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Abstract

We address the problem of reinforcement learning in which observations
may exhibit an arbitrary form of stochastic dependence on past observations
and actions, i.e. environments more general than (PO)MDPs. The task for
an agent is to attain the best possible asymptotic reward where the true gen-
erating environment is unknown but belongs to a known countable family of
environments. We find some sufficient conditions on the class of environments
under which an agent exists which attains the best asymptotic reward for any
environment in the class. We analyze how tight these conditions are and
how they relate to different probabilistic assumptions known in reinforcement
learning and related fields, such as Markov Decision Processes and mixing
conditions.
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1 Introduction

Many real-world “learning” problems (like learning to drive a car or playing a game)
can be modelled as an agent π that interacts with an environment µ and is (occa-
sionally) rewarded for its behavior. We are interested in agents which perform well
in the sense of having high long-term reward, also called the value V (µ,π) of agent π
in environment µ. If µ is known, it is a pure (non-learning) computational problem
to determine the optimal agent πµ := argmaxπV (µ,π). It is far less clear what an
“optimal” agent means, if µ is unknown. A reasonable objective is to have a single
policy π with high value simultaneously in many environments. We will formalize
and call this criterion self-optimizing later.

Learning approaches in reactive worlds. Reinforcement learning, sequential
decision theory, adaptive control theory, and active expert advice, are theories deal-
ing with this problem. They overlap but have different core focus: Reinforcement
learning algorithms [SB98] are developed to learn µ or directly its value. Temporal
difference learning is computationally very efficient, but has slow asymptotic guar-
antees (only) in (effectively) small observable MDPs. Others have faster guarantee
in finite state MDPs [BT99]. There are algorithms [EDKM05] which are optimal
for any finite connected POMDP, and this is apparently the largest class of envi-
ronments considered. In sequential decision theory, a Bayes-optimal agent π∗ that
maximizes V (ξ,π) is considered, where ξ is a mixture of environments ν∈C and C is
a class of environments that contains the true environment µ∈C [Hut05]. Policy π∗

is self-optimizing in an arbitrary (e.g. non-POMDP) class C, provided C allows for
self-optimizingness [Hut02]. Adaptive control theory [KV86] considers very simple
(from an AI perspective) or special systems (e.g. linear with quadratic loss function),
which sometimes allow computationally and data efficient solutions. Action with ex-
pert advice [dFM04, PH05, PH06, CBL06] constructs an agent (called master) that
performs nearly as well as the best agent (best expert in hindsight) from some class
of experts, in any environment ν. The important special case of passive sequence
prediction in arbitrary unknown environments, where the actions=predictions do
not affect the environment is comparably easy [Hut03, HP04].

The difficulty in active learning problems can be identified (at least, for countable
classes) with traps in the environments. Initially the agent does not know µ, so has
asymptotically to be forgiven in taking initial “wrong” actions. A well-studied such
class are ergodic MDPs which guarantee that, from any action history, every state
can be (re)visited [Hut02].

What’s new. The aim of this paper is to characterize as general as possible classes
C in which self-optimizing behaviour is possible, more general than POMDPs. To
do this we need to characterize classes of environments that forgive. For instance,
exact state recovery is unnecessarily strong; it is sufficient being able to recover high
rewards, from whatever states. Further, in many real world problems there is no
information available about the “states” of the environment (e.g. in POMDPs) or
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the environment may exhibit long history dependencies.
Rather than trying to model an environment (e.g. by MDP) we try to identify

the conditions sufficient for learning. Towards this aim, we propose to consider only
environments in which, after any arbitrary finite sequence of actions, the best value is
still achievable. The performance criterion here is asymptotic average reward. Thus
we consider such environments for which there exists a policy whose asymptotic
average reward exists and upper-bounds asymptotic average reward of any other
policy. Moreover, the same property should hold after any finite sequence of actions
has been taken (no traps). We call such environments recoverable. If we only want
to get ε-close to the optimal value infinitely often with decreasing ε (that is, to have
the same upper limit for the average value), then this property is already sufficient.

Yet recoverability in itself is not sufficient for identifying behaviour which results
in optimal limiting average value. We require further that, from any sequence of k
actions, it is possible to return to the optimal level of reward in o(k) steps; that is, it
is not just possible to recover after any sequence of (wrong) actions, but it is possible
to recover fast. Environments which possess this property are called value-stable.
(These conditions will be formulated in a probabilistic form.)

We show that for any countable class of value-stable environments there exists
a policy which achieves the best possible value in any of the environments from the
class (i.e. is self-optimizing for this class).

Furthermore, we present some examples of environments which possess value-
stability and/or recoverability. In particular, any ergodic MDP can be easily shown
to be value-stable. A mixing-type condition which implies value-stability is also
demonstrated. In addition, we provide a construction allowing to build examples of
value-stable and/or recoverable environments which are not isomorphic to a finite
POMDP, thus demonstrating that the class of value-stable environments is quite
general.

Finally, we consider environments which are not recoverable but still are value-
stable. In other words, we consider the question of what it means to be optimal in
an environment which does not “forgive” wrong actions. Even in such cases some
policies are better than others, and we identify some conditions which are sufficient
for learning a policy that is optimal from some point on.

It is important in our argument that the class of environments for which we seek
a self-optimizing policy is countable, although the class of all value-stable environ-
ments is uncountable. To find a set of conditions necessary and sufficient for learning
which do not rely on countability of the class is yet an open problem. However, from
a computational perspective countable classes are sufficiently large (e.g. the class of
all computable probability measures is countable).

Contents. The paper is organized as follows. Section 2 introduces necessary no-
tation of the agent framework. In Section 3 we define and explain the notion of
value-stability, which is central to the paper, and a weaker but simpler notion of
recoverability. Section 4 presents the theorems about self-optimizing policies for
classes of value-stable environments and recoverable environments. In Section 5 we
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discuss what can be achieved if the environments are not recoverable. Section 6
illustrates the applicability of the theorems by providing examples of value-stable
and recoverable environments. In Section 7 we discuss necessity of the conditions of
the main theorems. Section 8 provides some discussion of the results and an outlook
to future research. Formal proofs of the main theorems are given in Section A, while
Sections 4 and 5 contain only intuitive explanations.

2 Notation and Definitions

We essentially follow the notation of [Hut02, Hut05].

Strings and probabilities. We use letters i,k,l,m,n ∈ IN for natural numbers,
and denote the cardinality of sets S by #S. We write X ∗ for the set of finite
strings over some alphabet X , and X∞ for the set of infinite sequences. For a string
x ∈ X ∗ of length `(x) = n we write x1x2...xn with xt ∈ X and further abbreviate
xk:n := xkxk+1...xn−1xn and x<n := x1...xn−1. Finally, we define xk..n := xk+...+xn,
provided elements of X can be added.

We assume that sequence ω=ω1:∞∈X∞ is sampled from the “true” probability
measure µ, i.e. P[ω1:n =x1:n] =µ(x1:n). We denote expectations w.r.t. µ by E, i.e.
for a function f :X n → IR, E[f ] = E[f(ω1:n)] =

∑
x1:n

µ(x1:n)f(x1:n). When we use
probabilities and expectations with respect to other measures we make the notation
explicit, e.g. Eν is the expectation with respect to ν. Measures ν1 and ν2 are called
singular if there exists a set A such that ν1(A)=0 and ν2(A)=1.

The agent framework is general enough to allow modelling nearly any kind of (in-
telligent) system [RN95]. In cycle k, an agent performs action yk∈Y (output) which
results in observation ok ∈O and reward rk ∈R, followed by cycle k+1 and so on.
We assume that the action space Y , the observation space O, and the reward space
R⊂IR are finite, w.l.g. R={0,...,rmax}. We abbreviate zk :=ykrkok∈Z :=Y×R×O
and xk = rkok ∈ X :=R×O. An agent is identified with a (probabilistic) policy
π. Given history z<k, the probability that agent π acts yk in cycle k is (by defini-
tion) π(yk|z<k). Thereafter, environment µ provides (probabilistic) reward rk and
observation ok, i.e. the probability that the agent perceives xk is (by definition)
µ(xk|z<kyk). Note that the policy and the environment are allowed to depend on
the complete history. We do not make any MDP or POMDP assumption here, and
we don’t talk about states of the environment, only about observations. Each (pol-
icy,environment) pair (π,µ) generates an I/O sequence zπµ

1 zπµ
2 .... Mathematically,

the history zπµ
1:k is a random variable with probability

P
(
zπµ
1:k = z1:k

)
= π(y1) · µ(x1|y1) · ... · π(yk|z<k) · µ(xk|z<kyk).

Since value maximizing policies can always be chosen deterministic, there is no real
need to consider probabilistic policies, and henceforth we consider deterministic
policies p. We assume that µ∈C is the true, but unknown, environment, and ν∈C
a generic environment.
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3 Setup

For an environment ν and a policy p define random variables (upper and lower
average value)

V (ν, p) := lim sup
m

{
1
m

rpν
1..m

}
and V (ν, p) := lim inf

m

{
1
m

rpν
1..m

}

where r1..m :=r1+...+rm. If there exists a constant V or a constant V such that

V (ν, p) = V a.s., or V (ν, p) = V a.s.

then we say that the upper limiting average or (respectively) lower average value
exists, and denote it by V (ν,p) := V (or V (ν,p) := V ). If both upper and lower
average limiting values exist and are equal then we simply say that average limiting
value exist and denote it by V (ν,p) :=V (ν,p)=V (ν,p)

An environment ν is explorable if there exists a policy pν such that V (ν,pν)
exists and V (ν,p)≤V (ν,pν) with probability 1 for every policy p. In this case define
V ∗

ν :=V (ν,pν). An environment ν is upper explorable if there exists a policy pν such
that V (ν,pν) exists and V (ν,p)≤V (ν,pν) with probability 1 for every policy p. In
this case define V

∗
ν :=V (ν,pν).

A policy p is self-optimizing for a set of explorable environments C if V (ν,p)=
V ∗

ν for every ν ∈ C. A policy p is upper self-optimizing for a set of explorable
environments C if V (ν,p)=V

∗
ν for every ν∈C.

In the case when we we wish to obtain the optimal average value for any en-
vironment in the class we will speak about self-optimizing policies, whereas if we
are only interested in obtaining the upper limit of the average value then we will
speak about upper self-optimizing policies. It turns out that the latter case is much
simpler. The next two definitions present conditions on the environments which will
be shown to be sufficient to achieve the two respective goals.

Definition 1 (recoverable). We call an upper explorable environment ν recoverable
if for any history z<k such that ν(x<k|y<k)>0 there exists a policy p such that

P(V (ν,p)=V
∗|z<k)=1.

Conditioning on the history z<k means that we take ν-conditional probabilities
(conditional on x<k) and first k−1 actions of the policy p are replaced by y<k.

Recoverability means that after taking any finite sequence of (possibly sub-
optimal) actions it is still possible to obtain the same upper limiting average value
as an optimal policy would obtain. The next definition is somewhat more complex.

Definition 2 (value-stable environments). An explorable environment ν is value-
stable if there exist a sequence of numbers rν

i ∈ [0,rmax] and two functions dν(k,ε)
and ϕν(n,ε) such that 1

n
rν
1..n→V ∗

ν , dν(k,ε)=o(k),
∑∞

n=1ϕν(n,ε)<∞ for every fixed
ε, and for every k and every history z<k there exists a policy p=pz<k

ν such that

P
(
rν
k..k+n − rpν

k..k+n > dν(k, ε) + nε | z<k

) ≤ ϕν(n, ε). (1)
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First of all, this condition means that the strong law of large numbers for rewards
holds uniformly over histories z<k; the numbers rν

i here can be thought of as expected
rewards of an optimal policy. Furthermore, the environment is “forgiving” in the
following sense: from any (bad) sequence of k actions it is possible (knowing the
environment) to recover up to o(k) reward loss; to recover means to reach the level
of reward obtained by the optimal policy which from the beginning was taking only
optimal actions. That is, suppose that a person A has made k possibly suboptimal
actions and after that “realized” what the true environment was and how to act
optimally in it. Suppose that a person B was from the beginning taking only optimal
actions. We want to compare the performance of A and B on first n steps after the
step k. An environment is value stable if A can catch up with B except for o(k)
gain. The numbers rν

i can be thought of as expected rewards of B; A can catch
up with B up to the reward loss dν(k,ε) with probability ϕν(n,ε), where the latter
does not depend on past actions and observations (the law of large numbers holds
uniformly).

Examples of value-stable environments will be considered in Section 6.

4 Main Results

In this section we present the main self-optimizingness result along with an informal
explanation of its proof, and a result on upper self-optimizingness, which turns out
to have much more simple conditions.

Theorem 3 (value-stable⇒self-optimizing). For any countable class C of value-
stable environments, there exists a policy which is self-optimizing for C.

A formal proof is given in the appendix; here we give some intuitive justification.
Suppose that all environments in C are deterministic. We will construct a self-
optimizing policy p as follows: Let νt be the first environment in C. The algorithm
assumes that the true environment is νt and tries to get ε-close to its optimal value
for some (small) ε. This is called an exploitation part. If it succeeds, it does some
exploration as follows. It picks the first environment νe which has higher average
asymptotic value than νt (V ∗

νe > V ∗
νt) and tries to get ε-close to this value acting

optimally under νe. If it cannot get close to the νe-optimal value then νe is not
the true environment, and the next environment can be picked for exploration (here
we call “exploration” successive attempts to exploit an environment which differs
from the current hypothesis about the true environment and has a higher average
reward). If it can, then it switches to exploitation of νt, exploits it until it is ε′-close
to V ∗

νt , ε′ < ε and switches to νe again this time trying to get ε′-close to Vνe ; and
so on. This can happen only a finite number of times if the true environment is νt,
since V ∗

νt <V ∗
νe . Thus after exploration either νt or νe is found to be inconsistent with

the current history. If it is νe then just the next environment νe such that V ∗
νe >V ∗

νt

is picked for exploration. If it is νt then the first consistent environment is picked
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for exploitation (and denoted νt). This in turn can happen only a finite number of
times before the true environment ν is picked as νt. After this, the algorithm still
continues its exploration attempts, but can always keep within εk→0 of the optimal
value. This is ensured by d(k)=o(k).

The probabilistic case is somewhat more complicated since we can not say
whether an environment is “consistent” with the current history. Instead we test
each environment for consistency as follows. Let ξ be a mixture of all environments
in C. Observe that together with some fixed policy each environment µ can be con-
sidered as a measure on Z∞. Moreover, it can be shown that (for any fixed policy)
the ratio ν(z<n)

ξ(z<n)
is bounded away from zero if ν is the true environment µ and tends

to zero if ν is singular with µ (in fact, here singularity is a probabilistic analogue
of inconsistency). The exploration part of the algorithm ensures that at least one
of the environments νt and νe is singular with ν on the current history, and a suc-
cession of tests ν(z<n)

ξ(z<n)
≥αs with αs→ 0 is used to exclude such environments from

consideration.

Upper self-optimizingness. Next we consider the task in which our goal is more
moderate. Rather than trying to find a policy which will obtain the same average
limiting value as an optimal one for any environment in a certain class, we will try
to obtain only the optimum upper limiting average. That is, we will try to find
a policy which infinitely often gets as close as desirable to the maximum possible
average value. It turns out that in this case a much simpler condition is sufficient:
recoverability instead of value-stability.

Theorem 4 (recoverable⇒upper self-optimizing). For any countable class C of re-
coverable environments, there exists a policy which is upper self-optimizing for C.

A formal proof can be found in Section A; its idea is as follows. The upper self-
optimizing policy p to be constructed will loop through all environments in C in such
a way that each environment is tried infinitely often, and for each environment the
agent will try to get ε-close (with decreasing ε) to the upper-limiting average value,
until it either manages to do so, or a special stopping condition holds: ν(z<n)

ξ(z<n)
<αs,

where αs is decreasing accordingly. This condition necessarily breaks if the upper
limiting average value cannot be achieved.

5 Non-recoverable environments

Before proceeding with examples of value-stable environments, we briefly discuss
what can be achieved if an environment does not forgive initial wrong actions, that
is, is not recoverable. It turns out that value-stability can be defined for non-
recoverable environments as well, and optimal — in a worst-case sense — policies
can be identified.
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For an environment ν, a policy p and a history z<k such that ν(x<k|y<k)>0, if
there exists a constant V or a constant V such that

P (V (ν,p) = V |z<k)=1, or P (V (ν,p) = V |z<k)=1,

then we say that the upper conditional (on z<k) limiting average or (respec-
tively) lower conditional average value exists, and denote it by V (ν,p,z<k) := V
(or V (ν,p,z<k) := V ). If both upper and lower conditional average limiting values
exist and are equal then we say that that average conditional value exist and denote
it by V (ν,p,(z<k)) :=V (ν,p,z<k)=V (ν,p,z<k)

Call an environment ν strongly (upper) explorable if for any history z<k such that
ν(x<k|y<k)>0 there exists a policy pz<k

ν such that V (ν,pz<k
ν ) (V (ν,pz<k

ν )) exists and
V (ν,p,z<k)≤V (ν,pz<k

ν ,z<k) (respectively V (ν,p,z<k)≤V (ν,pz<k
ν ,z<k)) with probability

1 for every policy p. In this case define V ∗
ν (z<k):=V (ν,pz<k

ν ) (respectively V
∗
ν(z<k):=

V (ν,pz<k
ν )).

For a strongly explorable environment ν define the worst-case optimal value

W ∗
ν := inf

k,z<k:ν(x<k>0)
V ∗

ν (z<k),

and for a strongly upper explorable ν define the worst-case upper optimal value

W
∗
ν := inf

k,z<k:ν(x<k>0)
V
∗
ν(z<k).

In words, the worst-case optimal value is the asymptotic average reward which is
attainable with certainty after any finite sequence of actions has been taken.

Note that a recoverable explorable environment is also strongly explorable.
A policy p will be called worst-case self-optimizing or worst-case upper self-

optimizing for a class of environments C if lim inf 1
m

rpν
1..m ≥ W ∗

ν , or (respectively)

lim sup 1
m

rpν
1..m≥W

∗
ν with probability 1 for every ν∈C.

Definition 5 (worst-case value-stable environments). A strongly explorable environ-
ment ν is worst-case value-stable if there exists a sequence of numbers rν

i ∈ [0,rmax]
and two functions dν(k,ε) and ϕν(n,ε) such that 1

n
rν
1..n → W ∗

ν , dν(k,ε) = o(k),∑∞
n=1ϕν(n,ε) <∞ for every fixed ε, and for every k and every history z<k there

exists a policy p=pz<k
ν such that

P
(
rν
k..k+n − rpν

k..k+n > dν(k, ε) + nε | z<k

) ≤ ϕν(n, ε). (2)

Note that a recoverable environment is value-stable if and only if it is worst-case
value-stable.

Worst-case value stability helps to distinguish between irreversible actions (or
“traps”) and actions which result only in a temporary loss in performance; moreover,
worst-case value-stability means that a temporary loss in performance can only be
short (sublinear).

Finally, we can establish the following result (cf. Theorems 3 and 4).
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Theorem 6 (worst-case self-optimizing). (i) For any countable set of worst-case
value-stable environments C there exist a policy p which is worst-case self-
optimizing for C.

(ii) For any countable set of strongly upper explorable environments C there exist
a policy p which is worst-case upper self-optimizing for C.

The proof of this theorem is analogous to the proofs of Theorems 3 and 4; the
differences are explained in Section A.

6 Examples

In this section we illustrate the results of the previous section with examples of
classes of value-stable environments. These are also examples of recoverable envi-
ronments, since recoverability is strictly weaker than value-stability. In the end of
the section we also give some simple examples of recoverable but not value-stable
environments.

We first note that passive environments are value-stable. An environment is
called passive if the observations and rewards do not depend on the actions of
the agent. Sequence prediction task provides a well-studied (and perhaps the only
reasonable) class of passive environments: in this task the agent is required to give
the probability distribution of the next observation given the previous observations.
The true distribution of observations depends only on the previous observations
(and does not depend on actions and rewards). Since we have confined ourselves to
considering finite action spaces, the agent is required to give ranges of probabilities
for the next observation, where the ranges are fixed beforehand. The reward 1 is
given if all the ranges are correct and the reward 0 is given otherwise. It is easy to
check that any such environment is value-stable with rν

i ≡1, d(k,ε)≡1, ϕ(n,ε)≡0,
since, knowing the distribution, one can always start giving the correct probability
ranges (this defines the policy pν).

Obviously, there are active value stable environments too. The next proposition
provides some conditions on mixing rates which are sufficient for value-stability; we
do not intend to provide sharp conditions on mixing rates but rather to illustrate
the relation of value-stability with mixing conditions.

We say that a stochastic process hk, k∈ IN satisfies strong α-mixing conditions
with coefficients α(k) if (see e.g. [Bos96])

sup
n∈IN

sup
B∈σ(h1,...,hn),C∈σ(hn+k,... )

|P(B ∩ C)−P(B)P(C)| ≤ α(k),

where σ() stands for the sigma-algebra generated by the random variables in brack-
ets. Loosely speaking, mixing coefficients α reflect the speed with which the process
“forgets” about its past.
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Proposition 7 (mixing and value-stability). Suppose that an explorable environ-
ment ν is such that there exist a sequence of numbers rν

i and a function d(k) such
that 1

n
rν
1..n→V ∗

ν , d(k)=o(k), and for each z<k there exists a policy p such that the
sequence rpν

i satisfies strong α-mixing conditions with coefficients α(k) = 1
k1+ε for

some ε>0 and
rν
k..k+n − E

(
rpν
k..k+n | z<k

) ≤ d(k)

for any n. Then ν is value-stable.

Proof. Using the union bound we obtain

P
(
rν
k..k+n − rpν

k..k+n > d(k) + nε
)

≤ I
(
rν
k..k+n − E rpν

k..k+n > d(k)
)

+ P
(∣∣rpν

k..k+n − E rpν
k..k+n

∣∣ > nε
)
.

The first term equals 0 by assumption and the second term for each ε can be shown
to be summable using [Bos96, Thm.1.3]: for a sequence of uniformly bounded zero-
mean random variables ri satisfying strong α-mixing conditions the following bound
holds true for any integer q∈ [1,n/2]

P (|r1..n| > nε) ≤ ce−ε2q/c + cqα

(
n

2q

)

for some constant c; in our case we just set q=n
ε

2+ε . ¤

(PO)MDPs. Applicability of Theorem 3 and Proposition 7 can be illustrated
on (PO)MDPs. We note that self-optimizing policies for (uncountable) classes of
finite ergodic MDPs and POMDPs are known [BT99, EDKM05]; the aim of the
present section is to show that value-stability is a weaker requirement than the
requirements of these models, and also to illustrate applicability of our results. We
call µ a (stationary) Markov decision process (MDP) if the probability of perceiving
xk∈X , given history z<kyk only depends on yk∈Y and xk−1. In this case xk∈X is
called a state, X the state space. An MDP µ is called ergodic if there exists a policy
under which every state is visited infinitely often with probability 1. An MDP with
a stationary policy forms a Markov chain.

An environment is called a (finite) partially observable MDP (POMDP) if there
is a sequence of random variables sk taking values in a finite space S called the state
space, such that xk depends only on sk and yk, and sk+1 is independent of s<k given
sk. Abusing notation the sequence s1:k is called the underlying Markov chain. A
POMDP is called ergodic if there exists a policy such that the underlying Markov
chain visits each state infinitely often with probability 1.

In particular, any ergodic POMDP ν satisfies strong α-mixing conditions with
coefficients decaying exponentially fast in case there is a set H⊂R such that ν(ri∈
H)=1 and ν(ri = r|si = s,yi = y) 6=0 for each y∈Y ,s∈S,r∈H,i∈ IN . Thus for any
such POMDP ν we can use Proposition 7 with d(k,ε) a constant function to show
that ν is value-stable:
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Corollary 8 (POMDP⇒value-stable). Suppose that a POMDP ν is ergodic and
there exists a set H⊂R such that ν(ri∈H)=1 and ν(ri =r|si =s,yi =y) 6=0 for each
y∈Y ,h∈S,r∈H, where S is the finite state space of the underlying Markov chain.
Then ν is value-stable.

However, it is illustrative to obtain this result for MDPs directly, and in a slightly
stronger form.

Proposition 9 (MDP⇒value-stable). Any finite-state ergodic MDP ν is a value-
stable environment.

Proof. Let d(k,ε) = 0. Denote by µ the true environment, let z<k be the current
history and let the current state (the observation xk) of the environment be a∈X ,
where X is the set of all possible states. Observe that for an MDP there is an
optimal policy which depends only on the current state. Moreover, such a policy is
optimal for any history. Let pµ be such a policy. Let rµ

i be the expected reward of
pµ on step i. Let l(a,b)=min{n :xk+n = b|xk =a}. By ergodicity of µ there exists a
policy p for which El(b,a) is finite (and does not depend on k). A policy p needs to
get from the state b to one of the states visited by an optimal policy, and then acts
according to pµ. Let f(n) := nrmax

logn
. We have

P
(∣∣rµ

k..k+n − rpµ
k..k+n

∣∣ > nε
) ≤ sup

a∈X
P

(∣∣E (
r

pµµ
k..k+n|xk = a

)− rpµ
k..k+n

∣∣ > nε)
)

≤ sup
a,b∈X

P(l(a, b) > f(n)/rmax)

+ sup
a,b∈X

P
(∣∣∣E

(
r

pµµ
k..k+n|xk = a

)− r
pµµ

k+f(n)..k+n

∣∣∣ > nε− f(n)
∣∣∣xk+f(n) = a

)

≤ sup
a,b∈X

P(l(a, b) > f(n)/rmax)

+ sup
a∈X

P
(∣∣E (

r
pµµ
k..k+n|xk = a

)− r
pµµ
k..k+n

∣∣ > nε− 2f(n)
∣∣∣xk = a

)
.

In the last term we have the deviation of the reward attained by the optimal policy
from its expectation. Clearly, both terms are bounded exponentially in n. ¤

In the examples above the function d(k,ε) is a constant and ϕ(n,ε) decays ex-
ponentially fast. This suggests that the class of value-stable environments stretches
beyond finite (PO)MDPs. We illustrate this guess by the construction that follows.

A general scheme for constructing value-stable environment or recoverable
environments: infinitely armed bandit. Next we present a construction of envi-
ronments which cannot be modelled as finite POMDPs but are value-stable and/or
recoverable. Consider the following environment ν. There is a countable family
C ′ = {ζi : i ∈ IN} of arms, that is, sources generating i.i.d. rewards 0 and 1 (and,
say, empty observations) with some probability δi of the reward being 1. The action
space Y consists of three actions Y={g,u,d}. To get the next reward from the cur-
rent arm ζi an agent can use the action g. Let i denote the index of the current arm.
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At the beginning i=0, the current arm is ζ0 and then the agent can move between
arms as follows: it can move U(i) arms “up” using the action u (i.e. i := i+U(i))
or it can move D(i) arms “down” using the action d (i.e. i := i−D(i) or 0 if the
result is negative). The reward for actions u and d is 0. In all the examples below
U(i)≡1, that is, the action u takes the agent one arm up.

Clearly, ν is a POMDP with countably infinite number of states in the underlying
Markov chain, which (in general) is not isomorphic to a finite POMDP.

Claim 10. If D(i)=i for all i∈IN then the environment ν just constructed is value-
stable. If D(i)≡1 then ν is recoverable but not necessarily value-stable; that is, there
are choices of the probabilities δi such that ν is not value-stable.

Proof. First we show that in either case (D(i)= i or D(i)=1) ν is explorable. Let
δ =supi∈INδi. Clearly, V (ν,p′)≤ δ with probability 1 for any policy p′ . A policy p
which, knowing all the probabilities δi, achieves V (ν,p)=V (ν,p)=δ=:V ∗

ν a.s., can be
easily constructed. Indeed, find a sequence ζ ′j, j∈IN , where for each j there is i=:ij
such that ζ ′j =ζi, satisfying limj→∞δij =δ. The policy p should carefully exploit one
by one the arms ζj, staying with each arm long enough to ensure that the average
reward is close to the expected reward with εj probability, where εj quickly tends
to 0, and so that switching between arms has a negligible impact on the average
reward. Thus ν can be shown to be explorable. Moreover, a policy p just sketched
can be made independent on (observation and) rewards.

Next we show if D(i)=i, that is, the action d always takes the agent down to the
first arm, then the environment is value-stable. Indeed, one can modify the policy
p (possibly allowing it to exploit each arm longer) so that on each time step t (from
some t on) we have j(t)≤√t, where j(t) is the number of the current arm on step
t. Thus, after any actions-perceptions history z<k one needs about

√
k actions (one

action u and enough actions d) to catch up with p. So, (1) can be shown to hold
with d(k,ε)=

√
k, ri the expected reward of p on step i (since p is independent of

rewards, rpν
i are independent), and the rates ϕ(n,ε) exponential in n.

To construct a non-value-stable environment with D(i)≡1, simply set δ0=1 and
δj =0 for j>0; then after taking n actions u one can only return to optimal rewards
with n actions (d), that is d(k)= o(k) cannot be obtained. Still it is easy to check
that recoverability is preserved, whatever the choice of δi. ¤

In the above construction we can also allow the action d to bring the agent
d(i)<i steps down, where i is the number of the current environment ζ, according
to some (possibly randomized) function d(i), thus changing the function dν(k,ε) and
possibly making it non-constant in ε and as close as desirable to linear.

7 Necessity of value-stability

Now we turn to the question of how tight the conditions of value-stability are. The
following proposition shows that the requirement d(k,ε) = o(k) in (1) cannot be
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relaxed.

Proposition 11 (necessity of d(k,ε) = o(k)). There exists a countable family of
deterministic explorable environments C such that

• for any ν∈C for any sequence of actions y<k there exists a policy p such that

rν
k..k+n ≤ rpν

k..k+n + k for all n ≥ k,

where rν
i are the rewards attained by an optimal policy pν (which from the

beginning was acting optimally), but

• for any policy p there exists an environment ν∈C such that V (ν,p)<V ∗
ν (i.e.

there is no self-optimizing policy for C).
Clearly, each environment from such a class C satisfies the value stability condi-

tions with ϕ(n,ε)≡0 except d(k,ε)=k 6=o(k).

Proof. There are two possible actions yi∈{a,b}, three possible rewards ri∈{0,1,2}
and no observations.

Construct the environment ν0 as follows: if yi =a then ri =1 and if yi = b then
ri =0 for any i∈IN .

For each i let ni denote the number of actions a taken up to step i: ni :=#{j≤
i :yj =a}. For each s>0 construct the environment νs as follows: ri(a)=1 for any
i, ri(b)=2 if the longest consecutive sequence of action b taken has length greater
than ni and ni≥s; otherwise ri(b)=0.

It is easy to see that each νi, i > 0 satisfies the value stability conditions with
ϕ(n,ε)≡ 0 except d(k,ε) = k 6= o(k), and does not satisfy it with any d(k,ε) = o(k).
Next we show that there is no self-optimizing policy for the class.

Suppose that there exists a policy p such that V (νi,p)=V ∗
νi

for each i>0 and let
the true environment be ν0. By assumption, for each s there exists such n that

#{i ≤ n : yi = b, ri = 0} ≥ s > #{i ≤ n : yi = a, ri = 1}

which implies V (ν0,p)≤1/2<1=V ∗
ν0

. ¤

It is also easy to show that the uniformity of convergence in (1) cannot be
dropped. That is, if in the definition of value-stability we allow the function ϕ(n,ε)
to depend additionally on the past history z<k then Theorem 3 does not hold. This
can be shown with the same example as constructed in the proof of Proposition 11,
letting d(k,ε)≡ 0 but instead allowing ϕ(n,ε,z<k) to take values 0 and 1 according
to the number of actions a taken, achieving the same behaviour as in the example
provided in the last proof.

Moreover, we show that the requirement that the class C to be learnt is countable
cannot be easily withdrawn. Indeed, consider the class of all deterministic passive
environments in the sequence prediction setting. In this task an agent gets the
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reward 1 if yi =oi+1 and the reward 0 otherwise, where the sequence of observation
oi is deterministic. Different sequences correspond to different environments. As
it was mentioned before, any such environment ν is value-stable with dν(k,ε)≡ 1,
ϕν(n,ε)≡0 and rν

i ≡1. Obviously, the class of all deterministic passive environments
is not countable. Since for every policy p there is an environment on which p errs
exactly on each step, the class of all deterministic passive environments cannot be
learned. Therefore, the following statement is valid:

Claim 12. There exist (uncountable) classes of value-stable environments for which
there are no self-optimizing policies.

However, strictly speaking, even for countable classes value-stability is not nec-
essary for self-optimizingness. This can be demonstrated on the class νi : i>0 from
the proof of Proposition 11. (Whereas if we add ν0 to the class a self-optimizing
policy no longer exists.) So we have the following:

Claim 13. There are countable classes of not value-stable environments for which
self-optimizing policies exist.

8 Discussion

Summary. We have proposed a set of conditions on environments, called value-
stability, such that any countable class of value-stable environments admits a self-
optimizing policy. It was also shown that these conditions are in a certain sense
tight. The class of all value-stable environments includes ergodic MDPs, certain
class of finite POMDPs, passive environments, and (provably) more environments.
So the concept of value-stability allows us to characterize self-optimizing environ-
ment classes, and proving value-stability is typically much easier than proving self-
optimizingness directly. Value stability means that from any (sup-optimal) sequence
of actions it is possibly to recover fast. If it is possible to recover, but not necessarily
fast, then we get a condition which we called recoverability, which was shown to be
sufficient to be able to recover the upper limit of the optimal average asymptotic
value. We have also analyzed what can be achieved in environments which possess
(worst-case) value-stability but are not recoverable; it turned out that a certain
worst-case self-optimizingness can be identified in this case too.

On the following picture we summarize the concepts introduced in Sections 3, 4
and 5. The arrows symbolize implications: some of them follow from theorems or
stated in definitions (marked accordingly), while others are trivial.
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explorable ¾ Def.2

?

value-stable --ITh.3

?

?

?

?

self-optimizing

upper explorable ¾Def.1

6

?

recoverable --ITh.4 upper self-opt.

strongly exp. ¾ Def.5

? ?

worst-case val.-st. --ITh.6 (i) worst-case self-opt.

strongly upper exp.

6

--ITh.6 (ii) worst-case upper self-opt.

Outlook. We considered only countable environment classes C. From a computa-
tional perspective such classes are sufficiently large (e.g. the class of all computable
probability measures is countable). On the other hand, countability excludes contin-
uously parameterized families (like all ergodic MDPs), common in statistical prac-
tice. So perhaps the main open problem is to find under which conditions the
requirement of countability of the class can be lifted. Another important question
is whether (meaningful) necessary and sufficient conditions for self-optimizingness
can be found. However, identifying classes of environments for which self-optimizing
policies exist is a hard problem which has not been solved even for passive environ-
ments [RH06].

One more question concerns the uniformity of forgetfulness of the environment.
Currently in the definition of value-stability (1) we have the function ϕ(n,ε) which
is the same for all histories z<k, that is, both for all actions histories y<k and
observations-rewards histories x<k. Probably it is possible to differentiate between
two types of forgetfulness, one for actions and one for perceptions.

In this work we have chosen the asymptotic uniform average value lim 1
m

rpν
1..m as

our performance measure. Another popular measure is the asymptotic discounted
value γ1r1+γ2r2+ ..., where γ is some (typically geometric γk ∝ γk) discount se-
quence. One can show [Hut06] under quite general conditions that the limit of aver-
age and future discounted values coincide. Equivalence holds for bounded rewards
and monotone decreasing γ, in deterministic environments and, in expectation over
the history, also for probabilistic environments. So, in these cases our results also
apply to discounted value.

Finally, it should be mentioned that we have concentrated on optimal values
which can be obtained with certainty (with probability one); towards this aim we
have defined (upper, strong) explorability and only considered environments which
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possess one of these properties. It would also be interesting to analyze what is
achievable in environments which are not (upper, strongly) explorable; for example,
one could consider optimal expected value, and may be some other criteria.

A Proofs of Theorems 3 and 4

In each of the proofs, a self-optimizing (or upper self-optimizing) policy p will be
constructed. When the policy p has been defined up to a step k, an environment µ,
endowed with this policy, can be considered as a measure on Zk. We assume this
meaning when we use environments as measures on Zk (e.g. µ(z<i)).

Proof of Theorem 3. A self-optimizing policy p will be constructed as follows. On
each step we will have two polices: pt which exploits and pe which explores; for each
i the policy p either takes an action according to pt (p(z<i)=pt(z<i)) or according
to pe (p(z<i)=pe(z<i)), as will be specified below.

In the algorithm below, i denotes the number of the current step in the sequence
of actions-observations. Let n=1, s=1, and jt =je =0. Let also αs =2−s for s∈IN .
For each environment ν, find such a sequence of real numbers εν

n that εν
n→ 0 and∑∞

n=1ϕν(n,εν
n)≤∞.

Let ı : IN →C be such a numbering that each ν ∈C has infinitely many indices.
For all i>1 define a measure ξ as follows

ξ(z<i) =
∑
ν∈C

wνν(z<i), (3)

where wν∈R are (any) such numbers that
∑

νwν =1 and wν >0 for all ν∈C.
Define T . On each step i let

T ≡ Ti :=

{
ν ∈ C :

ν(z<i)

ξ(z<i)
≥ αs

}

Define νt. Set νt to be the first environment in T with index greater than ı(jt).
In case this is impossible (that is, if T is empty), increment s, (re)define T and try
again. Increment jt.
Define νe. Set νe to be the first environment with index greater than ı(je) such
that V ∗

νe >V ∗
νt and νe(z<k)>0, if such an environment exists. Otherwise proceed one

step (according to pt) and try again. Increment je.
Consistency. On each step i (re)define T . If νt /∈ T , define νt, increment s and
iterate the infinite loop. (Thus s is incremented only if νt is not in T or if T is
empty.)

Start the infinite loop. Increment n.
Let δ :=(V ∗

νe−V ∗
νt)/2. Let ε :=ενt

n . If ε<δ set δ=ε. Let h=je.
Prepare for exploration.

Increment h. The index h is incremented with each next attempt of exploring
νe. Each attempt will be at least h steps in length.
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Let pt =py<i

νt and set p=pt.
Let ih be the current step. Find k1 such that

ih
k1

V ∗
νt ≤ ε/8 (4)

Find k2 >2ih such that for all m>k2

∣∣∣∣
1

m− ih
rνt

ih+1..m − V ∗
νt

∣∣∣∣ ≤ ε/8. (5)

Find k3 such that
hrmax/k3 < ε/8. (6)

Find k4 such that for all m>k4

1

m
dνe(m, ε/4) ≤ ε/8,

1

m
dνt(m, ε/8) ≤ ε/8 and

1

m
dνt(ih, ε/8) ≤ ε/8. (7)

Moreover, it is always possible to find such k>max{k1,k2,k3,k4} that

1

2k
rνe

k..3k ≥
1

2k
rνt

k..3k + δ. (8)

Iterate up to the step k.
Exploration. Set pe = py<n

νe . Iterate h steps according to p = pe. Iterate further
until either of the following conditions breaks

(i)
∣∣rνe

k..i−rpν
k..i

∣∣<(i−k)ε/4+dνe(k,ε/4),

(ii) i<3k.

(iii) νe∈T .

Observe that either (i) or (ii) is necessarily broken.
If on some step νt is excluded from T then the infinite loop is iterated. If after

exploration νe is not in T then redefine νe and iterate the infinite loop. If both
νt and νe are still in T then return to “Prepare for exploration” (otherwise the loop
is iterated with either νt or νe changed).
End of the infinite loop and the algorithm.

Let us show that with probability 1 the “Exploration” part is iterated only a
finite number of times in a row with the same νt and νe.

Suppose the contrary, that is, suppose that (with some non-zero probability)
the “Exploration” part is iterated infinitely often while νt,νe∈T . Observe that (1)
implies that the νe-probability that (i) breaks is not greater than ϕνe(i−k,ε/4); hence
by Borel-Cantelli lemma the event that (i) breaks infinitely often has probability 0
under νe.

Suppose that (i) holds almost every time. Then (ii) should be broken except
for a finite number of times. We can use (4), (5), (7) and (8) to show that with
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probability at least 1−ϕνt(k−ih,ε/4) under νt we have 1
3k

rpνt

1..3k ≥ V ∗
νt +ε/2. Again

using Borel-Cantelli lemma and k > 2ih we obtain that the event that (ii) breaks
infinitely often has probability 0 under νt.

Thus (at least) one of the environments νt and νe is singular with respect to
the true environment ν given the described policy and current history. Denote this
environment by ν ′. It is known (see e.g. [CS04, Thm.26]) that if measures µ and ν
are mutually singular then µ(x1,...,xn)

ν(x1,...,xn)
→∞ µ-a.s. Thus

ν ′(z<i)

ν(z<i)
→ 0 ν-a.s. (9)

Observe that (by definition of ξ) ν(z<i)
ξ(z<i)

is bounded. Hence using (9) we can see that

ν ′(z<i)

ξ(z<i)
→ 0 ν-a.s.

Since s and αs are not changed during the exploration phase this implies that on
some step ν ′ will be excluded from T according to the “consistency” condition, which
contradicts the assumption. Thus the “Exploration” part is iterated only a finite
number of times in a row with the same νt and νe.

Observe that s is incremented only a finite number of times since ν′(z<i)
ξ(z<i)

is
bounded away from 0 where ν ′ is either the true environment ν or any environ-
ment from C which is equivalent to ν on the current history. The latter follows from
the fact that ξ(z<i)

ν(z<i)
is a submartingale with bounded expectation, and hence, by the

submartingale convergence theorem (see e.g. [Doo53]) converges with ν-probability
1.

Let us show that from some step on ν (or an environment equivalent to it) is
always in T and selected as νt. Consider the environment νt on some step i. If
V ∗

νt > V ∗
ν then νt will be excluded from T since on any optimal for νt sequence of

actions (policy) measures ν and νt are singular. If V ∗
νt < V ∗

ν than νe will be equal
to ν at some point, and, after this happens sufficient number of times, νt will be
excluded from T by the “exploration” part of the algorithm, s will be decremented
and ν will be included into T . Finally, if V ∗

νt =V ∗
ν then either the optimal value V ∗

ν is
(asymptotically) attained by the policy pt of the algorithm, or (if pνt is suboptimal

for ν) 1
i
rpνt

1..i <V ∗
νt−ε infinitely often for some ε, which has probability 0 under νt and

consequently νt is excluded from T .
Thus, the exploration part ensures that all environments not equivalent to ν with

indices smaller than ı(ν) are removed from T and so from some step on νt is equal
to (an environment equivalent to) the true environment ν.

We have shown in the “Exploration” part that n→∞, and so ενt

n →0. Finally,
using the same argument as before (Borel-Cantelli lemma, (i) and the definition of
k) we can show that in the “exploration” and “prepare for exploration” parts of the
algorithm the average value is within ενt

n of V ∗
νt provided the true environment is

(equivalent to) νt. ¤
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Proof of Theorem 4. Let ı : IN →C be such a numbering that each ν ∈ C has
infinitely many indices. Define the measure ξ as in (3). The policy p acts according
to the following algorithm.

Set εs = αs = 2−s for s∈ IN , set j = 1, s = n = 1. The integer i will denote the
current step in time.

Do the following ad infinitum. Set ν to be the first environment in C with index
greater than ı(j). Find the policy pν which achieves the upper limiting average
value with probability one (such policy exists by definition of recoverability). Act
according to pν until either ∣∣∣∣

1

i
rpν
1..i − V

∗
(p, pν)

∣∣∣∣ < εn (10)

or
ν(z<i)

ξ(z<i)
< αs. (11)

Increment n, s, i.
It can be easily seen that one of the conditions necessarily breaks. Indeed, either

in the true environment the optimal upper limiting average value for the current
environment ν can be achieved by the optimal policy pν , in which case (10) breaks;
or it cannot be achieved, which means that ν and ξ are singular, which implies that
(11) will be broken (see e.g. [CS04, Thm.26]; cf. the same argument in the proof of
Theorem 3). Since ν equals the true environment infinitely often and εn→0 we get
the statement of the theorem. ¤
Proof of Theorem 6 is analogous to the proofs of Theorems 3 and 4, except for the
following. Instead of the optimal average value V ∗

ν and upper optimal average value
V
∗
ν the values V ∗

ν (z<k) and V
∗
ν(z<k) should be used, and they should be updated

after each step k. ¤
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