J. R.; Newport, E. L.; Aslin, R. N.; and Tunick, R. A. 1997. Incidental language learning:

Listening (and learning) out of the corner of your ear. Psychological Science.

Saffran, J. R.; Johnson, E. K.; Aslin, R. N.; and Newport, E. L. 1999. Statistical learning of tone

sequences by human infants and adults. Cognition.

Shannon, C. 1951. Prediction and the entropy of printed english. Technical report, Bell System

Technical Journal.

Walker, W.; Lamere, P.; Kwok, P.; Raj, B.; Gingh, R.; and Gouvea, E. 2004. Sphinx-1: A flexible

open source framework for speech recognition. Technical Report TR-2004-139.

143

Parsing PCFG within a General Probabilistic Inference Framework

Arthi Murugesan
Department of Cognitive Science
Rensselaer Polytechnic Institute

Troy NY 12180

Nicholas L. Cassimatis
Department of Cognitive Science
Rensselaer Polytechnic Institute

Troy NY 12180

Abstract

One of the aims of Artificial General Intelligence(AGI)
is to use the same methods to reason over a large num-
ber of problems spanning different domains. Therefore,
advancing general tools that are used in a number of
domains like language, vision and intention reading is
a step toward AGI. Probabilistic Context Free Gram-
mar (PCFG) is one such formalism used in many do-
mains. However, many of these problems can be dealt
with more effectively if relationships beyond those en-
coded in PCFGs (category, order and parthood) can
be included in inference. One obstacle to using more
general inference approaches for PCFG parsing is that
these approaches often require all state variables in a
domain to be known in advance. However, since some
PCFGs license infinite derivations, it is in general im-
possible to know all state variables before inference.
Here, we show how to express PCFGs in a new proba-
bilistic framework that enables inference over unknown
objects. This approach enables joint reasoning over
both constraints encoded by a PCFG and other con-
straints relevant to a problem. These constraints can
be encoded in a first-order language that in addition
to encoding causal conditional probabilities can also
represent (potentially cyclic) boolean constraints.

Introduction
An important aspect of general intelligence is that the
same method can be applied to various problems span-
ning different domains. It is believed that several com-
monalities underlie the various domains of cognition
and some of them have been pointed out by the theory
of the Cognitive Substrate (Cassimatis, 2006). These
include temporal ordering, part hierarchies, generative
processes and categories. Probabilistic Context Free
Grammars(PCFG) is a formalism that has been widely
used to model these phenomena in various domains like
vision, RNA folding and Natural Language Processing.
Hence improving the coverage of PCFG and integrat-
ing PCFGs with a general probabilistic inference frame-
work is a step towards achieving Artificial General In-
telligence(AGI).

Probabilistic Context Free Grammars (or Stochastic
Context Free Grammars) encode a few types of relations
like temporal ordering, category and parthood. These

kinds of relations play an important role in a wide vari-
ety of domains, including natural language (Charniak,
2000), the secondary structure of RNA (Sakakibara,
Brown, Underwood, Mian & Haussler, 1994), computer
vision (Moore & Essa, 2002), plan recognition (Pyna-
dath & Wellman, 2000), intention reading and high-
level behavior recognition (Nguyen, Bui, Venkatesh &
West, 2003).

Though these relations encoded by PCFG can be
used in different domains, many problems require the
representation of additional relations. Constraints such
as causality can not be expressed within PCFG. In the
domain of natural language processing, for example,
syntactic regularities are captured by the grammar and
improvements are obtained by adding more constraints
including lexicalization (Collins, 2003). However, vi-
sual cues, social context, individual bias and semantics
are all factors affecting language processing (Ferguson
& Allen, 2007) that have no straightforward PCFG rep-
resentation.

The additional relations can be represented in more
general frameworks such as Bayesian networks and
weighted constraint SAT solvers. These systems, be-
sides modeling PCFG constraints, can also encode a
variety of other constraints within the same framework.
However, these systems typically require all objects or
state variables in a domain to be known in advance and
thus are poorly suited for PCFG parsing, which can
lead to infinite derivations.

A few probabilistic inference approaches deal with
problems that have a large number of grounded con-
straints by utilizing on demand or lazy grounding of
constraints (Domingos et al. 2006). However, these
systems nevertheless require that all the possible ob-
jects of the domain be declared in advance.

Approach
Here, we describe a new general probabilistic inference
framework that allows inference over objects that are
not known in advance, but instead are generated as
needed. This key feature makes it possible to harness
the power of PCFGs and the full flexibility of more gen-
eral frameworks within a single, integrated system. Our
approach to encoding and parsing PCFG in a general

144

probabilistic inference framework has three features:

Explicitly Encode Constraints Implicit in
PCFG
Implicit in PCFG are several constraints. For example,
(a) every nonterminal in a derivation must ultimately
be manifest as a terminal and (b) every phrase can
be immediately dominated by only one other phrase.
Explicitly encoding these constraints in a more expres-
sive probabilistic inference framework allows them to be
jointly reasoned over with other forms of constraints.

Relational Representation
Even with grammars that license only finite derivations,
the number of such derivations can be very large. This
translates into inference problems with large numbers
of state variables, and the resulting memory demands
can render this kind of problem intractable. One way
to overcome this is to use relational probabilistic lan-
guages, for which there are inference approaches that
significantly reduce the memory demands imposed by
large numbers of state variables (Domingos, Kok, Poon,
Richardson & Singla, 2006).

Licensing the Existence of Unknown
Objects
We will use a probabilistic framework, GenProb, that
enables reasoning over objects not known prior to in-
ference.

Generative Probabilistic Theory
These three desiderata mentioned are manifest in the
Generative Probabilistic theory, GenProb (under re-
view). GenProb is a relational language for expressing
probabilistic constraints over unknown objects. This
language supports both causal conditional probabilities
and (potentially cyclic) boolean constraints. An exact
inference algorithm has been defined for GenProb the-
ories (under review) that can be classified as increas-
ing cost models. PCFG problems are increasing cost
models and hence exact reasoning over these possibly
infinite models is possible.

Syntax of GenProb
GenProb is a language for expressing probabilistic re-
lational theories over unknown objects. The following
highly simplified example theory of an airplane radar
detector illustrates GenProb.

”Any particular plane has a 1% chance of being
within range of a radar station. The radar display gen-
erates blips that indicate a strong possibility of a plane
being detected and blips that indicate a weak possibil-
ity. Strong blips are only caused by planes, whereas
weak blips can be caused by noise .01% of the time.
Planes being tracked are fitted with collision warning
systems that, in the presence of other planes in range,
have a 90% chance of sounding an alarm that is trans-
mitted to the radar station.”

The following formulae indicate the priors on a par-
ticular plane being in range and on noise:
True() −→(.01) InRange(?p) ∧ Plane(?p)
True() −→(.001) WeakBlip(?b)
The causal aspects of the theory are indicated with con-
ditionals:
InRange(?p) ∧ Plane(?p) −→
(.3)StrongBlip(?b), (.5)WeakBlip(?b) ,
(.2) NoBlip(?b), ?p
Detect(?p1, ?p2) ∧ Plane(?p1) ∧ Plane(?p2) ∧
InRange −→ (.9)TransitAlarm(?p1), ?p1, ?p2

The first conditional indicates that a plane that is in
range will have one and only one of the following ef-
fects: a strong blip (in 30% of cases), an uncertain blip
(50%), and no blip otherwise. The occurrence of ?p af-
ter the final comma indicates that a blip licenses the
existence of a plane to be inferred. The other variables
are implicitly universally quantified. This will be made
more precise below.The alarm detection system can be
indicated thus:
TransitAlarm(?p1) =⇒ AlarmSound()
Conditionals with numbers are called causal condition-
als and those without numbers are called logical condi-
tionals. Logical conditionals are hard constraints.

Since blips occur in the consequents of causal condi-
tionals, they must be the effect of one of these condi-
tionals. In this case, strong blips can only be caused by
planes, while weak blips can be caused by planes and
by noise. We label the causal interpretation that an
effect must be caused by one of its causes(constraint’s
antecedents being true) as mandatory causation. Such
mandatory causation is not implied by logical condi-
tionals. Mandatory causation for literals can be neu-
tralized with a causal conditional whose antecedent is
True(), which (see below) is always true.

More formally, a GenProb theory is a set of causal
and logical conditionals. Causal conditionals are of
the form C1 ∧ ... ∧Cn −→ (p1)E1, ..., (pm)Em, ...?vi, ...,
where 0 ≤ pi ≤ 1 and where the pi sum to 1, each of
the Ci are either literals or negations thereof, and the
Ei are conjunctions of literals. Each Ei conjunction is
called an effect of the conditional and each vi is called
a posited variable. Non-posited variables are implicitly
universally quantified. Literals are predicates with ar-
guments that are terms. Terms that are not variables
are called ”objects”. Logical conditionals are of the
form A1 ∧ ... ∧ An =⇒ B1 ∧ ... ∧ Bn ,where each con-
junct is either a literal or a negation thereof. Literal a
is a grounding of literal b if they are equivalent under
an assignment of variables to objects in b and no vari-
ables occur in a. Literals and conditionals are grounded
if they contain no variables.

Exact Inference Over GenProb
Many of the existing approaches for combining first-
order logic and probabilistic graphical models proposi-
tionalize relational theories and making inferences over
these propositionalized formulae. However, most of
these approaches require all objects in the domain to be

145

known in advance, although many important problems
like probabilistic context-free grammars involve objects
that are initially unknown and permit infinite deriva-
tions.

Theories over potentially unknown objects pose two
problems for inference approaches based on proposi-
tionalization. First, theories of finite size that ex-
press relations over unknown objects often require infi-
nite models. For example, the formula, Mammal(a) ∧
∀x(Mammal(x) −→ Mammal(mother(x))) (together
with formulae stating that a mammal cannot be its own
ancestor) require an infinite model because as mother
must also have a mother who must also have a mother,
ad infinitum. Likewise, some context-free grammars
with finite numbers of rules and terminals can gener-
ate an infinite number of sentences. Since an algorithm
cannot enumerate an infinite model in finite time, we
must find a way of finitely characterizing solutions to
problems that have infinite models.

A second problem associated with unknown objects is
that even if all models of a theory can be finitely charac-
terized, there may nevertheless be infinitely many such
models. Complete satisfiability algorithms (e.g., those
based on Davis-Putnam-Logemann-Lovelan DPLL al-
gorithm) over finite domains are guaranteed to halt be-
cause they perform exhaustive search through the space
of possible models. Thus, developing model finding al-
gorithms when there are infinitely many possible mod-
els poses additional difficulties over standard complete
satisfiability algorithms. Exact inference over a subset
of GenProb theories has been defined (under review).

The key approach behind the inference mechanism, is
to convert GenProb theory to a corresponding weighted
satisfiability (SAT) model. However, since GenProb li-
censes unknown objects, this weighted SAT model must
also allow the licensing of unknown objects during in-
ference. Therefore, a version of SAT called the Genera-
tive SAT(GenSAT) has been defined. Also an exact in-
ference algorithm, Generative DPLL (GenDPLL), that
makes guaranteed inference over GenSAT constraints is
defined. GenDPLL is a DPLL-like branch-and-bound
algorithm that lazily posits new objects and instanti-
ates clauses involving them. It has been prooved that
GenDPLL is guaranteed to find finite relevant models of
certain classes of GenSAT theories with infinite models,
which we call increasing cost models.

Increasing cost models are theories in which the in-
troduction of new constraints can only lead to models
of lower cost. PCFG is one such theory, because the
introduction of more branches to a parse tree always
leads to a less probable solution (or an increased cost
model).

Mapping PCFG onto GenProb
Language

Jointly reasoning over PCFG and other constraints is
enabled by expressing PCFG problems in the GenProb
language and using the defined inference mechanisms

of GenProb to reason over these constraints. A PCFG
rule is of the form:
X → (Prob1)u11u12 ... u1m1

| (Prob2)u21u22 ... u2m2

...
| (Probn)un1un2 ... unmn

where the antecedent X on the LHS of the rule is
called a non-terminal. The rule is called a production
and is described as the non-terminal X generating the
RHS symbols. A symbol that does not generate any
further symbols i.e. never occurs on the LHS of a rule
is called a terminal.

The rule also captures probability of the non-terminal
generation a particular set of symbols like u11u1m1

or u21u2m2 through the numbers Prob1 and Prob2

respectively. The sum of all the probabilities is 1.∑n
i=1 Probi = 1
A grammar G generates a language L(G) using the

PCFG rules in R. The functionality of a parser P for a
given string (I) is to determine whether and how this
string (I) can be generated from the grammar (G) (i.e.,
to determine if (I) is a member of L(G)).There are sev-
eral implicit constraints in the generation of a language.
Our aim is to formalize and explicitly encode these con-
straints in the GenProb language.

The Order Constraint

Probabilistic rules in most language are generally order
independent with regard to both the order of the input
and the order of the terms in their constraints. How-
ever, the language generated by G depends on several
ordered components including the order of the list of
terminals in the string (I) and the order of right hand
side(RHS) components in a PCFG rule.

Ordering of Input

Let the input I, say A1, A2, An, be the ordered
sequence of input terminals for which the parse has
to be determined. The general notion of ordering of
events can be broken down into 1. capturing the time
of occurrence of an event(both start and end points)
and 2. establishing relations between these time of
occurrences. The constraints of I (A1, A2 .. An) is
captured using the following grounded propositions.
Occur(a1), IsA(a1, A1),
StartTime(a1, t1), EndTime(a1, t1),
ImmediatelyBefore(t1, t2) ,
Occur(a2), IsA(a2, A2),
StartTime(a2, t2), EndTime(a2, t2),
ImmediatelyBefore(t2, t3) ,
...
Occur(an-1), IsA(an-1, An-1),
StartTime(an-1, tn-1), EndTime(an-1, tn-1),
ImmediatelyBefore(tn-1, tn),
Occur(an), IsA(an, An),
StartTime(an, tn), EndTime(an, tn)

146

Order of PCFG Rule Arguments
A typical PCFG rule(R) of format X → (Prob)u1u2 ...
um depends on the order of the u symbols. According
to the definition of R, u symbols can be both termi-
nals and non-terminals. The same ordering technique
used to order the input terminals I, can be used to or-
der RHS components of R. However it is to be noted
that this scheme also requires associating non-terminal
symbols with the time of their occurrence. Hence the
non terminal X on the LHS is also associated with the
entire time interval of all the consequents. (We’ll also
expand on this in the creation of new phrases section)
Occur(?xobj) ∧ IsA(?xobj, X) ∧
StartTime(?xobj, ?t0) ∧ EndTime(?xobj, ?tn)
−→ (Prob)
Occur(?u1obj) ∧ IsA(?u1obj, u1) ∧
StartTime(?u1obj,?t0) ∧ EndTime(?u1obj, ?t1)
∧ ImmediatelyBefore (?t1, ?t2) ∧
...
Occur(?unobj) ∧ IsA(?unobj, un) ∧
StartTime(?unobj, ?t(n-1)) ∧
EndTime(?unobj, ?tn)

Creation of New Objects
The GenProb constraints that capture the PCFG gen-
eration rules have unbound objects on both sides as
shown in the ordering constraint of R . The GenProb
language handles an unbound constraint by creating a
new object for the unbound variable in the LHS when
the pattern in the RHS is matched completely. The new
object is created through the process of skolemization.

Specifically with respect to the rule of the ordering
constraint, when the objects of the RHS and their cor-
responding category, time information match the pat-
tern, the ?xObj on the LHS is created. Also the time
information which is already bound by the RHS pattern
matching, is asserted for the new object.

Unique Dominator
Another implicit constraint of L(G) is the unique par-
ent relationship. Every node can have only one parent
creating a strict parse tree and disallowing a multi-tree.

The unique parent relationship is captured in Gen-
Prob language by introducing part-hood associations.
Every node belongs or is a part of its parent node, and
a node cannot be a part of more than one parent.
PartOf(?childNode, ?parentNode1) ∧
PartOf(?childNode, ?parentNode2) ∧
NOT Same(?parentNode1, ?parentNode2)
=⇒ FALSE

Mandatory Parent
The GenProb language handles two kinds of con-
straints: causal and logical constraints. Any conse-
quent of a causal constraint is required (according to
mandatory causation) to have at least one of its causes
to be true. Thus, if P1(a) −→ R(a), P2(a) −→ R(a) ,
... , Pn(a) −→ R(a) are all the causal conditionals with

R(a) in the consequent, any model where R(a) is true
must have at least one of Pi(a) being true. This is cap-
tured in GenProb by keeping track of all the causes of
grounded propositions and adding a logical constraints
called the mandatory causation constraint.

Figure 1: Captures the mandatory parent rule that the
node R(a) cannot exist with at least one of its parents:
NOT P1(a) ∧ NOTP2(a) ∧ ... ∧NOTPn(a) =⇒ NOT
R(a)

In PCFG since the cause of every node is the parent
node generating it, the constraint that at least one par-
ent of every node should be true captured in GenProb
language. Hence there can be no node that is uncon-
nected to the parse tree.

Unique Manifestation
In the PCFG grammar G, for every non-terminal sym-
bol all the alternate options are listed with their respec-
tive probabilities.
X → (Pr1)f1f2 ... fm

| (Pr2)s1s2 ... sm

A particular non-terminal node can only generate one
of the options. This implicit constraint of unique repre-
sentation among alternate options is captured using the
comma (,) symbol in the GenProb language and listing
the mutually exclusive options with their probabilities
in the same GenProb constraint. The internal weighted
constraint representation of a grounded GenProb con-
straint of this format is shown in Figure 2.

Start Symbol
The one node in the parse tree that does not have a
parent is the start node S. This constraint is captured
in the GenProb language by assigning a high prior value
to the object with the category of the start symbol and
its time of occurrence spanning over the entire length
of the input string I.
TRUE =⇒
IsA(?obj, S) ∧ Occur(?obj) ∧

147

Figure 2: Shows the underlying weighted constraints of
X → (Pr1)f1f2 ... fm | (Pr2)s1s2 ... sm

StartTime(?obj, Istrt) ∧ EndTime(?obj, Iend)

Mandatory Manifestation
All the leaf nodes in a parse tree have to be termi-
nals. This axiom ensures that every non-terminal in a
parse tree generates a string based on R, which we call
the mandatory manifestation of non-terminals. A parse
tree that does not satisfy the mandatory manifestation
constraint is an invalid tree.

This constraint of saying that among all the possi-
ble generations of a non-terminal at least one of them
should hold true is harder to capture. We have intro-
duced a corresponding AtleastOneEffect proposition for
every non-terminal node(Figure 1). The only causes for
the AtleastOneEffect proposition of a non-terminal are
the RHS components of the productions in R for this
particular non-terminal. Since GenProb language has
the built in causal tendency to falsify an event when all
its causes are false, the only reason for AtleastOneEf-
fect proposition to be true is if one of the productions
in R, the rule set of PCFG, has been generated.
Occur(?obj) ∧ NOT AtleastOneEffect(?obj)
=⇒ FALSE
Say there are 2 productions that can be generated from
a non-terminal X;
X → (0.75)a | (0.25)Y Z
The constraints that posit AtleastOneEffect of the non-
terminal X look like:

1.
Occur(?aobj) ∧ IsA(?aobj, a) ∧
StartTime(?aobj,?tStart) ∧
EndTime(?aobj, ?tEnd) ∧
Occur(?xobj) ∧ IsA(?xobj, X) ∧
StartTime(?xobj,?tStart) ∧
EndTime(?xobj, ?tEnd)
=⇒ AtleastOneEffect(?xobj)

2.
Occur(?yobj) ∧ IsA(?yobj, Y) ∧
StartTime(?yobj,?tStart) ∧
EndTime(?yobj, ?tMid1) ∧
ImmediatelyBefore(?tMid1, ?tMid2) ∧
Occur(?zobj) ∧ IsA(?zobj, Z) ∧
StartTime(?zobj,?tMid2) ∧
EndTime(?zobj, ?tEnd) ∧
Occur(?xobj) ∧ IsA(?xobj, X) ∧
StartTime(?xobj,?tStart) ∧
EndTime(?xobj, ?tEnd)
=⇒ AtleastOneEffect(?xobj)
Though the mandatory manifestation constraint en-
sures that there is no unexpanded non-terminal in the
tree, it is not guaranteed for the parse tree to end in
terminals. PCFG rules of the form X1→ X11 and X11
→ X1 can lead to an endless depth of the parse tree.

An Example of Interaction Enabled By
GenProb

The importance of representing syntactic grammar in
the same general formalism that also allows relational
representations and causal conditionals is that syntax
can now interact with other aspects of language like se-
mantics, background knowledge and visual perception.
For example, problems like part-of-speech tagging and
word sense disambiguation, which are conventionally
studied as isolated sub-problems, can be addressed by
this interaction of syntax and semantics.

In order to demonstrate an example, let us consider
the word “bug”. According to Wordnet, the word
“bug” has the coarse senses of the nouns insect
animal, system error and listening device, and also the
verbs annoy and eavesdrop in this order of frequency.
Given we have the corresponding frequency of these
senses(Probi), the following constraint can be added to
the system:
IsA(?word, Word) ∧ HasPhonology(?word, soundBug)
−→
(Prob1) HasWordSense(?word, animalBug),
(Prob2) HasWordSense(?word, systemErrorBug),
(Prob3) HasWordSense(?word, deviceBug),
(Prob4) HasWordSense(?word, annoyVerbBug),
(Prob5) HasWordSense(?word, evesdropVerbBug)

By default with no further information the most fre-
quent sense of the word is preferred. However, consider
the example sentence “The bug needs a battery”. In
this case, the bug refers to the noun listening device
because animals and abstract concepts like errors do
not require batteries, which say is available background
knowledge. As the sentence is parsed and semantics
is generated within the same framework, the generated
semantics that an animal needs battery or that an ab-
stract entity needs battery creates contradiction with
the background knowledge. Hence, the inference system
with this information concludes that the correct inter-
pretation of the word bug is the listening device. As

148

an illustration, we show how the required background
knowledge can be represented in GenProb.

IsA(?obj, Organic) =⇒ IsA(?obj, Physical)
IsA(?obj, Inorganic) =⇒ IsA(?obj, Physical)
IsA(?obj, Physical) =⇒ IsA(?obj, Entity)
IsA(?obj, Abstract) =⇒ IsA(?obj, Entity)
IsA(?obj, Abstract)
=⇒ NOT IsA(?obj, Physical)
IsA(?obj, Organic)
=⇒ NOT IsA(?obj, Inorganic)
NOT(?obj, Inorganic)
=⇒ NOT Need(?obj, battery)

Related Work
Logics over infinite domains have been characterized
(Milch et al., 2005, Singla & Domingos, 2007), but
to our knowledge no guaranteed inference algorithm
for these problems has thus far been published. Sev-
eral approaches try to generalize PCFG. Hierarchical
dirchilet process (Liang, Petrov et.all 2007) represent
infinite number of constraints. However, the present
approach is the only one to our knowledge that allows
exact inference (under review) and combines in logical
constraints which need not adhere to cyclicity condi-
tions. Finally, it is anticipated that jointly reasoning
over syntactic and semantic constraints in natural lan-
guage processing applications will require the kind of
relational language offered by the present approach.

Conclusion
PCFG is a general formalism that captures regulari-
ties in several domains, a behavior we would like from
AGI systems. However, PCFGs encode only certain
kinds of constraints. By translating PCFGs into a
more general probabilistic framework, joint reasoning
over PCFG and other constraints is possible. The con-
straints of PCFG have been identified and encoded in a
relational language that in addition to capturing causal
conditional probabilities can also represent (potentially
cyclic) boolean constraints.

An example application of this integration of PCFG
and probabilistic relational constraints is in the domain
of language understanding. Knowledge of linguistic
syntax encoded in PCFG can interact with the gen-
erated semantics of the sentence and also the world
knowledge encoded in the system to effectively solve
problems like lexical (or word sense) ambiguity. In
the future, we would like to integrate the constraints
of richer grammars like lexicalized grammars (Head-
driven Phrase Structure Grammar etc) with this gen-
eral representation.

References
Anonymous. (under review). Inference with Relational
Theories over Infinite Domains.

Cassimatis N.L. (2006). A Cognitive Substrate for
Human-Level Intelligence. AI Magazine. Volume 27

Number 2.
Charniak, E. (2000) A maximum-entropy-inspired

parser. In: Proc. NAACL. 132-139
Collins, M. (2003) Head-Driven Statistical Models for

Natural Language Parsing. Computational Linguistics,
29.

Moore, D. and Essa, I. (2002) Recognizing multi-
tasked activities from video using stochastic context-
free grammar. In Proceedings of AAAI-02.

Domingos, P., Kok, S., Poon, H., Richardson, M.,
and Singla, P. (2006) Unifying Logical and Statistical
AI. Paper presented at the AAAI-06.

Singla, P., and Domingos, P. (2007) Markov Logic
in Infinite Domains. Proceedings of the Twenty-Third
Conference on Uncertainty in Artificial Intelligence
(pp. 368-375). Vancouver, Canada: AUAI Press.

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong,
D. L., and Kolobov, A., 2005. ”Blog: Probabilis-
tic Models With Unknown Objects.” ”Proceedings of
the Nineteenth Joint Conference on Artificial Intelli-
gence.”

Ferguson, G., and J. Allen (2007). Mixed-Initiative
Dialogue Systems for Collaborative Problem-Solving.
AI Magazine 28(2):23-32. Special Issue on Mixed-
Initiative Assistants. AAAI Press.

Liang, P., Petrov, S., Jordan, M. I., and Klein, D.
(2007). The infinite PCFG using hierarchical Dirichlet
processes. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing.

Nam T. Nguyen, Hung H. Bui, Svetha Venkatesh,
and Geoff West. (2003) Recognising and monitoring
highlevel behaviours in complex spatial environments.
In Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR-03)

Pynadath, David V.; Wellman, Michael P. (2000)
Probabilistic state-dependent grammars for plan recog-
nition. In Proceedings of the conference on uncertainty
in artificial intelligence pp. 507-514

Percy Liang Slav Petrov Michael I. Jordan Dan Klein
The Infinite PCFG using Hierarchical Dirichlet. (2007)
Processes Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pp. 688-
697, Prague, June 2007. c2007 Association for Compu-
tational Linguistics

Y. Sakakibara, M. Brown, R. C. Underwood, I. S.
Mian, and D. Haussler, ”Stochastic context-free gram-
mars for modeling RNA,” (2004) Proceedings of the
27th Annual Hawaii International Conference on Sys-
tem Sciences. Volume 5 : Biotechnology Computing, L.
Hunter, Ed. Los Alamitos, CA, USA: IEEE Computer
Society Press, pp. 284-294.

149

Self-Programming: Operationalizing Autonomy

Eric Nivel & Kristinn R. Thórisson

Center for Analysis and Design of Intelligent Agents / School of Computer Science, Reykjavik University

Kringlunni 1, 103 Reykjavik, Iceland

{eric, thorisson}@ru.is

Abstract

Lacking an operational definition of autonomy has
considerably weakened the concept's impact in systems
engineering. Most current “autonomous” systems are built
to operate in conditions more or less fully described a priori,
which is insufficient for achieving highly autonomous
systems that adapt efficiently to unforeseen situations. In an
effort to clarify the nature of autonomy we propose an
operational definition of autonomy: a self-programming
process. We introduce Ikon Flux, a proto-architecture for
self-programming systems and we describe how it meets
key requirements for the construction of such systems.

Structural Autonomy as Self-Programming

We aim at the construction of machines able to adapt to
unforeseen situations in open-ended environments.
Adaptation is used here in a strong sense as the ability of a
machine not only to maintain but also to improve its utility
function and so, in partially specified conditions with
limited resources (including time) and knowledge. As a
case in point, today’s Mars rovers would simply ignore the
presence of an alien character waving its tentacles in front
of the cameras: observers on Earth would probably see and
identify it, but the rover itself would simply not be aware
of this extraordinary situation and engineers would have to
upload software upgrades to change its mission and plans.
In sharp contrast to such engineering, we expect adaptation
to be performed automatically, i.e. with no further
intervention by programmers after a machine enters
service. Our adaptable rover would be fitted with software
aiming at discovering facts in a general fashion, that is, not
limited to ultra-specific mission schemes. This software
would ideally be able to generate new missions and related
skills according to the context, within the limitations of its
resources - hardware, energy, time horizon, etc.

Structural Autonomy

The mainstream approach outlined above consists in the
main of sophisticated ways for selecting and tuning hard-
coded goals and behaviors for handling situations framed
in hard-coded ontologies. Systems designed this way
belong to the class of behaviorally autonomous systems
[2], and result in fact from the traditional top-down design
approach: a machine’s operation is fully specified, as is the
full range of its operating contexts, and it is the duty of its
operator to ensure that the operational conditions always
comply to said specification - otherwise the system ceases
to function correctly. The point here is that such machines

are meant not to change. Adding such change, or
adaptation, to the requirements of a machine calls for an
orthogonal perspective that addresses change as a desirable
and controllable phenomenon. We envision motivations,
goals and behaviors as being dynamically (re)constructed
by the machine as a result of changes in its internal
structure. This perspective - structural autonomy - draws
on Varela’s work on operationally closed systems [14]:

“machine[s] organized (defined as a unity) as a
network of processes of production (transformation
and destruction) of components which: (i) through
their interactions and transformations continuously
regenerate and realize the network of processes
(relations) that produced them; and (ii) constitute it
(the machine) as a concrete unity in space in which
they (the components) exist by specifying the
topological domain of its realization as such a
network.”

Although this generic definition applies primarily to bio-
chemical substrates, it can be adapted to computational
substrates. We map Varela’s terminology as follows:

� Component: a program. The function of a program is
to synthesize (i.e. to produce or to modify) other
programs. For example, generating new missions is
creating new programs that define goals, resource
usage policies, measurement and control procedures,
etc. In this view, planning is generating programs (a
plan and a program to enact it). In a similar way,
learning is modifying the existing programs to
perform more efficiently.

� Process: the execution of a program.

� Network of processes: the graph formed by the
execution of programs, admitting each other as an
input and synthesizing others (rewrite graphs).

� Space: the memory of the computer, holding the code
of the machine, exogenous components (e.g. device
drivers, libraries) and its inputs/outputs from/to the
world.

� Topological domain: the domain where synthesis is
enabled as an observable and controllable process.
This domain traverses increasing levels of abstraction
and is defined at a low level by the synthesis rules,
syntax and semantics, and at higher levels by goal and
plan generating programs and related programs for
measuring progress.

150

Program synthesis operates on symbolic data - the
programs that constitute the machine. It follows that such
constituents must be described to allow reasoning
(symbolic computation) about what they do (e.g. actions
on the world), what their impact will be (prediction) - or
could be, given hypothetical inputs (simulation) - what
they require to run (e.g. CPU power, memory, time, pre-
conditions in the world), when their execution is
appropriate, etc. Such descriptions constitute models of the
programs of the machine: models encode the machine’s
operational semantics. The same idea can easily be
extended to entities or phenomena in the world, models
then encode either (1) their operational semantics in the
world through the descriptions of their apparent behaviors
or, (2) the operational semantics of the machine as an
entity situated in the world (constraints and possible
actions in the world, reactions from entities, etc.).

Under operational closure the utility function is defined
recursively as the set of the system’s behaviors, some
among the latter rewriting the former in sequential steps.
But this alone does not define the purpose of the utility
function, as mere survival is not operational in the context
of machines: death is no threat to a computer, whereas
failure to define and fulfill its mission shall be. To remain
within the scope of this paper, suffice it to say that
teleology has also to be mapped from biology onto an
application domain (e.g. surviving → succeeding at
discovering interesting facts on a foreign planet). Program
synthesis is a process that has to be designed with regards
to (meta)goals in light of the current situation and available
resources. Accordingly, we see “evolution” – not natural
evolution but system evolution – as a controlled and
planned reflective process. It is essentially a global and
never-terminating process of architectural synthesis,
whose output bears at every step the semantics of
instructions to perform the next rewriting step. This
instantiates in a computational substrate a fundamental
property of (natural) evolutionary systems called semantic
closure (see [5, 9]). Semantic closure is [8]

“a self-referential relation between the physical and
symbolic aspects of material organizations with open-
ended evolutionary potential: only material
organizations capable of performing autonomous
classifications in a self-referential closure, where
matter assumes both physical and symbolic attributes,
can maintain the functional value required for
evolution”.

A computational autonomous system is a dynamic agency
of programs, states, goals and models and as such these
assume the “physical” - i.e. constitutive - attributes
mentioned above. System evolution must be observable
and controllable, and thus has to be based on and driven by
models, a requirement for systems engineering (coming
from control theory). Some models describe the current
structure and operation of the system, some others describe
the synthesis steps capable of achieving goals according to
internal drives, and finally yet some other models define

procedures for measuring progress. To summarize, a
computational structurally autonomous system is (1)
situated, (2) performing in real-time, (3) based on and
driven by models and, (4) operationally and semantically
closed. The operational closure is a continuous
program/model/goal synthesis process, and the semantic
closure a continuous process of observation and control of
the synthesis, that results itself from the synthesis process.

Self-Programming

We call self-programming the global process that animates
computational structurally autonomous systems, i.e. the
implementation of both the operational and semantic
closures. Accordingly, a self-programming machine – the
self - is constituted in the main by three categories of code:

� C1: the programs that act on the world and the self
(sensors

1
 and actuators). These are programs that

evaluate the structure and execution of code
(processes) and, respectively, synthesize code; they
operate in any of the three categories.

� C2: the models that describe the programs in C1,
entities and phenomena in the world - including the
self in the world - and programs in the self. Goals
contextualize models and they also belong to C2.

� C3: the states of the self and of the world - past,
present and anticipated - including the inputs/outputs
of the machine.

In the absence of principles for spontaneous genesis we
have to assume the existence of a set of initial hand-crafted
knowledge - the bootstrap segment. It consists of
ontologies, states, models, internal drives, exemplary
behaviors and programming skills.

Self-programming requires a new class of programming
language featuring low complexity, high expressivity and
runtime reflectivity. Using any of the mainstream
languages available today to write a program that generates
another one and integrates it in an existing system is a real
challenge. First, difficulties lie in these languages lacking
explicit operational semantics: to infer the purpose of
source code, a program would have to evaluate the
assembly code against a formal model of the machine
(hardware, operating system, libraries, etc) – the latter
being definitely unavailable. Second, the language
structures are not reflected at assembly level either and it is
practically impossible from the sole reading of the memory
to rebuild objects, functions, classes and templates: one
would need a complete SysML blueprint from the
designer. In other words, what is good for a human
programmer is not so good for a system having to
synthesize its own code in real-time. As several recent
works now clearly indicate (e.g. [10, 15]), a good approach
is to reduce the apparent complexity of the computational
substrate (language and executive) and to code short
programs in assembly-style while retaining significant

1
 Sensing is acting, i.e. building - or reusing - observation procedures to

sample phenomena in selected regions of the world or the self.

151

expressivity. More over, self-programming is a process
that reasons not only about the structure of programs but
also about their execution. For example a reasoning set of
programs has to be aware of the resource expenditure and
time horizon of a given process, of the author (program)
and conditions (input and context) of code synthesis, and
of the success or failure of code invocation. The
programming language must then be supported by an
executive able to generate runtime data on the fly to reflect
the status of program rewriting.

As a foundation to implement autonomous systems for
real-world conditions, automatic theorem proving is most
likely not as appropriate as it may seem in theory. Theories
of universal problem solving impose actually a stringent
constraint: they require the exhaustive axiomatization of
the problem domain and space. For proof-based self-
rewriting systems (cf. [11]) this means that complete
axiomatization is also required for the machine itself.
However, modern hardware and operating systems present
such a great complexity and diversity that axiomatizing
these systems is already a daunting task way out of reach
of today’s formal engineering methods – not to mention
the practicalities of cost. More over, the pace of evolution
of these components is now so fast that we would need
universal standards to anchor the development of industrial
systems in theory. Standards taking at least two decades
from inception to wide establishment, it seems that by and
large, the need for exhaustive axiomatization drives
theorem proving away from industrial practice. We have
no choice but to accept that theories - and knowledge in
general - can only be given or constructed in partial ways,
and to trade provable optimality for tractability. Self-
programming has thus to be performed in an experimental
way instead of a theoretical way: an autonomous system
would attempt to model its constituents and update these
models from experience. For example, by learning the
regular regime of operation of its sensors such a system
could attempt to detect malfunctions or defects. It would
then adapt to this new constraint, in the fashion it adapts to
changes in its environment. From his perspective, the
models that specify and control adaptation (program
construction) are a-priori neither general nor optimal. They
operate only in specific contexts, and these are modeled
only partially as the dimensions of the problem space have
to be incrementally discovered and validated - or defeated -
by experience, for example under the control of programs
that reason defeasibly (see e.g. [7]). A system continuously
modeling its own operation has to do so at multiple levels
of abstraction, from the program rewriting up to the level
of global processes (e.g. the utility function), thus turning
eventually into a fully self-modeling system (see e.g. [4]).

Open-ended evolution requires the constant observation
and discovery of phenomena: these are either external to
the system (e.g. a tentacle waving) or internal - in which
case they constitute the phenomenology of the self-
programming process. Modeling is the identification of
processes underlying this phenomenology down to the
level of executable knowledge - programs. On the one

hand, when no explanation is available, for example a
sound featuring a distinct pitch for some reason not yet
known, there is at least a geometric saliency we would like
to capture in relevant spatio-temporal spaces. When on the
other hand a phenomenon results from known dynamics,
i.e. programs rewriting each other, we speak of
computational saliency, to be observed in the system’s
state space. Phenomena are salient forms manifesting an
underlying and possibly hidden process. They must be
captured potentially at any scale - e.g. from the scale of
optimizing some low-level programs to the scale of
reconfiguring the entire system. Accordingly, we define
states as global and stable regimes of operation: at the
atomic level states are the stable existence of particular
programs and objects (models, inputs/outputs, etc.), while
higher-level states are abstract processes whose
coordinates in the state space identify and/or control the
execution of the programs that produce theses states. From
this perspective, making sense is identifying - or provoking
- causal production relationships between processes: a
phenomenon P makes sense through the development of its
pragmatics - the effects it provokes - in the system, and P
means another phenomenon P’ if observing P leads to the
same (or analogue) pragmatics as for P’. Making sense is a
process performed regardless of the length or duration of
production graphs; it is a process that can be observed or
fostered at any arbitrary scale.

Ikon Flux: an Architecture for Self-

Programming Systems

Ikon Flux is a fully implemented prototypical architecture
for self-programming systems - a prototype being an
abstract type to be instantiated in a concrete domain. It is
not the architecture of a particular autonomous system but
rather a computational substrate to frame the engineering
of such architectures. It is out of the scope of this paper to
provide a full and detailed description of Ikon Flux (for
further details see [5]); here we will focus on how this
proto-architecture meets the key requirements for self-
programming discussed in the previous section.

A New Computational Substrate

Ikon Flux consists of a language and an executive designed
to simplify the task of programs rewriting other programs,
in a unified memory distributed over a cluster of
computing nodes. The language is an interpreted,
functional and data-driven language. Axiomatic objects
have low-level semantics (primitive types, operators and
functions) and programs are stateless and have no side
effects. Programs are also kept simple by virtue of
abstraction: memory allocation, parallelism, code
distribution, load balancing and object synchronization are
all implicit. Since programs are potential inputs/outputs for
other programs, they are considered data and unified as
objects. Primitive types define prototypical and executable
models of code structures, in the form of graphs of short
(64 bytes) code fragments. Types are dynamic and

152

expressed in terms of other structures, which at some point
derive from axioms. For example the type program
embeds sub-structures such as a pattern (input) and code
synthesis functions (outputs): these are explicit - they
specify in a program-readable way the instructions to be
performed by the executive and their effects - and there is
no need for an additional model to describe a program’s
operational semantics. Ikon Flux neither defines nor allows
any opaque, coarse-grained axiomatic constructs like for
example long-term memory, planner or attention
mechanism. High-level structures such as these have to be
either hand-coded in terms of existing structures or result
from code production by existing structures. However, to
encompass wider technical domains (e.g. algebra,
differential topology, etc.), Ikon Flux allows the manual
extension of the set of primitives with user-defined code.

Programs in Ikon Flux all run in parallel, and they react
automatically to the presence of any other object. Reaction
is constrained by patterns on code structures, and pattern
matching is the only mechanism for evaluating formal
structures. Pattern matching is deep, i.e. patterns are, as
any object, encoded in graphs and specify sub-structures
and conditions at any depth in a target structure. Pattern
matching is performed by the Ikon Flux executive system-
wide, that is, (1) on any object regardless of its distribution
in the cluster and, (2) patterns can be defined as
combinations of multiple and inter-dependent patterns
targeting different objects amongst the entire system, i.e. to
identify tuples of correlated objects. Objects in Ikon Flux
have a limited lifespan, controlled by a resilience value,
and can be activated/deactivated either as input data, via an
intensity value, or as a program via an activation value.
Rewriting is performed upon successful pattern-matching
(1) by producing new code explicitly specified in programs
and (2) by modifying the control values (resilience,
intensity and activation) of target objects.

Programs in Ikon Flux encode indifferently production
rules or equations (with the expressivity of first order
logic) and the executive performs both forward chaining
(rewriting) and backward chaining. The latter has been
implemented as a support for planning, but the executive is
not a planning system itself: it is the responsibility of the
programs to define and constrain the search space. In that
respect, Ikon Flux does not provide nor does it use any
heuristics: these are to be generated - and applied - by the
programs themselves to control the activation/intensity
values of the objects in the system.

Runtime reflective data are automatically notified by the
executive and injected in the system as objects encoded in
the Ikon Flux language. For example, the invocation of a
function triggers the injection of a process object which in
turn will be referenced by a completion object in case of
termination, indicating the run time, resource usage and the
program responsible for the termination if any. Process
objects are also used by the executive to notify a system of
any rewriting that occurred in the past.

At a higher level of organization, the language allows the

construction of internal sub-systems as groups of objects
that altogether contribute to a given function of the system.
In this context, function means a process of arbitrary
granularity, level of detail and abstraction that transforms
the system state. Internal sub-systems are intended for
macro-modeling purposes to describe global functions of
the system itself, as well as behaviors, roles or functions of
entities in the world. Internal sub-systems can be allocated
a dedicated instance of the executive to perform rewritings
in isolation from the main self-programming process: they
can read and write the entire memory and their code can
also be read, but not written, from their exterior. This is
meant as a support for the modeling/construction of large-
scale systems as recursive organizations of sub-systems.

There are some functions that cannot be expressed in the
Ikon Flux language, either for efficiency reasons or
because their re-implementation is too costly. Such
functions are, for example, low-level audio/video signal
processing, device drivers, and in general functions which
do not need to evolve. Typically these functions are kept in
their existing implementation and run on separate
machines. Their code is hidden from rewriting programs
and gathered in dedicated sub-systems called external sub-
systems, which are wrapped in dedicated interfaces to
communicate with the Ikon Flux executive. An interface
consists of (1) specific axiomatic objects (types and
functions) and (2) a converter to translate Ikon Flux objects
into binary code invocation and vice versa. External sub-
systems functions constitute the system’s boundary in the
world and are the only functions that do have side effects.

Global Semantics

Ikon Flux defines a state space dimension as an object
constituted by IR and the specification of an arbitrary
reference process. Projecting an object on a dimension
means rating its contribution (either as an input data or as a
program) to the rewriting graphs that contributed to the
achievement (or failure) of the reference process. This
contribution is expressed by either an intensity or an
activation value that is subsequently used to compute the
object’s final control values. Some dimensions are known
a-priori, they are application-dependent and must be given
by the programmer, but some are a-priori unknown, as they
relate to newly discovered phenomena, and as any other
object, dimensions are in general also the subject of
dynamic production and decay. To allow self-reference,
any object in a given system can be projected on any
dimension and such a projection is an object as well. This
also holds for the dimensions and sub-spaces can thus be
represented symbolically in the global state space itself.

As discussed earlier, self-programming has to perform in
light of goal achievement

2
. A general definition for “goal”

is “a set of regions in the state space”, and this implies the

2
 Geometric saliency detection is given goal semantics: the expectation
of a stable form in space using a particular observation procedure – e.g. a

program to detect occurrences of uncommon pitch patterns in sounds.

153

existence of a distance function over the state space to
assess goal achievement. Thus, in addition to space
dimensions, an autonomous system in Ikon Flux has to
maintain and evolve distance functions, the combination of
the two forming a topological space. As for the
dimensions, the distance function is in general impossible
to provide a-priori, except for the known dimensions: in
general, the distance function has to be computed by the
system itself, deriving programs from the programmer-
supplied stock. There is, however, a particular case where
the distance function can be given axiomatically: the case
of pregnance satisfaction. Thom [12, 13] defines a
pregnance - like hunger, fear, and reproduction in the
animal reign - as an internal and global dynamics, we say
global process, that targets abstract forms (e.g. anything
edible will do for a famished dog) and constitute the
ultimate reflective standard to measure the system’s utility
(for the dog, survival). Goals (and constraints) can be
considered as instantiated pregnances (e.g. eating a
particular bone) and they are identified thereafter as
pregnances. In Ikon Flux a pregnance is implemented as an
object type for specifying abstract regions in the state
space, using a pattern. For example, hunger could be
encoded as (1) a pregnance object P defining a pattern like
“a state such as the intensity of P is lower than it is now”
and (2) a program P’ that modifies the intensity of P
according to an underlying biological model - the
execution of P’ being the expression of hunger as a
process. As processes, pregnances are used to define
dimensions of the state space and along these, the distance
function is defined by the executive: for a given object O it
is the length (in time) of the shortest rewriting path - if any
- that from O leads to an increase (or decrease) of the
intensity of the pregnance. This measurement is computed
by the executive for each object upon request by any
program, e.g. when the intensity of a pregnance changes.

In Thom’s Semiophysics [13], when a form, e.g. a
discernable event over a noisy background, becomes
salient enough under the empire of a pregnance, it can,
under some conditions, trigger the contraction of event-
reaction loops in shorter ones. This is called the “investing
of forms by a pregnance”, or pregnance channeling. Thom
gives an example of thereof in his interpretation of
Pavlov’s famous experiment: the bell becomes invested by
the pregnance hunger, to the point where its sole ringing
triggers a response normally associated to the subsequent
occurrence of the meat: the bell assumes the pragmatics of
the meat. Subsumed by a pregnance, a form progressively
stands for - means - another form. In Ikon Flux pregnance
channeling can be typically implemented as the
combination of (1) underlying models for pregnances - the
consumption / digestion process, to which salivating is a
positive contribution - (2) programs that learn an
interaction pattern - occurrence of the bell, then of the
meat, then of the rewriting of the event “meat” into the
salivation reaction - and (3) programs that promote this
pattern to a program - rewriting “bell ringing” into the
invocation of the function “salivate”. Learning is, in our

example, identifying recurrent values for the projections of
the events (occurrences of bell, meat and rewriting events)
along the dimension associated to the pregnance hunger
and related intermediate processes; feedback (or
reinforcement) comes as the satisfaction of the pregnance.
Pregnance channeling constitutes a semantic association
between events and reactions at a global scale: as a global
learning mechanism it can lead to behavior conditioning
(as in Pavlov’s experiment), but it is also one possible
mechanism for implementing associative memories where
pregnance channeling triggers the spreading of intensity
control values across the system. Put briefly, plunging
processes into topological spaces enables the identification
of causal and dynamic relations throughout the entire state
time-space for observing and controlling the system as a
whole. This has also been demonstrated with a massively
multi-agent architecture [1] whose essential parameters are
represented in a topological space and controlled in real-
time using morphological analysis.

Implementation

The development of Ikon Flux started in 1998, and in 2005
version 1.6 was used to test a system (Loki) in the field.
The context was live theatrical performances

3
 where Loki

was in charge of generating and enacting the stage control
according to the development of the drama. Loki was part
of the full production period, adjusting its reactions to the
rehearsal events like any of the actors and stage hands,
given the input of the director. Loki thus constituted a fully
valid crew member as human actors responded to Loki's
actions in an adaptive way, and vice versa along the lines
of constructivist theatre. Loki was able to control reliably
and in real-time a complex machinery (wide variety of
sensors/actuators and constraints) in a rich, noisy and
unstructured environment under frequent and significant
changes (e.g. human behaviors, live modifications of the
script). It performed both in supervised and unsupervised
modes (resp. during rehearsals and live shows) and for 20
days (cummulative time). Loki performed under
considerable financial and time pressure and under these
conditions no formal evaluation could be conducted: this is
left for the development of future systems. Although this
field-testing represents a limited evaluation of the full set
of Ikon Flux's ideas, it verified three key features: (1) Ikon
Flux theory is implementable; (2) systems implemented on
its foundation can adapt in practical real-time, both on
short and long timescales; and (3) Ikon Flux architectures
can be reliable enough to maintain their place in a multi-
person, multi-week interaction involving continuous
change while meeting real goals.

So far, our experience with Loki justifies the pursuit of
further developments with great confidence. Nevertheless,
much work remains to be done to address all the issues
pertaining to the engineering of fully autonomous systems

3
 In particular, the play Roma Amor – director J.M. Musial - premiered

at the Cite des Sciences et de L’Industrie, Paris. Work supported by grants

from the French Agency for Research (ANVAR) and Ministry of Culture.

154

like the Mars rover we described in the Introduction; there
exist today no actual methodology for the principled
design of non-trivial evolutionary systems. This is an open
issue we are currently investigating on the basis of several
techniques and concepts we have experimented for the
construction of Loki. Here is a brief overview of these.
First, in a traditional top-down fashion, we leverage prior
knowledge by hand-crafting analogy-making programs.
These are used to infer goals and plans by generating new
heuristics from the ones provided in the bootstrap segment,
and for unifying local models into more general ones.
Second - and this is a more decisive research avenue - we
identify and foster programmatically the formation and the
transformation of high-level structures, functions and
processes from the bottom up. This is required essentially
(1) to measure and control the stability of functions, (2) to
understand their formation for building new ones for
arbitrary purposes, (3) to form concepts operationally for
keeping the system complexity at a reasonable level as it
produces new knowledge, and (4) to optimize existing
rewrite graphs. To this end we have included in the
bootstrap segment some “architectural” code: it consists of
ad-hoc programs and models designed to identify and
construct high-level organizations such as functions -
stable coupling over time of inputs and effects - organons -
ephemeral aggregates of code forming a substrate for a
function, i.e. abstract patterns of computation flux -
organisms - aggregates of organons operationally closed
for a set of functions - and individuals - aggregates of
functions, organons and organisms semantically closed for
a pregnance. However, to do so in a general and
deterministic way remains unsolved. Notice also that, at
this stage of development, a significant part of the
bootstrap segment has been kept away from evolution,
notably architectural code and internal drives.

Performing deep pattern matching over a massive amount
of fine-grained objects

4
 in real-time is computationally

intensive, but not intractable. Ikon Flux has been
implemented on clusters of standard PCs running RTAI5.
Our measurements of Loki’s performance show that, under
constant load, rewriting speed scales well with the number
of processors; but they also show that scalability - the
admissible load - is severely limited by current networks
and protocols (TCP/IP over Ethernet). As a result, a new
version (2.0) is planned, targeted at multi-core processors
communicating by RDMA over Infiniband.

Conclusion

In the domain of computational systems, autonomy can be
operationalized by the concept of self-programming for
which we have presented a prototype: a dynamic, real-time
and self-referential architecture for building and grounding
knowledge and processes in high-dimensional topological

4
 Loki was constituted by roughly 300 000 objects in average.
5
 A real-time kernel extension for Linux [www.rtai.org] paired with

RTnet a real-time network protocol stack [www.rts.uni-hannover.de/rtnet]

spaces. For such systems, harnessing the emergence of
high-order organizations in a general scalable way calls for
new engineering methodologies. As we have argued here,
these must be based on a process-oriented and generative
approach. To this end we are currently investigating the
possibility of modeling self-programming using Goldfarb’s
Evolving Transformation System [3].

References

[1] Campagne J.C. Morphologie et systèmes multi-agents. Ph.D.

thesis, Université Pierre et Marie Curie, Paris. 2005

[2] Froese T., Virgo N., Izquierdo E. Autonomy: A review and a

reappraisal. In F. Almeida e Costa et al. eds. Proc. of the 9th

European Conference on Artificial Life. Springer-Verlag, Berlin.

2007

[3] Goldfarb L., Gay D. What is a structural representation? Fifth

variation, Faculty of Computer Science, University of New

Brunswick, Technical Report TR05-175. 2005

[4] Landauer C., Bellman K.L. Self-Modeling Systems. In R.

Laddaga, H. Shrobe eds. Self-Adaptive Software: Applications.

Springer Lecture Notes in Computer Science, 2614:238-256.

2003

[5] Nivel E. Ikon Flux 2.0. Reykjavik University, School of

Computer Science Technical Report. RUTR-CS07006. 2007

[6] Pattee H. Evolving Self-Reference: Matter, Symbols, and

Semantic Closure. In Communication and Cognition. Artificial

Intelligence, 12(1-2). 1995

[7] Pollock J. OSCAR: An agent architecture based on defeasible

reasoning. In Proc. of the 2008 AAAI Spring Symposium on

Architectures for Intelligent Theory-Based Agents. 2008

[8] Rocha L.M. ed. Communication and Cognition. Artificial

Intelligence, Vol. 12, Nos. 1-2, pp. 3-8, Special Issue Self-

Reference in Biological and Cognitive Systems. 1995

[9] Rocha L.M. Syntactic autonomy, cellular automata, and RNA

editing: or why self-organization needs symbols to evolve and

how it might evolve them. In Chandler J.L.R. and G, Van de

Vijver eds. Closure: Emergent Organizations and Their

Dynamics. Annals of the New York Academy of Sciences,

901:207-223. 2000

[10] Schmidhuber J. Optimal Ordered Problem Solver. Machine

Learning, 54, 211-254. 2004

[11] Schmidhuber J. Gödel machines: Fully Self-Referential

Optimal Universal Self-Improvers. In Goertzel B. and Pennachin

C. eds. Artificial General Intelligence, p. 119-226, 2006.

[12] Thom R. Structural Stability and Morphogenesis. Reading,

MA: W. A. Benjamin. 1972

[13] Thom R. Semiophysics: A Sketch. Redwood City: Addison-

Wesley. 1990

[14] Varela F.J., Maturana H.R. Autopoiesis and Cognition: The

Realization of the Living. Boston, MA: Reidel. 1980

[15] Yamamoto L., Schreckling D., Meyer T. Self-Replicating

and Self-Modifying Programs in Fraglets. Proc. of the 2nd

International Conference on Bio-Inspired Models of Network,

Information, and Computing Systems. 2007

155

Bootstrap Dialog:

A Conversational English Text Parsing and Generation System

Stephen L. Reed

Texai.org
3008 Oak Crest Ave, Austin TX, 78704

stephenreed@yahoo.com

Abstract
A conversational English text parsing and generation system
is described in which its lexicon and construction grammar
rules are revised, augmented, and improved via dialog with
mentors. Both the parser and generator operate in a
cognitively plausible, incremental manner. Construction
Grammar is well suited for a precise and robust dialog
system due to its emphasis on pairing utterance form with
exact logical meaning. Combining lexicon representation
and grammar rule representation from the theory of Fluid
Construction Grammar, with grammar constructions
adopted from Double R Grammar, the system is designed to
accommodate wide coverage of the English language.

Introduction

Alan Turing, in his seminal paper on artificial intelligence
(Turing 1950), proposed to create a mechanism that
simulates a child's mind, and then to subject it to an
appropriate course of education thus achieving an artificial
general intelligence capable of passing his imitation game.
Texai is an open source project to create artificial
intelligence. Accordingly, the Texai project is developing
conversational agents which are capable of learning
concepts and skills by being taught by mentors.

AGI Organization
The Texai AGI, will consist of a vastly distributed set of
skilled agents, who are members of mission-oriented
agencies that act in concert. Texai agents will be
organized as a hierarchical control structure, as described
by James Albus (Albus and Meystel 2002). Plans call for
users to either converse with a remote, shared Texai
instance, or download their own instance for improved
performance. Instances host one or more Texai agents and
are physically organized as a cloud in which there are no
isolated instances. Each Texai agent maintains a cached
working set of knowledge safely encrypted, replicated, and
persisted in the cloud.

This approach contrasts with Novemente (Goertzel 2006).

 Copyright © 2008, The Second Conference on Artificial General
Intelligence (agi-09.org). All rights reserved.

Although Novemente also employs the artificial child in
their development road map, English dialog is not the sole
method by which Novemente learns.

One good way to provide mentors for Texai agents is to
apply them to human organizations such that each human
member has one or more Texai agents as proxies for the
various roles the human fills in the organization. The
author hopes that Texai will be embraced by, and extend,
human organizations. A multitude of volunteers may
subsequently mentor the many agents that will comprise
Texai.

Bootstrap Dialog
The initial Texai conversational agent is being developed
to process a controlled language consisting of a minimal
subset of English vocabulary and grammar rules. This
controlled language is sufficient to acquire new vocabulary
and new grammar rules from its human mentors. The
bootstrap dialog system is designed to be taught skills that
enhance its programmable capabilities. Texai addresses
eight dialog challenges identified by James Allen (Allen et.
al. 2000): (1) intuitive natural English input, (2) robustness
in the face of misunderstandings, (3) mixed-initiative
interaction, (4) user intention recognition, (5) effective
grounding and ensuring mutual understanding, (6) topic
change tracking, (7) dialog-based response planning to
provide the appropriate level of information, and (8)
portability so that the dialog system can operate with
disparate knowledge domains.

Incremental Processing
The Texai grammar engine operates incrementally, in a
cognitively plausible manner. During parsing, words are
processed strictly left-to-right with no backtracking. As
object referring expressions (e.g. noun phrase) are
detected, all semantic and referential interpretations are
considered simultaneously for elaboration and pruning by
two respective spreading activation mechanisms.

156

Knowledge Base and Lexicon

The Texai knowledge base is derived from an RDF
compatible subset of OpenCyc , and elaborated with RDF
extracts from WordNet , Wiktonary, and the CMU
Pronouncing Dictionary. The Texai lexicon is available in
RDF and N3 format. It features good coverage of English
word forms, pronunciations, word senses, glosses, and
sample phrases, and an initially modest set of OpenCyc
term mappings to word senses.

Knowledge base entities may be mapped into Java objects
by the Texai RDF Entity Manager (Reed 2006). Operating
in a manner similar to an object-to-relational mapper, the
RDF Entity Manager facilitates the automatic retrieval and
persistence of Java lexicon and grammar rule objects into
the Sesame RDF store.

OpenCyc (Matuszek et al. 2006)
The OpenCyc knowledge base was extracted into RDF
format, retaining only atomic terms and contextualized
binary assertions. Approximately 130,000 class and
individual concept terms are present in the extracted KB.
About 12,000 of these terms are linked to WordNet
synsets. It is a goal of the Texai project, via dialog with
mentors, to complete the mapping of relevant word senses
to OpenCyc terms, and to create new Texai terms filling
gaps in OpenCyc.

WordNet (Feldman 1999)
WordNet version 2.1 contains lexical and taxonomic
information about approximately 113,000 synonym sets. It
was fully extracted into RDF for the Texai project.

Wiktonary
This user-authored dictionary is based upon the same
platform as Wikipedia. Its XML dump as of September,
2007 was processed into RDF, in a form compatible with
WordNet word sense descriptions.

The CMU Pronouncing Dictionary
(http://www.speech.cs.cmu.edu/cgi-bin/cmudict)
This dictionary contains entries for over 125,000 English
word forms, and gives each pronunciation as a sequence of
phonemes in the ARPABET phonetic alphabet. It is
compatible with both the CMU Sphinx automatic speech
recognition tools and the CMU Festival speech generation
tool. These speech tools are planned as the speech
interface for Texai, in addition to its existing text chat
interface. The dictionary was processed into RDF,
compatible with WordNet word form descriptions.

Merged Texai Lexicon
Using WordNet as the framework, non-conflicting word
senses were merged in from Wiktionary. OpenCyc
provides corresponding KB terms for 12,000 WordNet
synsets. Matching word forms received ARPABET
phoneme sequences from the CMU Pronouncing

Dictionary.

KB Component Nbr. of RDF Statements

OpenCyc 640,110

WordNet 4,134,543

Wiktonary 3,330,020

The CMU Pronouncing
Dictionary

3,772,770

Merged Texai Lexicon 10,407,390
Table 1. KB and Lexicon Components

The Texai KB is physically partitioned by KB component
in order for each to fit in main memory (i.e. 2 GB) and
provide high performance via a Sesame RDF quad store.

Construction Grammar

Fluid Construction Grammar (FCG) (Steels & De Beule
2006) is a natural language parsing and generation system
developed by researchers at emergent-languages.org. The
system features a production rule mechanism for both
parsing and generation using a reversible grammar. FCG
provides a rule application engine in which the working
memory (WM) is a coupled semantic and syntactic feature
structure. FCG itself does not commit to any particular
lexical categories, nor does it commit to any particular
organization of construction rules. Like all construction
grammars, FCG is a paring between form and meaning.
The Texai system extends FCG so that it operates
incrementally, word by word, left to right in English.
Furthermore, Texai improves the original FCG
implementation by adopting a simplified working memory
feature structure and by substituting tailored unification for
each of the five rule types, instead of using a generic list
unification mechanism for construction rule matching.
Texai rule formulation also improves on FCG by allowing
optional unit constituents in grammar rules, thus reducing
dramatically the otherwise large number of explicit
permutations.

Double R Grammar

Double R Grammar (DRG) (Ball 2007), previously
implemented in the ACT-R cognitive architecture (Ball et
al. 2007), is a linguistic theory of the grammatical
encoding and integration of referential and relational
meaning in English. Its referential and relational
constructions facilitate the composition of logical forms.
In this work, a set of bi-directional FCG rules are
developed that comply with DRG. Among the most
important constituents of DRG is the object referring
expression (ORE), which refers to a new or existing entity
in the discourse context. The Texai system maps each
ORE to a KB concept. ORE's are related to one another
via situation referring expressions (SRE), in which the

157

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

relation is typically a verb. In the below example, which is
formatted in the style of FCG, a PredicatePreposition WM
unit is stated to be composed of a Preposition WM unit
followed by an ORE construction. Each bi-directional rule
consists of units (e.g. ?Prep) having features and attributes.
The J unit specifies the head of the rule.

(con

 con-PredPrep

 ((category basic-construction))

 ((?Prep

 (category Preposition)

 (referent-subj ?subj)

 (referent-obj ?obj))

 (?ObjReferExpr

 (category ObjectReferringExpression)

 (referent ?obj))

 (?top

 (subunits (== ?Prep ?ObjReferExpr)))

 ((J ?PredPrep)

 (category PredicatePreposition)

 (referent ?obj)

 (referent-subj ?subj))))

Figure 1. An Example FCG Rule for a DRG
Construction

User Modeling

The knowledge base contains a persistent, contextualized
model of each user's belief state. The system is designed to
avoid telling the user something that the system knows that
the user already knows. This facility is chiefly employed
during utterance generation, in which the actual belief state
of the user is to be updated with some particular set of
propositions.

Discourse Context

The Texai dialog system contains a discourse context for
each user interaction session. Each discourse context
consists of a list of utterance contexts, each of which
represents a single utterance from either the system or the
user. Attributes of the utterance context include a
timestamp, the speaker identity, the utterance text, a cache
of the speaker's preferred word senses, and either the
source propositions for a generated utterance, or the
understood propositions for a parsed utterance. It is
intended that the system learn via reinforcement the
number of utterance contexts to maintain, and the degree to
which to decay their relative importance.

Incremental Parsing

The dialog system performs incremental utterance parsing
in a cognitively plausible manner. As argued by Jerry Ball
(Ball 2006) this method avoids possible combinatorial
explosions when computing alternative interpretations, and
interfaces tightly with automatic speech recognizers.

Indeed, it is planned that Texai augment the CMU Sphinx
automatic speech recognition tool's language model with
respect to scoring alternative recognized words.

Parsing Rule Application
In figure 1 above, Referent variables ?subj and ?obj
facilitate the instantiation of logical propositions located
throughout a single parsing interpretation. When the above
rule is applied in the parsing direction, it matches a
Preposition unit in the working memory feature structure
being assembled, while binding the ?Prep variable to the
corresponding WM unit name. The
ObjectReferringExpression WM unit must immediately
follow the Preposition in order for this rule to match. As a
result of applying the rule in the parsing direction, a new
PredicatePreposition WM unit is created in the WM feature
structure. This new WM unit has the target Preposition and
ObjectReferringExpression WM units as subunits.
Incremental processing is facilitated during rule application
by hiding already-subordinated WM units, and by focusing
rule application on recently created WM units.
Incremental processing is achieved by allowing grammar
rules to partially match. When processing moves beyond
the rightmost required and as-yet unmatched unit of a
partially matched rule, its branch of the interpretation tree
is pruned.

Kintsch Construction/Integration
Walter Kintsch (Kintsch 1998) proposed a model for
reading comprehension, based upon cognitive principles
and tested empirically with human subjects. In what he
called Construction/Integration, all alternative
interpretations are simultaneously considered. For each
interpretation, elaborations are constructed in the discourse
context (i.e. working memory). Then an iterative
spreading activation procedure scores sets of interpretation
propositions according to how well connected they are to
the concepts initially in the discourse context.

Discourse Elaboration
In the Texai system, discourse elaboration takes place by a
marker-passing spreading activation mechanism (Hendler
1998). Discourse elaboration is performed before Kintsch
spreading activation so that ambiguous concepts in the
input utterance might be inferred to be conceptually related
to previously known concepts in the discourse context. In
the example presented below, the word “table” is
ambiguous. It could either mean cyc:Table, or as part of
the multiple word form “on the table“, mean subject to
negotiation. There is no known table in the discourse
context, but there is a known instance of
cyc:RoomInAConstruction. Suppose there exists these
commonsense rules in the Texai knowledge base:

 a room may typically contain furniture
 a room may typically have a window
 a room has a ceiling
 a room has a wall

158

 a room has a floor
 a room has a door
 a room has a means of illumination
 a room can contain a person
 a table is a type of furniture
 a family room is a type of room

Discourse elaboration, via spreading activation, could add
furniture, and subsequently table, to the discourse context
by activating cached links derived from these rules. A
later example will demonstrate.

Pruning By Spreading Activation
Analogous to how automatic speech recognizers operate,
the number of retained interpretations in the search space is
kept to a specified beam width (e.g. four retained
interpretations). At the conclusion of utterance parsing, the
highest scoring interpretation is returned as the result.

An Example
The following diagrams were produced during the
processing of the example utterance: “the book is on the
table“. As part of the experiment, the discourse context is
primed with knowledge of a room, which is an instance of
cyc:RoomInAConstruction, and a book, which is an
instance of cyc:BookCopy. Lexical grammar rules
matching word stems in the example utterance yield these
ambiguous meanings:

 book - a bound book copy
 book - a sheath of paper, e.g. match book
 is - has as an attribute
 is - situation described as
 on - an operational device
 “on the table” - subject to negotiation [a multiword word

form]
 on - located on the surface of

These concepts form nodes in a graph, whose links
designate a conceptual relationship between two concepts.
Marker-passing spreading activation originates at the
known discourse terms (e.g. cyc:RoomInAConstruction)
and at each significant utterance term (e.g. cyc:Table) and
terminates if paths meet (e.g. at cyc:FurniturePiece). When
it can be inferred in this fashion that an utterance term and
a known discourse term are conceptually related, then that
proposition is added to the meaning propositions for
subsequent Kintsch spreading activation to resolve
ambiguities. The marker-passing spreading activation
decays after only a few links to preclude weakly
conceptually related results.

The Texai dialog system maintains a tree of parsing
interpretation nodes. Each node in the tree is either an
input word, such as ‘the’, or the name of an applied fluid
construction grammar rule. Branches in this tree occur
when there are alternative interpretations (i.e. meanings)
for a word such as “book“. The parsing interpretation tree

is retained after the parsing process completes so that the
user can ask questions about the parsing state (e.g. why a
certain grammar rule did not apply as expected).

Figure 2. Two alternative interpretations of “book”

Figure 2 depicts the tree of two alternative parsing
interpretations for the partial utterance “the book” whose
leaves are: node 16 which represents an instance of
cyc:BookCopy, and node 17 which represents an instance
of texai:SheetsBoundTogetherOnOneEdge. Quoted nodes
in the tree represent incrementally parsed words, and the
remaining nodes name the applied grammar rule.

According to Walter Kintsch’s theory of reading
comprehension, spreading activation flows over the nodes
of a graph formed by the meaning propositions of the
utterance. Links in this graph connect nodes mentioning
the same term. The most relevant set of nodes receives the
highest activation.

In figure 2 below are the ten propositions from the
alternative parsing interpretations of the phrase “the book“.
In the corresponding figure 3, magenta colored nodes
indicate the interpretation:
SheetsBoundTogetherOnOneEdge, Cyan colored nodes
indicated the alternative interpretation cyc:BookCopy. The
yellow nodes indicates prior knowledge - N4 is the prior
discourse context knowledge about a cyc:Table, and N5 is
the prior discourse context knowledge about a
cyc:BookCopy. N1 and N7 are positively connected, which
is indicated by a black line, because they share the concept:
SheetsBoundTogetherOnOneEdge-2. Node N1 and N10
are negatively connected, which is indicated by a red line,
because they represent alternative, conflicting,
interpretations.

159

node RDF proposition

N1 [texai:SheetsBoundTogetherOnOneEdge-2
texai:fcgStatus texai:SingleObject]

N2 [texai:BookCopy-1 rdf:type cyc:BookCopy)]

N3 [texai:BookCopy-1 texai:fcgDiscourseRole
texai:external]

N4 [texai:table-0 rdf:type cyc:Table]

N5 [texai:book-0 rdf:type cyc:BookCopy]

N6 [texai:BookCopy-1 rdf:type
texai:PreviouslyIntroducedThingInThisDisco
urse]

N7 [texai:SheetsBoundTogetherOnOneEdge-2
rdf:type
texai:PreviouslyIntroducedThingInThisDisco
urse]

N8 [texai:SheetsBoundTogetherOnOneEdge-2
rdf:type
texai:SheetsBoundTogetherOnOneEdge]

N9 [texai:SheetsBoundTogetherOnOneEdge-2
texai:fcgDiscourseRole texai:external]

N10 [texai:BookCopy-1 texai:fcgStatus
texai:SingleObject]

Figure 3. RDF Propositions From Two Alternative
Interpretations

Figure 4. Quiesced Kintsch Spreading Activation
Graph

Incremental Generation

The dialog system performs incremental utterance
generation. Presently, the dialog planner is rudimentary,
and consists of a component that forms a semantic
dependence tree from terms in the set of propositions to be
communicated to the user. The RDF propositions are
gathered by their RDF subject term. One of the terms is
heuristically chosen to be the subject of the utterance. Each
of the propositions having this term as an RDF subject is
selected for the root semantic dependency node. Child
nodes are likewise created heuristically for the remaining
propositions, grouped by RDF subject term. Incremental
generation proceeds in much the same fashion as
incremental parsing due to the fact that FCG is bi-

directional. As rules match, the resulting utterance is
generated left-to-right, word by word. Whenever no rules
match, the propositions from the next semantic dependency
node are added to the top unit WM feature structure.
Pruning of alternative interpretations will be a future
research issue. Currently, simple scoring heuristics are:

• prefer fewer words
• prefer to reuse previously uttered words for a

given meaning term
• prefer to use words that the recipient is otherwise

likely to know

Finally, the resulting generated utterance is trial parsed to
ensure that the system can understand what it generates
with respect to the discourse context and its model of the
user's belief state.

Vocabulary Acquisition

Once the most basic English grammar constructions are
hand-coded, it is planed that Texai learn, by being taught,
the constructions required for it to comprehend the word
sense glosses (i.e. definitions) from WordNet and
Wiktionary. By converting this definitional text into crisp,
symbolic logic statements, Texai will acquire a degree of
commonsense understanding about the defined concepts.
The author is postponing grounding most of these concepts
in physical perceptions. Initially, the only fully grounded
symbols will be those involved with English grammar
constructions and vocabulary. That is, Texai will have a
grounded perception of what an utterance is, because it can
directly sense one and it can generate one. It will likewise
have a grounded notion of its mentors. It will be able to
sense what each one says to it, and to influence their belief
state by what it says.

It might be considered circular and shallow to define the
various dictionary words in terms of each other. But this
will be sufficient for question answering - e.g. better than
an existing search engine on the same corpus. And one
might reasonably expect that it will be sufficient for the
really important step to soon follow - the acquisition of
skills by being taught them.

Grammar Rule Acquisition

At first, rather simple, stylized dialogs will handle idioms
and multi-word forms by requesting their corresponding
meaning from the user. It remains the subject of future
experimentation to find the best way to input logical
formulas. The initial idea will be to accept RDF syntax.

After a sufficient vocabulary for describing FCG
constructions is developed, then Texai can be taught
additional complex grammar rules. This facility will be
preceded by a sub-facility that will enable the dialog
system to describe to its mentor why a grammar rule
succeeded or failed for a particular parsed or generated
utterance.

160

Future Work and Conclusion

Future experiments will explore the hypothesis that
bootstrapping works. Here is an example use case:
[user] Do you understand “The book is on neuroscience”?
[texai] Not entirely, neuroscience is not a physical
location, how can the book be on it?
[user] The utterance means that the book is about
neuroscience.
[texai] Could I generalize “on neuroscience” to any field
of scientific discovery, such as “on Astronomy”, and
mean that the book is about Astronomy?
[user] yes
[texai] Could I generalize field of scientific discovery to
some general region, such “on deep space?”
[user] yes, this role can be generalized to any topic.
[texai] Does the utterance “the book is on Mars” entail
either the interpretation that (1) the book is physically
located on Mars, or (2) the book is about the topic Mars?
[user] yes
…
[user] Do you understand “the book is on fire?”
[texai] Yes, the book is about the topic fire.
[user] There is another, more common, interpretation:
There is a fire in which the book is the thing that is
burning.
[texai] Could I generalize fire to any decomposition
process, such as rot?
[user] no
…
[user] Do you understand “the book is on my to-do list?”
[texai] Yes, the book is about the topic to-do list.
[user] There is another, more common, interpretation:
There is a to-do list, and the book is an element of the list.
[texai] I know from Wiktionary that a to-do list is “a list
of errands and other tasks - often written on a piece of
paper as a memory aid - that one needs or intends to
accomplish”, but a book is not a task.
[user] metonymy: “the book” means “the task of reading
the book”
[texai] Now I understand that “the book is on my to-do
list” commonly means that the task of reading the book is
a task that I intend to do.

References

Albus, J. S., Meystel, A. M., Intelligent Systems:
architecture, design, and control, John Wiley & Sons, New
York, USA, 2002

Allen, A., et. al., An Architecture for a Generic Dialogue
Shell, In Natural Language Engineering, Vol. 6,
Cambridge University Press, New York, New York, USA,
September 2000.

Ball, J., Heiberg, A. & Silber, R. Toward a Large-Scale
Model of Language Comprehension in ACT-R 6. In
Proceedings of the 8th International Conference on
Cognitive Modeling, pages 163-168, 2007

Ball, J. (2006). Can NLP Systems be a Cognitive Black
Box? In Papers from the AAAI Spring Symposium,
Technical Report SS-06-02, pages 1-6, AAAI Press, Menlo
Park, California, USA, 2006
http://www.doublertheory.com/NLPBlackBox.pdf

Ball, J. Double R Grammar, 2003
http://www.DoubleRTheory.com/DoubleRGrammar.pdf

Feldbaum, C. ed., WordNet: an electronic lexical database,
MIT Press, Cambridge, Massachusetts, USA, 1999

Goertzel, B., The Hidden Pattern: A Patternist Philosophy
of Mind, Chapter 15, Brown Walker Press, Boca Raton,
Florida, USA, 2006

Hendler, J. A., Integrating Marker-Passing and Problem
Solving, Chapter 8 – Cognitive Aspects, Lawrence
Erlbaum Associates, Hillsdale, New Jersey, USA, 1988

Kintsch, W., Comprehension: a paradigm for cognition,
Cambridge University Press, Cambridge, UK, 1998

Matuszek, C., Cabral, J., Witbrock, M., DeOliveira, J. An
Introduction to the Syntax and Content of Cyc. In
Proceedings of the 2006 AAAI Spring Symposium on
Formalizing and Compiling Background Knowledge and
Its Applications to Knowledge Representation and
Question Answering, Stanford, CA, USA, March 2006.

Reed, S. L., Semantic Annotation for Persistence, In
Proceedings of the AAAI Workshop on Semantic e-Science,
AAAI Press, Menlo Park, California, USA, 2006

Reiter, E., Dale R., Building Natural Language Generation
Systems, Cambridge University Press, Cambridge, UK,
2000

Steels, L. and De Beule, J. (2006) A (very) Brief
Introduction to Fluid Construction Grammar. In Third
International Workshop on Scalable Natural Language
Understanding (2006).
http://arti.vub.ac.be/~joachim/acl-ny-06-3.pdf

Turing, A. M. Computing Machinery and Intelligence. In
Mind 59, 1950.

161

http://www.DoubleRTheory.com/DoubleRGrammar.pdf

Analytical Inductive Programming as a
Cognitive Rule Acquisition Devise∗

Ute Schmid and Martin Hofmann and Emanuel Kitzelmann
Faculty Information Systems and Applied Computer Science

University of Bamberg, Germany
{ute.schmid, martin.hofmann, emanuel.kitzelmann}@uni-bamberg.de

Abstract

One of the most admirable characteristic of the hu-
man cognitive system is its ability to extract gener-
alized rules covering regularities from example expe-
rience presented by or experienced from the environ-
ment. Humans’ problem solving, reasoning and verbal
behavior often shows a high degree of systematicity
and productivity which can best be characterized by a
competence level reflected by a set of recursive rules.
While we assume that such rules are different for dif-
ferent domains, we believe that there exists a general
mechanism to extract such rules from only positive ex-
amples from the environment. Our system Igor2 is an
analytical approach to inductive programming which
induces recursive rules by generalizing over regularities
in a small set of positive input/output examples. We
applied Igor2 to typical examples from cognitive do-
mains and can show that the Igor2 mechanism is able
to learn the rules which can best describe systematic
and productive behavior in such domains.

Introduction
Research in inductive programming is concerned with
the design of algorithms for synthesis of recursive
programs from incomplete specifications such as in-
put/output examples of the desired program behav-
ior, possibly together with a set of constraints about
size or time complexity (Biermann, Guiho, & Kodratoff
1984; Flener 1995). In general, there are two distinct
approaches to inductive programming – search-based
generate-and-test algorithms (Olsson 1995; Quinlan &
Cameron-Jones 1995) and data-driven analytical algo-
rithms (Summers 1977; Kitzelmann & Schmid 2006).
In the first case, given some language restriction, hy-
pothetical programs are generated, tested against the
specification and modified until they meet some given
criteria. In the second case, regularities in the in-
put/output examples are identified and a generalized
structure is built over the examples. While search-
based approaches – in principle – can generate each pos-
sible program and therefore might be able to find the

∗Research was supported by the German Research Com-
munity (DFG), grant SCHM 1239/6-1.
Copyright c© 2008, The Second Conference on Artificial
General Intelligence (AGI-09.org). All rights reserved.

desired one given enough time, analytical approaches
have a more restricted language bias. The advantage of
analytical inductive programming is that programs are
synthesized very fast, that the programs are guaranteed
to be correct for all input/output examples and fulfill
further characteristics such as guaranteed termination
and being minimal generalizations over the examples.
The main goal of inductive programming research is to
provide assistance systems for programmers or to sup-
port end-user programming (Flener & Partridge 2001).

From a broader perspective, analytical inductive pro-
gramming provides algorithms for extracting general-
ized sets of recursive rules from small sets of positive
examples of some behavior. Such algorithms can there-
fore be applied not only to input/output examples de-
scribing the behavior of some program but to arbi-
trary expressions. Taking this standpoint, analytical
inductive programming provides a general device for
the acquisition of generalized rules in all such domains
where it is natural that people are typically exposed to
only positive examples. This is, for example, the case
in learning correct grammatical constructions where a
child would never get explicitly exposed to scrambled
sentences (such as house a is this).

In the sixties, Chomsky proposed that the human
mind possesses a language acquisition device (LAD)
which allows us to extract grammar rules from the lan-
guage experience we are exposed to (Chomsky 1959;
1965). Input to this device are the linguistic experi-
ences of a child, output is a grammar reflecting the
linguistic competence. The concept of an LAD can be
seen as a special case of a general cognitive rule ac-
quisition device. Unfortunately, this idea became quite
unpopular (Levelt 1976): One reason is, that only per-
formance and not competence is empirically testable
and therefore the idea was only of limited interest to
psycho-linguists. Second, Chomsky (1959) argued that
there “is little point in speculating about the process of
acquisition without much better understanding of what
is acquired” and therefore linguistic research focussed
on search for a universal grammar. Third, the LAD
is concerned with learning and learning research was
predominantly associated with Skinner’s reinforcement
learning approach which clearly is unsuitable as a lan-

162

guage acquisition device since it explains language ac-
quisition as selective reinforcement of imitation.

Since the time of the original proposal of the LAD
there was considerable progress in the domain of ma-
chine learning (Mitchell 1997) and we propose that it
might be worthwhile to give this plausible assumption
of Chomsky a new chance. The conception of inductive
biases (Mitchell 1997) introduced in machine learning,
namely restriction (i.e. language) and preference (i.e.
search) bias might be an alternative approach to the
search of a universal grammar: Instead of providing a
general grammatical framework from which each spe-
cific grammar – be it for a natural language or for some
other problem domain – can be derived, it might be
more fruitful to provide a set of constraints (biases)
which characterize what kinds of rule systems are learn-
able by humans. Since we are interested in a mechanism
to induce general, typically recursive, rules and not in
classification learning, we propose to investigate the po-
tential of analytical inductive programming as such a
general rule acquisition device. Furthermore, we pro-
pose to take a broader view of Chomsky’s idea of an
LAD and we claim that rule acquisition in that fashion
is not only performed in language learning but in all
domains where humans acquire systematic procedural
knowledge such as problem solving and reasoning.

In the following we give a short overview of our an-
alytical inductive programming system Igor2 together
with its biases. Then we illustrate Igor2’s ability
as a cognitive rule acquisition device in the domains
of problem solving, reasoning, and natural language
processing.1

Recursive Structure Generalization

Igor2 (Kitzelmann 2008) was developed as a succes-
sor to the classical Thesys system for learning Lisp
programs from input/output examples (Summers 1977)
and its generalization Igor1 (Kitzelmann & Schmid
2006). To our knowledge, Igor2 is currently the most
powerful system for analytical inductive programming.
Its scope of inducable programs and the time efficiency
of the induction algorithm compares well with inductive
logic programming and other approaches to inductive
programming (Hofmann, Kitzelmann, & Schmid 2008).
The system is realized in the constructor term rewriting
system Maude Therefore, all constructors specified for
the data types used in the given examples are available
for program construction. Since Igor2 is designed as
an assistant system for program induction, it relies on
small sets of noise-free positive input/output examples
and it cannot deal with uncertainty. Furthermore, the
examples have to be the first inputs with respect to the
complexity of the underlying data type. Given these
restrictions, Igor2 can guarantee that the induced pro-
gram covers all examples correctly and provides a min-
imal generalization over them. Classification learning

1The complete data sets and results can be found on
www.cogsys.wiai.uni-bamberg.de/effalip/download.html.

for noise-free examples such as PlayTennis (Mitchell
1997) can be performed as a special case (Kitzelmann
2008).

Igor2 specifications consist of such a set of exam-
ples together with a specification of the input data
type. Background knowledge for additional functions
can (but needs not) be provided. Igor2 can induce
several dependent target functions (i.e., mutual recur-
sion) in one run. Auxiliary functions are invented if
needed. In general, a set of rules is constructed by gen-
eralization of the input data by introducing patterns
and predicates to partition the given examples and syn-
thesis of expressions computing the specified outputs.
Partitioning and search for expressions is done system-
atically and completely which is tractable even for rela-
tive complex examples because construction of hypothe-
ses is data-driven. Igor2’s restriction bias is the set of
all functional recursive programs where the outermost
function must be either non-recursive or provided as
background knowledge.

Igor2’s built-in preference bias is to prefer fewer case
distinctions, most specific patterns and fewer recursive
calls. Thus, the initial hypothesis is a single rule per
target function which is the least general generalization
of the example equations. If a rule contains unbound
variables on its right-hand side, successor hypotheses
are computed using the following operations: (i) Par-
titioning of the inputs by replacing one pattern by a
set of disjoint more specific patterns or by introduc-
ing a predicate to the right-hand side of the rule; (ii)
replacing the right-hand side of a rule by a (recursive)
call to a defined function where finding the argument of
the function call is treated as a new induction problem,
that is, an auxiliary function is invented; (iii) replacing
sub-terms in the right-hand side of a rule which contain
unbound variables by a call to new subprograms.

Problem Solving
Often, in cognitive psychology, speed-up effects in prob-
lem solving are modelled simply as composition of prim-
itive rules as a result of their co-occurrence during prob-
lem solving, e.g., knowledge compilation in ACT (An-
derson & Lebière 1998) or operator chunking in SOAR
(Rosenbloom & Newell 1986). Similarly, in AI planning
macro learning was modelled as composition of prim-
itive operators to more complex ones (Minton 1985;
Korf 1985). But, there is empirical evidence that hu-
mans are able to acquire general problem solving strate-
gies from problem solving experiences, that is, that gen-
eralized strategies are learned from sample solutions.
For example, after solving Tower of Hanoi problems, at
least some people have acquired the recursive solution
strategy (Anzai & Simon 1979). Typically, experts are
found to have superior strategic knowledge in contrast
to novices in a domain (Meyer 1992).

There were some proposals to the learning of do-
main specific control knowledge in AI planning (Shell &
Carbonell 1989; Shavlik 1990; Mart́ın & Geffner 2000).
All these approaches proposed to learn cyclic/recursive

163

Problem domain:

puttable(x)

PRE: clear(x), on(x, y)

EFFECT: ontable(x), clear(y), not on(x,y)

Problem Descriptions:

: init-1 clear(A), ontable(A)

: init-2 clear(A), on(A, B), ontable(B)

: init-3 on(B, A), clear(B), ontable(A)

: init-4 on(C, B), on(B, A), clear(C), ontable(A)

: goal clear(a)

Problem Solving Traces/Input to Igor2

fmod CLEARBLOCK is

*** data types, constructors

sorts Block Tower State .

op table : -> Tower [ctor] .

op __ : Block Tower -> Tower [ctor] .

op puttable : Block State -> State [ctor] .

*** target function declaration

op ClearBlock : Block Tower State -> State [metadata "induce"] .

*** variable declaration

vars A B C : Block .

var S : State .

*** examples

eq ClearBlock(A, A table, S) = S .

eq ClearBlock(A, A B table, S) = S .

eq ClearBlock(A, B A table, S) = puttable(B, S) .

eq ClearBlock(A, C B A table, S) = puttable(B, puttable(C, S)) .

endfm

Figure 1: Initial experience with the clearblock problem

control rules which reduce search. Learning recursive
control rules, however, will eliminate search completely.
With enough problem solving experience, some gener-
alized strategy, represented by a set of rules (equivalent
to a problem solving scheme) should be induced which
allows a domain expert to solve this problem via appli-
cation of his/her strategic knowledge. We already tried
out this idea using Igor1 (Schmid & Wysotzki 2000).
However, since Igor1 was a two-step approach where
examples had to be first rewritten into traces and af-
terwards recurrence detection was performed in these
traces, this approach was restricted in its applicabil-
ity. With Igor2 we can reproduce the results of Igor1

on the problems clearblock and rocket faster and with-
out specific assumptions to preprocessing and further-
more can tackle more complex problem domains such
as building a tower in the blocks-world domain.

The general idea of learning domain specific problem
solving strategies is that first some small sample prob-
lems are solved by means of some planning or problem
solving algorithm and that then a set of generalized
rules are learned from this sample experience. This set
of rules represents the competence to solve arbitrary
problems in this domain. We illustrate the idea of our
approach with the simple clearblock problem (see Fig-
ure 1). A problem consists of a set of blocks which are
stacked in some arbitrary order. The problem solving
goal is that one specific block – in our case A – should

Clearblock (4 examples, 0.036 sec)

ClearBlock(A, (B T), S) = S if A == B

ClearBlock(A, (B T), S) =

ClearBlock(A, T, puttable(B, S)) if A =/= B

Rocket (3 examples, 0.012 sec)

Rocket(nil, S) = move(S) .

Rocket((O Os), S) = unload(O, Rocket(Os, load(O, S)))

Tower (9 examples of towers with up to four blocks, 1.2 sec)

(additionally: 10 corresponding examples for Clear and IsTower pred-

icate as background knowledge)

Tower(O, S) = S if IsTower(O, S)

Tower(O, S) =

put(O, Sub1(O, S),

Clear(O, Clear(Sub1(O, S),

Tower(Sub1(O, S), S)))) if not(IsTower(O, S))

Sub1(s(O), S) = O .

Tower of Hanoi (3 examples, 0.076 sec)

Hanoi(0, Src, Aux, Dst, S) = move(0, Src, Dst, S)

Hanoi(s D, Src, Aux, Dst, S) =

Hanoi(D, Aux, Src, Dst,

move(s D, Src, Dst,

Hanoi(D, Src, Dst, Aux, S)))

Figure 2: Learned Rules in Problem Solving Domains

be cleared such that no block is standing above it. We
use predicates clear(x), on(x, y), and ontable(x) to rep-
resent problem states and goals. The only available
operator is puttable: A block x can be put on the table
if it is clear (no block is standing on it) and if it is not
already on the table but on another block. Application
of puttable(x) has the effect that block x is on the table
and the side-effect that block y gets cleared if on(x, y)
held before operator application. The negative effect is
that x is no longer on y after application of puttable.

We use a PDDL-like notation for the problem domain
and the problem descriptions. We defined four differ-
ent problems of small size each with the same problem
solving goal (clear(A)) but with different initial states:
The most simple problem is the case where A is already
clear. This problem is presented in two variants – A is
on the table and A is on another block – to allow the
induction of a clearblock rule for a block which is posi-
tioned in an arbitrary place in a stack. The third initial
state is that A is covered by one block, the fourth that
A is covered by two blocks. A planner might be pre-
sented with the problem domain – the puttable operator
– and problem descriptions given in Figure 1.

The resulting action sequences can be obtained by
any PDDL planner (Ghallab, Nau, & Traverso 2004)
and rewritten to Igor2 (i.e. Maude) syntax. When
rewriting plans to Maude equations (see Figure 1) we
give the goal, that is, the name of the block which
is to be cleared, as first argument. The second ar-
gument represents the initial state, that is, the stack
as list of blocks and table as bottom block. The
third argument is a situation variable (McCarthy 1963;

164

Manna & Waldinger 1987; Schmid & Wysotzki 2000)
representing the current state. Thereby plans can be
interpreted as nested function applications and plan ex-
ecution can be performed on the content of the situation
variable. The right-hand sides of the example equations
correspond to the action sequences which were con-
structed by a planner, rewritten as nested terms with
situation variable S as second argument of the puttable
operator. Currently, the transformation of plans to ex-
amples for Igor2 is done “by hand”. For a fully au-
tomated interface from planning to inductive program-
ming, a set of rewrite rules must be defined.

Given the action sequences for clearing a block up
to three blocks deep in a stack as initial experience,
Igor2 generalizes a simple tail recursive rule system
which represents the competence to clear a block which
is situated in arbitrary depth in a stack (see Figure
2). That is, from now on, it is no longer necessary
to search for a suitable action sequence to reach the
clearblock goal. Instead, the generalized knowledge can
be applied to produce the correct action sequence di-
rectly. Note, that Igor2 automatically introduced the
equal predicate to discern cases where A is on top of
the stack from cases where A is situated farther below
since these cases could not be discriminated by disjoint
patterns on the left-hand sides of the rules.

A more complex problem domain is rocket (Veloso
& Carbonell 1993). This domain was originally pro-
posed to demonstrate the need of interleaving goals.
The problem is to transport a number of objects from
earth to moon where the rocket can only fly in one di-
rection. That is, the problem cannot be solved by first
solving the goal at(o1, moon) by loading it, moving it
to the moon and then unloading it. Because with this
strategy there is no possibility to transport further ob-
jects from earth to moon. The correct procedure is first
to load all objects, then to fly to the moon and finally
to unload the objects. Igor2 learned this strategy from
examples for zero to two objects (see Figure 2).

A most challenging problem domain which is still
used as a benchmark for planning algorithms is blocks-
world. A typical blocks-world problem is to build a
tower of some blocks in some prespecified order. With
evolutionary programming, an iterative solution pro-
cedure to this problem was found from 166 examples
(Koza 1992). The found strategy was to first put all
blocks on the table and than build the tower. This
strategy is clearly not efficient and cognitively not very
plausible. If, for example, the goal is a tower on(A, B),
on(B, C) and the current state is on(C, B), on(B,A),
even a young child will first put C on the table and
then directly put B on C and not put B on the ta-
ble first. Another proposal to tackle this problem is to
learn decision rules which at least in some situations
can guide a planner to select the most suitable action
(Mart́ın & Geffner 2000). With the learned rules, 95.5%
of 1000 test problems were solved for 5-block problems
and 72.2% of 500 test problems were solved for 20-block
problems. The generated plans, however, are about two

eq Tower(s s table,

((s s s s table) (s table) table | ,

(s s s table) (s s table) table | , nil)) =

put(s s table, s table,

put(s s s table, table,

put(s s s s table, table,

((s s s s table) (s table) table | ,

(s s s table) (s s table) table | , nil)))) .

Figure 3: One of the nine example equations for tower

steps longer than the optimal plans. In Figure 2 we
present the rules Igor2 generated from only nine ex-
ample solutions. This rule system will always produce
the optimal action sequence.

To illustrate how examples were presented to Igor2

we show one example in Figure 3. The goal is to con-
struct a tower for some predefined ordering of blocks.
To represent this ordering, blocks are represented con-
structively as “successors” to the table with respect to
the goal state (| representing the empty tower). There-
fore the top object of the to be constructed tower is
given as first argument of the tower function. If the top
object is s s s table, the goal is to construct a tower
with three blocks with s table on the table, s s table on
s table and s s s table on s s table. The second argu-
ment again is a situation variable which initially holds
the initial state. In the example in Figure 3 s s table
(we may call it block 2) shall be the top object and the
initial state consists of two towers, namely block 4 on
block 1 and block 3 on block 2. That is, the desired
output is the plan to get the tower block 2 on block 1.
Therefore blocks 1 and 2 have to be cleared, these are
the both innermost puts, and finally block 2 has to be
stacked on block 1 (block 1 lies on the table already),
this is the out-most put.

In addition to the tower example, Igor2 was given an
auxiliary function IsTower as background knowledge.
This predicate is true if the list of blocks presented to
it are already in the desired order. Furthermore, we did
not learn the Clear function used in tower but presented
some examples as background knowledge.

Finally, the recursive solution to the Tower of Hanoi
problem was generated by Igor2 from three examples
(see Figure 2). The input to Igor2 is given in Figure
4.

For the discussed typical problem solving domains
Igor2 could infer the recursive generalizations very fast
and from small example sets. The learned recursive
rule systems represent the strategic knowledge to solve
all problems of the respective domains with a minimal
number of actions.

Reasoning

A classic work in the domain of reasoning is how hu-
mans induce rules in concept learning tasks (Bruner,
Goodnow, & Austin 1956). Indeed, this work has in-
spired the first decision tree algorithms (Hunt, Marin,

165

eq Hanoi(0, Src, Aux, Dst, S) =

move(0, Src, Dst, S) .

eq Hanoi(s 0, Src, Aux, Dst, S) =

move(0, Aux, Dst,

move(s 0, Src, Dst,

move(0, Src, Aux, S))) .

eq Hanoi(s s 0, Src, Aux, Dst, S) =

move(0, Src, Dst,

move(s 0, Aux, Dst,

move(0, Aux, Src,

move(s s 0, Src, Dst,

move(0, Dst, Aux,

move(s 0, Src, Aux,

move(0, Src, Dst, S))))))) .

Figure 4: Posing the Tower of Hanoi problem for Igor2

Ancestor (9 examples, 10.1 sec)

(and corresponding 4 examples for IsIn and Or)

Ancestor(X, Y, nil) = nilp .

Ancestor(X, Y, node(Z, L, R)) =

IsIn(Y, node(Z, L, R)) if X == Z .

Ancestor(X, Y, node(Z, L, R)) =

Ancestor(X, Y, L) Or Ancestor(X, Y, R) if X =/= Z .

Corresponding to:

ancestor(x,y) = parent(x,y).

ancestor(x,y) = parent(x,z), ancestor(z,y).

isa(x,y) = directlink(x,y).

isa(x,y) = directlink(x,z), isa(z,y).

Figure 5: Learned Transitivity Rules

& Stone 1966). This work addressed simple conjunc-
tive or more difficult to acquire disjunctive concepts.
However, people are also able to acquire and correctly
apply recursive concepts such as ancestor, prime num-
ber, member of a list and so on.

In the following, we will focus on the concept of an-
cestor which is often used as standard example in in-
ductive logic programming (Lavrač & Džeroski 1994).
The competence underlying the correct application of
the ancestor concept, that is, correctly classifying a per-
son as ancestor of some other person, in our opinion is
the correct application of the transitivity relation in
some partial ordering. We believe that if a person has
grasped the concept of transitivity in one domain, such
as ancestor, this person will also be able to correctly
apply it in other, previously unknown domains. For ex-
ample, such a person should be able to correctly infer
is-a relations in some ontology. We plan to conduct
a psychological experiment with children to strengthen
this claim.

For simplicity of modeling, we used binary trees as
domain model. For trees with arbitrary branching fac-
tor, the number of examples would have to be increased
significantly. The transitivity rule learned by Igor2 is
given in Figure 5.

original grammar (in the very original grammar, d n v are non-

terminals D N V which go to concrete words)

S -> NP VP

NP -> d n

VP -> v NP | v S

examples

fmod GENERATOR is

*** types

sorts Cat CList Depth .

ops d n v : -> Cat [ctor] .

op ! : -> CList [ctor] .

op __ : Cat CList -> CList [ctor] .

op 1 : -> Depth [ctor] .

op s_ : Depth -> Depth [ctor] .

*** target fun declaration

op Sentence : Depth -> CList [metadata "induce"] .

*** examples

eq Sentence(1) = (d n v d n !) .

eq Sentence(s 1) = (d n v d n v d n !) .

eq Sentence(s s 1) = (d n v d n v d n v d n !) .

learned grammar rules (3 examples, 0.072 sec)

Sentence(1) = (d n v d n !)

Sentence(s N) = (d n v Sentence(N))

Figure 6: Learning a Phrase-Structure Grammar

Natural Language Processing

Finally, we come back to Chomsky’s claim of an LAD.
We presented Igor2 with examples to learn a phrase-
structure grammar. This problem is also addressed
in grammar inference research (Sakakibara 1997). We
avoided the problem of learning word-category associa-
tions and provided examples abstracted from concrete
words (see Figure 6). This, in our opinion, is legiti-
mate since word categories are learned before complex
grammatical structures are acquired. There is empiri-
cal evidence that children first learn rather simple Pivot
grammars where the basic word categories are sys-
tematically positioned before they are able to produce
more complex grammatical structures (Braine 1963;
Marcus 2001).

The abstract sentence structures correspond to sen-
tences as (Covington 1994):

1: The dog chased the cat.

2: The girl thought the dog chased the cat.

3: The butler said the girl thought the dog chased the cat.

4: The gardener claimed the butler said the girl thought the dog

chased the cat.

The recursive rules can generate sentences for an ar-
bitrary depth which is given as parameter. Igor2 can
also learn more complex rules, for example allowing for
conjunctions of noun phrases or verb phrases. In this
case, a nested numerical parameter can be used to spec-
ify at which position conjunctions in which depth can
be introduced. Alternatively, a parser could be learned.
Note that the learned rules are simpler than the original
grammar but fulfill the same functionality.

166

Conclusion

Igor2 is a rather successful system for analytical in-
ductive programming. Up to now we applied Igor2 to
typical programming problems (Hofmann, Kitzelmann,
& Schmid 2008). In this paper we showed that ana-
lytical inductive programming is one possible approach
to model a general cognitive rule acquisition device and
we successfully applied Igor2 to a range of prototypical
problems from the domains of problem solving, reason-
ing, and natural language processing. Analytical in-
ductive programming seems a highly suitable approach
to model the human ability to extract generalized rules
from example experience since it allows fast general-
ization from very small sets of only positive examples
(Marcus 2001). We want to restrict Igor2 to such do-
mains where it is natural to provide positive examples
only. Nevertheless, to transform Igor2 from a induc-
tive programming to an AGI system, in future we need
to address the problem of noisy data as well as the prob-
lem of automatically transforming traces presented by
other systems (a planner, a reasoner, a human teacher)
into Igor2 specifications.

References
Anderson, J. R., and Lebière, C. 1998. The atomic com-
ponents of thought. Mahwah, NJ: Lawrence Erlbaum.

Anzai, Y., and Simon, H. 1979. The theory of learning by
doing. Psychological Review 86:124–140.

Biermann, A. W.; Guiho, G.; and Kodratoff, Y., eds. 1984.
Automatic Program Construction Techniques. New York:
Macmillan.

Braine, M. 1963. On learning the gramamtical order of
words. Psychological Review 70:332–348.

Bruner, J. S.; Goodnow, J. J.; and Austin, G. A. 1956. A
Study of Thinking. New York: Wiley.

Chomsky, N. 1959. Review of Skinner’s ‘Verbal Behavior’.
Language 35:26–58.

Chomsky, N. 1965. Aspects of the Theory of Syntax. Cam-
bridge, MA: MIT Press.

Covington, M. A. 1994. Natural Language Processing for
Prolog Programmers. Prentice Hall.

Flener, P., and Partridge, D. 2001. Inductive program-
ming. Automated Software Engineering 8(2):131–137.

Flener, P. 1995. Logic Program Synthesis from Incomplete
Information. Boston: Kluwer Academic Press.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.

Gold, E. 1967. Language identification in the limit. Infor-
mation and Control 10:447–474.

Hofmann, M.; Kitzelmann, E.; and Schmid, U. 2008. Anal-
ysis and evaluation of inductive programming systems in
a higher-order framework. In Dengel, A. et al., eds., KI
2008: Advances in Artificial Intelligence, number 5243 in
LNAI, 78–86. Berlin: Springer.

Hunt, E.; Marin, J.; and Stone, P. J. 1966. Experiments
in Induction. New York: Academic Press.

Kitzelmann, E., and Schmid, U. 2006. Inductive synthe-
sis of functional programs: An explanation based general-

ization approach. Journal of Machine Learning Research
7(Feb):429–454.

Kitzelmann, E. 2008. Analytical inductive functional pro-
gramming. In Hanus, M., ed., Pre-Proceedings of LOPSTR
2008, 166–180.

Korf, R. E. 1985. Macro-operators: a weak method for
learning. Artificial Intelligence, 1985 26:35–77.

Koza, J. 1992. Genetic programming: On the programming
of computers by means of natural selection. Cambridge,
MA: MIT Press.

Lavrač, N., and Džeroski, S. 1994. Inductive Logic Pro-
gramming: Techniques and Applications. London: Ellis
Horwood.

Levelt, W. 1976. What became of LAD? Lisse: Peter de
Ridder Press.

Manna, Z., and Waldinger, R. 1987. How to clear a block: a
theory of plans. Journal of Automated Reasoning 3(4):343–
378.

Marcus, G. F. 2001. The Algebraic Mind. Integrating Con-
ncetionism and Cognitive Science. Bradford.

Mart́ın, M., and Geffner, H. 2000. Learning generalized
policies in planning using concept languages. In Proc. KR
2000, 667–677. San Francisco, CA: Morgan Kaufmann.

McCarthy, J. 1963. Situations, actions, and causal
laws. Memo 2, Stanford University Artificial Intelligence
Project, Stanford, California.

Meyer, R. 1992. Thinking, Problem Solving, Cognition,
second edition. Freeman.

Minton, S. 1985. Selectively generalizing plans for problem-
solving. In Proc. IJCAI-85, 596–599. San Francisco, CA:
Morgan Kaufmann.

Mitchell, T. M. 1997. Machine Learning. New York:
McGraw-Hill.

Olsson, R. 1995. Inductive functional programming using
incremental program transformation. Artificial Intelligence
74(1):55–83.

Quinlan, J., and Cameron-Jones, R. 1995. Induction of
logic programs: FOIL and related systems. New Genera-
tion Computing 13(3-4):287–312.

Rosenbloom, P. S., and Newell, A. 1986. The chunking
of goal hierarchies: A generalized model of practice. In
Michalski, R. S.; Carbonell, J. G.; and Mitchell, T. M.,
eds., Machine Learning - An Artificial Intelligence Ap-
proach, vol. 2. Morgan Kaufmann. 247–288.

Sakakibara, Y. 1997. Recent advances of grammatical
inference. Theoretical Computer Science 185:15–45.

Schmid, U., and Wysotzki, F. 2000. Applying inductive
programm synthesis to macro learning. In Proc. AIPS
2000, 371–378. AAAI Press.

Shavlik, J. W. 1990. Acquiring recursive and iterative con-
cepts with explanation-based learning. Machine Learning
5:39–70.

Shell, P., and Carbonell, J. 1989. Towards a general
framework for composing disjunctive and iterative macro-
operators. In Proc. IJCAI-89. Morgan Kaufman.

Summers, P. D. 1977. A methodology for LISP program
construction from examples. Journal ACM 24(1):162–175.

Veloso, M. M., and Carbonell, J. G. 1993. Derivational
analogy in Prodigy: Automating case acquisition, storage,
and utilization. Machine Learning 10:249–278.

167

Human and Machine Understanding
Of Natural Language Character Strings

Peter G. Tripodes

pgtripodes@cs.com

Abstract
There is a great deal of variability in the way in which
different language users understand a given natural
language (NL) character string. This variability probably
arises because of some combination of differences in
language users’ perceptions of its context-of-use
(pragmatics), identity and mode of organization of its
meaning bearing parts (syntax), and in the meanings
assigned to those parts (semantics). This paper proposes a
formalization of the syntax and semantics of NL character
strings within a logical framework which is sufficiently
flexible to represent the full breadth of possible ways of
understanding NL character strings as influenced by
different contexts-of use, beyond what can be represented in
currently used predicate-logic-based frameworks. While the
question of how language users understand NL character
strings is ultimately a question in the psychology of
language, it appears to us that, for the purposes of AGI, that
question needs to be addressed within a logical framework
which explicitly identifies the syntactic and semantic
components that comprise that understanding, and which
account – in formal terms – for differences in that
understanding. Such a logical framework would provide a
formal basis not only on which to address further
psychological issues regarding human language
understanding, but also for coherently imparting such
understanding to machines.

Purpose

In this paper, I attempt to formalize the notion of what it
means to understand NL character string as a sentence, and
to describe a mechanism whereby particular sentential
readings of given character strings induce particular
patterns of deductive connections among them [1].
Allowing that great variability appears to exist among
language users regarding the patterns of deductive
connections which they perceive to hold among given NL
character strings and to include non-normal, i.e., atypical,
patterns as well as normal ones, the question arises
regarding how to formalize sentential readings of character
strings broadly enough to induce such a range of perceived
patterns. Predicate logic and its variants such as resolution
logic [2], [3], and its extensions such as Montague logic
[4], do not appear sufficiently flexible for formalizing
sentential readings broadly enough. In particular, while
their respective mechanisms for inducing patterns of

deductive connections are both explicit and precise, as well
as applicable to a wide range of NL character strings, the
restrictions they impose on sentential readings are such as
to be capable of inducing only a small range of normal
patterns of deductive connections. Moreover their
mechanisms are typically sequential rather than parallel,
hence too slow in machine applications to meet envisioned
AGI capabilities. Connectionist formalizations such as [5]
appear even more restrictive in the kinds of deductive
patterns which they induce and, while designed to use
massively parallel mechanisms for inducing deductive
patterns on NL character strings, their formalizations and
proposed mechanisms have thus far been illustrated for a
limited number of cases of the simplest types. In this paper
we outline an alternative logic which appears minimally
restrictive in the range of sentential readings it can
represent and yet capable of supporting a massively
parallel mechanism for inducing non-normal as well as
normal patterns of deductive connections among them.
There is not space to describe this mechanism in this paper,
but it is described to some extent in [6].

 Key Notions

Natural Language (NL) Character Strings. By a natural
language (NL) character string I mean an expression of
natural language stripped of any structure beyond the
ordering and spacing of its characters.
Readings of NL Character Strings [1]. By a reading of
an NL character string I mean a language user’s way of
understanding it which includes an intuitive
conceptualization of its meaning bearing parts1 (syntax),
and intuitive conceptualization of the meanings that the
language user associates with those meaning bearing parts
(semantics, where both conceptualizations are conditioned
by a perceived context-of-use (pragmatics).
Sentential Readings of NL Character Strings. By a
sentential reading of an NL character string I mean a
reading of that character string as an assertion which can
be judged as true or false. Sentential readings of a given
NL character string can vary markedly among language
users according to the way that they conceptualize its
syntax and semantics and perceive its context-of-use2.

Sentential Reading Assignments (SRAs) on Sets of
Character Strings. By a sentential reading assignment

168

(SRA) on a set of NL character strings I mean an
assignment of sentential readings to each character string
in the set which induces a pattern of deductive connections
among them.
Normal and Non-Normal SRAs on Sets of Character
Strings. An SRA on a set of character strings is said to be
normal (non-normal) to the degree that the patterns of
deductive connections which it induces on the set is
consistent (inconsistent) with language users’ deductive
intuitions relative to typical contexts-of-use.

 Readings: Formally Considered

Formalizing Readings. A reading of an NL character
string c is formalized as a pair <Syn(c), Sem(c)> consisting
of a syntactic representation Syn(c) of c, and a semantic
representation Sem(c) of c. We assume a syntactic
representation language L and a universe of discourse.
Due to space limitations we summarize the internal
structures of Syn(c) and Sem(c), as indicated below. (A
fuller account can be found in [6].)
Syntactic Representation Syn(c) of a Sentential Reading
of Character String c. There are three grammatical
categories of expressions in the syntactic representation
language L: relation expressions, thing expressions, and
modifier expressions. In order to accommodate the
differences which appear to exist in ways that different
language users could understand given natural language
word strings, we allow a very permissive grammar for L,
called an “open grammar,” which is one in which the
syntactic representation component Syn(c) of a given (not
necessarily sentential) reading of an NL character string c
can be a relation expression, a thing expression, or a
modifier expression3. For example, the syntactic
representation component of the character string “love”
could be a relation expression in one occurrence, a thing-
expression in another occurrence, and a modifier-
expression in a third. The syntactic representation
component Syn(c) of a sentential reading of a character
string c is composed of an n-place relation expression rn

together with n thing expressions a1 ,…, an which it relates,
and together with three ordering functions p, q, t, on those
n thing expressions (illustrated below). We schematically
express Syn(c) as rn (a1,…, an)p,q,t, with the ordering
functions as indicated. The relation expression rn is, in
turn, composed of a sequence of modifier expressions
applied to a base (i.e., modifier-less) relation expression
(e.g., “give”) together with m case expressions b1, …, bm
(e.g., variously representing “agent”, “patient”, “recipient”,
and so on), each of which identifies the semantic role of
one (or more) of the n thing expressions a1,…,an. Each ai
is, turn, composed of a sequence of modifier expressions
applied to a base (i.e., modifier-less) thing expression.
Interpretations. The description of Sem(c) makes
essential reference to the notion of an interpretation,
defined as follows: An interpretation f on Syn(c) is a
function which assigns denotations to expressions in

Syn(c) as follows: (i) f assigns to every n-place relation
expression rn in Syn(c) a set f[rn] of n-tuples of elements of
the universe of discourse; (ii) f assigns to every thing
expression a1 in Syn(c) a set f[a1] of subsets of the universe
of discourse; and assigns to every modifier expression m in
Syn(c) a function f[m] which assigns tuples and sets of
subsets of elements of the universe of discourse to tuples
and sets of subsets of the universe of discourse. By virtue
of what the interpretation f assigns to the relation
expressions, thing expressions, and modifier expressions in
Syn(c), f recursively assigns to Syn(c) a set f[Syn(c)]
whose defining condition (called the truth condition of
Syn(c) under f) is a statement in the set theoretic meta-
language of L which expresses in set theoretic terms the
content of Syn(c) relative to f. If this defining condition is
a true statement of set theory, we say Syn(c) is true under
the interpretation f, and otherwise that Syn(c) is false under
the interpretation f. We restrict interpretations to
permissible ones that render truth conditions comparable
and computationally tractable. Roughly, the only way two
permissible interpretations could differ would be in the
denotations they assign to base relation expressions.
Denotation of the Syntactic Representation Component
Syn(c) of a Sentential Reading of c. The truth condition
of the denotation of the syntactic representation component
Syn(c) under which Syn(c) is true is regarded as describing
an “event” or “state of affairs” to the effect that the
denotations of the n thing expressions a1, …, an stand in the
relation denoted by rn relative to three orderings p, q, and t
on those thing expressions. The ordering p is called the
relative scope ordering of a1, …, an in Syn(c), the ordering
q is called the relative place ordering of a1,…, an in Syn(c),
and the ordering t is called the relative case ordering of a1,
…, an in Syn(c). The relative scope ordering p determines
the scopes of the governing modifiers on each a1, …, an.
The relative place ordering q determines the order in
which a1, …, an are to be taken relative to the n-place
relation denoted by rn, in the sense that the thing expression
a1 is to occupy the p(i)th argument place of that relation.
Finally, the relative case ordering t determines which of
the cases b1, …, bm is associated with each of the thing
expressions a1, …, an., in the sense that, for each i, 1 < i <
n, t(ai) is that case among b1, …, bm which applies to the
thing expression ai. For most sentences of English, case
expression are usually placed adjacent to the thing
expression they govern, and both relative scope and
relative place orderings are usually the “identity
orderings”, that is, they coincide with the order of
occurrence of the thing expressions they govern. But this
is not the situation for all sentences of English, nor for
sentences of many other languages. The syntactic structure
of sentences must take into account each of these special
orderings. For example, different relative scope orderings
p correspond to the difference between “Every man loves
some woman” and “Some woman is such that every man
loves her”, different relative place orderings q correspond
to the difference between “Every man loves some woman”
and “Some woman loves every man,” and different relative

169

case orderings t correspond to the difference between
“Every man loves some woman” and “Every man is loved
by some woman”. We thus schematically express the
syntactic representation component Syn(c) of a sentential
reading of a character string c as rn(a1, …, an)p,q,t where p is
the relative scope ordering of c, q is the relative place
ordering of c, and t is the relative case ordering of c. We
refer to the elements of U(f[ai]) for 1 < i < n, as belonging
to the ith domain of f(rn).
Semantic Representation Sem(c) of a Sentential
Reading of Character String c. The semantic
representation component Sem(c) of a sentential reading of
c is the set of all denotations f[Syn(c)], as f ranges over all
permissible interpretations of Syn(c) under which Syn(c) is
true. Thus the semantic representation Sem(c) of a
sentential reading of character string c expresses all states
of affairs relative to permissible interpretations under
which its syntactic representation Syn(c) is true.

 Sentential Reading Assignments (SRAs)

Sentential Reading Assignments. A Sentential reading
assignment (SRA) on a set of C of NL character strings
relative to a set C^ of auxiliary NL character strings is an
assignment of a sentential reading <Syn(c), Sem(c)> to
every character string c in C U C^. An SRA induces a
pattern of deductive connections on C as a relation R
between subsets C’ of C and elements c of C which holds
just in case syn(c) is true under every permissible
interpretation f under which, for every c’ in C’ U C^,
Syn(c) is true under f. The set C^ of auxiliary character
strings can be regarded as a set of assumptions under the
readings assigned to them, and which the language user
perceives to be related to the readings assigned to the
character strings in C, and which the language user regards
as true. We will refer to C^ as an assumptive set for C.
Normality of Patterns of Deductive Connections.
Normality of patterns of deductive connections is always
relative to a context-of-use, which may be a typical one or
an atypical one. When no reference is made to a context-
of-use we regard the unreferenced context-of-use as being
a typical one. A given pattern of deductive connections
among given sentential readings of given character strings
has a greater degree of normality than another pattern of
deductive connections among sentential readings of those
character strings relative to a given context-of-use if most
language users would tend to regard the former pattern as
more consistent with their deductive intuitions than the
latter pattern relative to that particular context-of-use. A
normal pattern of deductive connections among given
character strings would be one which had a relatively high
degree of normality relative to typical contexts-of-use and
a non-normal pattern of deductive connections would be
one which had a relatively low degree of normality relative
to typical context-of-use.
Normality of SRAs. An SRA on C U C^ is regarded as
normal or non-normal, and as normal or non-normal to a

given degree, relative to a given context-of-use-according
as the pattern of deductive connections which that SRA
induces is normal, non-normal, normal to that degree, or
non-normal to that degree relative to that context-of-use,
that is, according as the pattern of deductive connections
which that SRA induces is consistent, inconsistent,
consistent to that degree, or inconsistent to that degree with
the deductive intuitions of language users relative to that
context-of-use.
Normality of Readings. A reading <Syn(c), Sem(c)> of
an NL character string c is normal relative to a given
context-of-use, and is normal (i.e., without reference to a
context-of-use) if it is normal relative to typical contexts-
of-use.
Variability in SRAs among Language Users. Variability
in SRAs on a set C of character strings relative to the
assumptive set C^ and relative to a context-of-use can
derive from various sources: Variability in the character
strings in C^ among language users, variability in the
syntactic representations Syn(c) of the character strings in
C U C^ assigned them, variability in the semantic
representations of these character strings assigned them,
and variability in the context-of-use relative to which the
readings of character strings in CUC^ are made. Each of
these three sources also allows for a large measure of
possible variation in the normality of SRAs among
language users.

 Examples

Let C consist of the following character strings 4:

(1) John loves Mary.
(2) Mary is a person.
(3) John loves a person
(4) John does not love Mary.
(5) Something loves Mary.
(6) Mary is loved.
(7) Johns knows Mary.
(8) Mary is loved by John.
(9) Love loves love.
(10) Something loves love.

Some Normal Patterns of Deductive Connections
among Character Strings (1) – (10). There are various
possible patterns of deductive connections among
sentential readings of (1) – (10) induced by SRAs which
could reasonably be considered “normal” relative to some
typical context-of-use. Some examples are given in
Patterns (A), (B), and (C), below:
Pattern (A): This would be a pattern of deductive
connections among (1) – (10) which included the
following: (1) and (2) together deductively imply (3), but
(1) alone does not; (1) deductively implies each of (5) and
(6); (1) also deductively implies (7) if C^ includes a
character string which expresses, “Whoever loves Mary
knows her” under a suitable sentential reading; (1) and (8)
deductively imply each other, hence (8) deductively

170

implies each of (5) and (6) and, if C^ includes a suitable
sentential reading of character string “Whoever loves Mary
knows her” then (8) deductively implies (7) as well; (1)
does not deductively imply (4), nor does (4) deductively
imply (1); and neither (9) nor (10) deductively imply or are
implied by any subset of (1) – (7). This (partial) pattern of
deductive connections would be induced by an SRA in
which “John”, “Mary”, and “love” were assigned the same
denotation in each of their occurrences in (1) – (10), and in
which C^ did not include a character string which
expressed something like, “Mary is a person.” (Mary may
have been a cat or some other non-person).4 The failure of
(9) to imply (10) is due to the circumstance that we are
considering normality relative to a typical context-of-use,
and it is unlikely that there could be a typical context-of-
use relative to which any sentential reading of (9) or (10)
could be considered normal, that is, could enter into
implications which were consistent with language users’
deductive intuitions. On the other hand, one can imagine
certain atypical contexts-of-use relative to which (9) and
(10) could be considered normal. See Pattern (E) below.
Pattern (B): Another normal pattern of deductive
connections among sentential readings of the character
strings (1) – (10) would be induced by the same SRA as
induced Pattern (A) with the exception that (1) no longer
deductively implies (7) inasmuch as C^ no longer includes
a sentential reading of “Whoever loves Mary knows her.”
Pattern (B) here is a diminution of Pattern (A).
Pattern (C): A third normal pattern of deductive
connections among sentential readings of these character
strings would be that induced by the same SRA as induced
Pattern (A) with the exception that (2) is not now in C but
is in C^, so that this Pattern (C) now includes the
additional implication that (1) alone implies (3). Pattern
(C) is an augmentation of Pattern (A).
Some Normal and Non-normal Readings of Character
String (1): There is not sufficient space in this short paper
to give a detailed indication of the structure of normal
readings of character strings (1) - (10) for an SRA that
would induce the above indicated pattern of deductive
connections among them. However, we can indicate the
structure of one reading N1 of (1) that could be assigned to
(1) as part of a normal SRA on (1) – (10) that would
induce the above Pattern (A). We later indicate the
structure of two non-normal readings, namely readings
NN2 and NN3, which would also induce Pattern (A).
Normal Reading N1 <Syn1(1), Sem1(1)> of Character
String (1): In Syn1(1), “loves” is syntactically marked as a
two term relation whose first term is syntactically marked
as an agent position and whose second term is syntactically
marked as a recipient position, and “John” and “Mary” are
syntactically marked as individual entities which occupy
the agent and recipient positions, respectively. In Sem1(1),
we have an interpretation f1 of (1) relative to the syntactic
component Syn1(1) of (1) which is a function which
assigns, as denotation of “loves” a set of pairs of entities
of the domain of discourse, and which assigns, as
denotations of “John” and “Mary” individual entities of the

domain of discourse (as opposed to, say, classes or
relations), and which is such that (1) is true under that
interpretation f1 if and only if the pair which has the
denotation of “John” as its first element and the denotation
of “Mary” as its second element belongs to the denotation
of “loves” that is, is one of the pairs in that denotation.
Reading (1) of (1) would be a normal reading of the
character string (1).
Non-Normal Reading NN2 <Syn2(1), Sem2(1)> of
Character String (1): In Syn2(1), “loves” is syntactically
marked as a two term relation whose first term is
syntactically marked as a recipient position and whose
second term is syntactically marked as an agent position,
i.e., the converse of the way “loves” is syntactically
marked in Syn1(1). In Sem2(1) we have an interpretation
f2 which is a function which assigns, as denotation of
“loves” a set of pairs of entities of the domain of discourse,
and which assigns, as denotations of “John” and “Mary”
individual entities of the domain of discourse, and which is
such that (1) is true under the interpretation f2 if and only
if the pair which has the denotation of “John” as its first
element and the denotation of “Mary as its second element
belongs to the denotation of “loves” that is, is one of the
pairs in that denotation. Reading NN2 is not a normal
reading of character string “Johns loves Mary” but would
be a normal reading of the character string “Mary is loved
by John.”
Non-Normal Reading NN3 <Syn3(1), Sem3(1)> of
Character String (1): In Syn3(1), “loves” is syntactically
marked as a two term relation whose first term is
syntactically marked as an agent position and whose
second term is syntactically marked as recipient position,
and “John” and “Mary” are syntactically marked as
individual entities which respectively occupy the recipient
and agent positions. In Sem3(1), we have an interpretation
f3 of (1) relative to the syntactic component Syn2(1) of (1)
which is a function which assigns, as denotation of “loves”
a set of pairs of entities of the domain of discourse, and
which assigns, as denotations of “John” and “Mary”
individual entities of the domain discourse, and which is
such that (1) is true under that interpretation f3 if and only
if the pair which has the denotation of “Mary” as its first
element and the denotation of “John” as its second element
belongs to the denotation of “loves” assigned by f3.
Reading NN3 of (1) is not a normal reading of the
character string “John loves Mary” but would be a normal
reading of the character string “Mary loves John.”
Some Non-Normal Patterns of Deductive Connections
Among Character Strings (1) – (10): There are also
various patterns of deductive connections among sentential
readings of (1) – (10) induced by SRAs which could not
reasonably be considered “normal” relative to some typical
context-of-use. Some examples are given Patterns (D),
(E), and (F) below.
Pattern (D): A fourth pattern of deductive connections
among the character strings (1) – (10) is a non-normal one
which would be induced by an SRA which assigned
readings to (1) and (3) in which the character string “John”

171

in (1) received a different denotation than the denotation it
received in (3) (which could occur in a context-of-use
where there were two individuals, say, one an individual
named “John” who loved “Mary”, and another named
“John” who loved no one). This non-normal way of
understanding (1) – (10) induces a pattern of deductive
connections which is very different from any of the three
earlier indicated patterns; in particular, (1) and (2) together
no longer deductively imply (3).
Pattern (E): A fifth pattern of deductive connections
among the character strings (1) – (10) is another non-
normal one induced by an SRA such that: (i) the second
occurrence of “love” in (9) and the second occurrence of
“love” in (10) are each syntactically represented as a 2-
place relation expression whose first term is syntactically
marked as an agent position and whose second term is
syntactically marked as a recipient position. The first and
third occurrences of “love” in (9) are each syntactically
marked as individual entities and respectively occupy the
agent and recipient positions of the syntactic representation
of the second occurrence of “loves” in (9). Similarly, the
occurrence of “Something” in (10) and the second
occurrence of “love” in (10) are each syntactically marked
as individual entities, and respectively occupy the agent
and recipient positions of the syntactic representation of
the second occurrence of “loves” in (10). This non-normal
reading of (9) and (10) induces a pattern of deductive
connections among (1) – (10) which, unlike the case with
Patterns (A) – (D) above, now includes the implication of
(10) from (9).
Pattern (F): A sixth pattern of deductive connections
among these character strings is another non-normal one
induced by an SRA which assigns “love” a denotation in
(8) which is opposite that assigned to “love” in (1) and (6),
such as, for example, that its meaning in (1) and (6) is its
usual meaning, while its meaning in (8) is an ironic one,
i.e., to mean “hate”. This is non-normal way of
understanding (1) – (10) induces a pattern of deductive
connections which is very different from any of the four
earlier indicated patters; in particular, (1) and (8) no longer
deductively imply each other, and (8) no longer
deductively implies (6). Indeed, we now have the bizarre
implication of (1) from (4) and (4) from (1).

Relative Degree of Normality of Above Sample Patterns
of Deductive Readings. Recalling that the degree of
normality of a given pattern of deductive connections is the
degree to which language users would tend to regard the
pattern of deductive consequences as consistent with their
deductive intuitions relative to a typical context-of-use, we
would order the above six patterns (A) - (F) as being in
decreasing order of normality.

Internal Structure of Sentential Readings

Internal Structure of the Syntactic Component of a
Reading. The syntactic component Syn(c) of a reading of

a character string c describes the underlying syntactic
structure of c as a pattern of interconnections of its
meaning-bearing parts. The minimal meaning-bearing parts
of a syntactic representation of a character string are called
representational morphemes. The syntactic representation
of that character string is recursively built out of
representational morphemes into a syntactic representation
Syn(c) of the entire character string.
Internal Structure of the Semantic Component of a
Reading. The semantic component Sem(c) of a reading of
a character string c assigns a set-theoretical meaning to
every meaning-bearing part identifies in the syntactic
representation component of that reading, and thereby
interprets that syntactic representation, proceeding from its
(syntactically) smaller meaning-bearing parts and, by a
recursive process, ultimately to the full pattern of
interconnections of those meaning-bearing parts. The
semantic component is specified in semantic axioms,
which state the set theoretical meanings to be assigned to
meaning-bearing parts.
Parts: Of Character Strings and of Syntactic
Representations. Parts of character strings will be
distinguished from parts of syntactic representations of
character strings. The notion of “part” as it applies to
character strings is to be understood in the sense that the
sequence of letter and blanks comprising the part in
question is a subsequence of the sequence of letters and
blanks comprising the containing character string, and is
not intended to be semantically interpretable. On the other
hand, the notion of “part” as it applies to syntactic
representations of character strings, is intended to be
semantically interpretable; that is, “part” in this latter sense
means “interpretable part”, whereas, in the case of
character strings, it does not.
Implicitly and Explicitly Realized NL Morphemes. As
remarked earlier, a deductive reading of a character string
specifies a system of syntactically and semantically inter-
related representational morphemes. Consistent with
standard linguistic usage, I regard the notion of a natural
language morpheme as a theoretical construct, i.e., as an
abstract entity that is “realized” in a given character string
in one of two ways: (a) explicitly, indicated in part by and
corresponding to a specific part of that character string
called a “morph”; (b) implicitly, indicated solely by global
relations among the parts of that character string, involving
factors such as order of occurrence, juxtaposition,
intonation patterns (if oral), perceived grammatical and
semantic relationships among character string parts, etc. A
natural language morpheme that is explicitly realized in a
part of (i.e.: as a morph occurring in) a given character
string is also said to be explicitly marked in that character
string by that part (i.e., by that morph). A natural language
morpheme that is implicitly realized in a given character
string by certain global relations among its parts is said to
be implicitly marked in that character string by those
relations.
Logical and Lexical NL Morphemes. The intended
distinction between logical and lexical natural language

172

morphemes is an intuitive semantic one: roughly, a lexical
natural language morpheme is one which intuitively
denotes some entity, relation, or characteristic of an entity
or relation, such as “boy”, “walks”, “hits”, “tall”, “slowly”,
etc; whereas a logical natural language morpheme is one
that intuitively denotes some way of operating on what
lexical natural language morphemes denote, and expressed
by character strings such as “all”, “and”, “not”, “many”,
“after”, etc. We distinguish the notion of an NL morpheme
from that of a representational morpheme, which is an
actual expression of a syntactic representation of a
character string which occurs as an explicit part of that
syntactic representation.
Morphemic Base Assumption. We assume that a
language user’s intuitive judgments regarding the degree of
normality of a given pattern of deductive connections
among the character strings in a given set C of character
strings derive from this or her intuitive judgments
regarding semantic interconnections among the logical
natural language morphemes realized in the character
strings of C U C^, and regarding semantic interconnections
among the lexical natural language morphemes realized in
the character strings of C U C^.
Semantic Interconnections among Logical Natural
Language Morphemes Realized in (1) – (10). Applying
the Morphemic Base Assumption to the pattern (A) of
deductive connections, we would conclude that the
particular deductive connections of (A) derived ultimately
from intuitive judgments regarding semantic
interconnections among the logical natural language
morphemes realized in the character strings (1) – (10),
which included in part, the explicit logical natural language
morphemes “not” and “is”, as well as, various implicit
logical natural language morphemes. We are suggesting,
then, that the typical English speaker who understood the
meanings of these logical natural language morphemes
would assent to the above pattern of deductive connections
even if he did not understand the meanings of the lexical
natural language morphemes “John”, “Mary”, “love”, and
“person” occurring there.
Semantic Interconnections Among Lexical Natural
Language Morphemes Realized in (1) – (10). On the
other hand, an English speaker’s intuitive judgment that (1)
deductively implied (7) would derive both from his
intuitive judgments regarding semantic interconnections
among the logical natural language morphemes occurring
in character strings (1) and (7), and from his intuitive
judgments regarding the semantic interconnections
between the lexical natural language morphemes “loves”
and “knows” (such as, for example, that loving a person
meant, in part, knowing that person).

Endnotes
1. This is not to say that the language user is explicitly

conscious of any of these components, or how they
condition his or her understanding of given character

strings, or of the patterns of deductive connections they
induce among them. Rather, our analysis is forwarded
as a “competence” model of their role in language
users’ understanding of those character strings and how
that understanding induces perceived patterns of
deductive connections among them.

2. The notion of context-of-use is treated in this paper as a
primitive notion to mean something like the real-world
situation in which given character strings are
produced.

3. We refer to this type of grammar as an “open grammar”
inasmuch as the grammatical category in which a given
character string is syntactically represented is not fixed,
but can vary from one occurrence to another.

4. For simplicity we express character strings in their
ordinary appearance as sentences rather than as a
concatenation of individual alphabetic symbols and
spaces.

References
[1] Tripodes, P.G., A Theory of Readings. Unpublished

Manuscript.
[2] Wos, L., Automated Reasoning: 33 Basic Research

Problems, Prentiss-Hall, Englewood Cliffs, New
Jersey, 1988.

[3] Bachmair, L. & Ganzinger, H., “Resolution Theorem
Proving,” in A. Robinson & A. Voronkov, eds.
Handbook of Automated Reasoning. Vol I. Elsevier
Science, Amsterdam, chapter 1, pp 21-97. 2001.

[4] R. Montague, English as a Formal Language, in R.
Thomason, ed., Formal Philosophy. Selected Papers
of Richard Montague, Yale University Press, New
Haven. Pp 188-221. 1974.

[5] Shastri, L., & Ajjanagadde, V., “From simple
association to systematic reasoning: A connectionist
representation of rules, variables and dynamic
bindings using temporal synchrony,” in Behavioral
and Brain Sciences, 16, 417-494. 1993.

[6] Tripodes, P.G., “Real time machine deduction and
AGI,” in P. Wang, B. Goertzel, & S. Franklin, eds.
Artificial General Intelligence. Amsterdam, IOS
Press. 2008.

173

Embodiment: Does a laptop have a body?

Pei Wang
Temple University, Philadelphia, USA
http://www.cis.temple.edu/∼pwang/

Abstract

This paper analyzes the different understandings of
“embodiment”. It argues that the issue is not on the
hardware a system is implemented in (that is, robot or
conventional computer), but on the relation between the
system and its working environment. Using an AGI
system NARS as an example, the paper shows that the
problem of disembodiment can be solved in a symbolic
system implemented in a conventional computer, as far
as the system makes realistic assumptions about the en-
vironment, and adapts to its experience.

This paper starts by briefly summarizing the appeal for
embodiment, then it analyzes the related concepts, identifies
some misconceptions, and suggests a solution, in the context
of AGI research.

The Appeal for Embodiment
In the last two decades, there have been repeated appeals
for embodiment, both in AI (Brooks, 1991a; Brooks, 1991b;
Pfeifer and Scheier, 1999) and CogSci (Barsalou, 1999;
Lakoff and Johnson, 1998). In AI, this movement argues
that many problems in the field can be solved if people move
their working platform from conventional computer to robot;
in CogSci, this movement argues that human cognition is
deeply based on human sensorimotor mechanism.

In general, “embodiment” calls people’s attention to the
“body” of the system, though like all theoretical concepts,
the notion of “embodiment” has many different interpreta-
tions and usages. This paper does not attempt to provide a
survey to the field, which can be found in (Anderson, 2003),
but to concentrate on the central issue of the debate, as well
as its relevance to AGI research.

The stress on the importance of body clearly distinguishes
this new movement from the traditions in AI and CogSci. In
its history of half a century, a large part of AI research has
been guided by the “Physical Symbol Hypothesis” (Newell
and Simon, 1976), which asks AI systems to build internal
representation of the environment, by using “symbols” to
represent objects and relations in the outside world. Var-
ious formal operations, typically searching and reasoning,
can be carried out on such a symbolic representation, so as

Copyright c© 2008, The Second Conference on Artificial General
Intelligence (AGI-09.org). All rights reserved.

to solve the corresponding problems in the world. Repre-
sentative projects of this tradition include GPS (Newell and
Simon, 1963) and CYC (Lenat, 1995). Except serving as a
physical container of the system, the body of such a system
has little to do with the content and behavior of the system.
Even in robotics, where the role of body cannot be ignored,
the traditional approach works in a Sense-Model-Plan-Act
(SMPA) framework, in which the robot acts according to
an internal “world model”, a symbolic representation of the
world (Nilsson, 1984; Brooks, 1991a).

As a reaction to the problems in this tradition, the ‘em-
bodied’ approach criticizes the traditional approach as being
‘disembodied’, and emphasizes the role of sensorimotor ex-
perience to intelligence and cognition. Brooks’ behavior-
based robots have no representation of the world or the
goal of the system, since “the world is its own best model”
(Brooks, 1991a), so the actions of the robot are directly trig-
gered by corresponding sensations. According to Brooks,
“In order to really test ideas of intelligence it is important
to build complete agents which operate in dynamic environ-
ments using real sensors. Internal world models which are
complete representations of the external environment, be-
sides being impossible to obtain, are not at all necessary for
agents to act in a competent manner.” (Brooks, 1991a)

Therefore, as far as the current discussion is concerned,
‘embodiments’ means the following two requirements:

Working in real world: “Only an embodied intelligent
agent is fully validated as one that can deal with the
real world” (Brooks, 1991a), since it is more realistic by
taking the complex, uncertain, real-time, and dynamic
nature of the world into consideration (Brooks, 1991a;
Pfeifer and Scheier, 1999).

Having grounded meaning: “Only through a physical
grounding can any internal symbolic or other system find
a place to bottom out, and give ‘meaning’ to the pro-
cessing going on within the system” (Brooks, 1991a),
which supports content-sensitive processing (Anderson,
2003), and solves the “symbol grounding” problem (Har-
nad, 1990).

Though this approach has achieved remarkable success
in robotics, it still has difficulty in learning skills and han-
dling complicated goals (Anderson, 2003; Brooks, 1991a;
Murphy, 2000).

174

Embodiment and Robot
Though the embodiment school has contributed good ideas
to AI research, it also has caused some misconceptions.

In the context of AI, it is often suggested, explicitly or
implicitly, that only robotic systems are “embodied”, while
systems implemented in conventional computer are “disem-
bodied”. This opinion is problematic. As long as a system is
implemented in a computer, it has a body — the hardware of
the computer. Even though sometimes the system does not
have a piece of dedicated hardware, it still stays in a body,
the physical devices that carry out the corresponding opera-
tions. For instance, a laptop computer obviously has a body,
on which all of its software run.

Though the above statement sounds trivially true, some
people may reject it by saying that in this context, a “body”
means something that have real sensorimotor mechanism,
as suggested in (Brooks, 1991a; Brooks, 1991b; Pfeifer and
Scheier, 1999). After all, robots have sensors and actuators,
while laptop computers do not, right? Though this is indeed
how we describe these two types of system in everyday lan-
guage, this casual distinction does not make a fundamental
difference. As long as a system interacts with its environ-
ment, it has sensors and actuators, that is, input and output
devices. For a laptop computer, its sensors include keyboard
and touch-pad, and its actuators include screen and speaker,
while the network connection serves as both. These devices
are different from the ones of robots in the type, range, and
granularity of signals accepted/produced, but they are no
less “real” as sensorimotor devices. Similarly, computer in-
put and output operations can be considered as “perception”
and “action”, in the broad sense of the words.

How about the claim that only robots interact with the
“real” world? Once again, it is a misleading claim, because
the environment of other (non-robotic) systems are no less
“real” — at least the human users who use the computer via
the input/output decides are as real as the floor the robots run
on! After all, to a robot, the “world” it can perceive is still
limited by the function of its sensorimotor devices.

A related distinction is between “physical agents” (like
robots) and “virtual agents” (like chatbots). They are clearly
different, but the difference is not that the latter does not run
in a physical device or does not interact with its environment
via physical processes — the electric currents carrying the
input/output signals for a chatbot are as “physical” as the
lights going into the visual sensor of a robot.

The above misconceptions usually come from the opinion
that though an ordinary computer has a hardware body and
does interact with its environment, the interaction is sym-
bolic and abstract, and therefore is fundamentally different
from the physical and concrete interaction between a robot
and its environment. However, this opinion is an misunder-
standing itself.

In the context of the current discussion, there is no such
a thing as “purely symbolic and abstract interaction”. Ev-
ery interaction between every computer and its environment
is carried out by some concrete physical process, such as
pressure on a key, movement on a touch-pad, light change
on a monitor, electronic flow in a cable, and so on. What
is ‘symbolic’ and ‘abstract’ is not such a process itself, but

the traditional description about it, where the details of the
underlying physical process is completely omitted. On this
topic, the difference between a computer and a robot is not
really in the system themselves, but in the usual ways to treat
them.

Now some reader may think that this paper is another
defense of the symbolic AI school against the embodiment
school, like (Vera and Simon, 1993), since it dismisses the
embodiment approach by saying that what it demands are
already there all the time. This is not the case. What this
paper wants to do is actually to strengthen the embodiment
argument, by rejecting certain common misunderstandings
and focusing on the genuine issues.

Though every computer system has a body, and does in-
teract with its environment, there is indeed something spe-
cial about robots: a robot directly interacts with the world
without human involvement, while the other systems mainly
interact with human users. As argued above, here the dif-
ference is not whether the world or the sensor/actuator is
“real”. Instead, it is that the human users are tolerant to
the system, while the non-human part of world is not. In
robotics, “There is no room for cheating” (Brooks, 1991a)
— a robot usually has to face various kinds of uncertainty,
and to make real-time response. On the contrary, in other AI
systems there are various assumptions on what types of in-
put are acceptable, and on how much time-space resources
are required for a certain computation, that the users have
got used to gratify.

Therefore, the “real world” requirement is really about
whether the assumptions on environment are “realistic”, by
keeping its complexity, uncertainty, and resource-restriction.
Under this interpretation, “be real” is applicable not only to
robots, but also to almost all AI systems, since in most realis-
tic situations, the system has insufficient knowledge (various
uncertainties) and insufficient resources (time-space restric-
tion), with respect to the problems. It is only that traditional
AI systems have the option to “cheat” by only accepting an
“idealized” version of a problem, while robotic systems usu-
ally do not have such an option.

The traditional symbolic AI systems are indeed disembod-
ied. Though every AI system has a body (with real sensors
and actuators) and interacts with the real world, in traditional
AI systems these factors are all ignored. Especially, in the
internal representation of the world in such a system, the
meaning of a symbol is determined by its denotation in the
world, and therefore have little to do with the system’s sen-
sorimotor experience, as well as the bias and restriction im-
posed by the system’s body. For example, if the meaning of
symbol “Garfield” is nothing but a cat existing in the world,
then whether a system using the symbol can see or touch the
cat does not matter. The system does not even need to have a
body (even though it does have one) for the symbol to have
this meaning. This is not how meaning should be handled in
intelligent systems.

Based on the above analysis, the two central requirements
of embodiment can be revised as the following:
Working in real world: An intelligent system should be

designed to handle various types of uncertainty, and to
work in real time.

175

Having grounded meaning: In an intelligent system, the
meaning of symbols should be determined by the system’s
experience, and be sensitive to the current context.

This version of embodiment is different from the Brooks-
Pfeifer version, in that it does not insist on using robots to do
AI (though of course it allows that as one possibility). Here
“embodiment” no longer means “to give the system a body”,
but “to take the body into account”. According to this opin-
ion, as long as a system is implemented, it has a body; as
long as it has input/output, it has perception/action. For the
current discussion, what matters is not the physical proper-
ties of the system’s body and input/output devices, but the
experience they provide to the system. Whether a system
is “embodied” is determined by whether the system is adap-
tive to its experience, as well as whether there are unrealistic
constraints on its experience.

Many traditional AI system are disembodied, not because
they are not implemented as robots, but because the sym-
bols in them are understood as labels of objects in the world
(therefore are experience-independent), and there are strong
constraints on what the system can experience. For example,
the users should not feed the system inconsistent knowledge,
or ask questions beyond its knowledge scope. When these
events happen, the system either refuses to work or simply
crashes, and the blame falls on the user, since the system is
not designed to deal with these situations.

Embodiment in NARS
To show the possibility of achieving embodiment (as inter-
preted above) without using a robot, an AGI project, NARS,
is briefly introduced. Limited by the paper length, here only
the basic ideas are described, with reference to detailed de-
scriptions in other publications.

NARS is a general-purpose AI system designed accord-
ing to the theory that “intelligence” means “adapting to en-
vironment and working with insufficient knowledge and re-
sources” (Wang, 2006). Since the system is designed in the
reasoning system framework, with a formal language and a
set of formal inference rules, at the first glance it looks just
like a “disembodied” traditional AI system, though this il-
lusion will be removed, hopefully, by the following descrip-
tion and discussion.

At the current stage of development, the interaction be-
tween NARS and its environment happens as input or out-
put sentences of the system, expressed in a formal language.
A sentence can represent a judgment, a question, or a goal.
As input, a judgment provides the system new knowledge
to remember, a question requests the system to find an an-
swer according to available knowledge, and a goal demands
the system to achieve it by carrying out some operations.
As output, a judgment provides an answer to a question or
a message to other systems, a question or a goal asks help
from other systems in the environment to answer or achieve
it. Over a period of time, the stream of input sentences is the
system’s experience, and the stream of output sentences is
the system’s behavior.

Since NARS assumes insufficient knowledge, there is no
constrain on the content of its experience. New knowledge

may conflict with previous knowledge, no knowledge is ab-
solutely certain, and questions and goals may be beyond the
current knowledge scope. Consequently, the system cannot
guarantee the absolute correctness of its conclusions, and its
predictions may turn out to be wrong. Instead, the validity of
its inference is justified by the principle of adaptation, that
is, the conclusion has the highest evidential support (among
the alternatives), according to the system’s experience.

Since NARS assumes insufficient resources, the system
is open all the time to new input, and processes them in
real-time. So the system cannot simply process every prob-
lem exhaustively by taking all possibilities into considera-
tion. Also, it has to manage its storage space, by removing
some data whenever there is a shortage of space. Conse-
quently, the system cannot guarantee the absolute optimum
of its conclusions, and any of them may be revised by new
information or further consideration. Instead, the validity
of its strategy is also justified by the principle of adapta-
tion, that is, the resources are allocated to various activities
to achieve the highest overall efficiency (among the alterna-
tives), according to the system’s experience.

The requirement of embodiment follows from the above
assumption and principle. The assumption on the insuffi-
ciency in knowledge and resources puts the system in a re-
alistic environment, where it has to deal with various types
of uncertainty, and handle tasks in real-time. The system
does not have the knowledge and resources to build a model
of the world, then to act accordingly. Instead, its knowl-
edge is nothing but summary of its past experience, which
guides the system to deal with the present, and be prepared
for the future. There is an internal representation in the sys-
tem, though it is not a representation of the world, but a
representation of the experience of the system, after summa-
rization and organization. The symbols in the representation
have different meaning to the system, not because they re-
fer to different objects in the world, but because they have
played different roles in the system’s experience.

Concretely, the meaning of a concept in NARS is deter-
mined by its experienced relation with other concepts. That
is to say, what “Garfield” means to (an implementation of)
NARS is not decided by an object labeled by that term, but
by what the system knows about “Garfield”. Given the re-
sources restriction, each time the concept “Garfield” is used
in the system, only part of its relations are taken into consid-
eration. Therefore, what the term means to the system may
(more or less) change from time to time, and from situation
to situation, though not arbitrarily.

The details of this “experience-grounded semantics” is
explained and discussed in (Wang, 2005; Wang, 2006).
Though many people have argued for the importance of ex-
perience in intelligence and cognition, no other work has
explicitly and formally defined the central semantic notions
‘meaning’ and ‘truth-value’ as functions of the system’s ex-
perience, and specified the details in their computational im-
plementation.

How about the sensorimotor aspects of the meaning? In
a broad sense, all knowledge (directly or indirectly) comes
from the system’s experience, which initially comes through
sensorimotor devices of the system. If we use the term to re-

176

fer to non-linguistic experience, then in NARS it is possible
to link “Garfield” to related visual images and operation se-
quences, so as to enrich its meaning. However, it is impor-
tant to understand that both linguistic experience and non-
linguistic experience are special cases of experience, and the
latter is not more “real” than the former.

In the previous discussions, many people implicitly sup-
pose that linguistic experience is nothing but “Dictionary-
Go-Round” (Harnad, 1990) or “Chinese Room” (Searle,
1980), and only non-linguistic sensorimotor experience can
give symbols meaning. This is a misconception coming
from traditional semantics, which determines meaning by
referred object, so that an image of the object seems to be
closer to the “real thing” than a verbal description. NARS’
experience in Chinese is different from the content of a
Chinese-Chinese dictionary, because a dictionary is static,
while the experience of a system extends in time, in which
the system gets feedback from its environment as conse-
quences of its actions, i.e., output sentences in Chinese. To
the system, its experience contains all the information it can
get from the environment. Therefore, the system’s process-
ing is not “purely formal” in the sense that the meaning of
the symbols can be assigned arbitrarily by an outside ob-
server. Instead, to the system, the relations among the sym-
bols are what give them meaning. A more detailed discus-
sion on this misconception can be found in (Wang, 2007),
and will not be repeated here.

In summary, NARS satisfies the two requirements of em-
bodiment introduced previously:

Working in real world: This requirement is satisfied by
the assumption of insufficiency in knowledge and re-
sources.

Having grounded meaning: This requirement is satisfied
by the experience-grounded semantics.

Difference in Embodiment
Of course, to say an implementation of NARS running in
a laptop computer is “already embodied”, it does not mean
that it is embodied in exactly the same form as a human mind
operating in a human body. However, here the difference is
not between “disembodied” and “embodied”, but between
different forms of embodiment.

As explained previously, every concrete system interacts
with its environment in one or multiple modalities. For a hu-
man being, major modalities include vision, audition, tactile,
etc.; for a robot, they include some human-like ones, but also
non-human modalities like ultrasonic; for an ordinary com-
puter, they directly communicate electronically, and also can
have optional modalities like tactile (keyboard and various
pointing devices), audition (microphone), vision (camera),
though they are not used in the same form as in a human
body.

In each modality, the system’s experience is constructed
from certain “primes” or “atoms” that is the smallest units
the system can recognize and distinguish. The system’s pro-
cessing of its experience is usually carried out on their com-
pound “patterns” that are much larger in scale, though short
in details. If the patterns are further abstracted, they can

even become modality-independent “symbols”. This is the
usual level of description for linguistic experience, where
the original modality of a pattern, with all of its modality-
specific details, is ignored in the processing of the message.
However, this treatment does not necessarily make the sys-
tem disembodied, because the symbols still comes from the
system’s experience, and can be processed in an experience-
dependent manner.

What makes the traditional symbolic AI system disem-
bodied is that the symbols are not only abstracted to become
modality-independent, but also experience-independent, in
the sense that the system’s processing of the symbol is fully
determined by the system’s design, and have little to do with
its history. In this way, the system’s body becomes com-
pletely irrelevant, even though literally speaking the system
exists in a body all the time.

On the contrary, linguistic experience does not exclude
the body from the picture. For a system that only interact
with its environment in a language, its experience is linguis-
tic and amodal, in the sense that the relevant modality is not
explicitly marked in the description of the system’s experi-
ence. However, what experience the system can get is still
partially determined by the modality that carries out the in-
teraction, and therefore, by the body of the system. As far
as the system’s behavior is experience-dependent, it is also
body-dependent, or embodied.

Different bodies give a system different experiences and
behaviors, because they usually have different sensors and
operators, as well as different sensitivity and efficiency on
different patterns in the experience and the behavior. Conse-
quently, even when they are put into the same environment,
they will have different experience, and therefore different
thoughts and behaviors. According to experience-grounded
semantics, the meaning of a concept depends on the system’s
experience on the concept, as well as on the possible oper-
ations related to the concept, so any change in the system’s
body will more or less change the system’s mind.

For example, at the current stage, the experience of
NARS is purely linguistic, so the meaning of a concept like
‘Garfield’ only depends on its experienced relations with
other concepts, like ‘cat’, ‘cartoon character’, ‘comic strip’,
‘lazy’, and so on. In the future, if the system’s experience is
extended to include visual and tactile components, the mean-
ing of ‘Garfield’ will include additional relations with pat-
terns in those modalities, and therefore become closer to the
meaning of ‘Garfield’ in a typical human mind. Therefore,
NARS implemented in a laptop and NARS implemented in a
robot will probably associate different meaning to the same
term, even though these meanings may have overlap.

However, it is wrong to say that the concept of ‘Garfield’
is meaningful or grounded if and only if it is used by a robot.
There are two common misconceptions on this issue. One is
to only take sensorimotor experience as real, and refuse to
accept linguistic experience; and the other is to take human
experience as the standard to judge the intelligence of other
systems. As argued previously, every linguistic experience
must be based on some sensorimotor experience, and though
the latter is omitted in the description, it does not make the
former less ‘real’ in any sense. Though “behave according

177

to experience” can be argued to be a necessary condition
of being intelligent (Wang, 2006), to insist the experience
must be equal to or similar to human experience leads to
an anthropocentric understanding of intelligence, and will
greatly limit our ability to build, and even to image, other
(non-human) forms of intelligence (Wang, 2008).

In the current AI field, very few research project aims
at accurately duplicating human behaviors, that is, passing
the Turing Test. It is not only because of the difficulty
of the test, but also because it is not a necessary condi-
tion for being intelligent, which was acknowledged by Tur-
ing himself (Turing, 1950), though often forgot by peo-
ple talking about that article. Even so, many outside peo-
ple still taking “passing the Turing Test” as the ultimate
goal, or even the definition, of AI. This is why the pro-
ponents of the embodied view of human cognition often
have negative view on the possibility of AI (Barsalou, 1999;
Lakoff and Johnson, 1998). After identifying the fundamen-
tal impacts of human sensorimotor experience on human
concepts, they see this as counter evidence for a computer
to form the same concepts, without a human body. Though
this conclusion is correct, it does not mean AI is impossi-
ble, unless “artificial intelligence” is interpreted as “artifi-
cial human intelligence”, that is, the system not only follows
the general principles associated with ‘intelligence’, but also
have the same concepts as a normal human being.

Because of the fundamental difference between human
experience and the experience an AI system can have, the
meaning of a word like ‘Garfield’ may never be the same in
these two types of system. If AI aims at an accurate duplica-
tion of the contents of human categories, then we may never
get there, but if it only aims at relating the contents of cate-
gories and the experience of the system in the same way as
in the human mind, then it is quite possible, and that is what
NARS attempts to achieve, among other things.

When people use the same concept with different mean-
ings, it is usually due to their different experience, rather
than their different intelligence. If this is the case, then how
can we expect AI systems to agree with us on the meaning
of a word (such as “meaning”, or “intelligence”), when we
cannot agree on it among ourselves? We cannot deny the
intelligence of a computer system just because it uses some
of our words in a way that is not exactly like human beings.

Of course, for many practical reasons, it is highly desired
for the concepts in an AI system to have similar meaning
as in a typical human mind. In those situations, it becomes
necessary to simulate human experience, both linguistic and
non-linguistic. For the latter, we can use robots with human-
like sensors and actuators, or simulated agents in virtual
worlds (Bringsjord et al., 2008; Goertzel et al., 2008). How-
ever, we should understand that in principle, we can build
fully intelligent systems, which, when given experience that
is very different from human experience, may use some hu-
man words in non-human ways. After all, “to ground sym-
bols in experience” does not means “to ground symbols in
human experience”. The former is required for being intelli-
gent, while the latter is optional for being intelligent, though
maybe desired for certain practical purposes.

Conclusion
Embodiment is the request for a system to be designed to
work in a realistic environment, where its knowledge, cate-
gories, and behavior all depend on its experience, and there-
fore can be analyzed by considering the interaction between
the system’s body and the environment.

The traditional symbolic AI systems are disembodied,
mainly because of their unrealistic assumptions about the
environment, and their experience-independent treatment of
symbols, categories, and knowledge.

Though robotic research makes great contribution to AI,
being a robot is neither a sufficient nor a necessary condi-
tion for embodiment. When proposed as a requirement for
all AI systems, the requirement of embodiment should not
be interpreted as “to give the system a body”, or “to give
the system a human-like body”, but as “to make the system
to behave according to its experience”. Here “experience”
includes linguistic experience, as a high-level description of
certain underlying sensorimotor activity.

The practice in NARS shows that embodiment can be
achieved by a system where realistic assumption about the
environment is made, such as “the system has insufficient
knowledge/resources with respect to the problems the en-
vironment raises”, and the symbols in the system can get
their meaning from the experience of the system, by using
an experience-grounded semantics.

Though a laptop computer always has a body, a system
running in this laptop can be either “embodied”, or “disem-
bodied”, depending on whether the system behaves accord-
ing to its experience.

Different bodies give systems different possible experi-
ences and behaviors, which in turn lead to different knowl-
edge and categories. However, here the difference is not
between intelligent systems and non-intelligent ones, but
among different types of intelligent systems.

Given the fundamental difference in hardware and experi-
ence, we should not expect AI systems to have human con-
cepts and behaviors, but the same relationship between their
experience and behavior, that is, being adaptive, and work-
ing with insufficient knowledge and resources.

Acknowledgment
The author benefits from a related discussion with Ben Go-
ertzel and some others on the AGI mailing list, as well as
from the comments of the anonymous reviewers.

References
Anderson, M. L. (2003). Embodied cognition: A field
guide. Artificial Intelligence, 149(1):91–130.
Barsalou, L. W. (1999). Perceptual symbol systems. Be-
havioral and Brain Sciences, 22:577–609.
Bringsjord, S., Shilliday, A., Taylor, J., Werner, D., Clark,
M., Charpentie, E., and Bringsjord, A. (2008). Toward
logic-based cognitively robust synthetic characters in dig-
ital environments. In Artificial General Intelligence 2008,
pages 87–98, Amsterdam. IOS Press.

178

Brooks, R. A. (1991a). Intelligence without reason. In Pro-
ceedings of the 12th International Joint Conference on Ar-
tificial Intelligence, pages 569–595, San Mateo, CA. Mor-
gan Kaufmann.
Brooks, R. A. (1991b). Intelligence without representation.
Artificial Intelligence, 47:139–159.
Goertzel, B., Pennachin, C., Geissweiller, N., Looks, M.,
Senna, A., Silva, W., Heljakka, A., and Lopes, C. (2008).
An integrative methodology for teaching embodied non-
linguistic agents, applied to virtual animals in Second Life.
In Artificial General Intelligence 2008, pages 161–175,
Amsterdam. IOS Press.
Harnad, S. (1990). The symbol grounding problem. Phys-
ica D, 42:335–346.
Lakoff, G. and Johnson, M. (1998). Philosophy in the
Flesh: The Embodied Mind and Its Challenge to Western
Thought. Basic Books, New York.
Lenat, D. B. (1995). Cyc: A large-scale investment in
knowledge infrastructure. Communications of the ACM,
38(11):33–38.
Murphy, R. R. (2000). An Introduction to AI Robotics (In-
telligent Robotics and Autonomous Agents). MIT Press,
Cambridge, Massachusetts.
Newell, A. and Simon, H. A. (1963). GPS, a program that
simulates human thought. In Feigenbaum, E. A. and Feld-
man, J., editors, Computers and Thought, pages 279–293.
McGraw-Hill, New York.
Newell, A. and Simon, H. A. (1976). Computer science as
empirical inquiry: symbols and search. Communications
of the ACM, 19(3):113–126.
Nilsson, N. J. (1984). Shakey the robot. Technical Report
323, SRI AI Center, Menlo Park, CA.
Pfeifer, R. and Scheier, C. (1999). Understanding intelli-
gence. MIT Press, Cambridge, Massachusetts.
Searle, J. (1980). Minds, brains, and programs. The Be-
havioral and Brain Sciences, 3:417–424.
Turing, A. M. (1950). Computing machinery and intelli-
gence. Mind, LIX:433–460.
Vera, A. H. and Simon, H. A. (1993). Situated action: A
symbolic interpretation. Cognitive Science, 17(1):7–48.
Wang, P. (2005). Experience-grounded semantics: a the-
ory for intelligent systems. Cognitive Systems Research,
6(4):282–302.
Wang, P. (2006). Rigid Flexibility: The Logic of Intelli-
gence. Springer, Dordrecht.
Wang, P. (2007). Three fundamental misconceptions of ar-
tificial intelligence. Journal of Experimental & Theoretical
Artificial Intelligence, 19(3):249–268.
Wang, P. (2008). What do you mean by “AI”? In Arti-
ficial General Intelligence 2008, pages 362–373, Amster-
dam. IOS Press.

179

Case-by-Case Problem Solving

Pei Wang
Temple University, Philadelphia, USA
http://www.cis.temple.edu/∼pwang/

Abstract

Case-by-case Problem Solving solves each occurrence, or
case, of a problem using available knowledge and resources
on the case. It is different from the traditional Algorithmic
Problem Solving, which applies the same algorithm to all
occurrences of all problem instances. Case-by-case Prob-
lem Solving is suitable for situations where the system has
no applicable algorithm for a problem. This approach gives
the system flexibility, originality, and scalability, at the cost
of predictability. This paper introduces the basic notion of
Case-by-case Problem Solving, as well as its most recent im-
plementation in NARS, an AGI project.

Algorithmic Problem Solving
“Problem Solving” is the process to find a solution for a
given problem by executing some operations. For a certain
system at a certain moment, the set of executable operations
usually remains constant. Therefore, the task for the system
is to find a way to select proper operations and to execute
them in proper order for the given problem.

In computer science and AI, the dominant approach in
problem solving can be called “Algorithmic Problem Solv-
ing” (APS in the following). According to this approach,
first a problem is specified as a function that maps any in-
put (problem instance) of a certain type to the corresponding
output. Then, an algorithm is designed, which accomplishes
this function step by step, where each step is a well-defined
operation. Finally, the algorithm is implemented in a pro-
gramming language to become a computer program, which
will be able to let a computer routinely transform valid in-
put data into output data. A well-known description of this
approach can be found in (Marr, 1982).

Accurately speaking, in this approach “problem solving”
happens in two different levels:

1. When the problem refers to a problem type, or input-
output mapping, the solution is the corresponding al-
gorithm (conceptually speaking) or program (practically
speaking) that accomplishes the mapping. For example,
when the problem is “to sort sequences of comparable
items”, one solution is “quicksort”.

Copyright c© 2008, The Second Conference on Artificial General
Intelligence (AGI-09.org). All rights reserved.

2. When the problem refers to a problem instance, or in-
put data, then the solution is the corresponding output
data, according to the problem specification. For exam-
ple, when the problem is “to sort [3, 2, 4, 1]”, the solution
is “[1, 2, 3, 4]”.

So APS has two phases: at first a human solves a problem
by designing an algorithm for it, then a computer applies the
algorithm to solve concrete instances of the problem.

Computer science inherited APS from mathematics, and
has successfully applied and enhanced it to provide a the-
oretical and methodological foundation for the information
technology. Even so, this approach has its limitation:
• For some problems, no algorithm has been found. Even

worse, for some problems it can be proved that no algo-
rithm can be found. This is the issue of computability
(Davis, 1958).

• For some problems, all known algorithms require too
much time-space resources to solve every instances of the
problem in practical situations. This is the issue of com-
putational complexity (Cormen et al., 2001).
Beside the above issues that are well-known to computer

science, AI has taken the additional challenge of building
computer systems that require little human involvement in
the whole problem solving process. To be intelligent, a com-
puter system should have creativity and flexibility, which of-
ten means to be able to solve a problem for which it has not
been given an applicable algorithm.

Some people consider this task as impossible: if every-
thing a computer does follow some algorithm, how can it
solve a problem for which no algorithm is given in advance?
This opinion comes from a misconception, because a com-
puter may be able to solve a problem without a predeter-
mined algorithm for that problem, while in the whole pro-
cess the system still follow algorithms defined on other prob-
lems, not the one under consideration (Wang, 2007).

Obviously, when a computer system must solve problems
for which no algorithm is given in advance, then it can no
longer follow the APS approach. In computer science and
AI, many alternative approaches have been explored. This
paper will not provide a comprehensive survey on this topic.
Instead, it will concentrate on one approach, “Case-by-case
Problem Solving”, describe its up-to-date implementation in
an AGI system, and compare it with some of the alternatives.

180

CPS: the Basic Idea
Case-by-case Problem Solving (CPS) is a notion introduced
in contrast with Algorithmic Problem Solving (APS). This
notion was formed during the development of NARS, an
AGI project, and the basic idea has been described in pre-
vious publications (Wang, 1996; Wang, 2004), though not
bearing this name. Here the notion is briefly summarized
and explained.

NARS is an intelligent system designed according to the
theory that “intelligence” means “adaptation and working
with insufficient knowledge and resources”. Descriptions
of the whole project can be found in (Wang, 1995; Wang,
2006), and this paper only focuses on a certain aspect of the
system.

NARS accepts three types of task from the environment:
knowledge to be absorbed, questions to be answered, and
goals to be achieved. Each piece of new knowledge is turned
into a belief of the system, and is used in forward infer-
ence to derive or revise other beliefs; Each new question and
goal, which is what we usually call a “problem”, is matched
with existing beliefs for possible direct solutions, as well as
used in backward inference to produce derived questions and
goals, based on relevant beliefs.

One concrete implication of the above theory of intelli-
gence is that an intelligent system, like NARS, often needs
to deal with problems for which the system has no applica-
ble algorithm, as a special case of “insufficient knowledge”.
As analyzed in the previous section, this can be caused by
various reasons, such as:
• The problem is not computable;
• Though the problem may be computable, no algorithm

has been found yet;
• Though the problem can be solved by an algorithm, it is

unknown to the system at the moment;
• Though the system knows some algorithmic solutions to

the problem, it cannot afford the resource required by any
of them.
No matter what the reason is, in this situation the system

cannot follow APS. To work in this situation, there are two
possible approaches:

1. Find an algorithm first, then use it to process the problem
instances;

2. Directly solve the problem instances without following a
predetermined algorithm.
While most of the relevant works in AI follow the first ap-

proach, in NARS the second approach is explored. Here a
key observation is that the “problem” an intelligent system
meets is usually a “problem instance”, rather than a “prob-
lem type”. The “sorting problem” ordinary people meet in
their daily life is usually to sort concrete sequences, one
at a time, not “to find a method to routinely sort any se-
quence”, as defined by mathematicians and computer sci-
entists. Therefore, even when a problem type cannot be
“solved” by an algorithm, some (even if not all) of its in-
stances may still be solved, by taking the special properties
of each of them into consideration. In this way, “problem

solving” is carried out in a case by case manner, and that is
where the name CPS comes.

Some people may suspect CPS as APS rebranded, by
treating what is previously taken as a problem instance as
a problem type — though the system has no algorithm to
sort all sequences, it might have an algorithm to sort [3, 2,
4, 1]. This is not what CPS means, because in a system like
NARS, not only that each instance of the same problem type
may be processed differently, but also that each occurrence
of the same problem instance may be processed differently.
This is not as strange as it sounds if we consider human
problem solving, where the same problem (instance) often
gets different treatment when it occurs in different contexts.

How about to insist that “The system is still following an
algorithm for each occurrence of the problem, though differ-
ent occurrences of the same problem may be handled by dif-
ferent algorithms”? After all, the actual solving process of
the problem (occurrence) consists of nothing but a sequence
of operations, right? Isn’t it just an algorithm? Such a usage
of the notion of “algorithm”, though possible, would make
it useless in analyzing the system, because such an “algo-
rithm” can only be recorded after the problem-solving pro-
cess, and is not repeatable. No matter what word is used, the
system’s processing of the next occurrence of the problem
is no longer accurately predictable, unless everything in the
environment and the system are fully specified. In this situ-
ation the system does not serve as a fixed function mapping
the problem instances to corresponding solutions.

The above analysis suggests that non-algorithmic CPS is
not only logically possible, but also has the human mind as
an existing proof. However, it does not tell us how to carry
out this kind of process in a computer. After all, a computer
system has to follow some algorithms (though not specific
to the domain problems) to control its activities.

Theoretically speaking, if the precondition and conse-
quence of each operation are accurately known, the system
should be able to solve a concrete problem by exhaustively
evaluating all possible operation sequences, and choosing
the best solution according to their overall results. However,
it is obvious that for any non-trivial problem such an exhaus-
tive search will not be affordable. This is especially true for
NARS, with its assumption on the insufficiency of knowl-
edge and resources — “insufficient knowledge” means that
the precondition and consequence of each operation are not
accurately known, and “insufficient resources” means that
the system does not have the time and space to consider all
known possibilities. Under this assumption, by definition,
the system cannot always find the best solution that guaran-
tees the optimal result among all alternatives.

On the other hand, for a system working in this situation,
the “insufficiency” assumption does not mean that all solu-
tions are equally good. According to the opinion that intel-
ligence is a form of adaptation, an intelligent system should
pick the best solution that, according to its experience, is
most likely to achieve a desired result, among the alterna-
tives the system can consider with available resources.

As a realization of the above idea, the problem-solving
process in NARS can be informally and briefly described as
the following.

181

First, since NARS is designed in the framework of reason-
ing system, in it goals, operations, and beliefs are all repre-
sented as sentences in a formal language. A goal describes
what the system want to achieve (i.e., to make it true); an
operation can be directly achieved by executing some code;
and a belief summarizes the system’s experience on the re-
lations among items in the system, including goals, opera-
tions, and other beliefs.

Assuming insufficient knowledge, in NARS a belief can
only specify partial preconditions or consequences of an op-
eration, with a truth-value to indicate the evidential support
for it according to the system’s experience. Each inference
rule, when used for forward inference, takes a couple of ex-
isting beliefs as premise, and derives a conclusion, with a
truth-value determined according to the evidence provided
by the premises. With the coming of new evidence, new
beliefs are derived, and existing beliefs are revised. There-
fore, the system’s overall opinion about the preconditions
and consequences of each operation changes over time.

Similarly, a goal is a statement, not a state, so is a incom-
plete specification of a certain aspect of the (internal or ex-
ternal) environment. There are inference rules used for back-
ward inference, to produce derived goals, recursively from
existing goals and beliefs. At any moment, there are usu-
ally many (input or derived) goals in the system, which are
not necessarily consistent in what they specify as desired. If
according to its experience the system expects the execution
of a certain operation will achieve a certain goal, there is
no guarantee that the expectation will be confirmed by fu-
ture experience. Furthermore, the operation may have some
undesired impact on other goals. Therefore, in the system
each statement has a desire-value associated to summarize
its overall relations with the goals considered, which, plus
some other factors, will decide whether the system will take
the statement as a goal.

Under the assumption of insufficient resources, the sys-
tem cannot afford to explore all possibilities by interacting
every task with every (relevant) belief. Instead, it can only
let selected tasks interact with selected beliefs. The selec-
tions are based on the system’s evaluation on the priority
(which summarizes factors like urgency, importance, rele-
vance, usefulness, etc.) of the tasks and beliefs, according
to the system’s experience. Since the system constantly gets
new experience while communicating with the environment
and working on the tasks, the evaluation results change from
time to time.

The above mechanism inevitably leads to CPS. To NARS,
each task corresponds to a new case, that is, the occurrence
of a problem instance in a internal context (defined by the
available knowledge and resources at the moment). What
the system does to a task is determined by what the system
knows about it (the existing relevant beliefs), how much re-
sources the system can spend on it (the number of beliefs
that will be selected), and the priority distribution among
the beliefs (the access order of the selected beliefs). Since
the above factors are constantly changing, the processing of
a given task becomes unpredictable and non-repeatable ac-
cording to the task alone, and the problem-solving process
cannot be abstracted as APS.

CPS with Procedural Knowledge
In this section, more technical details are provided on the
CPS process in NARS. Given the paper length restriction,
here the focus is in the recent progress on CPS with proce-
dural knowledge. For CPS with declarative knowledge, see
(Wang, 1996; Wang, 2004).

NARS uses a formal language Narsese, which is term-
oriented, that is, a statement in it typically has the form
of subject-copula-predicate. While “There is a R relation
among objects a, b, c” is usually represented in predicate
logic as R(a, b, c), in Narsese it becomes ((× a b c)→ R),
which states that the tuple [a, b, c] (the subject term) is a
special case of the relation R (the predicate term), and ‘→’
(the copula) is the inheritance relation.

A “statement on statements” can be represented as a
higher-order statement. For example, “An R1 relation
among objects a, b, c implies an R2 relation among b, a, c” is
represented as (((× a b c)→ R1) ⇒ ((× b a c)→ R2)),
where the two terms are statements, and ‘⇒’ is the implica-
tion relation, another type of copula.

An event is a statement with temporal information. For
example, “An R1 relation among objects a, b, c is usually
followed by an R2 relation among b, a, c” is represented as
(((× a b c)→ R1) /⇒ ((× b a c)→ R2)), where ‘/⇒’ is
implication plus the temporal information that the event as
subject happens before the event as predicate.

With insufficient knowledge, in NARS no statement is ab-
solutely true. A judgment is a statement with a truth-value
attached, indicating the evidential support the statement gets
from the experience of the system. A truth-value consists of
two factors: a frequency factor in [0, 1], measuring the pro-
portion of positive evidence among all available evidence,
and a confidence factor in (0, 1), measuring the proportion
of current evidence among future evidence, after the coming
of new evidence of a unit amount. For example, if statement
((× a b c) → R) has been tested 4 times, and in 3 of them
it is true, while in 1 of them it is false, the truth-value of the
statement is f = 3/4 = 0.75, c = 4/5 = 0.80, and the
judgment is written as “((× a b c)→ R) <0.75; 0.80>”.

A goal is an event the system wants to achieve, that is,
the system is willing to do something so that the truth-value
of that statement will approach <1.00; 1.00> as closely as
possible. The attached desire-value of each goal is the truth-
value of the system’s belief that the achieving of the goal
really leads to desired situations.

An operation is an event that the system can directly real-
ize by executing some program (which are usually not writ-
ten in Narsese). In other words, it is a statement with a
“procedural interpretation”, as in logic programming. For
example, if the term R corresponds to the name of an oper-
ation, and a, b, and c are arguments of the operation, then
((× a b c)→ R) represent the event that R is applied on a,
b, and c, which is a special case for the three to be related.

The system’s knowledge about an operation is mainly rep-
resented as beliefs on what the operation implies, as well as
what it is implied by. Each belief provides partial informa-
tion about the precondition or consequence of the operation,
and the overall meaning of the operation, to the system, is
the collection of all such beliefs. To simplify the description,

182

in the following a term, like S, will be used to represent a
statement, such as ((× a b c)→ R).

In NARS, a judgment (S1 /⇒ S2) <f ; c> can be used to
uniformly represent many different types of knowledge.
• If S1 is directly about an operation, but S2 is not, then the

judgment represents a belief on an effect or consequence
of the operation;

• If S2 is directly about an operation, but S1 is not, then the
judgment represents a belief on a cause or precondition of
the operation.
Such a judgment can be used by various rules. In forward

inference, it and a judgment on S1 can derive a judgment
on S2 by the deduction rule, as a prediction; it and a judg-
ment on S2 can derive a judgment on S1 by the abduction
rule, as an explanation. This judgment itself can be derived
from the system’s observation of event S1 followed by event
S2, by the induction rule, as a generalization. In backward
inference, this judgment and a goal (or a question) on S2

can derive a goal (or a question) on S1. Different rules use
different truth-value functions to calculate the truth-value of
the conclusion from those of the premises. The details of
these rules, with their truth-value functions, can be found in
(Wang, 2006).

For more complicated situations, both the S1 and S2 in
above judgment can be compound statements consisting of
other statements. For example, very common the condition
part of an implication statement is a “sequential conjunc-
tion”, as in ((S1, S2) /⇒ S3), which means the event se-
quence “S1, then S2” is usually followed by event S3. When
S2 is an operation, such a statement represents its (partial)
precondition and consequence. When S3 is a goal, (S1, S2)
indicates a plan to achieve it.

The inference rules of NARS carry out various cogni-
tive functionalities in a uniform. Beside the above men-
tioned prediction, explanation, and generalization, the sys-
tem can also do planning (finding a sequence of operations
that lead to a given goal), skill learning (forming stable oper-
ation sequence with useful overall function), decision mak-
ing (choosing among alternatives), etc., though in this pa-
per their details cannot be explained. Working examples of
these functions in NARS can be found at the project website
http://code.google.com/p/open-nars/.

In NARS, all beliefs (existing judgments) and tasks (new
knowledge, questions, and goals) are clustered into con-
cepts, according to the terms appearing in them. The system
runs by repeating the following working cycle:

1. Select tasks in a task buffer to insert into the correspond-
ing concepts, which may trigger the creation of new con-
cepts and beliefs, as well as direct processing on the tasks.

2. Select a concept from the memory, then select a task and
a belief from the concept.

3. Feed the task and the belief to the inference engine to pro-
duce derived tasks.

4. Add the derived tasks into the task buffer, and send report
to the environment if a task provides a best-so-far answer
to an input question, or indicates the realization of an in-
put goal.

5. Return the processed belief, task, and concept back to
memory.

The selections in the first two steps are all probabilistic, with
the probability for an item (concept, task, or belief) to be
selected proportional to its priority value. In the last step,
the priority of the involved items are adjusted according to
the immediate feedback obtained from the inference result.

Now we can see that for a given task, its processing path
and result are determined by the beliefs interacting with it, as
well as the order of the interactions (that is, inference steps),
which in turn depends on the items in the memory (con-
cepts, tasks, and beliefs), as well as the priority distributions
among the items. All these factors change constantly as the
system communicates with the environment and works on
the tasks. As a result, there is no algorithm specifying the
inference step sequence for a task. Instead, this sequence is
formed at run time, determined by many preceding events
in the system. In this way, task processing (that is, problem
solving) in NARS becomes “case by case”.

Comparison and Discussion
CPS and APS are different approaches of problem solving
in computer. In APS, it is the programmer who solves the
problem (as a class), and the computer just applies the so-
lution to each instance of the problem. In CPS, it is the
computer that directly solves the problem (as a case), de-
pending on its available knowledge and resources. A CPS
system still follow algorithms, but these algorithms are not
solutions of domain-specific problems. Instead, they are
domain-independent solutions of “meta-problems” like the
handling of input/output, the carrying out of the inference
steps, the allocating of resources, etc.

These two approaches are suitable for different situa-
tions. Given the scope of the problems a system faces, APS
is preferred when there are sufficient knowledge (to get a
problem-specific algorithm) and resources (to execute the al-
gorithm), while CPS is an option when no problem-specific
algorithm is available and affordable. CPS gives the system
creativity, flexibility, and robustness, though it lacks the pre-
dictability, repeatability, and reliability of APS.

CPS processes are difficult to analyze, because the tra-
ditional theories on computability and computational com-
plexity become inapplicable at the problem-solving level
(though it may be applied in other levels), as the solvable
problems and the solution costs all become context-sensitive
and practically unpredictable, unless the system’s experi-
ence in the past and near future (when the problem is be-
ing solved) is fully known, and the system can be simulated
step-by-step with all details.

Some claims on the limitations of AI are based on the
“non-algorithmic” nature of intelligence and cognition, as in
(Dreyfus, 1979; Penrose, 1989). When facing CPS systems,
all such claims become invalid, because the problem-solving
processes in these systems are already non-algorithmic. This
topic has been discussed with more details in (Wang, 2007),
and will not be repeated here.

A large part of AI research is driven by the challenge of
problems for which no efficient algorithm is available. The

183

typical response is to find such an algorithm first, then to use
it in APS. CPS is different from these techniques in its basic
idea, though still related to them here or there.

One of the earliest AI technique is heuristic search
(Newell and Simon, 1976). Since all possible solutions
come from permutations of a constant set of basic opera-
tions, problem solving in theory can be described as search-
ing for a path from the initial state to a goal state in a state
space. Because exhausting all possibilities usually demands
unaffordable resources, the key becomes the selection of
paths to be explored. NARS is similar to heuristic search in
that (1) it compares alternative paths using numerical func-
tions, since in NARS the truth-values, desire-values, and
priority-values all have impact on the order by which the
alternatives are explored, and (2) the system usually gets sat-
isfying solutions, rather than optimal solutions. Their major
differences are that at each step NARS does not evaluate a
static list of alternatives according to a fixed heuristic, but
recognizes and builds the alternatives by reasoning, and al-
locates resources among them, so to explore them in a con-
trolled concurrency (Wang, 1996), which is similar to par-
allel terraced scan (Hofstadter and FARG, 1995). Further-
more, in NARS the heuristic information is provided mainly
by the domain knowledge, which is not built into the system,
but learned and derived, so is flexible and context-sensitive,
while a heuristic algorithm has a fixed step sequence.

A related technique is production system, or rule-based
system, where each state change is caused by the apply-
ing of a rule, and different solutions correspond to different
rule-application sequences. NARS looks like such a system,
since it also describes a problem in a formal language, and
modifies the description by rules during inference. However,
in traditional rule-based system there is a static long-term
memory (containing rules) and a changeable working mem-
ory (containing facts) (Newell, 1990). In a problem solving
process, only the latter is changed, and after the process, the
working memory is reset. Therefore, the system still does
APS, since it provides a (fixed) mapping from input (prob-
lem instances) to output (solutions), even though here the
“algorithm” is not explicitly coded as a program, but is im-
plicitly distributed among the rules and the control mecha-
nism (which is responsible for selecting a rule to fire in each
working cycle). On the contrary, in NARS the content of
memory is modified by every problem-solving process, so
the processes have strong mutual influence, and it is impos-
sible to analyze one of them without the others.

The “case” in CPS should not be confused with the same
term in Case-Based Reasoning (Leake, 1996), which solves
problems by revising solutions of similar problems — that
is still APS, with the algorithms distributed among the cases
and the control mechanism (which is responsible for select-
ing similar cases and putting together a new solution).

More complicated forms of APS can be found in works on
randomized algorithms (Cormen et al., 2001), anytime algo-
rithms (Dean and Boddy, 1988), and metareasoning (Russell
and Wefald, 1991). Though driving by different consider-
ations and suggesting different approaches, each of these
technique solves a problem with a family of algorithms,
rather than a single one. For a given problem instance, some

outside factor (beyond the input data) decides which algo-
rithm in the family will be selected and applied. In random-
ized algorithms, the selection is made randomly; in anytime
algorithms, it is determined by the executing time restric-
tion; and in metareasoning, it is the result of an explicit de-
liberation. If we treat these factors as an additional argument
of the problem, used as the index of the algorithm selected
from the family, all these situations are reduced to APS. On
the contrary, CPS cannot be reduced into APS in this way,
since it is not even a selection among preexisting algorithms.
If a problem (instance) is repeatedly solved in NARS, the
solution does not form a probability distribution (as in a ran-
domized algorithms). Even if the same amount of time is
allocated to a problem, in NARS the results can still be dif-
ferent, while according to anytime algorithm and metarea-
soning, the results should be the same. Even so, NARS still
share some properties with these approaches. For example,
given more resources, the system usually provides better so-
lutions, as an anytime algorithm (Wang, 1996).

In NARS a problem-solving process is non-algorithmic,
because the process is not built into the system, but formed
by the learning and adaptation mechanism of the system. To
learn problem-solving skills from environment feedback is
not a new idea at all (Turing, 1950). There is a whole rein-
forcement learning field aimed at the optimization of the re-
ward from the environment to the system’s operations (Kael-
bling et al., 1996). Also, genetic programming provides
a powerful way to generate algorithms for many problems
(Koza, 1992). Though these techniques (and some others)
are very different in details, they are still within the APS
framework given at the beginning of the paper: first, find
an algorithm for a problem class, then, apply the algorithm
to each problem instance. What these techniques aim is to
replace the human designer in the first phase of APS. This
is different from the aim of CPS, which merge these two
phases into one, by directly solving problem instances in a
non-algorithmic manner. There are indeed many situations
where algorithms are desired, and therefore some kind of
algorithm-learning technique will be preferred. However,
there are also situations where the system cannot satisfy the
demand of these algorithm-learning techniques on knowl-
edge and resources, so CPS will be more proper. CPS does
not reject all forms of skill learning, as far as it does not re-
duce the problem-solving process into APS. As described in
the previous section, NARS can learn procedures.

In summary, CPS is designed for a situation where no ex-
isting technique can be applied, rather than as an alternative
to an existing technique in the field for which it is designed.
CPS is similar to the existing techniques in many aspects,
but cannot be reduced to any of them.

Conclusion
For problem-solving, the “case-by-case” approach (CPS),
which is used in NARS and advocated in this paper, is dif-
ferent from the algorithmic approach (APS) by taking the
following positions:

• Do not define a “problem” as a class and use the same
method to solve all of its instances. Instead, treat each

184

“problem instance” as a “problem” on its own, and solve
it in a case-by-case manner, according to the current
(knowledge/resource) situation in the system.

• Do not draw a sharp line between solutions and non-
solutions for a given problem, and treat all solutions as
equally good. Instead, allow solutions to be partial, and
compare candidate solutions to decide which one is better.

• Do not insist on “one problem, one solution”. Instead,
allow the system to generate zero, one, or a sequence of
solutions, each of which is better than the previous ones.

• Do not depend on a predetermined algorithm to solve
a problem. Instead, cut a problem-solving process into
steps. Though each step follows an algorithm, the overall
process is formed by linking steps together at run time in
a context-sensitive manner.

• Do not predetermine the method by which a problem is
processed in each step. Instead, let the selected problem
and available knowledge decide how the problem is pro-
cessed in that step.

• Do not attempt to use all relevant beliefs to solve a prob-
lem. Instead, in each step only consider one of them, se-
lected according to their priority values.

• Do not solve problems one after another. Instead, process
problems (and subproblems) in parallel, but at different
speed, according to their priority values.

• Do not throw away the intermediate results at the end of
a problem-solving process. Instead, keep them for future
problems.

• Do not isolate each problem-solving process in its own
working space. Instead, let all problems interact with the
same memory.

• Do not attempt to keep all beliefs forever. Instead, remove
items with the lowest priority when the memory is full.

• Do not process each problem with a fixed resources sup-
ply. Instead, let the processes compete for resources.

• Do not keep a fixed resources distribution. Instead, adjust
the priority distribution according to the experience of the
system and the current context, so as to give important
and relevant items more resources.

Some of the above issues are discussed in this paper,
while the others have been addressed in related publications
(Wang, 1996; Wang, 2004; Wang, 2006).

This new approach for problem-solving is proposed as a
supplement to the traditional (algorithmic) approach, for sit-
uations where the system has insufficient knowledge and re-
sources to apply or to build an algorithm for the problem it
faces.

The practice of project NARS shows that such an ap-
proach can be implemented, and has properties not available
in traditional systems. Since the capability of such a system
is not only determined by its design, but also by its expe-
rience, it is hard to evaluate the potential of this approach
in solving practical problems. However, at least we can say
that this approach is exploring a territory beyond the scope
of classic theory of computation, and it is more similar to
the actual thinking process of the human mind.

References
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2001). Introduction to Algorithms. MIT Press, McGraw-
Hill Book Company, 2nd edition.
Davis, M. (1958). Computability and Unsolvability.
Mcgraw-Hill, New York.
Dean, T. and Boddy, M. (1988). An analysis of time-
dependent planning. In Proceedings of AAAI-88, pages
49–54.
Dreyfus, H. L. (1979). What Computers Can’t Do: Revised
Edition. Harper and Row, New York.
Hofstadter, D. R. and FARG (1995). Fluid Concepts and
Creative Analogies: Computer Models of the Fundamental
Mechanisms of Thought. Basic Books, New York.
Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996).
Reinforcement learning: a survey. Journal of Artificial In-
telligence Research, 4:237–285.
Koza, J. R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selection.
MIT Press, Cambridge, Massachusetts.
Leake, D., editor (1996). Case-Based Reasoning: Experi-
ences, Lessons, and Future Directions. AAAI Press, Menlo
Park, California.
Marr, D. (1982). Vision: A Computational Investigation
into the Human Representation and Processing of Visual
Information. W. H. Freeman & Co., San Francisco.
Newell, A. (1990). Unified Theories of Cognition. Harvard
University Press, Cambridge, Massachusetts.
Newell, A. and Simon, H. A. (1976). Computer science as
empirical inquiry: symbols and search. Communications
of the ACM, 19(3):113–126.
Penrose, R. (1989). The Emperor’s New Mind: Concern-
ing Computers, Minds, and the Laws of Physics. Oxford
University Press.
Russell, S. and Wefald, E. H. (1991). Principles of metar-
easoning. Artificial Intelligence, 49:361–395.
Turing, A. M. (1950). Computing machinery and intelli-
gence. Mind, LIX:433–460.
Wang, P. (1995). Non-Axiomatic Reasoning System: Ex-
ploring the Essence of Intelligence. PhD thesis, Indiana
University.
Wang, P. (1996). Problem-solving under insufficient re-
sources. In Working Notes of the AAAI Fall Symposium on
Flexible Computation, pages 148–155, Cambridge, Mas-
sachusetts.
Wang, P. (2004). Problem solving with insufficient re-
sources. International Journal of Uncertainty, Fuzziness
and and Knowledge-based Systems, 12(5):673–700.
Wang, P. (2006). Rigid Flexibility: The Logic of Intelli-
gence. Springer, Dordrecht.
Wang, P. (2007). Three fundamental misconceptions of ar-
tificial intelligence. Journal of Experimental & Theoretical
Artificial Intelligence, 19(3):249–268.

185

What Is Artificial General Intelligence?
Clarifying The Goal For Engineering And Evaluation

Mark R. Waser

Books International
22883 Quicksilver Drive, Dulles, VA 20166

MWaser@BooksIntl.com

Abstract
Artificial general intelligence (AGI) has no consensus
definition but everyone believes that they will recognize it
when it appears. Unfortunately, in reality, there is great
debate over specific examples that range the gamut from
exact human brain simulations to infinitely capable systems.
Indeed, it has even been argued whether specific instances
of humanity are truly generally intelligent. Lack of a
consensus definition seriously hampers effective discussion,
design, development, and evaluation of generally intelligent
systems. We will address this by proposing a goal for AGI,
rigorously defining one specific class of general intelligence
architecture that fulfills this goal that a number of the
currently active AGI projects appear to be converging
towards, and presenting a simplified view intended to
promote new research in order to facilitate the creation of a
safe artificial general intelligence.

Classifying Artificial Intelligence
Defining and redefining “Artificial Intelligence” (AI) has
become a perennial academic exercise so it shouldn’t be
surprising that “Artificial General Intelligence” is now
undergoing exactly the same fate. Pei Wang addressed this
problem (Wang 2008) by dividing the definitions of AI
into five broad classes based upon on how a given artificial
intelligence would be similar to human intelligence: in
structure, in behavior, in capability, in function, or in
principle. Wang states that

 These working definitions of AI are all valid, in the
sense that each of them corresponds to a description
of the human intelligence at a certain level of
abstraction, and sets a precise research goal, which is
achievable to various extents. Each of them is also
fruitful, in the sense that it has guided the research to
produce results with intellectual and practical values.
On the other hand, these working definitions are
different, since they set different goals, require
different methods, produce different results, and
evaluate progress according to different criteria.

Copyright © 2008, The Second Conference on Artificial General
Intelligence (agi-09.org). All rights reserved.

 We contend that replacing the fourth level of abstraction
(Functional-AI) with “similarity of architecture of mind (as
opposed to brain)” and altering its boundary with the fifth
would greatly improve the accuracy and usability this
scheme for AGI. Since Stan Franklin proposed (Franklin
2007) that his LIDA architecture was “ideally suited to
provide a working ontology that would allow for the
discussion, design, and comparison of AGI systems” since
it implemented and fleshed out a number of psychological
and neuroscience theories of cognition and since the
feasibility of this claim was quickly demonstrated when
Franklin and the principals involved in NARS (Wang
2006), Novamente (Looks, Goertzel and Pennachin 2004),
and Cognitive Constructor (Samsonovitch et. al. 2008) put
together a comparative treatment of their four systems
based upon that architecture (Franklin et al. 2007), we
would place all of those systems in the new category.
 Making these changes leaves three classes based upon
different levels of architecture, with Structure-AI equating
to brain architecture and Principle-AI equating to the
architecture of problem-solving, and two classes based
upon emergent properties, behavior and capability.
However, it must be noted that both of Wang’s examples
of the behavioral category have moved to more of an
architectural approach with Wang noting the migration of
Soar (Lehman, Laird and Rosenbloom 2006; Laird 2008)
and the recent combination of the symbolic system ACT-R
(Anderson and Lebiere 1998, Anderson et al. 2004) with
the connectionist [L]eabra (O’Reilly, and Munakata 2000),
to produce SAL (Lebiere et al. 2008) as the [S]ynthesis of
[A]CT-R and [L]ibra. Further, the capability category
contains only examples of “Narrow AI” and Cyc (Lenat
1995) that arguably belongs to the Principle-AI category.
 Viewing them this way, we must argue vehemently with
Wang’s contentions that “these five trails lead to different
summits, rather than to the same one”, or that “to mix them
together in one project is not a good idea.” To accept these
arguments is analogous to resigning ourselves to being
blind men who will attempt only to engineer an example of
elephantness by focusing solely on a single view of
elephantness, to the exclusion of all other views and to the
extent of throwing out valuable information. While we
certainly agree with the observations that “Many current
AI projects have no clearly specified research goal, and

186

people working on them often swing between different
definitions of intelligence” and that this “causes
inconsistency in the criteria of design and evaluation”, we
believe that the solution is to maintain a single goal-
oriented focus on one particular definition while drawing
clues and inspiration from all of the others.

What Is The Goal of AGI?
Thus far, we have classified intelligence and thus the goals
of AI by three different levels of abstraction of architecture
(i.e. what it is), how it behaves, and what it can do.
Amazingly enough, what we haven’t chosen as a goal is
what we want it to do. AGI researchers should be
examining their own reasons for creating AGI both in
terms of their own goals in creating AGI and the goals that
they intend to pass on and have the AGI implement.
Determining and codifying these goals would enable us to
finally knowing the direction in which we are headed.
 It has been our observation that, at the most abstract
level, there are two primary views of the potential goals of
an AGI, one positive and one negative. The positive view
generally seems to regard intelligence as a universal
problem-solver and expects an AGI to contribute to solving
the problems of the world. The negative view sees the
power of intelligence and fears that humanity will be one
of the problems that is solved. More than anything else,
we need an AGI that will not be inimical to human beings
or our chosen way of life.
 Eliezer Yudkowsky claims (Yudkowsky 2004) that the
only way to sufficiently mitigate the risk to humanity is to
ensure that machines always have an explicit and
inalterable top-level goal to fulfill the “perfected” goals of
humanity, his Coherent Extrapolated Volition or CEV.
We believe, however, that humanity is so endlessly diverse
that we will never find a coherent, non-conflicting set of
ordered goals. On the other hand, the presence of
functioning human society makes it clear that we should be
able to find some common ground that we can all co-exist
with.
 We contend that it is the overly abstract Principle-AI
view of intelligence as “just” a problem-solver that is the
true source of risk and that re-introducing more similarity
with humans can cleanly avoid it. For example, Frans de
Waal, the noted primatologist, points out (de Waal 2006)
that any zoologist would classify humans as obligatorily
gregarious since we “come from a long lineage of
hierarchical animals for which life in groups is not an
option but a survival strategy”. If we, therefore, extended
the definition of intelligence to “The ability and desire to
live and work together in an inclusive community to solve
problems and improve life for all” there would be no
existential risk to humans or anyone else.
 We have previous argued (Waser 2008) that acting
ethically is an attractor in the state space of intelligent
behavior for goal-driven systems and that humans are
basically moral and that deviations from ethical behavior
on the part of humans are merely the result of

shortcomings in our own foresight and intelligence. As
pointed out by James Q. Wilson (Wilson 1993), the real
questions about human behaviors are not why we are so
bad but “how and why most of us, most of the time,
restrain our basic appetites for food, status, and sex within
legal limits, and expect others to do the same.”
 Of course, extending the definition of intelligence in this
way should also impact the view of our stated goal for AGI
that we should promote. The goal of AGI cannot ethically
be to produce slaves to solve the problems of the world but
must be to create companions with differing capabilities
and desires who will journey with us to create a better
world.

Ethics, Language, and Mind
 The first advantage of this new goal is that the study of
human ethical motivations and ethical behavior rapidly
leads us into very rich territory regarding the details in
architecture of the mind required for such motivations and
behaviors. As mentioned repeatedly by Noam Chomsky
but first detailed in depth by John Rawls (Rawls 1971), the
study of morality is highly analogous to the study of
language since we have an innate moral faculty with
operative principles that cannot be expressed in much the
same way we have an innate language faculty with the
same attributes. Chomsky transformed the study of
language and mind by claiming (Chomsky 1986) that
human beings are endowed with an innate program for
language acquisition and developing a series of questions
and fundamental distinctions. Chomsky and the
community of linguists working within this framework
have provided us with an exceptionally clear and
compelling model of how such a cognitive faculty can be
studied.
 As pointed out by Marc Hauser (Hauser 2006; Hauser,
Young and Cushman 2008), both language and morality
are cognitive systems that can be characterized in terms of
principles or rules that can construct or generate an
unlimited number and variety of representations. Both can
be viewed as being configurable by parameters that alter
the behavior of the system without altering the system
itself and a theory of moral cognition would greatly benefit
from drawing on parts of the terminology and theoretical
apparatus of Chomsky’s Universal Grammar.
 Particularly relevant for the development of AGI, is their
view that it is entirely likely that language is a mind-
internal computational system that evolved for internal
thought and planning and only later was co-opted for
communication. Steven Pinker argues (Pinker 2007) that
studying cross-cultural constants in language can provide
insight into both our internal representation system and
when we switch from one model to another. Hauser’s
studies showing that language dramatically affects our
moral perceptions argues that they both use the same
underlying computational system and that studying cross-
cultural moral constants could not only answer what is
moral but how we think and possibly even why we talk.

187

Finally, the facts that both seem to be genetically endowed
but socially conditioned and that we can watch the
formation and growth of each mean that they can provide
windows for observing autogeny in action.

Growing A Mind
 One difference between most AGI researchers and many
others working in the field of AI is the recognition that a
full-blown intelligence is not going to be coded into
existence. While AI researchers universally recognize the
requirement of learning, there frequently isn’t the
recognition that the shortest path to AGI is to start with a
certain minimal seed and to have the AGI grow itself from
there. Indeed, many AGI research projects seem to have
also lost this critical focus and be concentrating more on
whether specific capabilities can be programmed in
specific ways or on specific knowledge representations
rather than focusing on the far more difficult subjects of
what is required for effective growth from such a seed and
how it might be implemented.
 The interesting and important question, of course, is
“What is the minimum critical mass for the seed AGI and
what proportion of that mass is composed of hard-coded
initial information as opposed to instructions for reasoning
and growth?” Undoubtedly, there are many correct
answers that will lead to a variety of different AGIs but we
would prefer to pick one with a shorter path and time
frame and a lesser amount of effort rather than a longer or
more difficult path.
 Daniel Oblinger (Oblinger 2008) has gone so far as to
posit that it is possible that the majority of the work
currently being done is unnecessary and can, and quite
possibly will, be avoided by working instead on the
bootstrapping process itself. It is his hope that a very
minimal embedded system with the familiar AGI cognitive
cycle (perceive/abstract/act or sense/cognize/act), the
appropriate internal “emotional” drivers, and certain
minimal social abilities will be able to use “embodiment
scaffolding” and “social scaffolding” as a framework for
growth that will permit the bootstrapping of strong
performance from repeated iterations of weak learning.
Both Marvin Minsky (Minsky 2006) and J. Storrs Hall
(Hall 2007) give plausible models that we should be able to
extend further.
 On the other hand, longitudinal studies of twins raised
apart (Bouchard 1990) show surprisingly high correlation
levels in an incredible variety of choices, behaviors and
outcomes. This, plus the examples of language and
morality, suggests that much more of the details of
intelligence are programmed in genetics than we might
otherwise generally believe. It is our contention that
studying the formation and growth of these examples will
not only give us additional insight into the architecture of
the human mind but is actually the quickest and most likely
path to AGI by providing enough information to build the
seed for a human-like architecture.

Architecture of Mind
Since we have previously noted that LIDA architecture
implements and fleshes out a number of psychological and
neuroscience theories of cognition and has already been
deemed as an acceptable basis for comparison by the
principals of a number of projects, we will consider it the
consensus architecture of mind. The most salient features
of LIDA’s architecture are its cognitive cycle; the fact that
it is very much an attentional architecture based upon
Sloman’s architecture for a human-like agent (Sloman
1999); and its use of Baar’s global workspace theory of
consciousness (Baars 1993, 1997, 2003; Newman, Baars
and Cho 2003; Baars and Franklin 2007).

Figure 1. Sloman’s human-like agent architecture

Franklin starts with an embodied autonomous agent that
senses its environment and acts on it, over time, in pursuit
of its own agenda. While it doesn’t have the bootstrap
view of what is the most minimal cycle that can build the
simplest tool that can then be used as a building block to
create the next tool, the LIDA model does include
automization, the process of going from consciously
learning something like driving to the effortless, frequently
unconscious, automatic actions of an experienced driver.
Since it is embodied and all cognitive symbols are
ultimately grounded in perception, it is not subject to the
symbol-grounding problem (Harnad 1990).

188

 Franklin characterizes the simplicity of the initial agent
by saying:

It must have sensors with which to sense, it must have
effectors with which to act, and it must have primitive
motivators … [drives] … which motivate its actions.
Without motivation, the agent wouldn’t do anything.
Sensors, effectors, and drives are primitives which
must be built into, or evolved into, any agent.

Unfortunately, we would argue, for the purposes of both
autogeny and morality, far too little attention has been paid
to drives and their implementation.

Conscious Attention
 In many ways, the most important feature of Sloman’s
architecture is the grey bar across the middle between
conscious attentional processes and unconscious processes.
Alfred North Whitehead claimed, “Civilization advances
by extending the number of important operations which we
can perform without thinking about them.” We contend
that the same is true of intelligence and would argue that
there has been far less attention to the distinction between
conscious and unconscious processing than we believe is
warranted.
 Experimental studies (Soon et. al. 2008) show that many
decisions are made by the unconscious mind up to 10
seconds before the conscious mind is aware of it. Further,
a study of the "deliberation-without-attention" effect
(Dijksterhuis et al. 2006) shows clearly that engaging in a
thorough conscious deliberation is only advantageous for
simple choices while choices in complex matters should be
left to unconscious thought. This effect is attributed to the
fact that a person can pay conscious attention to only a
limited amount of information at once, which can lead to a
focus on just a few factors and the loss of the bigger
picture. Logically, constraint satisfaction or optimization
would seem to be an operation that would be best
implemented on a parallel architecture (the unconscious)
with a serial post-process (consciousness) for evaluating
and implementing the result -- and another serial post-post-
process for evaluating the results of the implementation
and learning from them). Arguably, from the experiments
presented above, it is entirely possible that the conscious
mind merely “set up” the problem and then runs it on an
unconscious tool.
 Attention is also particularly important since it facilitates
a second aspect of behavior control. As Minsky points out
(Minsky 2006), most of our drives have both a sensory
control and an attentional control. Sex not only feels good
and but sexual thoughts tend to grab our attention and try
to take over. Similarly, pain hurts and can distract us
enough to prevent us from thinking of anything else.
 Baars Global Workspace Theory postulates (Baars 1997)
that most of cognition is implemented by a multitude of
relatively small, local, special purpose processes, that are
almost always unconscious. Coalitions of these processes
compete for conscious attention (access to a limited

capacity global workspace) that then serves as an
integration point that allows us to deal with novel or
challenging situations that cannot be dealt with efficiently,
or at all, by local, routine unconscious processes. Indeed,
Don Perlis argues (Perlis 2008) that Rational Anomaly
Handling is “the missing link between all our fancy idiot-
savant software and human-level performance.”

A More Abstract View
An interesting abstraction of this architecture yields a
simple view of intelligence, composed of just three parts,
which is still complex enough to serve as a foundation to
guide research into both the original evolution of the mind
and also how individual human minds grow from infancy.
The first part of the mind is the simple unconscious
processes. Initially these must be hard-wired by genetics.
The next part is a world model that has expectations of the
world and recognizes anomalies. Desires are also a part of
this world model. The third part is the integrative
conscious processes that are not only invoked to handle
anomalies but are also used to improve the world model
and develop new unconscious processes.
 This simple model captures many of the features of the
human mind that many current models do not. Most
important is the balance of the conscious processes being a
slave to the desires and context of the world model formed
initially and constantly revised by the subconscious yet
being able to modify that model and create new
subconscious processes. This is the dynamic of the seed
that we contend is the quickest and safest path to AGI.
 An important first question for ontogeny is where
genetically “hard-coded” processes and model features
stop and learned processes and features start. For example,
evolution clearly has “primed” us with certain conceptual
templates, particularly those of potential dangers like
snakes and spiders (Ohman, Flykt and Esteves 2001).
Equally interesting is the demonstration of the beginning of
moral concepts like fairness in dogs (Range et al 2008) and
monkeys (Brosnan and de Wall 2003).
 What we believe to be most important, however, is
further research into the development of a sense of self
including its incredible plasticity in the world model and
it’s effects upon both the conscious and subconscious. Too
many AGI researchers are simply waiting for a sense of
self to emerge while the “Rubber Hand Illusion”
(Botvinick and Cohen 1998) and the “Illusion of Body
Swapping” (Petkova and Ehrsson 2008) give important
clues as to how incredibly disparate subconscious
processes will appear to the conscious mind merely as
extensions to itself.
 This is important point because it means that anything
that can be plugged into the global workspace is
immediately usable whether the conscious mind
understands its internal operation or not. Of course, this
immediately begs the question of exactly what the detailed
“plug-and-play” interface specifications of the workspace
architecture are – and this is where current systems all

189

differ. NARS uses Narsese, the fairly simple yet robust
knowledge representation language of the system as an
integration point. Novamente uses complex node-and-link
hypergraphs. Polyscheme (Cassimatis 2005, 2006) uses
numerous different representation schemes and attempts to
implement the basic cognitive algorithms over them all.
 More important than the knowledge representation
scheme, we believe, however, is how the mechanism of
attention is actually implemented. In LIDA, attention is
the work of attention codelets that form coalitions to
compete in parallel for access to the global workspace.
Filtering occurs in multiple locations and is pretty much
ubiquitous during cognition. Other systems merely label
the various units of their representation schemes with
interest values and priorities but there are tremendously
variable degrees as to where attention falls on the spectrum
of serial to parallel. It is our fear that the systems that do
not dramatically limit the size of consciousness have
deviated far enough from the model of human intelligence
as to be in uncharted waters but only time will tell.

Conclusion
 We have argued that creating an Ethical Autogenous
Attentional Artificial General Intelligence (EA3GI) is
likely to be the fastest and safest path to developing
machine intelligence and that focusing on creating
companions with differing capabilities and desires who
will journey with us to create a better world instead of
producing slaves to solve the problems of the world should
be the consensus goal of AGI research.

References
Anderson, J.R.; Bothell, D.; Byrne, M.D.; Douglass, S.;
Lebiere, C. and Qin, Y. 2004. An integrated theory of
Mind. In Psychological Review 111:4.

Anderson, J.R. and Lebiere, C. 1998. The atomic
components of thought. Mahwah, New Jersey: Erlbaum.

Baars, B.J. 1993. A Cognitive Theory of Consciousness.
Cambridge University Press.

Baars, B.J. 1997. In The Theater of Consciousness: The
Workspace of the Mind. New York, New York: Oxford
University Press.

Baars, B.J. 2003. How Does a Serial, Integrated, and Very
Limited Stream of Consciousness Emerge from a Nervous
System That Is Mostly Unconscious, Distributed, Parallel,
and of Enormous Capacity? In Baars, B.J.; Banks, W.P.;
and Newman, J.B. eds Essential Sources in the Scientific
Study of Consciousness. Cambridge, MA: MIT Press.

Baars, B.J. and Franklin, S. 2007. An architectural model
of conscious and unconscious brain functions: Global

Workspace Theory and IDA. In Neural Networks 20.
Elsevier.

Beck, J.; Ma, W.J.; Kiani, R; Hanks, T.; Churchland, A.K.;
Roitman, J.; Shadlen, M.; Latham, P.E.; and Pouget, A.
2008. Probabilistic Population Codes for Bayesian
Decision Making. Neuron 60(6): 1142 - 1152.

Botvinick, M. and Cohen, J. 1998. Rubber hands ‘feel’
touch that eyes see. Nature 391: 756–756.

Bouchard, T.J. Jr; Lykken. D.T.; McGue, M.; Segal, N.L.;
and Tellegen, A. 1990. Sources of human psychological
differences: the Minnesota Study of Twins Reared Apart.
Science 250: 223–228.

Brosnan, S. and de Wall, F. 2003. Monkeys reject unequal
pay. Nature 425: 297-299.

Cassimatis, N. 2005. Integrating Cognitive Models Based
on Different Computational Methods. In Proceedings of
the Twenty-Seventh Annual Conference of the Cognitive
Science Society. MahWah, New Jersey: Erlbaum.

Cassimatis, N. 2006. A Cognitive Substrate For Human-
Level Intelligence. In Artificial Intelligence Magazine: 27.
Menlo Park, CA: AAAI Press.

Chomsky, N. 1986. Knowledge of Language: Its Nature,
Origin, and Use. New York, NY: Praeger Publishers.

Dijksterhuis, A.; Bos, M.; Nordgren, L.; and Baaren, R.
van 2006 On Making the Right Choice: The Deliberation-
Without-Attention Effect. Science 311: 1005 – 1007.

Franklin, S. 2007. A Foundational Architecture for
Artificial General Intelligence. In Goertzel, B and Wang,
P. eds. Advances in Artificial General Intelligence.
Amsterdam, The Netherlands: IOS Press.

Franklin, S.; Goertzel, B.; Samsonovich, A. and Wang, P.
2007. Four Contemporary AGI Designs: A Comparative
Treatment. In Goertzel, B and Wang, P. eds. Advances in
Artificial General Intelligence. Amsterdam, The
Netherlands: IOS Press.

Harnad, S. 1990. The Symbol Grounding Problem. Physica
D 42: 335-346.

Hall, J. 2007. Beyond AI: Creating the Conscience of the
Machine. Amherst, NY: Prometheus Books.

Hauser, M. 2006. Moral Minds: How Nature Designed
Our Universal Sense of Right and Wrong. New York, NY:
HarperCollins/Ecco.

Hauser, M. et al. 2007. A Dissociation Between Moral
Judgments and Justifications. Mind&Language 22(1):1-27.

190

Hauser, M; Young, Y. and Cushman, F. 2008. Reviving
Rawls’ Linguistic Analogy: Operative principles and the
causal structure of moral actions. In Sinnott-Armstrong ed.
Moral Psychology and Biology. New York, NY: OUP.

Laird, J. 2008. Extending the Soar Cognitive Architecture.
In AGI 2008: Proceedings of the First AGI Conference.
Amsterdam, The Netherlands: IOS Press.

Lebiere, C.; O’Reilly, R.; Jilk, D.; Taatgen, N. and
Anderson, J.R. 2008. The SAL Integrated Cognitive
Architecture. In AAAI Technical Report FS-08-04. Menlo
Park, CA: AAAI Press.

Lehman, J.; Laird, J. and Rosenbloom, P. 2006. A Gentle
Introduction To Soar, An Architecture For Human
Cognition: 2006 Update. Available at
http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIn
troduction-2006.pdf.

Lenat, D.B. 1995. Cyc: a large-scale investment in
Knowledge Infrastructure. Communications of the ACM
38(11): 33-38.

Looks, M.; Goertzel, B. and Pennachin, C. 2004.
Novamente: An Integrative Architecture for General
Intelligence. In AAAI Technical Report FS-04-01. Menlo
Park, CA: AAAI Press.

Minsky, M. 2006. The Emotion Machine: Commonsense
Thinking, Artificial Intelligence, and the Future of the
Human Mind. New York, NY: Simon & Schuster.

Newman, J.; Baars, B.J.; Cho, S.B. 2003. A Neural Global
Workspace Model for Conscious Attention. In Baars, B.J.;
Banks, W.P.; and Newman, J.B. eds Essential Sources in
the Scientific Study of Consciousness. Cambridge, MA:
MIT Press.

Oblinger, D. 2008. Towards an Adaptive Intelligent Agent.
In AAAI Technical Report FS-08-04. Menlo Park, CA:
AAAI Press.

Ohman, A.; Flykt, A.; and Esteves, F. 2001. Emotion
Drives Attention: Detecting the Snake in the Grass.
Journal of Experimental Psychology: General 130(3): 466-
478.

O’Reilly, R.C. and Munakata, Y. 2000. Computational
Explorations in Cognitive Neuroscience: Understanding
the Mind by Simulating the Brain. Cambridge, MA: MIT
Press.

Perlis, D. 2008. To BICA and Beyond: RAH-RAH-RAH!
–or– How Biology and Anomalies Together Contribute to
Flexible Cognition. In AAAI Technical Report FS-08-04.
Menlo Park, CA: AAAI Press.

Petkova, V.I. and Ehrsson, H.H. 2008. If I Were You:
Perceptual Illusion of Body Swapping. PLoS ONE 3(12):
e3832.

Pinker, S. 2007. The Stuff of Thought: Language as a
Window into Human Nature. New York, NY:
Viking/Penguin Group.

Range, F.; Horn, L.; Viranyi, Z.; and Huber, L. 2008. The
absence of reward induces inequity inversion in dogs.
Proceedings of the National Academy of Sciences USA
2008 : 0810957105v1-pnas.0810957105.

Rawls, J. 1971. A Theory of Justice. Harvard Univ. Press.

Samsonovich, A.; De Jong, K.; Kitsantas, A.; Peters, E.;
Dabbagh, N. and Kalbfleisch, M.L. 2008. Cognitive
Constructor: An Intelligent Tutoring System Based on a
Biologically Inspired Cognitive Architecture (BICA). In
AGI 2008: Proceedings of the First AGI Conference.
Amsterdam, The Netherlands: IOS Press.

Sloman, A. 1999. What Sort of Architecture is Required
for a Human-like Agent? In Wooldridge, M. and Rao, A.S.
eds Foundations of Rational Agency. Dordrecht,
Netherlands: Kluwer Academic Publishers.

Soon, C.S.; Brass, M.; Heinze, H-J; and Haynes, J-D.
2008. Unconscious determinants of free decisions in the
human brain. Nature Neuroscience 11: 543-545.

Tomasello, M. 2008. Origins of Human Communication.
Cambridge, MA: MIT Press.

de Waal, F. 2006. Primates and Philosophers: How
Morality Evolved. Princeton University Press.

Waller, N.G; Kojetin, B.A.; Bouchard, T.J.; Lykken, D.T.;
and Tellegen, A. 1990. Genetic and environmental
influences on religious interests, attitudes, and values: a
study of twins reared apart and together. Psychological
Science 1(2): 138-142.

Wang, P. 2006. Rigid Flexibility: The Logic of Intelligence.
Dordrecht, the Netherlands: Springer.

Wang, P. 2008. What Do You Mean By “AI”? In AGI
2008: Proceedings of the First AGI Conference.
Amsterdam, The Netherlands: IOS Press.

Waser, M. 2008. Discovering The Foundations Of A
Universal System Of Ethics As A Road To Safe Artificial
Intelligence. In AAAI Technical Report FS-08-04. Menlo
Park, CA: AAAI Press.

Yudkowsky, E. 2004. Coherent Extrapolated Volition.
Available at http://www.singinst.org/upload/CEV.html.

191

Integrating Action and Reasoning through Simulation

Samuel Wintermute

University of Michigan

2260 Hayward St.

Ann Arbor, MI 48109-2121

swinterm@umich.edu

Abstract

This paper presents an approach for integrating action in the
world with general symbolic reasoning. Instead of working
with task-specific symbolic abstractions of continuous
space, our system mediates action through a simple spatial
representation. Low-level action controllers work in the
context of this representation, and a high-level symbolic
system has access to it. By allowing actions to be spatially
simulated, general reasoning about action is possible. Only
very simple task-independent symbolic abstractions of space
are necessary, and controllers can be used without the need
for symbolic characterization of their behavior. We draw
parallels between this system and a modern robotic motion
planning algorithm, RRT. This algorithm is instantiated in
our system, and serves as a case study showing how the
architecture can effectively address real robotics problems.

Introduction

 It has been argued by many that low-level motor control
and perception are critically important for intelligent
behavior in embodied agents (e.g., Brooks, 1991). These
views are often put in contrast with more traditional views
of intelligence that emphasize symbolic processing (e.g.,
Newell, 1992). To date, adherents on either side haven’t
built robots that have exhibited anything close to general
intelligence. Solely symbolic robots are rigid, and unable
to deal with the subtlety of the real world, where every
relevant perception needed to control action doesn’t
directly map onto a symbol. Robots without a symbolic
level, however, aren’t able to comprehend tasks anywhere
near the level of complexity of those that humans perform,
as those tasks can require reasoning at a much higher level
than raw perception.
 Attempts have been made to bridge deliberative
symbolic reasoning and continuous reactive behavior.
Many of these systems fit the general diagram in Figure 1a.
In this sort of system, perception abstracts out information
from the environment, and provides it to the symbolic
system. The symbolic system reasons over this
information, and invokes a controller with an abstract
command. Following this command, the controller maps
low-level input to output, causing action in the world. The
perception box provides symbols that completely and
concisely describe the environment, and invoking a
particular action results in a predictable transition in these
symbols. This is the classic blocks-world approach: the

perception system provides symbols like (on a b), actions
are represented by symbols like (move b table), and simple
rules describe how the perception symbols will change in
response to the action, enabling symbolic action planning.
 Embodied AI systems have moved beyond this simple
sort of system, but retain much of the flavor. In typical
approaches, the core of the system deals with the world in
terms of an abstract representation, and peripheral
processes, considered as largely independent of the
problem-solving part of the system, convert between the
abstract representation and the world. This approach leads
to systems where the perception and action pieces are
designed together—each action corresponds to a
straightforward transition in perception, so reasoning
solely in terms of the abstract representation is possible.
 We are investigating an alternative architecture that
integrates action, perception, and reasoning in such a way
that the generality of the overall system is increased. The
key aspect of this system (Figure 1b) is that perception and
action are mediated through a simple spatial representation.
The interface between this representation and the symbolic
system is generic and fixed. In addition to causing action in
the world, controllers can simulate action in the spatial
representation.
 With this system, generality is enhanced in two ways
compared to systems like those in Figure 1a. First,
mediating action and perception through a spatial
representation makes the system highly modular, allowing
different low-level controllers or high-level strategies to be
used without changing the rest of the system. Secondly, the
need for complicated action-specific perception processes,
as well as strategy-specific controllers, is greatly reduced.

(a)

Figure 1.

a: Simple approach to integrating action and reasoning.

b: Our approach, where a spatial imagery layer mediates

between the world and the symbolic system.

(b)

Symbolic System

Environment

Perception Controller

Symbolic System

Environment

High-Level

Perception
Controller

Spatial Representation

192

Since reasoning does not take place entirely at the abstract
symbolic level, perception does not have to provide
enough information to completely describe the world, nor
must controllers be designed such that commands result in
predetermined transitions between abstract states.
 This work is done in the context of the Soar cognitive
architecture (Laird, 2008). Soar has been extended recently
to handle problems involving space and motion, using
specialized representations and mechanisms inspired by
human perception and mental imagery. The extension to
Soar is SVS (Spatial/Visual System, Wintermute and
Lathrop, 2008). SVS provides the core of an action
simulation and execution system.
 To examine this system in detail, a case study will be
used. Since research in Soar/SVS is moving towards
robotics, a modern robotic motion-planning algorithm will
be examined. The RRT algorithm (LaValle, 2006) has been
used in many recent robots (e.g., Leonard et al., 2008), and
works through simulating action. Looking at developments
in the field of motion planning that led to RRT and other
similar algorithms, we can provide evidence that
simulation is an appropriate way to reason about action.
We will instantiate RRT in Soar/SVS, showing how all of
the parts of the system work together, and the generality
this approach affords.

Simulation and Motion Planning

A key aspect of our approach to action and planning is that
simulation is used for planning, rather than abstract symbol
transformations. Our chief reason for doing this is that it
leads to a more general system; however, there is
increasing evidence from robotic motion planning research
that regardless of generality concerns, simulation is an
appropriate way to plan motion.
 Motion planning research has usually been pursued
outside of the context of creating generally intelligent
systems. Earlier approaches focused on efforts to exactly
compute optimal paths for particular classes of robots, such
as polygon robots that can move in any direction. This
involves computing exactly the configuration space of the
robot, a space in which any path corresponds to a real path
to robot is able to follow. As motion planning has
progressed to address problems involving more and more
realistic robots, however, this exact computation has
become intractable (Lindemann and LaValle, 2003).
 One reason for this difficulty is that certain kinds of
constraints on motion are infeasible to capture in
representations like configuration spaces. Nonholonomic
constraints result from systems where the number of
controllable dimensions is less than the total number of
degrees of freedom. For instance, a car is nonholonomic,
since its position can be described by three parameters (x,
y, and an angle), but it is only controllable in two
dimensions (driving forward and reverse, and steering left
and right). Where it is relatively straightforward to
calculate the configuration space of a robot that can turn in
place, this is not as simple with a car-like robot. In addition

to nonholonomic constraints, traditional geometric motion
planning approaches also have trouble incorporating
dynamic constraints, where the path of the robot is affected
by dynamics, such as a car that can’t stop without slowing.
 Recently, sampling-based approaches have become
popular for planning with dynamic and nonholonomic
constraints (LaValle, 2006). In sampling-based motion
planning, the goal is not to exactly compute the
configuration space, but instead to sample it through
simulation. While previous approaches required difficult-
to-calculate specialized representations that were specific
to the particular motion under consideration, motion
planning through simulation requires only a basic spatial
representation, as details particular to the motion are
encapsulated in the controller. If the simulation is accurate,
motion plans can be guaranteed to meet nonholonomic and
dynamic constraints.
 This development from computation of configuration
space to sampling reflects only two of many prominent
techniques in motion planning. It is also worth mentioning
behavior-based approaches, where representations are
eschewed, and motion planning emerges from relatively
simple mappings from perceptions to actions (e.g., Brooks,
1991). While our approach most certainly involves
representations, it allows techniques developed in this
tradition to be used as controllers within a broader
symbolic AI system (in our case, the equations of Fajen
and Warren, 2003, are used).

The RRT Algorithm

RRT (Rapidly-exploring Random Trees, LaValle, 2006) is
a sampling-based motion planning algorithm that works by
constructing a tree of states of the robot, rooted at the
initial state, and adding nodes until that tree reaches the
goal. Nodes are generated by extending the tree in random
directions, in such a way that it will eventually reach the
goal, given enough time. Each path from the root of the
tree to a leaf represents a path that the robot could take,
constantly obeying all constraints on its motion. The tree is
constructed by the algorithm in Figure 2.
 Two of the steps in this figure hide the true complexity
of the algorithm. The steps to get the closest node to the
random state, and to extend that node towards the random
state, can both take substantial computation. This
computation is also specific to the exact problem being
solved, where the rest of the algorithm is general to all
motion planning problems.
 To determine the closest existing state to a random state,
some metric must be determined that can measure the
distance between states. In the case of car path planning, a
simple metric is the Euclidian distance between the two

Figure 2. Basic RRT Algorithm

make tree rooted at initial state

while tree does not reach goal

 generate random state -> Xr

 get closest existing state to Xr -> Xc

 extend Xc towards Xr -> Xn

 if no collision occurred

 add Xn to the tree, connected to Xc

193

states, with the condition that the distance is infinite if the
target state is not in front of the source.
 The other problem-specific step in the algorithm is
extending the chosen node towards the new state, while
detecting collisions along the path. A typical approach is to
numerically integrate differential equations to simulate
motion, resulting in a sequence of states parameterized by
time. This simulation must occur within a system capable
of detecting collisions.

The Soar/SVS Architecture

The Soar cognitive architecture (Laird, 2008) provides the
basis of our system. Work in Soar has traditionally focused
on symbolic processing, and that remains a strength of the
system. SVS builds on two prior lines of work on
extending Soar to encompass non-symbolic spatial and
visual representations, SVI (Lathrop, 2008), and SRS
(Wintermute and Laird, 2008).
 SVS encompasses the capabilities of both of these
previous systems. Figure 3 shows the relevant parts of the
system for this discussion. Compared to the generic
diagram in Figure 1b, the names of some of the parts have
changed, and two ways of adding objects to the scene from
the top down have been added. SVS contains a long-term
memory of the 3D structure of objects and the relationships
between them, called the Perceptual LTM. By accessing
this memory, Soar can recall objects or entire scenes to its
Spatial Scene short-term memory as necessary. Sometimes,
it is also necessary to add qualitatively described new
objects to the scene, such as a line between two objects.
This is called predicate projection (Chandrasekaran, 1998).
A complementary process, predicate extraction, allows
Soar to determine qualitative information about the
contents of the scene, such as whether two objects
intersect. This is the high-level perception box from Figure
1b, it contains the fixed processes through which Soar
perceives the spatial world.
 SVS also contains representations and mechanisms for
dealing with 2D visual data, which are not used in this
work. An external environment is also not used, all
reasoning occurs in scenes retrieved from memory.
 SVS and its predecessor systems have been used to
study problems such as reasoning about positioning of
military scouts to observe enemy units (Lathrop, 2008),
and determining the layout of buildings in a real-time
strategy game (Wintermute and Laird, 2008). Particularly

relevant to this work, we have previously addressed
reasoning with motion (Wintermute and Laird, 2008).
 The interface between SVS and Soar is designed to work
at a qualitative level (outside of a few exceptions). This
means that information exchanged between Soar and SVS
is expressed chiefly in terms of references to known items
in one of SVS’s memories and a library of fixed qualitative
relationships. Detailed quantitative information, such as the
continuous coordinates describing the polyhedrons in the
scene, is inaccessible to Soar.
 One way to add new objects to the SVS scene is by
applying a known motion to an existing object. Motions
are encapsulated as motion models. These allow stepwise
simulations of particular motions to be invoked. To do this,
the Soar agent specifics which motion model to apply,
which existing object to move, and any other object
parameters, such as a goal object. For example, the agent
can apply motion drive to object car, moving towards
object goal. SVS responds to this command by building
an image of car, driving towards goal. The symbolic
command also has a parameter for time—changing the
time steps the motion forward.
 Complex termination conditions are not declared to SVS
beforehand, instead, the general capabilities that allow
Soar to extract information from the scene are used. For
example, Soar can query whether objects in the scene are
intersecting. If the conditions for car-driving to terminate
are that it has collided with an obstacle, Soar can query as
to whether the moving car intersects with any obstacles,
and stop updating the motion once this becomes true.
 Motion models can be used to reason over any motion,
including the agent’s own actions, actions of others, and
environmental movement. In the first case, the motion
model will be the same as the actual controller for the
motion, just simulating its output in the scene, instead of
executing it in the environment. We will use the terms
“motion model” and “controller” interchangeably when
talking about actions for this reason.

Implementing RRT in Soar/SVS

In order to explore reasoning about action in our system,
we have instantiated the RRT algorithm in a Soar agent.
The problem we considered is that of planning to drive a
car from an initial state to a goal region, while avoiding
obstacles in a known environment. The car motion model
takes as input the identity of a car in the scene, and the
location of a goal. Inside this model, a system of
differential equations that describe the configuration of a
simple car-like vehicle as a function of the time and goal
location is used. When integrated numerically, these
equations yield a sequence of configurations, allowing for
simulation. These equations were determined by
combining a model of human movement (Fajen and
Warren, 2003) with a simple car model (LaValle, 2006).
The human model controls the intended steering angle of
the car, and this steering angle determines the next position
of the car. A constant speed is assumed.

Figure 3. The SVS system.

Soar

Environment

Predicate

Extraction

Spatial Scene

Motion

Model

Predicate

Projection

Perceptual

LTM

194

 The controller simulates motion towards a goal, while
maintaining the nonholonomic constraints of the vehicle.
Along with geometric models of the car and world in the
LTM of SVS, it is the low-level knowledge that was added
to the existing SVS system to implement this planner.
 Symbolic Soar rules were written to perform the
algorithm in Figure 2. The algorithm relies on existing
architectural functionality in the interface between Soar
and SVS. As a metric for node distance, our
implementation used the Euclidean distance, with the
condition that the distance is infinite where the goal is not
“in front” of the node. SVS includes mechanisms for Soar
to extract distances, and to query for an in-front
relationship. The motion model described above enables
simulation, and SVS supports querying for intersections
between objects in the scene, enabling collision detection.
The only new mechanism in SVS to support this algorithm
was a method to generate random goal points in the scene,
which was a simple addition.
 Examples of the SVS scene during RRT planning are
shown in Figure 4 (top). Soar stores, as a symbolic
structure in its working memory, the RRT tree. The nodes
in that tree are symbolic indexes into SVS—they point to
specific objects in the scene, which can be seen in the
figure. Soar proceeds by adding new random point objects
to the scene, and querying for the distance from each node
to that object, which are then compared to find the closest.
A simulation is then instantiated with that node as the
initial conditions (creating a new car object in the scene),
this simulation is stepped until a certain time is reached,
the goal is reached, or Soar detects a collision with an
obstacle. In all but the last case, the termination of the
simulation results in a new tree node being added. In
addition to moving towards random points, with a certain
probability the agent instead tries to extend the tree directly
towards the overall goal, biasing the tree in that direction.

RRT Planning with Local Obstacle Avoidance

It is clear that the controller in the previous example leaves
much room for improvement. The task is to avoid obstacles
while driving towards the goal, but the controller knows
nothing about obstacles. All obstacle avoidance happens by
pruning the tree when simulations collide with obstacles.
 As is done in Fajen and Warren (2003), the above
controller can be enhanced to be biased to avoid obstacles,
in addition to moving toward the goal. Each obstacle
affects the steering of the car, with nearer obstacles located
towards the front of the car having the most influence. This
requires slightly more information to be provided to the
controller: the identities of the obstacles. Other than that,
the system outside of the controller remains unchanged.
 With this new, smarter controller, performance is greatly
increased. An example instance is shown in Figure 4
(bottom), note that the number of states in the RRT tree
before a solution is found is much less than in the top of
the figure. Over 100 trials of the scenario presented in
Figure 4, the average number of individual simulations
needed to solve the problem was 128 without obstacle
avoidance and only 12 when it was present.

Discussion

 These case studies exemplify how reasoning and action
can be integrated through simulation. In general, problems
are decomposed between high-level algorithmic
knowledge, instantiated in the symbolic system, and low-
level action knowledge, instantiated as motion models.
There is a spatial representation allowing real and
imaginary situations to be instantiated, and fixed processes
which communicate between that representation and the
symbolic level. Complex reasoning about action occurs
through interplay of low-level simulation and high-level
symbolic reasoning over simulation results, detecting
spatial interactions and making decisions accordingly.
 The interface between the spatial and symbolic levels is
the only means by which symbolic processing in Soar can
obtain information about the results of lower-level
processing. Soar uses the Predicate Extraction system in
Figure 3 to query the scene for information such as which
objects intersect which, relative directions, and other
simple qualitative relationships. The commitment to make
this system fixed is important, as it implies that the type of
qualitative spatial information available to the symbolic
system is the same, regardless of the task. The poverty
conjecture of Forbus et al. (1991) states that “there is no
purely qualitative, general-purpose, representation of
spatial properties”, and if this is true, the decision to use a
fixed representation, calculated without task knowledge,
seems a poor choice.
 However, this conjecture might not apply to our system,
as the qualitative representation used does not have to be
rich enough to enable purely qualitative reasoning (and
hence is not really “general purpose”). The essential role of
simulation with respect to symbolic reasoning is that of an

(c)

Figure 4. States of SVS Spatial Scene during RRT planning.

The problem is to drive a car from lower-left to upper-right.

(a). RRT tree for goal-seeking controller, just before a

solution is found.

(b). Sequence of car positions that solve the problem.

(c), (d). Same, for obstacle-avoiding controller.

(b)

(d)

(a)

195

action model. The system is able to predict the symbolic
consequences of symbolically described actions—for
example, inferring that driving a certain car object toward
the goal leads to a collision. Since simulation is available,
the qualitative representation used needs to be only rich
enough to capture important aspects of the current state of
the spatial system, not the implications of action.
 The alternative to this is to represent the consequences
of actions completely symbolically, as in planning systems
such as STRIPS. Consider a problem in a variant of the
blocks world. In this problem, a robot finds itself in front
of a table with blocks on it, and must stack them in a
certain way (e.g, A on B, and C on A). Each time it
encounters a table, the robot’s perception system must
encode the problem in such a way that planning can be
performed. This encoding must capture both the states of
the world (such as on(B,C) and clear(C)), and the way
those states are transformed by action. The robot can make
certain assumptions about any table it encounters. For
example, if a block is clear (has nothing on top of it), it can
be moved to the top of a different clear block. However, in
a divergence from the standard blocks world, the table is
not always clear—in this case, the table is divided into
numbered bins, and blocks must be placed entirely inside a
bin. Not all of the bins are wide enough to fit a block,
though, and the block will fall to the floor if the agent
places it there. So depending on the exact table the robot
has encountered, the result of moving block A into bin 3 is
either inBin(A, bin3), or onFloor(A).
 To allow purely symbolic planning in this domain, the
perception system of the robot must then compare each
bin’s size to the width of a block, and generate its state
transition rules accordingly. In this way, creating the
qualitative representation of the problem requires very
task-specific calculations to be performed in the perception
system in order for that representation to capture the
consequences of actions. In contrast, if actions can be
simulated in a spatial representation, this can instead be
accounted for by simulating placing a block in the bin, and
simply checking if it intersects a wall
 While there is no proof that the symbolic representations
used in Soar/SVS are general enough that all reasonable
tasks can be represented, it is clear that the symbolic
representation needed when actions can be simulated is
much simpler than the representation needed to solve
problems entirely at the symbolic level. The high-level
perception system that builds this representation can then
be much simpler if simulation is possible.
 Similarly, the ability to simulate actions simplifies the
requirements of the low-level action system. Consider
again the standard planning approach to a problem like
those in blocks world. In order to represent the problem
completely symbolically, the effect of every possible
action on every possible state must be characterized before
the problem can be solved. In addition to increasing the
need for task-dependant perception, as discussed above,
this requires that the controllers used by the system have
simple-to-characterize guarantees on their performance.

For instance, in blocks world, it is assumed that the
controller can reliably perform an action like moving a
block from the top of one stack to another for any two
stacks present. If actions can instead be simulated, these
guarantees are unnecessary—the behavior of the controller
does not need to be symbolically characterized before
reasoning can begin.
 To further illustrate this point, contrast the RRT agent
with obstacle avoidance described above with a more
traditional graph-search approach. If a robot can be
approximated by a circle and can turn in place, concise
representations of relevant locations for the robot to move
in the world can be derived. Using this representation, a
graph of nodes and distances between them, optimal path
planning can be done using an algorithm like A*. If this
graph is the robot’s perception, and its actions move
between nodes, reasoning about action is a simple graph
search. Consider the complication involved in using this
form of perception and action, though. Perception involves
computing the configuration space of the robot, and paths
within it that lie entirely outside of obstacles. Actions must
map directly onto transitions between nodes of the graph,
so a controller must be used that guarantees accurate
execution of these transitions.
 In contrast, the RRT planner needs only very simple
perceptions, such as which objects intersect which others,
and the general direction and distance between objects.
The actions of the robot do not have to be symbolically
characterized beforehand for the planner to work. For a
controller like the obstacle-avoiding car used above, it
would be very hard to characterize in what cases it is able
to guide the robot to the goal and in what cases it isn’t.
 Ignoring other concerns, such as the limited applicability
of graph-search planning for more complicated robots, and
the suboptimal performance of RRT for simple robots, it is
clear that integrating reasoning and action through
simulation requires simpler perception and less-constrained
action systems than reasoning solely at the symbolic level.
 This simplification of perception and action systems
afforded by the use of simulation allows for a highly
modular overall system. The interface between the
symbolic system and spatial representation, which involves
complicated transformations between symbolic and
quantitative representations, is fixed; new capabilities can
be added to the system without modifying this interface.
For example, a different approach to path planning has
been previously implemented in Soar/SVS (Wintermute
and Laird, 2008). In this case, the problem was approached
by detecting which obstacles lie between the car and the
goal, and deliberately creating waypoints in the scene to
divert around them. This is a very different overall
algorithm than RRT, but the agent itself differs only in the
high-level Soar rules that describe it. Changes in the
interface between Soar and the spatial system were not
needed, nor were changes in the controller.
 This fixed symbolic/quantitative interface also allows
for modularity in the controllers used. This is seen in the
above examination of the RRT planner, where an obstacle-

196

avoiding controller was substituted for a simpler goal-
seeking controller, while requiring minimal changes to the
rest of the system. Controllers in the system take the
majority of input and create output in terms of spatial
objects. Their interface to the symbolic system simply
points them to the relevant objects in the scene and
provides time. Controllers can be built which work
internally with continuous numbers, the same format in
which the scene is represented, so there is no need for a
difficult representation conversion at the controllers input
and output like there might be if the controller interfaced
only to the symbolic system.

Related Work

The integration of reactive behavior and deliberative
reasoning in robotics architecture has been investigated,
such as by Arkin (1989) and many others. However, most
of these systems involve using deliberative reasoning to
serialize different reactive behaviors (thus fitting Figure
1a), and do not involve simulation. Some previous systems
do use simulation of reactive behavior to guide reasoning.
MetaToto (Stein, 1994) emphasizes this, but doesn’t focus
on enabling general high-level reasoning as our system
does. 4D/RCS (Albus, 2003) includes simulation ability,
but is more of a scheme for organizing an agent, rather
than a commitment to a specific set of components.
 From an AI point of view, this work inherits much from
research in diagrammatic reasoning (e.g., Chandrasekaran,
1997). Comirit (Johnston and Williams, 2008) is also a
similar approach to ours, integrating logic with physical
simulation, but is not used for action and doesn’t have a
spatial representation. Our use of a spatial representation to
simplify symbolic reasoning builds on previous work
looking at the frame problem (Huffman and Laird, 1992).

Conclusion

We have shown that Soar with SVS is able to use imagery
to solve motion planning problems. This was done using
the existing fixed functionality of SVS to communicate
between Soar and the scene, and adding symbolic
knowledge to Soar encoding the high-level RRT algorithm
and low-level knowledge in the form of a controller. While
this system has not yet been implemented on a real robot,
RRT has (e.g., Leonard et al., 2008), so some version of
this approach is feasible with current technology.
 This system is presented as an example of integrating
action and symbolic reasoning through spatial simulation.
This allows the symbolic system to reason about the
problem, but removes the requirement that the entire
problem be represented symbolically. Because of this, the
perception system needed is simpler and more problem-
independent than would otherwise be required, and
controllers can be used without symbolically characterizing
them beforehand. A very modular system is then possible,
since symbolic and control processing are mediated by the
spatial system and its fixed qualitative/spatial interface.
While many existing systems use major elements of this

approach, this work has attempted to make explicit the
argument for how and why this form of integration is a
step on the path toward more general AI systems.

Acknowledgements

John Laird provided guidance and support on this project,
and assisted in editing. Joseph Xu and Nicholas Gorski
provided useful conversations in formulating the ideas
behind this paper. This research was funded by a grant
from US Army TARDEC.

References

Albus, J.S., 2003. 4D/RCS: A reference model architecture for

intelligent unmanned ground vehicles. In Proceedings of SPIE.

Arkin, R.C., 1989. Towards the unification of navigational

planning and reactive control. In AAAI Spring Symposium on

Robot Navigation. Stanford, CA.

Brooks, R.A., 1991. Intelligence without representation. Artificial

Intelligence, 47, 139-159.

Chandrasekaran, B., 1997. Diagrammatic representation and

reasoning: some distinctions. In AAAI Fall Symposium on

Diagrammatic Reasoning. Boston, MA.

Fajen, B.R. & Warren, W.H., 2003. Behavioral dynamics of

steering, obstacle avoidance, and route selection. J. Experimental

Psychology: Human Perception and Performance, 29(2).

Forbus, K.D., Nielsen, P. & Faltings, B., 1991. Qualitative spatial

reasoning: the CLOCK project. Artificial Intelligence, 51(1-3).

Huffman, S. & Laird, J.E., 1992. Using Concrete, Perceptually-

Based Representations to Avoid the Frame Problem. In AAAI

Spring Symp. on Reasoning with Diagrammatic Representations.

Johnston, B. & Williams, M., 2008. Comirit: Commonsense

Reasoning by Integrating Simulation and Logic. In Proc. First

Conference on Artificial General Intelligence.

Laird, J.E., 2008. Extending the Soar Cognitive Architecture. In

Proc. First Conference on Artificial General Intelligence.

Lathrop, S.D., 2008. Extending Cognitive Architectures with

Spatial and Visual Imagery Mechanisms. PhD Thesis, University

of Michigan.

LaValle, S.M., 2006. Planning Algorithms, Cambridge U. Press.

Leonard, J. et al., 2008. A perception-driven autonomous urban

vehicle. Journal of Field Robotics, 25(10)

Lindemann, S.R. & LaValle, S.M., 2003. Current issues in

sampling-based motion planning. In Proceedings of the

International Symposium of Robotics Research. Springer.

Newell, A., 1990. Unified theories of cognition, Harvard

University Press Cambridge, MA.

Stein, L.A., 1994. Imagination and situated cognition. Journal of

Experimental and Theoretical Artificial Intelligence, 6.

Wintermute, S. & Laird, J.E., 2008. Bimodal Spatial Reasoning

with Continuous Motion. In Proceedings of AAAI-08. Chicago.

Wintermute, S. & Lathrop, S.D., 2008. AI and Mental Imagery.

In AAAI Fall Symposium on Naturally Inspired AI.

197

Neuroscience and AI Share the Same Elegant Mathematical Trap

Tsvi Achler, Eyal Amir

University of Illinois at Urbana-Champaign
201 N. Goodwin Ave, Urbana IL 61801, USA

Abstract

Animals display exceptionally robust recognition abilities to
analyze scenes compared to artificial means. The prevailing
hypothesis in both the neuroscience and AI literatures is that
the brain recognizes its environment using optimized
connections. These connections are determined through a
gradual update of weights mediated by learning. The
training and test distributions can be constrained to be
similar so weights can be optimized for any arbitrary
pattern. Thus both fields fit a mathematical-statistical
framework that is well defined and elegant.
Despite its prevalence in the literature, it remains difficult to
find strong experimental support for this mechanism within
neuroscience. Furthermore this approach is not ideally
optimized for novel combinations of previously learned
patterns which typically form a scene. It may require an
exponential amount of training data to achieve good
precision.
The purpose of paper is to 1) review the difficulties
associated with this approach in both neuroscience
experiments and AI scenarios. 2) Direct the reader towards
‘less elegant’ mathematically-difficult inherently nonlinear
methods that also address both literatures (better optimized
for scenes and emulating experiments) but perform
recognition without optimized weight parameters.

Introduction
Though modern day studies reveal important information
about the brain, for example, which regions of the brain
become active, the underlying circuits are still unknown.
The unparalleled robustness of brain processing serves as a
motivation for AI. Hebb’s seminal work led to the phrase
‘what fires together wires together’. Since then, the
predominant hypothesis is that the brain performs
computations based on optimized connections determined
by learning-dependent synaptic plasticity. It hypothesizes
small incremental and distributed changes in the networks
during learning of connection weights. The networks are
not dependent on single individual connections and as a
biological model are resistant to injury of single units.
Moreover, the networks can learn any arbitrary function as
long as the training distribution is similar to the test
distribution. This requirement also facilitates probabilistic
analysis, tying into probability theory and well-defined
mathematical analysis. This approach elegantly connects
neuroscience, probability theory and a practical ability to
learn any arbitrary pattern. Subsequently it is the
fundamental building block for the fields of machine
learning and AI.

Searching Under the Streetlight
Despite the elegance of this mechanism, two problems
persist: 1) The AI methods do not seem to scale to brain
function. 2) Synaptic plasticity mechanisms are still
mysterious after over a half-century of experiments.
Neuroscience. Synaptic plasticity in the context of
learning is the most studied phenomenon in neuroscience.
A search in the Pubmed database reveals 13,000
publications.
Synaptic plasticity is assumed to occur whenever a long-
lasting change in communication between two neurons
occurs as a consequence of stimulating them
simultaneously. The changes are labeled Long Term
Potentiation (LTP) or Long Term Depression (LTD), if the
responses increase or decrease respectively.
Understanding these experiments’ motivation and design
enables the understanding of the variability of results.
In the simplest scenario, two electrodes are introduced into
two neurons within brain tissue and activation of one
electrode (neuron) will cause a response in the other (note:
electrodes may be placed in numerous neurons before an
appropriate pair is found). In these experiments, the
electrode that is used to stimulate a response is the input
electrode and the electrode that records the response is the
output electrode. Once this configuration is found, an
activation protocol is followed. Stimulation of the input
electrode is adjusted until the output neuron fires 50% of
the time. The electrical settings of the input electrode that
satisfy this characteristic are labeled as the Amplitude of
50% (A50).
 ‘Synaptic change’ is induced by stimulating the electrodes
simultaneously and in rapid succession. After induction is
complete, A50 is applied again to the input and any changes
in the output electrode are observed. If the output activity
is greater than the original 50% then LTP occurred. If the
output activity is less than 50% then LTD occurred. These
changes can last for hours or days (as long as the
experimental preparation is viable).
A problem with this experimental design is that the high-
frequency stimulation of Long Term Potentiation induction
can affect many neurons, yet their contribution to the LTP
phenomena is rarely considered. The synaptic plasticity
hypothesis assumes that the only important interaction is
between the input and output neurons. However this is
highly variable suggesting a multi-cell mechanism. In
experiments in brain regions that involve sensory
processing, memory and logic, there are always more
neurons present than a single input and output neuron.

198

Thus it is not surprising that it is difficult to determine
under what induction patterns LTP occurs and under what
induction patterns LTD occurs. Some studies find that if
the input electrode spikes are activated within tens of
milliseconds before the output electrode spikes, LTP is
induced. The reversed order of firing results in LTD. In
other studies, the electrode of the first spike or the last
spike can determine the LTP or LTD and their magnitude.
Yet other studies show that modification is frequency
dependent. High-frequency bursts of spikes lead to LTP,
regardless of the relative input-output electrode timing.
Even other studies show that spikes are not necessary for
the induction of LTP and LTD (Froemke, Tsay et al.
2006). Furthermore, these properties may change during
development. Thus the criteria just to induce LTP or LTD
are unclear.
In summary, reliable activity-dependent plasticity relations
have not been determined in sensory regions, let alone
more complex learning algorithms. Clearly, robust
learning occurs in the brain. However learning rules that
are based on connection weights and able to learn any
arbitrary pattern may not be warranted biologically or even
beneficial functionally.
AI. Learning algorithms require the training distribution
and the test distribution to be the same. This limits AI
because the distribution is violated in the natural
environment such as a scene with many patterns. If a
network is trained on pattern A and B separately and they
are presented side-by-side simultaneously, this is outside
the training distribution. Because of distribution limits,
every pair of patterns possible (or triplets, quadruplets,
etc.) must be trained. This type of problem is inescapable
because it occurs with objects embedded within other
objects (another common natural occurrence). This
combinatorial explosion of training is long known as the
‘superposition catastrophe problem’ (Rosenblatt 1962;
Rachkovskij and Kussul 2001). This problem is mostly
due to the fundamental distribution assumptions in learning
and has important implications for robustness. Thus, in
order to implement AGI training requirements should be
relaxed, and alternatives to connection parameter
optimization explored. AGI algorithms should make
intelligent structured inference onto different distributions.

Steps Forward
An example of a network that is less elegant in terms of
solvability, but more powerful in handling situations
outside of its training distribution is a self-regulatory
feedback network (Achler, Omar et al. 2008).
This method was deduced from biological studies showing
an overwhelming preponderance of feedback inhibition.
Self-regulatory feedback, inhibitory feedback from outputs
back to inputs (also known as pre-synaptic inhibition in
neuroscience and negative feedback in engineering) are
found in same numbers as feed-forward connections in the
brain, especially in sensory processing regions.
Its functional characteristics are difficult to derive
analytically (such connections are inherently nonlinear) but

are better optimized for novel combinations of previously
learned patterns, scenes (Achler, Omar et al. 2008).
Though connections are determined by supervised
learning, they are not trained in a conventional sense (i.e.
through parameter optimization) since there are no
connection weights to optimize.
However, this network implements a surprisingly robust
multiclass classifier that can process simultaneous patterns
(Achler, Omar et al. 2008) addressing the superposition
catastrophe problem. Furthermore the networks make
complex recognition decisions based on distributed
processing (Achler and Amir 2008) addressing components
of the binding problem. This structure requires minimal
resources (less parameters) and training.
As importantly, given the scenario of an LTP experiment,
the network behaves in a similar manner to that predicted
by activity-dependent synaptic plasticity. However, no
connection changes are needed (Achler 2008). This
approach demonstrates that by relaxing training and
distribution requirements there may be more benefits than
difficulties.

Conclusion
To move forward towards AGI and better understanding of
brain circuits, researchers must be willing to trade elegant
mathematics for nonlinear methods that are difficult to
solve, but function beyond the distribution limits.

Acknowledgements
Michelle Madonia. U.S. National Geospatial Agency Grant
HM1582-06--BAA-0001.

References
Achler, T. (2008). Plasticity Without the Synapse: A Non-
Hebbian Account of LTP. Society for Neuroscience.
Washington DC.
Achler, T. and E. Amir (2008). "Input Feedback Networks:
Classification and Inference Based on Network Structure."
Artificial General Intelligence 1: 15-26.
Achler, T., C. Omar, et al. (2008). "Shedding Weights:
More With Less." Proceedings of the 2008 IEEE
International Joint Conference on Neural Networks
(IJCNN'08).
Froemke, R. C., I. A. Tsay, et al. (2006). "Contribution of
individual spikes in burst-induced long-term synaptic
modification." J Neurophysiol 95(3): 1620-9.
Rachkovskij, D. A. and E. M. Kussul (2001). "Binding and
Normalization of Binary Sparse Distributed
Representations by Context-Dependent Thinning." Neural
Computation 13(2): 411-452.
Rosenblatt, F. (1962). Principles of neurodynamics;
perceptrons and the theory of brain mechanisms.
Washington,, Spartan Books.

199

Relevance Based Planning: Why Its a Core Process for AGI
Eric B. Baum

Baum Research Enterprises
41 Allison Road

Princeton NJ 08540
ebaum@fastmail.fm

Abstract
Relevance Based Planning (RBP) is a general method that
plans in interaction with a domain simulation and domain
specialized procedures. I argue that exploitation of the
properties of causality and Euclidean topology which hold in
many domains is a critical inductive bias necessary if an AGI
(or any intelligent program) is to generalize to new problems
and new domains, and is critical to human thought, and that
RBP achieves its efficiency by exploiting these properties in a
novel and powerful way, faithful to introspection in an
example task. RBP is proposed to be implemented as a
scaffold within an AGI or a CAD tool for producing intelligent
programs, that is to say as a general library procedure that
takes as inputs domain specialized procedures such as a
domain simulation and procedures for recognizing and dealing
with problems within the simulation. Supplied with such
procedures as inputs, the RBP scaffold provides a framework
that orchestrates plan formation and refinement in such a way
that only causally relevant configurations are considered.

Introduction
The critical question in AGI is generalization: how one

can generalize to solve new problems never before seen.
Consider figure 1. You may never have seen this Rube
Goldberg image before, but given a few minutes you can
work out how and whether it works, and if there were a
problem could suggest a fix. More generally, you can learn
in a few minutes or years, to solve generic problems in
whole new domains, for example new games or new
employment. The learning is remarkably fast, given the
complexity of the endeavor, and once one has learned, the
solution often happens in real time. Each such new domain
(or, arguably, new problem) requires rapidly constructing a
novel, powerful program within your mind and executing
it to solve new problems. I suggest that the only way this is
possible is because you exploit in constructing and
applying these mental programs certain underlying
structure and properties of the domains (causality,
Euclidean 3­D topology, etc); for example to analyze the
Rube Goldberg device, that you construct and run a mental
simulation of the system, and that doing this requires
retrieving and rapidly putting together special purpose
procedures that know how (or at least roughly how) to
exploit causality and apply mental simulations, and
procedures to analyze local structure, for example methods

to simulate bird flight or ball rolling. The solving process
follows causal chains, and may never bother to analyze the
faucet because causal chains never reach it. An extensive
literature indicates that human reasoning is model based
(cf (Johnson­Laird 1983).

I further conjecture (a) that a program to perform such
feats is naturally composed of scaffolds that take
specialized procedures as arguments, for example a
scaffold for handling the causal propagation and the
interaction with a simulation domain, that takes as
arguments procedures such as for recognizing and dealing
with specific kinds of obstacles in specific domains. If one
achieves a breakup like this, into general scaffold and
specialized1 procedures as inputs, then one can imagine
gaining a concisely specified program that can generalize
to rapidly construct programs dealing with new
circumstances. And I conjecture (b) that the structure of
such scaffolds can be informed by introspection.

Figure 1: A Rube Goldberg Device
Relevance Based Planning(RBP) is a procedure that

attempts to reproduce these aspects of thought. It is unlike
any planning algorithm that I am aware of in the literature
in its use of a simulation model and special purpose

1I refer to these as domain specialized to reflect the they
might be adapted or inherit from more general
procedures, which would further facilitate learning and
generalization to new domains.

200

procedures for simulating or dealing with local structures,
and in its fidelity to introspection at least in examples of
Sokoban where I have experimented. It was designed by
initially introspecting how I solve simple problems within
Sokoban and then abstracting the procedure to a high level
process that handles the causality, use of simulation
domain, and backup when problems are encountered, by
use of domain specific procedures recognizing and dealing
with various kinds of domain specific objects.

Here is some high level pseudo­code for RBP:

(1) Find high level plans by search or dynamic
programming over a simulation model, in which the search
is over sequences of domain­appropriate operations, for
example plans that allow counterfactual steps (steps that
apply an action or stored procedure that would be
applicable only if some obstacle in the simulation model
may be corrected, where the obstacle is of a type that is
known may be remediable). A high level plan then consists
of a sequential­in­time series of subgoals (or obstacles to
be overcome) that if solved should result in a solution.
(2) Refine one of these candidate plans in time order.
(3) As each obstacle in the plan is considered, invoke a
(specialized) method that attempts to deal with the
obstacle. The method typically performs some search on
the simulation domain (and may invoke or even
recursively call RBP).

Such calls to clearing methods typically pass
information about higher level goals within the plan, and
the called clearing method may then avoid searching a set
of actions to remove the obstacle that would have as
prerequisite previously achieving a higher level goal.
(4) If the search encounters other problems that would
require earlier actions, (problematic configurations in the
simulation domain that are perceived by agents for
recognizing them) insert earlier in the plan an attempt to
perform those actions first (typically by invoking a stored
method for dealing with that kind of obstacle).
(5) When changes are made in the domain simulation,
mark them, so that if they encumber later actions, you can
back up and try to insert the later actions first to avoid the
problem.
(6) Utilize a method of backing up to other high level plans
when it is discovered that a high level plan can not be
made to work, or of switching between high level plans as
more information is uncovered about them.

RBP illustrates the power of using a domain simulation.
It forms a high level plan over the simulation. Then it
analyzes it in interaction with the simulation. As modules
are executed to solve problems, the interaction with the
simulation creates patterns that summon other
modules/agents to solve them. This all happens in a causal
way: things being done on the simulation cause other
things to be done, and because the simulation realizes the
underlying causal structure of the world, this causal
structure is grounded. That is, it corresponds to reality. The
RBP framework also focuses the search to consider only

quantities causally relevant to fixing problems.
Many planning methods choose not to work in time

order for various good reasons(Russell and Norvig 375­
461). But by working on a candidate plan in time order,
RBP is assured, at the inner most loops of the program, of
only spending time considering positions that can be
reached, and which are causally relevant to a high level
plan. Introspection sometimes works out of time order on
causally local regions of a problem, which are later
interleaved in a causal (and time­sequential) fashion. As
discussed in (Baum 2008a) this can be to an extent handled
within RBP at a higher level.

(Baum 2008a) describes RBP in more detail, giving a
step by step walk­through of a particular example of the
application within the domain of Sokoban, and another
example (at a higher level goal within Sokoban) is
sketched. To formalize the pseudo­code to any given
domain or problem within a domain, requires supplying
various procedures that say what the obstacles are and how
they are dealt with, what deadlock configurations look like,
what counter­factuals are permitted, etc. In complex
situations it is expected that some of these will be too hard
to be hand coded, and will instead be produced by learning
from examples using module constructors such as
Evolutionary Economic Systems (Baum, 2008b).

If an RBP scaffold is provided, it can be made accessible
to module constructors within an AGI or CAD tool, so that
new programs can be automatically constructed, evolved,
or learned that invoke the RBP. An example where an RBP
planner was used in this way was given in (Schaul 2005).

A larger meta­goal of the project described in (Baum
2008b) is to construct Occam programs, programs that are
coded in extremely concise fashion so that they generalize
to new problems as such problems arise (or so that the
programs can be rapidly modified, say by a search through
meaningful modifications, to solve new problems). Search
programs can be incredibly concisely coded, so that coding
as an interaction of a number of search programs can be a
mode of achieving great conciseness. RBP's construction
of a program by composing a series of feasible­sized goal
oriented searches mirrors the basic structure of biological
development (cf (Baum 2008b)), and is similarly concisely
coded and robust.

References
Baum, Eric B. 2008a. Relevance Based Planning: A Worked
Example. http://www.whatisthought.com/planning.pdf .
Baum, Eric B. 2008b. Project to Build Programs That
Understand. Proceedings of AGI09 (this volume)
http://www.whatisthought.com/agipaper091.pdf .
Johnson­Laird, P. 1983. Mental Models. Harvard University
Press, Cambridge Ma.
Russell, S. and P. Norvig 2003. Artificial Intelligence: A Modern
Approach. Prentice­Hall, Saddle­River NJ.
Schaul, T. 2005. Evolution of a compact Sokoban solver. Master
Thesis, École Polytechnique Fédérale de Lausanne. posted on
http://whatisthought.com/eric.html

201

http://www.whatisthought.com/planning.pdf
http://whatisthought.com/eric.html
http://www.whatisthought.com/agipaper091.pdf

General Intelligence and Hypercomputation

Selmer Bringsjord
Department of Cognitive Science
Department of Computer Science

Rensselaer Polytechnic Institute (RPI)
Troy NY 12180 USA
selmer@rpi.edu

From its revolutionary arrival on the behaviorism-
dominated scene, the information-processing ap-
proach to both understanding human intelligence,
and to the attempt to bestow such intelligence on a
machine, has always proceeded under the assump-
tion that human cognition is fundamentally compu-
tation (e.g., see (vE95) in connection with CogSci,
and (Hau85) in connection with standard AI). But
this approach can no longer leave it at that; it can
no longer rest content with the coarse-grained creed
that its allegiance is to the view that intelligence
consists in processing information. There are two
reasons: First, AGI is now on the scene, insisting,
rightly, that general intelligence should be the fo-
cus. Second, ours is an age wherein the formal sci-
ence of information processing takes quite seriously
a detailed mathematical framework that generates
a difficult and profound question: “What kind of
information processing should those interested in
general intelligence take the mind to rest upon,
some form of standard, Turing-level computation,
or that and hypercomputation?” My question is
not to be confused with: “Which form of Turing-
level computation fits best with human cognition?”
This question has been raised, and debated, for
decades.1 A recent position on this question is
stated by (LEK+06), who argue that Turing-level
neurocomputation, rather than Turing-level quan-
tum computation, should be the preferred type of
information processing assumed and used in cogni-
tive science.

Recall that computation is formalized within
the space of functions from the natural numbers
N = {0, 1, 2, . . .} (or pairs, triples, quadruples, . . .
thereof) to the natural numbers; that is, within

F = {f |f : N × . . .×N −→ N}.
This is a rather large set. A very small (but infi-
nite) proper subset of it, T (hence T ⊂ F), is com-
posed of functions that Turing machines and their
equivalents (Register machines, programs written

Copyright c© 2009, The Second Conference on Artificial
General Intelligence (AGI-09.org). All rights reserved.

1E.g., see (Bri91).

in modern-day programming languages, the λ cal-
culus, etc.; a discussion of these and others in the
context of an account of standard computation can
be found in Bringsjord (Bri94)) can compute; these
are the Turing-computable functions. For example,
multiplication is one such function: it’s laborious
but conceptually trivial to specify a Turing machine
that, with any pair of natural numbers m and n
positioned on its tape to start, leaves m · n on its
tape after its processing is complete. Neurocom-
putation, as defined by the literature (LEK+06)
cite, is Turing-computable computation. If the
mind/brain merely neurocomputes, then it can’t
compute any of the functions in F that are not
in T . (If we let N denote those functions that neu-
rocomputation can handle, we have that N = T .)
The overwhelming majority of functions in F would
thus be beyond the reach of human persons to com-
pute.

The situation is the same no matter what type
of standard computation one selects. For example,
those inclined to favor traditional symbolic com-
putation aligned with first-order logic (over, say,
connectionism), are at bottom using standard Tur-
ing machines. For a more exotic example, consider
quantum computers: Standard quantum comput-
ers, first introduced by (Deu85), can only compute
the functions in T , but as some readers will know,
some of this quantum computation can be surpris-
ingly efficient. However, the efficiency of a machine
is entirely irrelevant to the class of functions it can
compute. All those functions commonly said to
be intractable, such as the class of NP-complete
functions, are in T . The truly intriguing quan-
tum computers would be those capable of hyper-
computation. At the moment, it remains an open
question as to whether some recherché forms of
quantum computation can compute Turing uncom-
putable functions. So, where Q ⊂ F contains the
functions computable by standard quantum com-
puters, we have Q = T .

Hypercomputation is the computing, by various
extremely powerful machines, of those functions in
F that are beyond the so-called Turing Limit; i.e.,

202

those functions (composing H) in F that aren’t in
T . The mathematics of hypercomputation is now
quite developed; the machines, definitions, and the-
orems in question are elegant and informative (e.g.,
see (SS94; Sie99; EN02; Cop98; HL00; BKS+06;
BZ03)).

The evidence that human persons hypercompute
comes in two forms: abstract and empirical.2 The
empirical evidence, in short, consists in the brute
fact that the following prophecy of Descartes still
stands.

If there were machines which bore a resemblance to
our body and imitated our actions as far as it was
morally possible to do so, we should always have
two very certain tests by which to recognize that,
for all that, they were not real men. The first is,
that they could never use speech or other signs as
we do when placing our thoughts on record for the
benefit of others . . . And the second difference is,
that although machines can perform certain things
as well as or perhaps better than any of us can do,
they infallibly fall short in others, by which means
we may discover that they did not act from knowl-
edge, but only for the disposition of their organs.
For while reason is a universal instrument which
can serve for all contingencies, these organs have
need of some special adaptation for every particu-
lar action. From this it follows that it is morally
impossible that there should be sufficient diversity
in any machine to allow it to act in all the events
of life in the same way as our reason causes us to
act. ((Des11), p. 116)

The advent of AGI heralds an epoch in which
the information-processing approach to intelligence
boldly confronts what AI simpliciter has for the
most part gradually retreated from: capturing gen-
eral intelligence. In the face of Descartes’ claim,
this spells surrender for AI, and an acute challenge
for AGI. It’s a brute fact that human cognizers, in
the logico-mathematical realm, conceive, manipu-
late, reason over . . . the space H (F – T) above
what Turing machines and their equivalents can
muster. Were this not happening, we would not
have the mathematics of hypercomputation sum-
marized above, the first part of which was discov-
ered in 1965, when one of the first hypercomputing
machines (trial-and-error machines) were specified
(Gol65; Put65). In this activity, the humans in
question use formal schemes that cannot even be
directly represented in any of the languages Turing
machines and their equivalents are restricted to us-
ing. Many AIniks will doubtless hold that in the fu-
ture their field will discover how to re-express these
highly expressive formal schemes, without loss of
meaning, in some standard, austere format used
to specify Turing-level computation. But AGI re-
searchers, on the other hand, may choose instead

2Interested readers can assess some of the abstract
evidence presented in (BA04; BKS+06).

to press forward in the hope of devising new for-
malisms and techniques up to the challenge of the
‘G’ in the acronym for their field.

References
[BA04] Selmer Bringsjord and Konstantine Arkoudas.
The modal argument for hypercomputing minds. The-
oretical Computer Science, 317:167–190, 2004.

[BKS+06] Selmer Bringsjord, Owen Kellett, Andrew
Shilliday, Joshua Taylor, Bram van Heuveln, Yin-
grui Yang, Jeffrey Baumes, and Kyle Ross. A new
Gödelian argument for hypercomputing minds based
on the busy beaver problem. Applied Mathematics and
Computation, 176:516–530, 2006.

[Bri91] S. Bringsjord. Is the connectionist-logicist clash
one of AI’s wonderful red herrings? Journal of Exper-
imental & Theoretical AI, 3.4:319–349, 1991.

[Bri94] S. Bringsjord. Computation, among other
things, is beneath us. Minds and Machines, 4.4:469–
488, 1994.

[BZ03] S. Bringsjord and M. Zenzen. Superminds: Peo-
ple Harness Hypercomputation, and More. Kluwer
Academic Publishers, Dordrecht, The Netherlands,
2003.

[Cop98] B. J. Copeland. Even Turing machines can
compute uncomputable functions. In J. Casti, editor,
Unconventional Models of Computation, pages 150–
164. Springer-Verlag, London, UK, 1998.

[Des11] R. Descartes. The Philosophical Works of
Descartes, Volume 1. Translated by Elizabeth S. Hal-
dane and G.R.T. Ross. Cambridge University Press,
Cambridge, UK, 1911.

[Deu85] D. Deutsch. Quantum theory, the Church-
Turing principle, and the universal quantum com-
puter. Proceedings of the Royal Society of London,
Series A, 400:87–117, 1985.

[EN02] G. Etesi and I. Nemeti. Non-turing computabil-
ity via malament-hogarth space-times. International
Journal of Theoretical Physics, 41(2):341–370, 2002.

[Gol65] M. Gold. Limiting recursion. Journal of Sym-
bolic Logic, 30(1):28–47, 1965.

[Hau85] J. Haugeland. Artificial Intelligence: The Very
Idea. MIT Press, Cambridge, MA, 1985.

[HL00] J. D. Hamkins and A. Lewis. Infinite time Tur-
ing machines. Journal of Symbolic Logic, 65(2):567–
604, 2000.

[LEK+06] A. Litt, C. Eliasmith, F. Kroon, S. Wein-
stein, and P. Thagard. Is the brain a quantum com-
puter? Cognitive Science, 30:593–603, 2006.

[Put65] H. Putnam. Trial and error predicates and a
solution to a problem of mostowski. Journal of Sym-
bolic Logic, 30(1):49–57, 1965.

[Sie99] H. T. Siegelmann. Neural Networks and Analog
Computation: Beyond the Turing Limit. Birkhäuser,
Boston, MA, 1999.

[SS94] H. Siegelmann and E.D. Sontag. Analog compu-
tation via neural nets. Theoretical Computer Science,
131:331–360, 1994.

[vE95] Barbara von Eckardt. What is Cognitive Sci-
ence? MIT Press, Cambridge, MA, 1995.

203

To appear, AGI-09 1

Stimulus processing in autonomously active cognitive systems

Claudius Gros
Institute of Theoretical Physics, J.W. Goethe University

60054 Frankfurt/Main, Germany

Abstract

The brain is autonomously active and possesses an on-
going internal dynamics which continues even in the
temporary absence of external sensory stimuli. New
experimental evidences, and theoretical considerations,
indicate that this eigendynamics plays a central role in
regulating the overall cognitive processing, a key prop-
erty which is expected to be true also for prospective
artificial cognitive systems, capable of synthetic gener-
alized intelligence.

It is therefore of paramount importance to study possi-
ble frameworks for autonomously active cognitive sys-
tems. We report here the status of research for an
approaches based on transient state dynamics and give
an overall view of the embedding of this new paradigm
within mainstream approaches in artificial intelligence
and systems neuroscience.

What is an autonomously active

cognitive systems?

Mainstream research both in artificial intelligence as
well as in robotics involves task solving (Konar 2005),
like hand-writing recognition, face recognition in pic-
tures or autonomous navigation by robotic cars a la
DARPA Grand Challenge. Tremendous progress has
been reported for many computational tasks and its a
long time that top human chess players had been able
to beat the best chess programs.

In this context the notion of ‘autonomy’ is usually
used in two different connotations. Autonomous robots
tackle the tasks given without external help, making use
of their own sensors and their previous programming. It
is often assumed implicitly, that a steady increase in the
complexity and in the versatility of autonomous robots
could, in the long-time perspective, eventually lead to
human-level universal artificial intelligence (AI).

There is an alternative view to this route to a gen-
eral artificial intelligence which is motivated both by
theory considerations and by recent advances in neu-
robiology (Gros 2009a; 2009b). In this view the term
‘autonomy’ has a different denotation. It is well known

Copyright c© 2008, The Second Conference on Artificial
General Intelligence (AGI-09.org). All rights reserved.

that the brain is autonomously active in the sense that
non-trivial cognitive neural activity persists even in the
prolonged absence of sensory input. The brain has the
task to process the sensory data input stream it re-
ceives in order to keep the body alive and functional, in
a dynamic environment. The question is then, whether
the autonomous eigendynamics is just a side effect, an
epiphenomena, of the interwoven activity of the con-
stituing cognitive modules. Alternatively it is possible
that the eigendynamics has a central regulating role.

In this second view cognitive capabilities evolve
through the mutual interaction between the au-
tonomous neural eigendynamics and the input the brain
receives from the sensory organs. Higher algorithmic
task solving capabilities are not genetically prewired
but evolve throughout the development of the growing
animal or the synthetic intelligence.

The self-sustained neural activity of the brain is in
this view a conditio sine qua non. Higher cognitive ca-
pabilities would neither evolve in the absence of this au-
tonomous dynamics nor would they be present at birth.
They are not encoded explicitly in the genes. The inter-
nal autonomous neural dynamics has, as a corollary of
this view, at birth no semantic content, since semantic
significance of neural activity patterns can arise only in
conjunction with environmental information.

Modelling principles

At the basis of this concept of autonomously active cog-
nitive systems lies the formulation of the internal self-
sustained dynamical activity, for which various govern-
ing principles have been proposed (Gros 2009a). Our
own approach is based on the notion of transient neural
states (Gros 2007), illustrated in Fig. 1, in part moti-
vated by experimental observations (Abeles et al. 1995;
Kenet et al. 2003). The time scale of the transiently
stable neural activity relates to the typical cognitive
time scale of about 80-100ms. Transient state dynam-
ics can be cast, within dynamical system theory (Gros
2008), into the framework of an attractor relic network
(Gros 2007; 2009a).

The internal dynamics of an autonomously active
cognitive system is not driven by the sensory input.
Identical stimuli will generally lead to different re-

204

marcus
Rectangle

To appear, AGI-09 2

time

ne
ur

al
 a

ct
iv

ity

sensory data input stream

self−generated internal dynamics

Figure 1: Cartoon of an autonomously active cognitive
system. The self-generated eigendynamics in terms of
a time series of transient states (top). This dynamical
activity is a priori not related to the sensory data input
stream (bottom), carrying environmental information.
Emergent cognitive capabilities need to result from the
emergence of correlation between the internal activity
and the sensory data stream through unsupervised on-
line learning.

sponses, or to no response at all, depending on the
currently ongoing internal activity (Arieli et al. 1996).
This state of affairs may be interpreted from two differ-
ent perspectives. On one side one may view the brain
as a finite-state machine for which the next state de-
pends both on the current state and on the input. From
a neurobiological perspective one may regard on the
other side the brain as an autonomously active system
for which the internal dynamics is modulated, but not
forcefully driven, by external stimuli.

The second viewpoint allows to formulate a simple
and yet very powerful principle governing the influ-
ence of the sensory data stream onto the internal ac-
tivity. The internal transient-state dynamics is real-
ized by competitive neural processes. This competition
can be influenced and modulated by the sensory input
when we assume that the sensory signals contribute to
the internal neural competition on an equal basis. This
principle has been implemented successfully (Gros &
Kaczor 2008) and tested for the bars problem. The
bars problem is a standardized setup for a non-linear
independent component task.

The exciting result is now the following (Gros & Kac-
zor 2008; Gros 2009a): We have a generalized neural
network which is continuously and autonomously ac-
tive on its own. There is no external teacher and no
explicit coding of any algorithm, all learning rules are
online and Hebbian-style. In this setup the competi-
tion of the internal, autonomously generated transient
state dynamics, with the data input stream leads to an

emergent cognitive capability, an independent compo-
nent analysis. As a result of this process the internal
transient states, the attractor relics, are mapped via
their respective receptive fields to objects present in the
environment, the independent components. The inter-
nal transient state dynamics acquires such a semantic
content and turns into an associative thought process.

Conclusions

This is a non-technical position paper and we refer to
the literature both for details on our own work (Gros
2007; 2009b), as well as for a review on the experi-
mental situation and on alternative approaches (Gros
2009a). These results demonstrate the feasibility of the
basic concept, the emergence of cognitive capabilities
through the interaction of the internal eigendynamics
and the external influences arriving via the sensory or-
gans. It is our believe that the field of autonomously
active cognitive system constitutes a field of emergent
importance, both for systems neuroscience as well as
for the eventual development of general artificial intel-
ligences.

References

Abeles, M.; Bergman, H.; Gat, I.; Meilijson, I.; Seide-
mann, E.; Tishby, N.; and Vaadia, E. 1995. Cortical
Activity Flips Among Quasi-Stationary States. Pro-
ceedings of the National Academy of Sciences 92:8616–
8620.

Arieli, A.; Sterkin, A.; Grinvald, A.; and Aertsen, A.
1996. Dynamics of Ongoing Activity: Explanation of
the Large Variability in Evoked Cortical Responses.
Science 273:1868.

Gros, C., and Kaczor, G. 2008. Learning in cognitive
systems with autonomous dynamics. In Proceedings
of the International Conference on Cognitive Systems,
Karlsruhe. Springer.

Gros, C. 2007. Neural networks with transient state
dynamics. New Journal of Physics 9:109.

Gros, C. 2008. Complex and Adaptive Dynamical Sys-
tems: A Primer. Springer.

Gros, C. 2009a. Cognitive computation with au-
tonomously active neural networks: an emerging field.
Cognitive Computation. (in press).

Gros, C. 2009b. Emotions, diffusive emotional control
and the motivational problem for autonomous cogni-
tive systems. In Handbook of Research on Synthetic
Emotions and Sociable Robotics: New Applications in
Affective Computing and Artificial Intelligence. J. Val-
lverdu, D. Casacuberta (Eds.), IGI-Global. (in press).

Kenet, T.; Bibitchkov, D.; Tsodyks, M.; Grinvald, A.;
and Arieli, A. 2003. Spontaneously emerging cortical
representations of visual attributes. Nature 425:954–
956.

Konar, A. 2005. Computational Intelligence: Princi-
ples, Techniques And Applications. Springer.

205

marcus
Rectangle

Distribution of Environments in Formal Measures of Intelligence

Bill Hibbard

University of Wisconsin – Madison
SSEC, 1225 W. Dayton St., Madison, WI 53706

Abstract
This paper shows that a constraint on universal Turing
machines is necessary for Legg's and Hutter's formal
measure of intelligence to be unbiased. It also explores
the relation of the No Free Lunch Theorem to formal
measures of intelligence.

Introduction
A formal definition of intelligence can provide a well-
defined goal to those developing artificial intelligence.
Legg's and Hutter's formal measure of the intelligence of
agents interacting with environments provides such a
definition (Legg and Hutter 2006). Their model includes
weighting distributions over time and environments. The
point of this paper is to argue that a constraint on the
weighting over environments is required for the utility of
the intelligence measure.

A Formal Measure of Intelligence
In Legg's and Hutter's measure, based on reinforcement
learning, an agent interacts with its environment at a
sequence of discrete times, sending action ai to the
environment and receiving observation oi and reward ri
from the environment at time i. These are members of
finite sets A, O and R respectively, where R is a set of
rational numbers between 0 and 1. The environment is
defined by a probability measure μ(okrk | o1r1a1 …
ok-1r k-1a k-1) and the agent is defined by a probability
measure π(ak | o1r1a1 … ok-1r k-1a k-1).

The value of agent π in environment μ is defined by
the expected value of rewards:

Vμ

π = E(∑i=1
∞ wiri)

where the wi ≥ 0 are a sequence of weights for future
rewards subject to ∑i=1

∞ wi = 1 (Legg and Hutter
combined the wi into the ri). In reinforcement learning
the wi are often taken to be (1-γ)γi-1 for some 0 < γ < 1.
Note 0 ≤ Vμ

π ≤ 1.
The intelligence of agent π is defined by a weighted

sum of its values over a set E of computable
environments. Environments are computed by programs,
finite binary strings, on some prefix universal Turing
machine (PUTM) U. The weight for μ ∈ E is defined in
terms of its Kolmogorov complexity:

K(μ) = min { |p| : U(p) computes μ }

where |p| denotes the length of program p. The
intelligence of agent π is:

Vπ = ∑μ∈E 2-K(μ) Vμ

π.

The value of this expression for Vπ is between 0 and

1 because of Kraft's Inequality for PUTMs (Li and
Vitányi 1997): ∑μ∈E 2-K(μ) ≤ 1.

Legg and Hutter state that because K(μ) is
independent of the choice of PUTM up to an additive
constant that is independent of μ, we can simply pick a
PUTM. They do caution that the choice of PUTM can
affect the relative intelligence of agents and discuss the
possibility of limiting PUTM complexity. But in fact a
constraint on PUTMs is necessary to avoid intelligence
measures biased toward specific environments:

Proposition 1. Given μ ∈ E and ε > 0 there exists a
PUTM Uμ such that for all agents π:

Vμ

π / 2 ≤ Vπ < Vμ
π / 2 + ε

where Vπ is computed using Uμ.

Proof. Fix a PUTM U0 that computes environments.
Given μ ∈ E and ε > 0, fix an integer n such that 2-n < ε.
Then construct a PUTM Uμ that computes μ given the
program "1", fails to halt (alternatively, computes μ)
given a program starting with between 1 and n 0's
followed by a 1, and computes U0(p) given a program of
n+1 0's followed by p. Now define K using Uμ. Clearly:

2-K(μ) = 1/2

And, applying Kraft's Inequality to U0:

∑μ' ≠ μ 2-K(μ') ≤ 2-n < ε.

So Vπ = Vμ
π / 2 + X where X = ∑μ' ≠ μ 2-K(μ') Vμ'

π and 0 ≤ X
< ε. �

Whatever PUTM is used to compute environments,
all but an arbitrarily small ε of an agent's intelligence is
determined by its value in a finite number of
environments. Lucky choices of actions at early, heavily
weighted time steps in simple, heavily weighted
environments, may give a less intelligent agent an
advantage greater than ε, that a more intelligent agent
cannot make up by good choices of actions in very
difficult, but lightly weighted environments.

Note that as environment complexity increases,
agents will require longer times to learn good actions.
Thus, given a distribution of time weights that is constant
over all environments, even the best agents will be
unable to get any value as environment complexity

206

increases to infinity. It would make sense for different
environments to have different time weight distributions.

Two points for consideration despite their being
discouraged by reviewers of this paper:

1. If PUTM programs were answers (as in
Solomonoff Induction, where an agent seeks programs
that match observed environment behavior) then
weighting short programs more heavily would make
sense, since shorter answers are better (according to
Occam's razor). But here they are being used as
questions and longer programs pose more difficult
questions so arguably should be weighted more heavily.

2. The physical universe contains no more than 1090
bits (Lloyd 2002) so is a finite state machine (FSM).
Hence an intelligence measure based on FSMs is more
realistic than one based on Turing machines.

No Free Lunch and a Finite Model
The No-Free-Lunch Theorem (NFLT) tells us that all
optimization algorithms have equal performance when
averaged over all finite environments (Wolpert and
Macready 1997). It is interesting to investigate what
relation this result has to intelligence measures that
average agent performance over environments.

To define an intelligence measure based on finite
environments take the sets A, O and R of actions,
observations and rewards as finite and fixed. An
environment is defined by a FSM:

f:S×A→S×O×R

where S is a finite set of states. The value of an agent in
this environment is the expected value of a weighted sum
over a finite sequence of future rewards, with weights
summing to 1. The measured intelligence of an agent is a
weighted sum of its values in environments whose state
set sizes fall in a finite range, weights summing to 1.

This finite model lacks an important hypothesis of
the NFLT: that the optimization algorithm never makes
the same action more than once. The same result can be
achieved by a no repeating state condition (NRSC) on
environment FSMs: that they can never repeat the same
state. Although this may seem artificial, it applies in the
physical universe because of the second law of
thermodynamics.

Assuming the NRSC and that all FSMs with the
same number of states share the same environment
weight and the same sequence of time weights, then all
agents have the same measured intelligence, the average
reward (∑r∈R r) / |R| (Hibbard 2008).

Conclusion
According to current physics the universe is a FSM
satisfying the NRSC. If we measure agent intelligence
using a distribution of FSMs satisfying the NRSC in
which all FSMs with the same number of states have the
same weight, then all agents have the same measured
intelligence. In this environment distribution past
behavior of environments provides no information about
their future behavior. For a useful measure of

intelligence, environments must be weighted to enable
agents to predict the future from the past. This is the idea
behind Kolmogorov complexity: to more heavily weight
environments that can be generated by short programs
since agents can more easily learn their behaviors.

However, Proposition 1 shows that a PUTM must be
chosen carefully in an intelligence measure based on
Kolmogorov complexity. This suggests a distribution of
environments based on program length but less abstract
than Kolmogorov complexity. So define a PUTM based
on an ordinary programming language.

States and behaviors never repeat in the physical
world, but human agents learn to predict future behavior
in the world by recognizing current behavior as similar
to previously observed behaviors and making predictions
based on those previous behaviors. Similarity can be
recognized in sequences of values from unstructured
sets such as {0, 1}, but there are more ways to
recognize similarity in sequences of values from sets
with metric and algebraic structures such as numerical
sets. Our physical world is described largely by
numerical variables, and the best human efforts to
predict behaviors in the physical world use numerical
programming languages. So the sets A and O of actions
and observations should be defined using numerical
values, just as rewards are taken from a numerical set R.
Including primitives for numerical operations in
environment programs has the effect of skewing the
distribution of environments toward similarity with the
physical world.

An ordinary numerical programming language is a
good candidate basis for a formal measure of
intelligence. But the real point of this paper is that
distributions over environments pose complex issues for
formal intelligence measures. Ultimately our definition
of intelligence depends on the intuition we develop from
using our minds in the physical world, and the key to a
useful formal measure is the way its weighting
distribution over environments abstracts from our world.

References
Hibbard, 2008. http://www.ssec.wisc.edu/~billh/g/de.pdf

Legg, S. and M. Hutter. Proc. A Formal Measure of
Machine Intelligence. 15th Annual Machine Learning
Conference of Belgium and The Netherlands (Benelearn
2006), pages 73-80.
http://www.idsia.ch/idsiareport/IDSIA-10-06.pdf

Li, M. and P. Vitányi, An Introduction to Kolmogorov
Complexity and Its Applications, 2nd ed.. Springer, New
York, 1997. 637 pages.

Lloyd, S. Computational Capacity of the Universe.
Phys.Rev.Lett. 88 (2002) 237901.
http://arxiv.org/abs/quant-ph/0110141

Wolpert, D. and W. Macready, No Free Lunch Theorems
for Optimization. IEEE Transactions on Evolutionary
Computation 1, 67. 1997.
http://ic.arc.nasa.gov/people/dhw/papers/78.pdf

207

The Importance of Being Neural-Symbolic – A Wilde Position

Pascal Hitzler
AIFB, Karlsruhe Institute of Technology, Germany

Kai-Uwe Kühnberger
IKW, University of Osnabrück, Germany

Abstract

We argue that Neural-Symbolic Integration is a topic
of central importance for the advancement of Artificial
General Intelligence.

What We Want

Artificial General Intelligence – the quest for artifi-
cially created entities with human-like abilities – has
been pursued by humanity since the invention of ma-
chines. It has also been a driving force in establishing
artificial intelligence (AI) as a discipline. 20th century
AI, however, has developed into a much narrower di-
rection, focussing more and more on special-purpose
and single-method driven solutions for problems which
were once (or still are) considered to be challenging, like
game playing, speech recognition, natural language un-
derstanding, computer vision, cognitive robotics, and
many others. 20th century AI can, in our opinion, be
perceived as expert system AI, producing and pursuing
solutions for specific tasks. We don’t say that this is
a bad development – quite in contrast, we think that
this was (and still is) a very worthwhile adventure with
ample (and in some cases well-proven) scope for consid-
erable impact on our society.

The pursuit of Artificial General Intelligence (AGI),
however, has been declining in the 20th century, pre-
sumably because the original vision of establishing sys-
tems with the envisioned capabilities turned out to be
much harder to realise than it had seemed in the begin-
ning. But in recent years a rejuvenation of the original
ideas has become apparent, driven on the one hand by
the insight that certain complex tasks are outside the
scope of specialised systems, and on the other hand
by rapid developments in the neurosciences based on
the invention of substantially refined means of record-
ing and analysing neural activation patterns in the
brain. These are accompanied by interdisciplinary ef-
forts within the cognitive science community, including
psychologists and linguists with similar visions.

It is apparent that the realisation of AGI requires
the cross-disciplinary integration of ideas, methods, and
theories. Indeed we believe that disciplines such as
(narrow) artificial intelligence, neuroscience, psychol-

ogy, and computational linguistics will have to converge
substantially before we can hope to realise human-like
artificially intelligent systems. One of the central ques-
tions in this pursuit is thus a meta-question: What are
concrete lines of research which can be pursued in the
immediate future in order to advance in the right direc-
tion? The general vision does not give any answers to
this, and while it is obvious that we require some grand
all-encompassing interdisciplinary theories for AGI, we
cannot hope to achieve this in one giant leap. For prac-
tical purposes – out of pure necessity since we cannot
shred our scientific inheritance – we require the iden-
tification of next steps, of particular topics which are
narrow enough so that they can be pursued, but gen-
eral enough so that they can advance us into the right
direction.

What We Propose

Our proposal for such a research direction starts from
two obvious observations.

• The physical implementation of our mind is based on
the neural system, i.e. on a network of neurons as
identified and investigated in the neurosciences. If
we hope to achieve Artificial General Intelligence, we
cannot expect to ignore this neural or subsymbolic
aspect of biological intelligent systems.

• Formal modelling of complex tasks and human think-
ing is based on symbol manipulation, complex sym-
bolic structures (like graphs, trees, shapes, and gram-
mars) and mathematical logic. At present, there ex-
ists no viable alternative to symbolic modelling in
order to encode complex tasks.

These two perspectives however – the neural and the
symbolic – are substantially orthogonal to each other in
terms of the state of the art in the corresponding dis-
ciplines. Neural systems are hard if not impossible to
understand symbolically. It is quite unclear at present
how symbolic processing at large emerges from neural
systems. Symbolic knowledge representation and ma-
nipulation at the level required for AGI is way outside
the scope of current artificial neural approaches.

At the same time humans – using their neural-based
brains – are able to deal successfully with symbolic

208

tasks, to manipulate symbolic formalisms, to represent
knowledge using them, and to solve complex problems
based on them. So apparently there is a considerable
mismatch between human neurophysiology and cogni-
tive capabilities as role models for AGI on the one hand,
and theories and computational models for neural sys-
tems and symbolic processing on the other hand.

It is our believe that significant progress in AGI re-
quires the unification of neural and symbolic approaches
in terms of theories and computational models. We be-
lieve that this unification is central for the advancement
of AGI. We also believe that the pursuit of this unifi-
cation is timely and feasible based on the current state
of the art, which is what we discuss next.

Where We Are

We briefly mention some recent developments in neural-
symbolic integration which we consider to be of particu-
lar importance. For further information on related top-
ics and the state of the art, we recommend to consult
(Bader and Hitzler, 2005; Hammer and Hitzler, 2007).

The line of investigation we want to mention takes
its starting point from computational models in (nar-
row) AI and machine learning. It sets out to realise
systems based on artificial neural networks which are
capable of learning and dealing with symbolic logic.
While this can be traced back to the landmark pa-
per (McCulloch and Pitts, 1943) on the relation be-
tween propositional logic and binary threshold neural
networks, it has been largely dormant until the 1990s,
where first neural-symbolic learning systems based on
these ideas were realised – see e.g. (Towell and Shav-
lik, 1994; d’Avila Garcez and Zaverucha, 1999; d’Avila
Garcez et al., 2002). While these initial systems were
still confined to propositional logics, in recent years
systems with similar capabilities based on first-order
logic have been realised – see e.g. (Gust et al., 2007;
Bader et al., 2008). It is to be noted, however, that
these systems – despite the fact that they provide a
conceptual breakthrough in symbol processing by arti-
ficial neural networks – are still severely limited in their
scope and applicability, and improvements in these di-
rections do not appear to be straightforward at all.

Our selection is obviously purely subjective, and
there are plenty of other related efforts which could
be mentioned. The line of investigation which we pre-
sented, however, appears to be typical and representa-
tive in that it is driven by computer science, machine
learning, or AI perspectives. We know of no work in
the area which is mainly driven by the AGI perspective,
and this includes or own achievements on the topic.1

1There are some investigations which are driven from a
neuroscience perspective, see e.g. (Yang and Shadlen, 2007),
but they do not yet cover higher-level cognitive modelling
in any reasonable sense.

Where To Go

We need to advance the state of the art in neural-
symbolic integration in order to get closer to the AGI
vision. For this, we need to improve on the established
approaches in order to find out to what limits they can
be pushed. In particular, this requires us to adapt and
improve them in order to become functional in cognitive
systems application scenarios.

At the same time, however, we also require new ideas
borrowed from other disciplines, in order to establish
neural-symbolic systems which are driven by the AGI
vision. Results from cognitive psychology on particular-
ities of human thinking which are not usually covered by
standard logical methods need to be included. Recent
paradigms for artificial neural networks which are more
strongly inspired from neuroscience – see e.g. (Maass,
2002) – need to be investigated for neural-symbolic in-
tegration. On top of this, we require creative new ideas
borrowed e.g. from dynamical systems theory or organic
computing to further the topic.

The challenges are ahead, and we hope to have con-
veyed the vital Importance of Being Neural-Symbolic.

References

Bader, S. and Hitzler, P. (2005). Dimensions of neural-
symbolic integration – a structured survey. In Arte-
mov, S. et al., editors, We Will Show Them: Essays
in Honour of Dov Gabbay, volume 1, pages 167–194.
King’s College Publications, London.

Bader, S., Hitzler, P., and Hölldobler, S. (2008). Con-
nectionist model generation: A first-order approach.
Neurocomputing, 71:2420–2432.

d’Avila Garcez, A., Broda, K., and Gabbay, D.
(2002). Neural-Symbolic Learning Systems — Foun-
dations and Applications. Springer, Berlin.

d’Avila Garcez, A. and Zaverucha, G. (1999). The con-
nectionist inductive lerarning and logic programming
system. Applied Intelligence, Special Issue on Neural
networks and Structured Knowledge, 11(1):59–77.

Gust, H., Kühnberger, K.-U., and Geibel, P. (2007).
Learning models of predicate logical theories with neu-
ral networks based on topos theory. In (Hammer and
Hitzler, 2007), pages 233–264.

Hammer, B. and Hitzler, P., editors (2007). Perspec-
tives of Neural-Symbolic Integration. Springer, Berlin.

Maass, W. (2002). Paradigms for computing with spik-
ing neurons. In van Hemmen, J. et al., editors, Models
of Neural Networks, pages 373–402. Springer.

McCulloch, W. and Pitts, W. (1943). A logical calcu-
lus of the ideas immanent in nervous activity. Bulletin
of Mathematical Biophysics, 5:115–133.

Towell, G. and Shavlik, J. (1994). Knowledge-based
artificial neural networks. Artificial Intelligence, 70(1–
2):119–165.

Yang, T. and Shadlen, M. (2007). Probabilistic rea-
soning by neurons. nature, 447:1075–1080.

209

Improving the Believability of Non-Player Characters in Simulations
1Jere D. Miles and 2Rahman Tashakkori

1Wilkes Community College

Division of Business and Public Service Technologies, Wilkes Community College, Wilkesboro, NC 28697, USA
2Appalachian State University

Department of Computer Science, Appalachian State University, Boone, NC 28608, USA
1jere.miles@wilkescc.edu and 2rt@cs.appstate.edu

Abstract

In recent years the video game industry has experienced rapid
expansion developing virtual environments that accurately mimic
a real-world setting. However, the industry almost entirely relies
on finite state machines for deploying computer-controlled
characters within these environments. This has resulted in
simulated inhabitants that lack the same degree of believability as
their surroundings. As part of this research a simulation was
developed using Java in which an agent was placed. In a survey
students were asked to rank the believability of different artificial
intelligence techniques employed by the simulation. The
genetic algorithm developed for this simulation provided for an
agent whose decisions were more believable than the decisions
generated by a finite state machine or random selection process.

Introduction
The notion of believability is explored within this paper
through the implementation of a virtual environment that
simulates a popular consumer video game inhabited by a
computer-controlled character. The research is particularly
interested in the role that different decision-making
mechanisms may play in the observed believability of the
character.
A hypothesis that incorporating evolutionary computing
techniques, such as a genetic algorithm, within the agent’s
decision-making process may provide an increased
believability of the agent over those utilizing more
traditional video game artificial intelligence approaches
was established. In order to test this hypothesis, a
simulator was developed with three separate decision-
making mechanisms: a random selector, a finite state
machine, and a genetic algorithm. These mechanisms were
observed in operation by human viewers who rated each on
their believability as a human-like character within the
virtual environment.
This research is significant as there is little or no
publication exploring the potential differences between
these artificial intelligence techniques in terms of
perceived believability. Many researchers have
documented the improvement that evolutionary techniques

Copyright © 2008, The Second Conference on Artificial General
Intelligence (agi-09.org). All rights reserved.

provide in a competitive or problem solving environment.
Also, There have been documented efforts that have
discovered some of the required characteristics to improve
the believability of a computer-controlled character [3][5].
However, these efforts have not focused on the decision-
making mechanism employed by the agent. This paper
will address the potential usability of evolutionary artificial
intelligence techniques within a video game environment.
While exploring the usefulness of these methods, it was
expected to demonstrate that these approaches were not
only achievable, but that they would provide an increase in
believability of the computer-controlled character to a
human observer. This increased believability may provide
for a more engaging interactive product that can be
delivered by the video game industry

Background
The artificial intelligence systems of video games have
historically relied on a finite state machine to provide a
decision-making mechanism for the computer-controlled
characters. These finite state machines are implemented in
virtually all computer games that have been developed and
released [1]. Recent additions have allowed scripting
techniques to be used as a method to fine-tune the state
machines that actually generate the logic for the agents [7].
It has been considered necessary for the video game to
employ these techniques in order to ensure a stable and
testable product.
However, in recent years, human players have begun a
migration towards games that involve playing with other
people rather than playing with a computer. This trend
seems to be a result of human players finding the
computer-controlled characters to be too predictable in
their behaviors to offer a reasonable level of challenge.
Also, other human players were preferred for their ability
to be flexible and adapt their responses to dynamic
situations [6]. There has been a renewed interest in the
development of believable video game agents with the
success of Electronic Arts’ The Sims [2]. This series of
games is considered to have raised the expectation of
artificial intelligence within a video game and many
developers are attempting to replicate a similar degree of
believability [7]. The premise of The Sims is that the

210

player plays the role of a virtual human making the
decisions of this character’s life [4]. A character that is not
directly under the control of a human player generates its
actions based upon the behaviors that are present in all of
the objects [8].

Results
In order to test the impact that genetic algorithms may have
on the believability of a computer-controlled character, a
virtual environment was created to mimic many of the
capabilities and displays of Electronic Arts’ The Sims [2].
The simulator was named StudentLife and was populated
by a computer-controlled student character, which was
then observed in operation by human volunteers. The
virtual environment did not allow these observers to
interact with the system in any way other than through
observance. This insured that the observers would focus
on the behaviors of the agent being surveyed. The system
allowed the human observers to have a full view of the
virtual environment and all of the internal conditions of the
agent.
Ninety-seven surveys were administered to the observers.
In Figure 1, a comparison is provided of the highest-
ranking values from each of the observers. Of the human
observers, 43% found that the genetic algorithm behaved
the most believably of the options. The remainder was
split with the finite state machine preferred by 27% and the
random selector rated the highest by 12%. The remaining
18% of the observers gave a similarly high value to more
than one of the logic engines on their survey.

Figure 1: Logic engine preferences overall

It is worth noting that among the respondents, those who
gave the random engine a higher score did so due to the
variations in the activities that were performed. The
observers expressed an interest in the believability of the
random student because of the different actions that were
performed, not because of the condition in which the agent
was. This implied that for 11% of the respondents, the
state of the agent’s needs and happiness had no bearing on

the believability of the behavior of the computer-controlled
character.

Conclusions
From the results that were collected, it has been concluded
that a genetic algorithm could be developed with the ability
to govern the decision-making process for a computer-
controlled character within a simulated environment. The
concerns of a dumb intelligence evolving [7] were
adequately addressed through the strength of the fitness
function in combination with the mutation capability to
introduce new genes to an evolving set of solutions.
Based upon the results of the surveys, it was found that a
genetic algorithm provided a more believable virtual
inhabitant. These results could be applicable to all video
games that utilize agents for the purposes of story
advancement or cooperative game play. Games that have
an inherit need for a competition from the computer, may
not gain an improvement in believability through these
techniques.

References
[1] Buckland, Matt, 2005, Programming Game AI by

Example, Woodware Gamed Developer’s Library.
[2] Electronic Arts, 2008, http://thesims.ea.com.
[3] Laird, John, E., Duchi, John, 2000, “Creating Human-

Like Synthetic Characters with Multiple Skill Levels,”
AAAI 2000 Fall Symposium Series: Simulating Human
Agents.

 [4] Macedonia, Michael, 2000, “Using Technology and
Innovation to Simulate Daily Life,” Computer, V. 33,
No 4.

[5] Paiva, Ana, Dias, Joao, Sobral, Daniel, Aylett, Ruth,
Sobreperez, Polly, Woods, Sarah, Zoll, Carsten, Hall,
Lynne, 2004, “Caring for Agents and Agents that
Care: Building Empathic Relations with Synthetic
Agents,” Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent
Systems.

[6] Swetser, Penelope, Johnson, Daniel, Swetser, Jane,
Wiles, Janet, 2003, “Creating Engaging Artificial
Character for Games,” Proceedings of the Second
International Conference on Entertainment
Computing.

[7] Woodcock, Steven, 2001, “AI Roundtable
Moderator’s Report,” 2001 Game Developer’s
Conference.

[8] Wright, Will, Forbus, Kenneth, 2001, “Some Notes on
Programming Objects in The Sims,” Qualitative
Reasoning Group.

211

Understanding the Brain’s Emergent Properties

Don Miner and Marc Pickett and Marie desJardins
Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, Maryland 21250

Abstract

In this paper, we discuss the possibility of applying rule
abstraction, a method designed to understand emergent
systems, to the physiology of the brain. Rule abstraction
reduces complex systems into simpler subsystems, each
of which are then understood in terms of their respective
subsystems. This process aids in the understanding of
complex systems and how behavior emerges from the
low-level interactions. We believe that this technique
can be applied to the brain in order to understand the
mind and its essential cognitive phenomena. Once a
sufficient model of the brain and mind is created, our
framework could then be used to build artificial general
intelligence that is based on human intelligence.

Introduction
In this paper, we propose a method of understanding human
intelligence by understanding how the mind emerges from
the physiology of the brain. The brain may be viewed as a
complex system that produces features of human-level intel-
ligence from the low-level physical mechanisms in the neu-
ral system. We hypothesize that we can improve our under-
standing of how the brain works by reducing its emergent
behavior into layers of successively more complex behav-
iors on top of the neurological subsystem. To achieve this
goal, we propose the use of rule abstraction, our mechanism
for creating hierarchies of emergent behaviors (discussed in
more detail in the next section). The purpose of this paper is
to stimulate discussion about the value of such an approach
for understanding the human brain and, as a result, under-
stand intelligence.

Understanding the mind by directly studying low-level
structures, such as neurons and glial cells has not proven
fruitful to date. For example, biologically inspired sys-
tems such as Jeff Hawkins’ Memory Prediction (Hawkins
& Blakeslee 2004) and Blue Brain (Markram 2006) have not
led to general models of intelligence. The leap from neurons
to high-level processes, such as reasoning and language, is
too great for humans or machines to decipher in a single
step as of 2009. However, in smaller-scale complex sys-
tems, such as boid flocking (Reynolds 1987), we can math-
ematically model how simple agent-level rules produce the
flocking emergent behavior (Miner, Hamilton, & desJardins
2008).

We propose trying to understand the brain by first parti-
tioning it into hierarchical sub-processes. Each sub-process
has emergent behavior that results from the emergent behav-
ior of its lesser sub-processes. Then, we find mathematical
correlations between low-level behaviors and abstract-level
properties using this sub-process structure. The result will
be a hierarchy of successively more complex emergent sys-
tems.

In this paper, we outline how rule abstraction and hierar-
chies can be used to understand emergent systems. We then
discuss the challenges in applying this method to the brain
and intelligence.

Rule Abstraction and Hierarchies
Rule abstraction is the process of finding a mathemati-
cal correlation between low-level rules and abstract proper-
ties in an emergent system (Miner, Hamilton, & desJardins
2008). Low-level rules are the basic actions and atomic
structures in the emergent system. Abstract properties are
the higher-level emergent behaviors. For example, a multi-
cellular organism exhibits emergent behaviors (the abstract
properties) that result from the individual behaviors of the
cells (the low-level rules).

Applying rule abstraction may be difficult in some emer-
gent systems. The most obvious approach to rule abstrac-
tion is manually specifying the correlation. This requires
a significant level of human intuition into how the abstract
level properties of the complex system emerge. The lack
of human understanding of complex systems makes manual
specification impossible at this time. To make this problem
tractable, a number of computer science and artificial intel-
ligence techniques can be applied to learn the mathemati-
cal correlations between the low-level rules and the abstract
properties. For example, we have experimented with a sam-
pling and regression technique in which we observed several
different configurations of a complex system and then used
regression to create a continuous two-way mapping of the
low-level rules and the abstract properties (Miner, Hamil-
ton, & desJardins 2008). Similarly, a theory of a single cell’s
behavior could be developed by observing several different
cells with different internal configurations.

This methodology provides the ability to use previously
mapped abstract properties as low-level rules in higher-order
complex systems. For example, once we have developed a

212

theory of a cell, we can use its mapping to develop theories
of small multicellular organisms or organs in larger organ-
isms. The intermediate step of the cell theory enabled an
understanding of multicellular organisms that may not have
been previously possible. These hierarchies of emergence
are clear in many cases. However, in other complex sys-
tems, such as the brain, emergent sub-processes may not be
easily identifiable.

Understanding the Brain

The brain is a mysterious complex system. Rule abstrac-
tion is general enough, in theory, to handle any emergent
system. However, there are three key challenges. First, a
certain level of human engineering is currently required to
identify the appropriate level of abstraction. Second, in the
brain, the correlation models that are required may be too
complex and may require more sophisticated learning meth-
ods than what we have tried with rule abstraction. Finally,
it could be the case that the system we are trying to under-
stand simply has no “midpoints.” That is, emergent behavior
results from the low-level rules and no meaningful reduction
of abstraction layers can be found. Regardless of these hur-
dles, we hope that our approach will one day be able to build
artificial general intelligence.

The first step to applying rule abstraction to the brain and
mind, as with any complex system, is by declaring the obvi-
ous: the cognitive powers of the mind and brain result from
the physiology’s emergent properties. This statement repre-
sents the initial state of the hierarchy. At this point, learning
a mathematical correlation would be too difficult. To over-
come this problem, we break down the complex system by
adding additional mid-level abstract properties to the hierar-
chy and learning the correlations between these, instead. For
example, the top-level emergent behavior may be a combi-
nation of lesser emergent properties such as language, mem-
ory, reasoning, etc. and could each be added as nodes in
the hierarchy. A similar approach can be taken from the
bottom-up: the neurons, glial cells, chemical reactions, and
other physiology could be parts of emergent subsystems in
the brain. These subsystems may include physical structures
such as cortical columns or more abstract features such as
prediction in the auditory cortex. Hopefully, at some point,
no correlation in the hierarchy between higher-order emer-
gent subsystems and lower-order emergent subsystems will
be too difficult to learn.

We do not believe that achieving artificial general intel-
ligence through this type of framework is possible at this
time because neuroscience, cognitive science and other re-
lated fields not yet able to explain how the mind works as a
whole. However, we do believe that our framework scales
to any complex system and thus increasingly accurate rule
abstraction hierarchies can be built as more scientific infor-
mation on the brain and mind are gathered.

Discussion
We now ask several questions to ourselves and the research
community. Answers to these questions would be useful in
understanding emergence, general intelligence and specifi-
cally human intelligence.

How many midpoints or layers would be in a rule abstrac-
tion hierarchy model of a brain? If there are too many layers
(greater than ten), too much error may be introduced and
may yield a unfavorable results. If there are too few layers
(less than three), current machine learning techniques may
not be powerful enough to build correlations in these mas-
sive emergent systems. Also, how deep does the model have
to be? Strong enough abstract models of cortical columns
may make modeling individual neurons unnecessary. On the
other hand, perhaps a neural-level base in the hierarchy is
not deep enough.

Unfortunately, there is much speculation and much un-
certainty in defining the mind’s subsystems, due to lack of
scientific understanding in relevant fields. Concepts such
as language, memory and reasoning are easily observable,
but are there some phenomena that have not been discov-
ered? Also, specifying the order of known phenomena in a
hierarchy is difficult. Do some of these known phenomena,
such as language, emerge from other essential subsystems
and thus not a foundation of general intelligence?

We may be able to take lessons learned from using rule
abstraction in simpler domains and apply them to the brain.
Perhaps nature has used emergent systems similar to the
ones in our brains in other complex systems such as ants,
traffic jams, rat brains, and galaxies. Is there some overarch-
ing theme of emergence in our universe? Is there a general
theory of emergence? This question may be harder to an-
swer than understanding the brain and developing artificial
general intelligence. However, any useful information that
comes out of trying to answer this question may be helpful
in understanding human-level intelligence.

Conclusions
We have given an overview of our method of rule abstrac-
tion, and explained how it can bring new understanding to
emergent systems. We believe that rule abstraction could be
applied to the brain in order to understand the mind. We
hope that by introducing this new approach, we will stimu-
late discussion on our method’s usefulness for this domain
and will inspire novel views of human intelligence.

References
Hawkins, J., and Blakeslee, S. 2004. On Intelligence.
Times Books.
Markram, H. 2006. The Blue Brain Project. Nature Re-
views Neuroscience 7(2):153–160.
Miner, D.; Hamilton, P.; and desJardins, M. 2008. The
Swarm Application Framework. In Proceedings of the
23rd AAAI Conference on Artificial Intelligence (Student
Abstract).
Reynolds, C. W. 1987. Flocks, herds and schools: A dis-
tributed behavioral model. SIGGRAPH Comput. Graph.
21(4):25–34.

213

Why BICA is Necessary for AGI

Alexei V. Samsonovich

Krasnow Institute for Advanced Study, George Mason University
4400 University Drive MS 2A1, Fairfax, VA 22030-4444, USA

asamsono@gmu.edu

Abstract
The challenge of creating AGI is better understood in the
context of recent studies of biologically inspired cognitive
architectures (BICA). While the solution is still far away,
promising ideas can be derived from biological inspirations.
The notions of a chain reaction, its critical mass and scaling
laws prove to be helpful in understanding the conditions for
a self-sustained bootstrapped cognitive growth of artifacts.
Empirical identification of the critical mass of intelligence is
possible using the BICA framework and scalability criteria.

Keywords: cognitive architectures, self-regulated learning,
human-level intelligence, scaffolding, critical mass

Why BICA Challenge Is a Necessary Step
The challenge of artificial intelligence formulated more
than half a century ago (McCarthy et al. 1955/2006) turned
far more complicated and more vital for us than originally
thought. Today we understand that a similar situation
exists with the BICA challenge. This challenge is to create
a biologically inspired cognitive architecture (BICA)
capable of mimicking the human cognition and learning. It
can be viewed as a more focused and constrained version
of the general artificial intelligence (AGI) challenge. At the
same time, the BICA challenge is primarily targeting the
core of higher cognition. Could the BICA challenge be a
necessary step in solving the AGI challenge? Biological
solutions are not always suitable for engineering tasks:
e.g., airplanes do not flap wings and would not benefit
from doing this. Biological inspirations, however, appear
to be necessary for reaching AGI, because in this case
biology provides the only known model of a solution.
 The original, informally stated goal of the DARPA
IPTO BICA program (2005-2006) was to capture the
‘magic’ of human cognition, while no clear understanding
of what this ‘magic’ is was available in 2005. Initially, the
focus was on integration, biological fidelity, and test-
driven design, with a special attention paid to human-
specific higher cognitive abilities: meta-cognition, self-
awareness, episodic memory, emotional intelligence,
theory of mind, natural language and social capabilities. By
the end of the funded period it became clear that the
human-like learning is the key for solving the challenge,

Copyright © 2008, The Second Conference on Artificial General
Intelligence (agi-09.org). All rights reserved.

and ‘capturing the magic’ amounts to reproducing the
phenomenon of human cognitive growth from a two-year
old to an adult, using various forms of scaffolding and
guidance by human instructors. This scenario became a
prototype for the big BICA Challenge intended for Phase
II, which, unfortunately, was canceled.
 Recently, BICA alumni and other interested researchers
gathered in Arlington in a AAAI 2008 Fall Symposium on
BICA (http://binf.gmu.edu/~asamsono/bica/), trying to
understand what went right and what went wrong with the
BICA program, and what can we learn from this enterprise.
During the symposium, we learned that we are still
interested in the BICA Challenge and are dedicated to
solving it, because we view it as a critical stepping stone
on the road to AGI (Samsonovich & Mueller, 2008).
 The BICA Challenge understood as explained above has
a potential impact of its solution extending far beyond
immediate military or industrial goals. Its objective is to
bridge the gap separating artificial and natural intelligence:
the gap in autonomous cognitive growth abilities. This
main dimension of the gap underlies its other dimensions,
including robustness, flexibility and adaptability. In this
sense, solving the BICA Challenge is a necessary, critical
step in reaching AGI. It is argued below that using a BICA
as a basis of a solution is also necessary.

Critical Mass Hypothesis and Biology
The critical mass hypothesis can be formulated as follows.
By enabling the core human-like-learning mechanisms in
artifacts, one can initiate a “chain reaction” of development
of knowledge, skills and learning capabilities in artifacts.
Agents learn how to learn and how to improve themselves.
Given the right embodiment, embedding and scaffolding,
this hypothetical process of bootstrapped cognitive growth
will continue to a point when artifacts reach a human level
of AGI. If this concept makes sense, then it is natural to
accept that the cognitive chain reaction is characterized by
a critical mass: a minimal set of architectural components
and mechanisms, cognitive functions, features of the
embodiment, interface, environment and scaffolding that
together make the reaction possible, self-sustainable and
sufficiently scalable. If this is the case, then identifying the
critical mass (or, to be more parsimonious, any feasible
supercritical mass) would constitute a substantial part of a
solution to the BICA/AGI challenge.

214

Why and How Biology Gets Involved
Despite the impressive recent progress in many fields of
artificial intelligence, as of now there is no clear prospect
of a self-sustainable cognitive chain reaction with its
critical mass, scaling laws and other parameters derived
from studies of artificial intelligence. There is only one
known example of a cognitive chain reaction: natural
human development. As a matter of biological fact, we
know that a normal human child under typical social
conditions possesses a supercritical mass, while a lower
animal or an out-of-shelf computer do not; therefore, there
must be a critical mass somewhere in between. In order to
identify it, one can start moving down from the known
positive example, taking out functional components one by
one. To do this, one may study human pathologies that
prevent normal cognitive development. While a rigorous
study of this sort would be difficult, it should be pointed
here that children deprived of certain seemingly vital
sensory and/or action abilities can nevertheless grow
cognitively to an adult level. On the other hand, the ability
to acquire some form of language interactively and the
ability to exercise voluntary behavior appear to be critical
for cognitive growth (e.g., Thelin & Fussner 2005).
 Even if it is possible to reduce the AGI (or BICA)
challenge to a language acquisition challenge for an
embodied agent, this step does not make the task
substantially easier. E.g., there is currently no good idea of
how to approach passing the Turing test, or what tests
would be useful to pass in order to ensure the language
acquisition capacity. There is no clear understanding of
how to build scaffolding for the growing agent, or what
should be the driving force in its cognitive growth. Here
biology provides another hint. The development and
survivability of a biological organism depends on a number
of “built-in” drives: from lower drives, such as hunger,
pain and pleasure, to higher drives, such as curiosity and
appreciation of beauty. It is reasonable to think that a core
set of drives should be a part of the critical mass.

Defining and Detecting the Critical Mass
There are many questions related to identification of the
critical mass in terms of BICA; here are some of them.
What should we borrow from studies of the acquisition of
language by young children? How the agent should
develop an understanding of concepts associated with
linguistic constructs? Is language processing an underlying
capacity for other faculties like symbolic processing, or
vice versa? What kinds of architectural mechanisms should
be involved in symbolic and subsymbolic processing?
What are the general critical mass requirements for
memory systems, kinds of representations and principles of
information processing? What cognitive abilities should be
innate (preprogrammed), and which of them should
develop through learning? What can we say regarding the
ladder, i.e., the curriculum for artifacts understood as the
sequence of tasks, paradigms and intermediate learning
goals that will scaffold their rapid cognitive growth up to

the human level? An answer to these questions will be
provided by the definition of a critical mass.
 Assuming that there is a threshold level of intelligence
that enables bootstrapping, we should expect certain
scalability of the phenomenon. The notion of a chain
reaction predicts an exponential scaling law. Therefore,
scaling laws and metrics associated with them can be taken
as a basis for the main criterion for a critical mass. It is
therefore interesting and necessary to conduct a set of
experiments with cognitive growth demonstrations using
the BICA framework, starting from simplistic “toy”
examples and gradually relaxing their limitations. Finally,
the answer should be given in the form of a BICA, because
the only known prototype exists in biology.

A BICA-Based Roadmap to AGI
A specific approach to solving the BICA Challenge
(Samsonovich et al. 2008) was developed by our George
Mason University team based on a combination of the
GMU BICA cognitive architecture and the concept of self-
regulated learning, or SRL (Zimmerman 2002). The key
idea is to use GMU BICA as a model of SRL that will be
dynamically mapped to the student mind. This approach
will allow us to develop a faithful model of student SRL, to
be used in education and in artificial intelligence, starting
with intelligent tutoring systems that will be used as SRL
assistants. While this is the current agenda, our eventual
goal is to build Robby the Robot that can learn virtually
everything like a human child.

References
McCarthy, J., Minsky, M., Rochester, N., and Shannon, C.
(1955/2006). A Proposal for the Dartmouth Summer
Research Project on Artificial Intelligence. AI Magazine,
27 (4) 12-14.
Samsonovich, A. V., Kitsantas, A., and Dabbag, N. (2008).
Cognitive Constructor: A Biologically-Inspired Self-
Regulated Learning Partner. In Samsonovich, A. V. (Ed.).
Biologically Inspired Cognitive Architectures. Papers from
the AAAI Fall Symposium. AAAI Technical Report FS-08-
04, pp. 91-96. Menlo Park, CA: AAAI Press.
Samsonovich, A. V., and Mueller, S. T. (2008). Toward a
growing computational replica of the human mind. In
Samsonovich, A. V. (Ed.). Biologically Inspired Cognitive
Architectures. Papers from the AAAI Fall Symposium.
AAAI Technical Report FS-08-04, pp. 1-3. Menlo Park,
CA: AAAI Press.
Thelin, J. W. and Fussner, J. C. (2005). Factors related to
the development of communication in CHARGE
syndrome. American Journal of Medical Genetics Part A,
133A (3): 282-290.
Zimmerman, B. J. (2002). Becoming a self-regulated
learner: An overview. Theory into Practice, 41 (2): 64-70.

215

Importing Space-time Concepts Into AGI

Eugene J. Surowitz
New York University (visiting)

PO Box 7639, Greenwich, CT 06836
surow@attglobal.net

Abstract

Feedback cycles are proposed as the general unit of in-
tellect and intelligence. This enables the importation
of space-time concepts from physics. The action-lens,
a processing structure based on these measurable ob-
jects, is defined. Larger assemblies of this structure
may support the Lowen model of information process-
ing by the brain.

Cycles as the Fundamental State
The purpose of this paper is to provide part of the ra-
tionale for adopting feedback loops as the particular
dynamical structure fundamental for the construction
of intelligent systems. This question was raised with
respect to a paper submitted to AGI-08. What favors
the adoption of processor cycles as a primitive unit of
intellect?

Predicting the structure and behavior of large as-
semblies of processors or neurons, without an analyz-
able and controllable generation mechanism appears to
create a combinatoric scaling barrier to creating of an
AGI from those base units. This is very analogous to
the problem of discovering the existence, structure, and
properties of DNA molecules by examining every possi-
ble combination of elements from the periodic table. It
would seem desirable to have an engineering approach
instead.

Random graph theory predicts the occurrence of cy-
cles when the number of connections equals the number
of nodes. The neurons of the brain far exceed this cri-
teria and we may assume that cycle structures are com-
mon. Cycles can be counted, at least in principle, and
the number of cycles provides a measure of the internal
structure of a system; fluctuations in that count can be
a measure of dynamical properties of the system.

Cycles are less primitive than neurons or processors.
An appropriate analogy would be the difference be-
tween atomic physics and chemistry. They are also re-
cursively constructive as they can be inter-connected
and will then inter-communicate to form larger cycle
based structures. They then take on the aspect of
primitive sub-assemblies, or molecules in the chemistry
analogy. Adopting cycles of processors as a fundamen-
tal structure may be an effective way of addressing the

scaling problem for AGI by reducing branching ratios
as a prospective AGI system is enlarged.

Cycles create and define time-scales: the propagation
time it takes for a signal’s effects to completely travel
the cycle’s circumference and arrive at the originating
node creates a clock based on this propagation time
and defines a time-scale associated with the cycle. The
cycle based time-scales enable the importation of space-
time concepts from physics. Those concepts, in turn,
bootstrap the construction of processor structures to
be used as engineering elements to generate still larger
structures.

A by-product of that construction is the ability to
support multiple short and long time-scales with a sin-
gle primitive structure. This addresses the time-scale
dichotomy of the need of organisms and systems to act
in the short-term on plans with long-term objectives. In
the context of AGI, the cycle time-scales define persis-
tent objects competing for resources leading to action
toward short and long term objectives. Groups of cycles
of similar circumference will define a range of times for
such actions. This suggests a conceptual structure, bor-
rowed from physics, that is useful to draw and visualize
cycle structures and bootstrap our ability to examine
the space-time behavior of large numbers of co-located
cycles.

Cycle Space-Time and the Action-Lens

Let’s proceed with constructing a diagram showing the
relationship of cycles and time: The set of cycles with
all possible circumferences forms an infinite disk when
laid out as circles on a plane with a common center.
(Here, we are assuming large numbers of nodes in each
cycle which creates an image of continuity.) This is the
“space” portion of the space-time we are constructing.
Plot the respective cycle-times on a vertical axis thru
the common center. This is the “time” portion of the
space-time.

This visual aid suggests a structure combining a
large base cycle, which processes over extended physi-
cal times, with a much smaller focus structure, even a
single node, which works on much shorter time-scales,
into a single object to be used as a building block to

216

construct systems. This structure will be called the
“action-lens” in the sequel.

The nodes of a cycle of processors, that operates over
multiples of its local cycle-time, are a persistent object,
the base-cycle. Again, visualize a cone of connectiv-
ity with its base coincident with a cycle and its apex
on the cycle-time axis at the point corresponding to
the cycle-time of our particular cycle. The visualized
cone itself would be the surface created by consider-
ing the base-cycle so dense in processor nodes as to be
almost continuous. In general the connectivity of the
base-cycle need not be so great. The cycle-times of cy-
cles with similar circumference land in a small but not
necessarily contiguous neighborhood on the cycle-time
axis. The cycle-time axis can now be thought of as a
linear array of nodes with each successive node situated
at a slightly greater time along the axis.

The fraction of the nodes of a base-cycle directly
linked to a single node, the focus-node, looks like a
tepee’s poles without the shell. More generally, the
focus-node can be replaced by a set of nodes that are
almost completely connected, to some approximation
of completeness in the graph theoretical sense. This
also allows similar circumference cycles to feed a set
of focus-nodes, with very rapid propagation of signals
among the focus-nodes, relative to the base cycle-times.
What does the focus-node/graph do? The focus-node
or graph provides a second time-scale for the base-cycle.
It creates short term effects from a persistent object
whose existence is measured only on larger cycle-time
scales. One might consider the activity of assembling
a model from a kit of parts as quick part-steps carried
out to yield the final model, the long-term objective.

The combination of base-cycles and a focus-graph
constitute the “action-lens”. The term “lens” is bor-
rowed from optics in order to cover more elaborate ver-
sions of this object suggested by the space-time con-
struction. The action-lens is intended to replace the
halt-free Turing machines used at the lowest level of
cycle constructs. Rather than use arbitrary or random
inter-connections of nodes, we can use the action-lens
as an engineering object to construct larger structures.

Mesoscale Structure

The mesoscale, or middle scale of structure, between
primitive processors and the macroscopic scale of gen-
eral intelligence functioning may be approachable if we
use recursive definition on the action-lens structure. As
an example, we could replace the elementary processors
of the basic action-lens with the action-lens structure
itself thus generating an action-lens of action-lenses.

Under the control of executive functions, we could
generate other action-lens based complexes. As exam-
ples, these could connect a lens’s base-cycle to other
lens’s base-cycles, connect the focus-graph to other foci,
and connect foci to base-cycle nodes. Respectively,
these yield a stack structure, an hour-glass, and a multi-
layer. Gluing action-lenses at nodes along their base-

cycles gives the stack; gluing focus to focus creates the
hour-glass; gluing an inverted layer of action-lenses to
an upright layer of action-lenses, creates a bilayer.

Unconstrained generation at the mesoscale could,
and probably would, lead to a space of generated func-
tions so large that determining those most useful for
AGI applications would be difficult at best. A macro-
scopic model that provides a candidate set of target
functions to be generated by mesoscale generation op-
erators would be one possible way of imposing con-
straints somewhat in the manner of a variational prob-
lem. There is such a candidate model, the Lowen model,
which serves to supply the target high-level functions.

The Lowen Model of Consciousness
On the macroscopic scale, Walter Lowen, late of the
State University of New York at Binghamton, con-
structed a model of the conscious processes of the mind
(Lowen 1982), inspired by Carl Jung’s theory of psy-
chological types. Lowen founded his concepts on infor-
mation processing and system theory.

The Lowen information processing model conceives of
consciousness as constructed from specialized processes,
variously termed capacities or poles in the model. Sen-
sory data is taken and handed from capacity to capacity
while eventually producing behavioral outputs. Some
of these capacities such as sorting, path finding, and
decision tree processing are identifiable as well studied
topics of computer science. The list of capacities was
limited to a set of sixteen which arose from an analysis
of the Jungian classification personality types.

A basic result of the Lowen model is the discovery of
two macroscopic processing circuits, in essence, cycles,
among the capacities. These circuits weakly, but im-
portantly, communicate with each other to create the
response patterns we call personality types. If further
support for their existence is found by or in psycho-
logical research, the presence of such macroscopic cir-
cuits would be a further argument for using the Lowen
model as one end point of what amounts to a variational
problem: How to construct the unconscious mesoscale,
starting with a mass of primitive processors and ending
with the preconscious capacities.

The suggestion that the action-lens structure con-
stitutes a useful basis for the construction of Lowen-
style AGI systems is being explored in these ways: The
Lowen capacities do not all have identifications with
established information processing technologies; such
identifications need to be found and formalized. Can
the action-lens model be used to generate larger struc-
tures that act as the classical specialized information
processors of the Lowen model? Is it practical to use
recursive function theory to generate and control the
development of large scale structures effectively?

References
Lowen, W. 1982. Dichotomies of the Mind. New York,
NY: John Wiley.

217

Introduction
Two of the key difficulties in achieving a human-level

intelligent agent are those of: first providing a flexible

means for gaining common, wide-ranging human

experience, and secondly applying common sense behavior

and meaning for those and similar, but novel template

experiences. The first problem is managed if there is a

human analogous means flexible enough to represent many

common human experience. The second problem is better

handled if there is a model that can suitably link and

implement the behavioral and meaning value mechanisms

that relate to these common experience templates.

The model presented here provides one such solution,

where the representation method and behavioral

mechanisms are tied into one design. The model is a novel

cognitive architecture called HELEN-KLR (namesake:

Helen Keller, blind-deaf, Hierarchical Event-language

Learning Network for Knowledge Representation), and

follows along the lines of the SOAR and ACT-R cognitive

models. The layout of the model is inspired by a number of

global and regional circuit maps in mammalian

neuroanatomy.

Representation
The HELEN model representation is based on a

framework of neuronal registers that regionally index

patterns of synaptic weights and activation levels, and

reciprocally map input/output through intervening filter

layers. The registers' content-maps can access, read, and

modify the contents of other registers. Using these

registers, HELEN represents portions of human

"experience" in two major interconnected divisions: (1) a

BODY, the animal's presence in a "world" environment,

including the internal body state, and (2) a WORLD apart

from the body that is conveyed via sensory perception.

Both divisions are further subdivided into two relational

domains: (A) the modeled-sensory content of the input

types and (B) the relationships between any referenced

content. The resulting four domains form the key

representational structure of the HELEN model's version of

human experience. The domains are named: BODY

[Value, Role] and WORLD [Relation, Feature].

Value reflects all sensed internal body states, e.g. goal,

emotional body state, valence, consequence, etc. Role

represents all effort levels and patterns of directional intent

for planned actions, e.g. action sets, behavioral responses,

skill, functions, etc. Relation are static and dynamic

arrangement patterns of attention regions relative to one

region (reference or view point), e.g. motion patterns, structural

layout, size, accumulated change/quantity, etc. Feature

contains all sensory forms and grouped representations

having some component external to the body as they are

modeled, e.g., visual, tactile, olfactory, models, etc. The

four domains form the mixed content of a register matrix

for any objectifiable Instance by the weight pattern set by

activation within the specific regions of uninhibited

attention, i.e., all domains content can be made into an

"object" as an instance.

Each domain is hierarchically organized along a

number of sensory modalities (input types); sensors path for

each domain converge and interlink at different levels of

the hierarchy to form various modal and cross-modal

concept models. Some sensors are dedicated to a given do-

HELEN: Using Brain Regions and Mechanisms for Story Understanding to Model

Language as Human Behavior

Robert SWAINE

CTO, MindSoft Bioware / robertswaine@yahoo.com

Abstract. A new cognitive model is presented for large-scale representation of episodic situations and for manipulating these representations

using the model's innate natural language processing mechanisms. As formulated, and implemented in part, the purpose of the model seeks

to attain basic child level cognitive behavior of situational understanding. This includes general domain learning, by assigning internally-
relevant, though subjective, value to common experience (input situations), and by being taught how to analyze/synthesize component

representations of those input situations. Ultimately this will allow it to learn and autonomously create situations with meaning from those

components to best fit problem situations. The current model is written in C++ as a visual interface and is implemented as a story
understander with question answering and language generation capability.

FIG 2. Events are

sequenced and

grouped as a

situation by using

the four domains to

first form an

instance, give it a

location code, then

index it for whole or

partial recall.
FIG 1. The four domains of a

situation as shown against a brain

analog.

INSTANCEthe complete situation links

back to source brain regions where / when it

happen

what value

was it

what action

intended

what did it

have

how did it

occur

218

main, while others share sensor data. FIG 1. and 2 show a

basic layout of the domains based on a simple brain

analogue. Outside the four domains, there are two other

regions in the HELEN model: Location (non view-point

referenced world position) and Event.[1,2] Location is

represented via changes in Relation and Feature domains,

while Event is also similarly analyzed; they are both

explicitly outside direct apprehension via the four domains.

The model codes instances with a location, and then

indexes co-occurring and co-located groups of instances as

events. Events are in turn, indexed both sequentially and

spatially as situations; situations are likened to episodes, or

frames in some models. [3,4]

Mechanisms
In the model, mechanisms for simple and complex

behavior can factor (analyze content) and manipulate

(modify associated attributes of) the four domains, as well

as steer the attention and focus-detail of content in

situations perceived by the model so as to attach values.

The structural layout of connections and the operation of

the register elements comprise the major functional

mechanisms, i.e., a large number of HELEN's mechanisms

innately arise from it's representation method's register

map. At the low-end, the predominant mechanisms include

a "Long Term Potentiation" (LTP/D) decay spectrum for

memories; synaptic-field copying to store activation-weight

patterns; and "Combine-Compare-Contrast" circuits for

reasoning and cognitive blending (situational

juxtapositioning - used to synthesize or analyze). At the

higher-end, dominant mechanisms include two regional

indexing modules for learning and mapping meaning

(values) to objects (features), and for planning, i.e.,

filtering then selecting actions by mapping intentions

(roles) to position (relation). Two regions serve to globally

link and then regionally store current and long term

situation index maps. Many of the mechanisms in the

model apply to its use in language understanding, i.e.,

giving situational meaning.

Taking a brief look at one mechanism, attention, the

value system cycles between an inward and outward mode

for action-response, observe-acknowledge, and store-recall

modes. All situations have a salient or natural attention, a

"what". Mitigated by value, natural attention serves as the

“subject” of a sentence, the current “area” of a discussion,

or the “what” of any event or object. These invariant or

changing salient attention regions form time/space patterns

that act as small/large situational borders. In the model,

when taking in a situation, the size and duration of the

natural attention region will also determine focus depth

(detail) and focus rate used to accept the current and next

situation. When HELEN is recalling a situation (externally

prompted or desired), the reverse occurs: the attention

region and focus detail of the recalled situations will

attempt to set the attention region and focus level to their

salient content, unless inhibited (internal/external focus

mode).

Remarks and Future Work
At the lowest, primitive-end, HELEN can

conceptualize, i.e. represent, general sensory models such

as light-dark, direction, change, body-state. At the

highest-end, the largest situation that HELEN

conceptualizes using it's representational domains is the

"game-story" concept. These are groups-sequence steps of

situational intentions and moves (goals&plans) and sets-

sequence paths of a arranged space and character objects

(setting&content). Based on it's biological analogue, one

implication is that a "story-understander / game-player" is a

viable method for approaching human/mammal-like

cognitive behavior: HELEN attempts to fit (make sense of)

all situations which it values, into some simple/intricate

event-coherent "story" or "game" model (scheme); bad

fitting input raises questions in HELEN. Thus problem-

solving is handled as game-story situations (rules as Role-

Relation links). This is equivalent to understanding the

"games" and "stories" in physics or programming or dating,

when reading and summarizing the content of a physics

article, laying out the execution steps in an AI program, or

making sense of your child's dating troubles. Additional to

these, HELEN's four domain model serves as a flexible

subject-ontology generator, metaphor map, and is used to

dynamically categorize novel situational inputs on-the-fly

into the domains.

In parallel with completing the implementation of the

model with a more detailed representation and

mechanisms, the model will incorporate a large situational

corpus of human-centric situations of a child in the

formatives years, e.g. family and naive physics events,

playing the spectrum of roles from observer to actor.

Furthermore, this corpus of related/independent situations

will be given most emphasis on common (cultural and

language relevant) rules for manipulating (e.g. expressing)

situations. As a dictionary of human childhood

"experience", it will serve as the source of an initial

meaning (value) template when HELEN is given situations

presented in natural language as part of a novice-to-expert

curriculums in various fields.

References

[1] Conjunctive representation of position, direction, and velocity in entorhinal cortex. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter

MP, Moser MB, Moser EI. Science. 2006 May 5;312(5774):680-1
[2] Place cells, grid cells, and the brain’s spatial representation system. Moser EI, Kropff E, Moser MB. Annual Review of Neuroscience 2008;

31:69-89

[3] Frame Activated Inferences in a Story Understanding Program. Peter Norvig IJCAI 1983: 624-626
[4] Six Problems for Story Understanders. Peter Norvig AAAI 1983: 284-287

219

Holistic Intelligence: Transversal Skills & Current Methodologies

Kristinn R. Thórisson & Eric Nivel

Center for Analysis and Design of Intelligent Agents / School of Computer Science
Reykjavik University, Kringlunni 1, 103 Reykjavik, Iceland

{thorisson, eric}@ru.is

Abstract
Certain necessary features of general intelligence are more
system-wide than others; features such as attention, learning
and temporal grounding are transversal in that they seem to
affect a significant subset of all mental operation. We argue
that such transversal features unavoidably impose
fundamental constraints on the kinds of architectures and
methodologies required for building artificially intelligent
systems. Current component-based software practices fall
short for building systems with transversal features:
Artificial general intelligence efforts call for new system
architectures and new methodologies, where transversal
features must be taken into account from the very outset.

Introduction
Animal intelligence, the best example of general
intelligence that most agree on classifying as such, is a
remarkable conglomeration of different sets of skills that
work together in ways that make for a coordinated and
coherent control of the limited resource we call a body.
Looking at the progress AI in its first 50 years, advances
have been slower than expected: we certainly have not yet
reached a level of artificial intelligence anywhere near that
of an animal. The nature of a scientifically studied
phenomenon is the main determinant of the kinds of
approaches relevant for its study. In the case of outer space
lack of opportunity for experimentation hampered progress
for millennia. In the study of general intelligence – whether
for scientific inquiry or building practical machines – a
major barrier is complexity. It behooves us to look very
carefully at our research methods in light of the subject
under study, and in particular at whether the tools and
approaches currently used hold promise to deliver the
advances we hope for.

The bulk of software engineering practices today focus on
what one might call "component methodologies", such as
object orientation and service-oriented architectures, to
take two examples. Much of AI research is based on these
standard practices as well, as is cognitive science. The
modeling methodology relies on certain atomic units being
put together tediously and by hand, in such a way as to
create conglomerates of hand-crafted interacting units. The
evidence from robotics research over the last several
decades shows progress to be slow and limited to basic
bodily control like balance (cf. [3]). As these are now
closer than ever to being solved, researchers' attention is
turning to integration; in this approach of putting together

well-understood "hand-made" modules in a LEGO-like
fashion, progress will predictably continue at the same
pace as prior efforts, being a linear function of the
component methodology. Some may be able to live with
that, at least as long as results are guaranteed. However,
this is not even a given: A more likely scenario is that only
slightly more complex intelligences than what we have in
the labs today will be built by this method; sooner rather
than later the complexity of integration becomes
overpowering and all efforts grind to a halt. To see this one
need only look at the results of putting together networks
(cf. [2]) or large desktop applications (cf. [1]): The
difficulty of designing such systems to run and scale well
shows the inherent limitations of current software
methodologies. And these systems are quite possibly
several orders of magnitude simpler than those required for
general intelligence.

The Architecture is the System
What building blocks we use, how we put them together,
how they interact over time to produce the dynamics of a
system: The discussion ultimately revolves around
architecture. The types of system architectures we choose
to explore for building intelligent systems will determine
the capabilities of the system as a whole. The nature of
these architectures will of course directly dictate the
methodologies that we use for building them. One issue
that cuts at the core of intelligence architectures is that of
transversal functions – functions that affect the design and
organization of the whole system. Three examples are
dynamic allocation of attention across tasks, general
learning and temporal awareness. A robot for the home, as
an example, requires a high degree of cognitive flexibility:
Not only should it be able to do the dishes, the laundry,
clean, cook and play with the cat, it must be capable of
moving seamlessly between these tasks. Such seamlessness
builds on deep transversal functionality, the interwoven
execution of attention, knowledge and learning of new
contexts. An inflexible system can easily be thrown off by
unseen variations in even the most mundane work
environments: The cat jumping into the washing machine,
a child sticking a screwdriver into an electrical outlet.
Unless the machine has very flexible ways of directing its
attention and – in closely coordinated fashion – switching
between tasks quickly and efficiently, in fine-tuned

220

coordination, with proper event prioritization, the
household robot of your dreams could quickly turn into a
nightmare. To continue with the example, unless we invent
some amazing "superglue software” that can dynamically
(a) bind together the separate skill sets, (b) handle smooth
transition between tasks within and between skill sets, (c)
learn new combinations of actions and perceptions from
different skill sets, (d) identify "new" (unspecified) things
and (quickly) guesstimate the nature and implications of
these, (e) automatically control attention of both its
internal and external state, and during these (f) understand
and manage the passing of time, a machine working in
everyday environments will prove extremely dangerous
and probably incapable of working amongst people.

The criticism of component-based approaches and standard
software engineering methodologies apply to – at the risk
of overgeneralizing perhaps only slightly – all architecturo-
methodological approaches proposed to date for robots and
other single-mind intelligent systems. Subsumption
architectures, blackboard architectures, production
systems, schema-based architectures – all have been
implemented in the last decades in ways that seem unlikely
to scale to the kinds of flexibility we would require of any
artificial system with general intelligence. Progress
towards artificial general intelligence cannot rely (solely)
on current approaches, as these do not show sufficient
promise for addressing key architectural characteristics of
general intelligence.

Towards Generally Intelligent Systems
A generally intelligent machine must be able to learn
anything, meaning essentially an enormously large range
of things, regarding the world as well as itself. This calls
for system-wide general-purpose learning mechanisms. By
system-wide learning we mean a process capable of
identifying and recognizing patterns of interaction between
components regardless of their “location” in the
architecture. Further, any practical, implementable
intelligence will always be bound by limited CPU power
and memory. To learn a large range of things it needs to be
able to direct its computational resources towards
achieving certain goals, and distractions need to be
prioritizable and ignorable. This means that the machine
needs a general attentional mechanism. Such a mechanism
must permeate the very structure of the system and be
integrated at a fundamental level of the system's operation.
A third fundamental feature that has to be engineered into
the very fabric of an artificial general intelligence is
temporal grounding. For engineers, "real-time" means the
time as it elapses in the real world. Hard real-time systems
are imposed real-world deadlines by their designer –
without information that allows systems to understand their
purpose or meaning. Intelligent autonomous systems, on
the other hand, are bound to the laws governing the

maximization of their utility function. To operate in the
world – in real-time – means therefore something very
different here: machine-time must be expressed by the
semantics of in the system-world’s state space. Intuitively,
internal processes of the system are mapped onto world-
time with regards to their contribution towards achieving
goals. For example, a deadline in world-time could be
grounded in a (time-bounded) process, getting to the bank
before it closes, and contextualized by the goal get money
to pay the baby-sitter. Such temporal grounding can affect
pretty much any action, whether mental or physical, of a
generally intelligent system and must therefore, by
definition, be transversal.

Transversal learning, attention and temporal grounding is a
requirement for all key mental skills/processes, including
planning, motor control, prediction, understanding, etc.
Whether one thinks achieving this is difficult, easy or
impossible, it stands to reason that these requirements will
have enormous implications for the cognitive architecture
of a system. The implications are twofold. First, instead of
using static components we must design architectures in
terms of dynamic “components” – that is processes – that
would instantiate the transversal functionalities cited above
according to needs and contexts, both also dynamic.
Second, learning new tasks means instantiating new
processes, and architectures must provision for the
dynamic management (creation and decay) of such
processes. In light of this it should be clear that analogies
between software architecture and electronic circuits is
grossly inadequate for generally intelligent systems.

Continued ignorance of transversal functionality by the
research community can only mean further delay on our
path towards artificial general intelligence. We must factor
these functionalities in from the very outset; they are
fundamental and must directly guide our efforts in
developing the architectural and methodological principles
for building machines with general intelligence. Efforts by
the authors to incorporate these principles in implemented,
operational architectures are described in [4].

References
[1] Abreu F.B. and Carapuça R. (1994). Object-Oriented
Software Engineering: Measuring and Controlling the
Development Process. Proc. of 4th Int. Conference on
Software Quality, 3-5 October, McLean, VA, USA.
[2] Hall N.R. and S. Preiser (1984). Combined Network
Complexity Measures. IBM J. Res. Dev., 28(1):15-27.
[3] Kagami, S., F. Kanehiro, Y. Tamiya, M. Inaba, H. Inoue
(2001). AutoBalancer: An Online Dynamic Balance
Compensation Scheme for Humanoid Robots. In Bruce R.
Donald, Kevin M. Lynch, Daniela Rus (Eds.), Algorithmic
and Computational Robotics. New York: A.K. Peters.
[4] Nivel, E. & Thórisson, K. R. (2008). Self-Programing:
Operationalizing Autonomy. This volume.

221

Achieving Artificial General Intelligence Through Peewee Granularity

Kristinn R. Thórisson & Eric Nivel

Center for the Analysis and Design of Intelligent Agents / School of Computer Science
Reykjavik University, Kringlunni 1, 103 Reykjavik, Iceland

{thorisson, eric}@ru.is

Abstract
The general intelligence of any autonomous system must in
large part be measured by its ability to automatically learn
new skills and integrate these with prior skills. Cognitive
architectures addressing these topics are few and far
between – possibly because of their difficulty. We argue that
architectures capable of diverse skill acquisition and
integration, and real-time management of these, require an
approach of modularization that goes well beyond the
current practices, leading to a class of architectures we refer
to as peewee-granule systems. The building blocks
(modules) in such systems have simple operational
semantics and result in architectures that are heterogeneous
at the cognitive level but homogeneous at the computational
level.

Introduction
Looking at the software architecture of present large-scale
AI systems reveals a rather clear picture: A majority is
built on principles of standard industrial software
component methodologies. As we have argued elsewhere
[7,9] such methodologies do not support sufficient
architectural flexibility when it comes to building
intelligent systems, in large part because they do not
support well incremental expansion or automated
architectural construction. We have developed a method
for intelligent system construction, Constructionist Design
Methodology (CDM) [10], that produces cognitive
architectures exhibiting greater flexibly in expansion than
typical of architectures of similar size [8] and better
support for system integration [5]. In the last few years we
have been moving towards architectures built out of ever-
smaller components, or modules. Here we discuss what we
see as a general trend towards “peewee”-granule systems –
architectures with very small-grain components – and why
we see this as a promising direction for artificial general
intelligence.

Medium Granularity in Ymir / CDM
Ymir is a cognitive proto-architecture [11] from which the
CDM was originally derived. One of Ymir's advantages is
its addressing multiple skill integration in a realtime-
capable system with multimodal output generation. Over
the last decade the principles of Ymir and CDM have been

used to build several relatively large systems including a
multimodal realtime interactive character, a realtime
dialogue system [2] and a cognitive architecture for the
Honda ASIMO robot [5]. These systems, all based on the
idea of a fairly large set of small functional units (called
modules, each typically less than 100 lines of code)
interacting via blackboards, were developed incrementally
according to the development steps set forth in the CDM.
In Ymir modules are loosely coupled through message
passing; messages are semantically self-describing (the
content of modules' inputs and outputs is explicit in the
message types). Typically a module's function lies at the
cognitive level; any psychologically distinguishable
behavior (e.g. taking turns in dialogue, reaching to grasp an
object, etc.) is done through cooperation/interaction of 50-
80 such modules. Ymir postulates three priority layers of
modules, each layer having a particular upper bound on the
perception-action loop time: The Reactive Layer with ~
100 - 400 msecs; the Process Control Layer with ~ 400 -
2000 msecs; and the Content Layer from 2k msecs and up.
Ideally, modules are stateless (state is completely contained
in the historical flow of messages); however, we have
found that it is difficult to stay away from saving state in
some subset of a system's modules.

The important benefits of Ymir's CDM principles and
medium-granularity include better scaling of performance,
increased breadth and more organizational flexibility at
runtime, as reported for numerous systems (e.g.
[2,5,7,8,10]). While recent work has shown Ymir-like
architectures to be able to learn dynamically at runtime [2],
runtime changes in Ymir-style architectures at present do
not involve new functions (in terms of new modules); they
are limited to changes in the behaviors of, and interactions
between, already-existing modules. If we want to achieve
complex, evolving systems that can self-improve
significantly over time, however, automatic synthesis of
new components must be made possible. Automatic
management of self-improvement – via reorganization of
the architecture itself – can only be achieved by giving the
system instructions on how to measure its own
performance and providing it with methods for introducing
architectural changes to improve its own performance on
those measures. Such models of self are very difficult to
achieve in systems built with known software

222

methodologies – as well as the CDM. This leads us to the
importance of computational homogeneity.

Towards Peewee Granularity
As shown with Ymir's priority layers [11] (see also [6]) the
role of structures is to implement observation/control
feedback loops; the scale of complexity levels is thus
closely linked to the scale of response times: we need to
exert a fine control over the process synthesis to tune
accurately its constituents (sub-structures and sub-
processes) at any relevant scale. Control accuracy over
processes and process construction can be achieved only if
(a) the granularity of program interaction is as fine as the
size of the smallest model and (b) the execution time of
models is much lower than the program interaction the
models intend to control. For systems with shortest
cognitive response times (typically 250-500 msecs) this
may mean grains of no longer than a few CPU cycles long.

Ikon Flux is a proto-architecture for building fully
autonomous systems [3]. The details of Ikon Flux have
been described elsewhere; here we will discuss two of its
most salient traits, computational homogeneity and peewee
granularity (very small modules). Ikon Flux has been
designed to build systems that embody a continuous
process of architectural (re-)synthesis. Such systems are
engaged – in realtime – in observation/control loops to
steer the evolution of their own structures and processes
over short and long time horizons. In Ikon Flux, structures
and processes result from a bottom-up synthesis activity
scaffolded by top-down models: it finds its raw material in
low-level axioms (commands from/to sensors/actuators,
programming skills, etc.) while being regulated and
structured by (initially) man-made bootstrap code. As Ikon
Flux systems expand in functionality and scope the models
necessary to control synthesis grow in complexity; to cover
the whole spectrum of a system’s operation they must
encompass both low-level and higher-order structures/
processes. An autonomous system has thus to evolve these
heterogeneous models over time along a quasi-continuous
scale of complexity levels. It is a practical impossibility to
implement an architectural model for each of these levels –
which in most cases cannot be known in advance.
However, providing a uniform model that can self-improve
is a challenge since the operational semantics grow
significantly in complexity with the atomic set of system
operations (module types). This can be solved by
employing a homogenous computational substrate
consisting of a small amount of atomic operational
elements, each of peewee size. In Ikon Flux these are
rewrite terms. Systems built in Ikon Flux grow massive
amounts of (stateless) concurrent rewriting programs
organized to allow composition of structures/processes of
arbitrary size and architecture. Other research has
acknowledged the need for computational homogeneity
(cf. [1,4]), albeit to a lesser extent than Ikon Flux.

Architectures like Ymir [2,5,11] and others [1,4] have
shown the benefits of medium-size granularity. While these
systems can be expanded in performance, such expansion
tends to be linear, due to an operational semantics
complexity barrier. Ikon Flux presents a next step towards
massive amounts of small components, embodying
hundreds of thousands of peewee-size modules [3]. Yet
Ikon Flux demonstrates cognitive heterogeneity on top of
this computationally homogeneous substrate. As a result,
systems built in Ikon Flux exhibit deep learning of new
skills and integration of such skills into an existing
cognitive architecture. We believe peewee granularity is a
promising way to simplify operational semantics and reach
a computational homogeneity that can enable automated
architectural growth – which in itself is a necessary step
towards scaling of cognitive skills exhibited by current
state-of-the-art architectures. Only this way will we move
more quickly towards artificial general intelligence.

References
[1] Cardon A. 2003. Control and Behavior of a Massive Multi-
agent System In W. Truszkowski, C. Rouff, M. Hinchey eds.
WRAC 2002, LNAI 2564, 46-60. Berlin Heidelberg: Springer-
Verlag.
[2] Jonsdottir G.R., Thórisson K.R. and Nivel E. 2008. Learning
Smooth, Human-Like Turntaking in Realtime Dialogue.
Intelligent Virtual Agents (IVA), Tokyo, Japan, September 1-3.
[3] Nivel, E. 2007. Ikon Flux 2.0. Reykjavik University
Department of Computer Science Technical Report RUTR-
CS07006.
[4] Pezzulo G. and Calvi G. 2007. Designing Modular
Architectures in the Framework AKIRA. In Multiagent and Grid
Systems, 3:65-86.
[5] Ng-Thow-Hing V., List T., Thórisson K.R., Lim J., Wormer J.
2007. Design and Evaluation of Communication Middleware in a
Distributed Humanoid Robot Architecture. IROS '07 Workshop
Measures and Procedures for the Evaluation of Robot
Architectures and Middleware. San Diego, California.
[6] Sanz R., López I., Hernández C. 2007. Self-awareness in
Real-time Cognitive Control Architectures. In AI and
Consciousness: Theoretical Foundations and Current
Approaches. AAAI Fall Symposium. Washington, DC.
[7] Thórisson K.R. and Jonsdottir G.R. 2008. A Granular
Architecture for Dynamic Realtime Dialogue. Intelligent Virtual
Agents (IVA), Tokyo, Japan, September 1-3.
[8] Thórisson K.R., Jonsdottir G.R. and Nivel E. 2008. Methods
for Complex Single-Mind Architecture Designs. Proc. AAMAS,
Estoril, Portugal, June.
[9] Thórisson K. R. 2007. Integrated A.I. Systems. Minds &
Machines, 17:11-25.
[10] Thórisson K.R., Benko H., Arnold A., Abramov D., Maskey,
S., Vaseekaran, A. 2004. Constructionist Design Methodology for
Interactive Intelligences. A.I. Magazine, 25(4):77-90.
[11] Thórisson K.R. 1999. A Mind Model for Multimodal
Communicative Creatures and Humanoids. International Journal
of Applied Artificial Intelligence, 13(4-5): 449-486.

223

Author Index

Achler, Tsvi . 198
Amir, Eyal . 198
Armstrong, Blair 132

Baum, Eric . 1, 200
Bittle, Sean . 7
Bringsjord, Selmer 202
Bugaj, Stephan 31

Cassimatis, Nicholas 144
Chandrasekaran, B. 85
Chella, Antonio 13
Cree, George . 132
Crossley, Neil . 19

de Garis, Hugo . 25
desJardins, Marie 212

Fox, Mark .7

Gaglio, Salvatore 13
Ghosh, Sujata . 37
Goertzel, Ben31, 73, 114
Gonzalez, Cleotilde 103
Gros, Claudius 204
Gust, Helmar . 43

Hall, John . 49
Hibbard, Bill .206
Hitzler, Pascal 208
Hofmann, Martin 19, 55, 162
Hutter, Marcus 61, 67

Ikle, Matthew . 73

Johnston, Benjamin 79
Joordens, Steve 132

Kitzelmann, Emanuel 19, 55, 162
Krumnack, Ulf . 43
Kühnberger, Kai-Uwe 43, 208
Kurup, Unmesh 85

Löwe, Benedikt 37
Laird, John .91, 97
Langley, Pat . 91

Lathrop, Scott . 97
Lebiere, Christian 103
Liu, Daphne . 108
Looks, Moshe . 114
Loosemore, Richard 120
Lorincz, Andras 126

MacInnes, Joseph 132
Marinier, Robert 91
Miles, Jere . 210
Miller, Matthew 138
Miner, Don . 212
Murugesan, Arthi 144

Nivel, Eric 140, 211, 213

Pare, Dwayne . 132
Pickett, Marc . 212
Pitt, Joel . 73

Reed, Stephen 156

Samsonovich, Alexei 214
Saraf, Sanchit . 37
Schmid, Ute 19, 55, 162
Schubert, Lenhart108
Schwering, Angela43
Sellman, George73
Stoytchev, Alexander 138
Surowitz, Eugene 216
Swaine, Robert 218

Tashakkori, Rahman 210
Thorisson, Kristinn R. . .150, 220, 222
Tripodes, Peter G. 168

Wang, Pei174, 180
Warwick, Walter 103
Waser, Mark . 186
Williams, Mary-Anne 79
Wintermute, Samuel 192
Wong, Peter . 138
Wray, Robert . 91

224

C

M

J

CM

MJ

CJ

CMJ

N

imp-AGI-ok.pdf 10/02/09 13:08:31

	all-papers.pdf
	all-papers.pdf
	all-papers.pdf
	all-papers.pdf
	all-papers.pdf
	paper_28
	paper_40
	paper_34

	paper_11
	dummy
	paper_61
	paper_38
	paper_64
	paper_22
	paper_10
	paper_23
	Introduction
	Feature Markov Decision Process (MDP)
	MDP Coding and Evaluation
	A Tiny Example
	Cost() Minimization
	Exploration & Exploitation
	Improved Cost Function
	Conclusion
	References

	paper_25
	Introduction
	Feature Dynamic Bayesian Networks (DBN)
	DBN Example
	DBN Coding and Evaluation
	DBN Structure Learning & Updating
	Value & Policy Learning in DBN
	Incremental Updates
	Outlook
	References

	paper_63
	paper_20
	paper_42
	paper_58
	paper_18
	Abstract
	Introduction
	Related Work
	Experimental Environment
	The U.S. Army’s work in developing robotic scouts for reconnaissance missions (Jaczkowski, 2002) motivates the evaluation environment. In support of this effort, we built a simulation modeling a section of two robotic scout vehicles that must cooperat...
	Architecture
	Visual Perception
	Spatial Imagery
	Visual Imagery

	Functional Evaluation
	Conclusion
	References

	paper_48
	dummy
	paper_69
	paper_49
	paper_12
	paper_19
	paper_43
	paper_51
	paper_32
	paper_44
	paper_27
	paper_59
	paper_5
	paper_6
	paper_45
	paper_31

	paper_47
	paper_29
	dummy
	paper_4
	paper_21
	paper_37
	dummy
	paper_24
	paper_39
	paper_62
	paper_46
	paper_54
	paper_26
	paper_33

	ai_draft
	keyword_index

